

Minimal Models Modulo Subset-Simulation for Modal Logics

Fabio Papacchini Renate A. Schmidt

School of Computer Science The University of Manchester

April 12, 2013

(Minimal) Model Generation

Useful for several tasks:

- hardware and software verification
- fault analysis

. . .

• commonsense reasoning

They have been investigated for many, classical and non-classical, logics.

Minimality Criteria

Several minimality criteria has already been considered:

- · domain minimality
- minimisation of a certain set of predicates
- minimal Herbrand models

Minimality Criteria

Several minimality criteria has already been considered:

- domain minimality
- minimisation of a certain set of predicates
- minimal Herbrand models

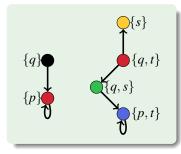
Aims

To propose a new minimality criterion for modal logics that

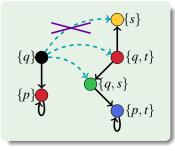
- · takes in consideration the semantics of models
- is generic enough to be applied to a variety of modal logics

To propose a tableau calculus for the generation of these minimal models.

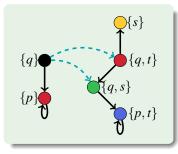
- 1 the subset relationship holds $(V(u) \subseteq V'(u'))$
- 2 successor in the first model
 ⇒ successor in the second model
- 3 1 and 2 hold for the successors of point 2



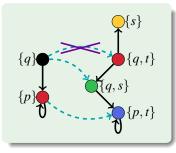
- 1 the subset relationship holds $(V(u) \subseteq V'(u'))$
- 2 successor in the first model
 ⇒ successor in the second model
- 3 1 and 2 hold for the successors of point 2



- 1 the subset relationship holds $(V(u) \subseteq V'(u'))$
- 2 successor in the first model
 ⇒ successor in the second model
- 3 1 and 2 hold for the successors of point 2

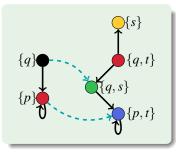


- 1 the subset relationship holds $(V(u) \subseteq V'(u'))$
- 2 successor in the first model ⇒ successor in the second model
- 3 1 and 2 hold for the successors of point 2



Relation between nodes of two models M = (W, R, V) and M' = (W', R, V') s.t.

- 1 the subset relationship holds $(V(u) \subseteq V'(u'))$
- 2 successor in the first model \Rightarrow successor in the second model
- 3 1 and 2 hold for the successors of point 2

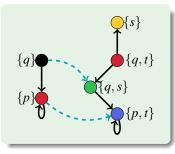


Full Subset-Simulation: for all $u \in W$ there exists some $u' \in W'$ s.t. $uS \subseteq u'$.

Maximal Subset-Simulation: S_{\subseteq} maximal if there is no S'_{\subseteq} s.t. $S_{\subseteq} \subset S'_{\subseteq}$.

Relation between nodes of two models M = (W, R, V) and M' = (W', R, V') s.t.

- 1 the subset relationship holds $(V(u) \subseteq V'(u'))$
- 2 successor in the first model \Rightarrow successor in the second model
- 3 1 and 2 hold for the successors of point 2



Full Subset-Simulation: for all $u \in W$ there exists some $u' \in W'$ s.t. $uS \subset u'$.

Maximal Subset-Simulation: S_{\subseteq} maximal if there is no S'_{\subseteq} s.t. $S_{\subseteq} \subset S'_{\subseteq}$.

We are only interested in full and maximal subset-simulations.

Subset-simulation is

- reflexive
- transitive

Subset-simulation is

reflexive

a preorder

transitive

Subset-simulation is

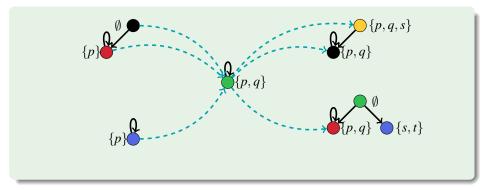
reflexive

 \Rightarrow

a preorder

• transitive

Minimal models are the minimal elements of the preorder.



Subset-simulation is

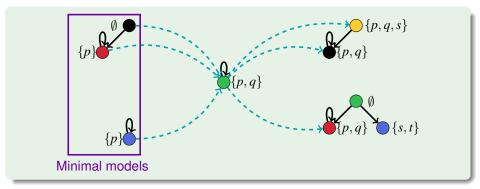
reflexive

 \Rightarrow

a preorder

• transitive

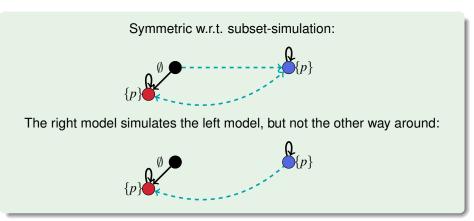
Minimal models are the minimal elements of the preorder.



Refining Symmetric Models – Simulation

Use of simulation among symmetric minimal models allows to

- · reduce the number of minimal models
- recognise bisimilar models



Properties of the Minimality Criterion

- · applied to the graph representation of models
- finite unravelled models are preferred over infinite unravelled models
- minimisation of the content of worlds
- suitable for many modal logics

Tableau Calculus

Input: a modal formula in negation normal form.

Tableau Calculus

Input: a modal formula in negation normal form.

