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Ontology Debugging

Ontologies are the basis for semantic web and
knowledge-based systems

Widely used in practice: BBC, NHS, Klappo, . . .
Ontology debugging aims to guarantee that an ontology
I is coherent
I models properly (implicit) domain knowledge
I keeps these properties over time

Debugging via Model Generation

Given an ontology O and a set Sα of properties, check if
O |= α (O ∪ {¬α} |= ⊥) for all α ∈ Sα.
I if O 6|= α

I extraction of a model explaining why O 6|= α
I understanding the model allows to fix the ontology

I if O |= α then O is well specified w.r.t. α

Applicable at any stage of the life cycle of an ontology.

Subset-Simulation Minimality

Relation between individuals of two models I = (∆I, ·I) and I ′ = (∆′I
′
, ·I ′)

s.t. for any two individuals a and a′, if a S a′ then the following hold.
I V (a) ⊆ V ′(a′) (where V (a) = {A ∈ NC | aI ∈ AI}), and
I if r (a,b), then there exists a b′I ′ ∈ ∆I

′ such that r (a′,b′) and b S b′.

A model I of an ontology O is minimal modulo subset-simulation iff for any
model I ′ of O, if I ′ ≤ I, then I ≤ I ′.
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Table : Rules of the tableau calculus

I C is of the form ∃r .C, ∀r .C, or A
I neg(Φ+) = {(¬A)(a) | A(a) is a disjunct of Φ+}
I Φ+

α a disjunction of C or conjunctions
I Φ+ a disjunction of C

Features of the calculus:
I lazy clausification ((α) rule) to reduce the number of inferences
I complement splitting ((β) rule) to close “non-minimal” branches

as soon as possible
I selection-based resolution to reduce the number of inferences

and to close branches
I handling of Boolean ABoxes

The calculus is refutationally sound and complete.
The calculus is minimal model complete.
Subset-simulation test

I If the model extracted from a branch B subset-simulates a
model extracted from a branch B′, then close B.

The test guarantees minimal model soundness.
Easily generalisable to cover more expressive logics.

for ALCH (H)
r (a,b) r v s

s(a,b)

Termination via dynamic ancestor equality blocking.
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