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(Minimal) Model Generation

Useful for several tasks:

• hardware and software verification

• fault analysis

• commonsense reasoning

• . . .

They have been investigated for many, classical and non-classical, logics.
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Minimality Criteria

Several minimality criteria has already been considered:

• domain minimality

• minimisation of a certain set of predicates

• minimal Herbrand models

Aims
To propose a new minimality criterion for modal logics that

• takes in consideration the semantics of models

• is generic enough to be applied to a variety of modal logics

To propose a tableau calculus for the generation of these minimal models.
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Subset-Simulation S⊆

Relation between nodes of two models M = (W,R,V) and M′ = (W ′,R,V ′) s.t.

1 the subset relationship holds (V(u) ⊆ V ′(u′))

2 successor in the first model
⇒ successor in the second model

3 1 and 2 hold for the successors of point 2

{q}

{p}

{q, t}

{q, s}

{p, t}

{s}

Full Subset-Simulation: for all u ∈ W there exists some u′ ∈ W ′ s.t. uS⊆u′.

Maximal Subset-Simulation: S⊆ maximal if there is no S′⊆ s.t. S⊆ ⊂ S′⊆.

We are only interested in full and maximal subset-simulations.
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Minimal Models Modulo Subset-Simulation
Subset-simulation is

• reflexive

• transitive

⇒ a preorder

Minimal models are the minimal elements of the preorder.

∅

{p}

{p, q}

{p}

{p, q, s}

{p, q}

∅

{p, q} {s, t}

Minimal models
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Refining Symmetric Models – Simulation
Use of simulation among symmetric minimal models allows to

• reduce the number of minimal models

• recognise bisimilar models

∅

{p}

{p}

Symmetric w.r.t. subset-simulation:

The right model simulates the left model, but not the other way around:

∅

{p}

{p}
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Properties of the Minimality Criterion

• applied to the graph representation of models

• finite unravelled models are preferred over infinite unravelled models

• minimisation of the content of worlds

• suitable for many modal logics
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Tableau Calculus

Input: a modal formula in negation normal form.

Selection-based resolution:

• closure rule

• removes negative information from disjunctions

(SBR)
u : p1, . . . , u : pn u : ¬p1 ∨ . . . ∨ ¬pn ∨ Φ+

α

u : Φ+
α

Lazy clausification:

• avoids preprocessing steps

• can result in less inferences

(α)
u : (φ1 ∧ . . . ∧ φn) ∨ Φ+

α

u : φ1 ∨ Φ+
α

...
u : φn ∨ Φ+

α

Φ+
α : a disjunction where no disjunct is of the form ¬pi.
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Tableau Calculus (cont’d)

Complement splitting:

• variation of the standard β rule

• detects trivially non-minimal models

(β)
u : A ∨ Φ+

u : A u : Φ+

u : neg(Φ+)

A ::= p | 3φ | 2φ
neg(Φ+) = ¬p1 ∧ . . . ∧ ¬pn

Expansion of diamond formulae:

(3)
u : 3φ

(u, u1) : R . . . (u, un) : R (u, v) : R
u1 : φ un : φ v : φ

v is a fresh new world

Expansion of box formulae: the standard 2 rule

Φ+: a disjunction where no disjunct is of the form ¬pi or is a conjunction.
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Properties of the Tableau Calculus

The calculus is

• refutationally sound and complete

• minimal model complete (generates all minimal models)

But it is not minimal model sound (generates also non-minimal models)!
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Minimal Model Soundness – Subset-Simulation Test

Idea: incremental generation of models while closing “non-minimal” branches.

Expansion strategy: the left most branch with the least number of worlds.

Closure of “non-minimal” branches – Subset-Simulation Test

• Early closure of a branch: a partial model M is subset-simulated by an
extracted model M′, but M does not subset-simulates M′

⇒ close the branch from which M is extracted.

• Backward closure of branches: newly extracted model M. Compare M
with the current set of minimal models and close branches accordingly.
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Conclusion and Further Work

• the presented minimality criterion is semantic and suitable for many
modal logics

• the calculus can be easily generalised to cover more expressive logics

• termination depends on the logic under consideration

• efficient implementation of the calculus

• study of reasonable restrictions for reducing the search space

• generalise the minimality criterion to fragments of first-order logic
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Thank You!
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