Selection-based resolution:

- closure rule
- removes negative information from disjunctions

$$(SBR) \quad \frac{u:p_1,\ldots,u:p_n \qquad u:\neg p_1 \lor \ldots \lor \neg p_n \lor \Phi_{\alpha}^+}{u:\Phi_{\alpha}^+}$$

 Φ_{α}^+ : a disjunction where no disjunct is of the form $\neg p_i$.

Tableau Calculus

Input: a modal formula in negation normal form.

Selection-based resolution:

- closure rule
- removes negative information from disjunctions

$$(SBR) \quad \frac{u:p_1,\ldots,u:p_n \qquad u:\neg p_1 \lor \ldots \lor \neg p_n \lor \Phi_{\alpha}^+}{u:\Phi_{\alpha}^+}$$

Lazy clausification:

$$(\alpha) \quad \frac{u: (\phi_1 \wedge \ldots \wedge \phi_n) \vee \Phi_{\alpha}^+}{u: \phi_1 \vee \Phi_{\alpha}^+}$$

 $: u: \phi_n \vee \Phi_\alpha^+$

- avoids preprocessing steps
- can result in less inferences

 Φ_{α}^+ : a disjunction where no disjunct is of the form $\neg p_i$.

Tableau Calculus (cont'd)

Complement splitting:

- variation of the standard β rule
- · detects trivially non-minimal models

$$(\beta) \begin{array}{c|c} u : \mathcal{A} \lor \Phi^+ \\ \hline u : \mathcal{A} \\ u : neg(\Phi^+) \end{array} \\ u : 0$$

$$\mathcal{A} ::= p \mid \Diamond \phi \mid \Box \phi$$
$$neg(\Phi^+) = \neg p_1 \land \ldots \land \neg p_n$$

Φ^+ : a disjunction where no disjunct is of the form $\neg p_i$ or is a conjunction.

Tableau Calculus (cont'd)

Complement splitting:

- variation of the standard β rule
- · detects trivially non-minimal models

$$(\beta) \begin{array}{c|c} u : \mathcal{A} \lor \Phi^+ \\ \hline u : \mathcal{A} \\ u : neg(\Phi^+) \end{array} \\ u : 0$$

$$\mathcal{A} ::= p \mid \Diamond \phi \mid \Box \phi$$
$$neg(\Phi^+) = \neg p_1 \land \ldots \land \neg p_n$$

Expansion of diamond formulae:

$$(\diamondsuit) \begin{array}{c|c} u: \diamondsuit \phi \\ \hline (u, u_1): R & \dots & (u, u_n): R & (u, v): R \\ u_1: \phi & u_n: \phi & v: \phi \end{array}$$

v is a fresh new world

 Φ^+ : a disjunction where no disjunct is of the form $\neg p_i$ or is a conjunction.

Tableau Calculus (cont'd)

Complement splitting:

- variation of the standard β rule
- · detects trivially non-minimal models

$$(\beta) \begin{array}{c|c} u : \mathcal{A} \lor \Phi^+ \\ \hline u : \mathcal{A} \\ u : neg(\Phi^+) \end{array} \\ u : 0$$

$$\mathcal{A} ::= p \mid \Diamond \phi \mid \Box \phi$$
$$neg(\Phi^+) = \neg p_1 \land \ldots \land \neg p_n$$

Expansion of diamond formulae:

$$(\diamondsuit) \begin{array}{c|c} u: \diamondsuit \phi \\ \hline (u, u_1): R & \dots & (u, u_n): R & (u, v): R \\ u_1: \phi & u_n: \phi & v: \phi \end{array}$$

v is a fresh new world

Expansion of box formulae: the standard \Box rule

 Φ^+ : a disjunction where no disjunct is of the form $\neg p_i$ or is a conjunction.

Properties of the Tableau Calculus

The calculus is

- refutationally sound and complete
- minimal model complete (generates all minimal models)

Properties of the Tableau Calculus

The calculus is

- refutationally sound and complete
- minimal model complete (generates all minimal models)

But it is not minimal model sound (generates also non-minimal models)!

Minimal Model Soundness – Subset-Simulation Test

Idea: incremental generation of models while closing "non-minimal" branches.

Expansion strategy: the left most branch with the least number of worlds.

Minimal Model Soundness – Subset-Simulation Test

Idea: incremental generation of models while closing "non-minimal" branches.

Expansion strategy: the left most branch with the least number of worlds.

Closure of "non-minimal" branches – Subset-Simulation Test

- Early closure of a branch: a partial model *M* is subset-simulated by an extracted model *M'*, but *M* does not subset-simulates *M'*
- \Rightarrow close the branch from which *M* is extracted.

• Backward closure of branches: newly extracted model *M*. Compare *M* with the current set of minimal models and close branches accordingly.

Conclusion and Further Work

- the presented minimality criterion is semantic and suitable for many modal logics
- the calculus can be easily generalised to cover more expressive logics
- termination depends on the logic under consideration

Conclusion and Further Work

- the presented minimality criterion is semantic and suitable for many modal logics
- the calculus can be easily generalised to cover more expressive logics
- termination depends on the logic under consideration

- efficient implementation of the calculus
- study of reasonable restrictions for reducing the search space
- generalise the minimality criterion to fragments of first-order logic

Thank You!