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Abstract
We study the language universality problem for One-Counter Nets, also known as 1-dimensional
Vector Addition Systems with States (1-VASS), parameterized either with an initial counter value,
or with an upper bound on the allowed counter value during runs. The language accepted by an
OCN (defined by reaching a final control state) is monotone in both parameters. This yields two
natural questions: 1) does there exist an initial counter value that makes the language universal? 2)
does there exist a sufficiently high ceiling so that the bounded language is universal?

Although the ordinary universality problem is decidable (and Ackermann-complete) and these
parameterized variants seem to reduce to checking basic structural properties of the underlying
automaton, we show that in fact both problems are undecidable. We also look into the complexities
of the problems for several decidable subclasses, namely for unambiguous, and deterministic systems,
and for those over a single-letter alphabet.
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1 Introduction

One-Counter Nets (OCNs) are finite-state machines equipped with an integer counter that
cannot decrease below zero and which cannot be explicitly tested for zero. They are the
same as 1-dimensional Vector Addition Systems (or Petri nets with exactly one unbounded
place). In order to use them as formal language acceptors we assume that transitions are
labelled with letters from a finite alphabet and that some states are marked as accepting.

OCNs are a syntactic restriction of One-Counter Automata – Minsky Machines with
only one counter, which can have zero-tests, i.e., transitions that depend on the counter
value being exactly zero. If counter updates are restricted to ±1, the model corresponds to
Pushdown automata with a single-letter stack alphabet. OCNs are one of the simplest types
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of discrete infinite-state systems, which makes them suitable for exploring the decidability
border of classical decision problems from automata and formal-language theory.

Universality Problems. The universality problem for a class of automata asks if a given
automaton accepts all words over its input alphabet. Due to their lack of an explicit
zero-test, OCNs are monotone with respect to counter values: if it is possible to make an
a-labelled step from a configuration with state p and counter n to state q with counter n+ d,
written as (p, n) a−→ (q, n+ d) here, then the same holds for any larger counter value m ≥ n:
(p,m) a−→ (q,m+ d). Consequently, if we define the language via acceptance by reaching a
final control state, then for all states s and n ≤ m ∈ N, the language L(s, n) of the initial
configuration (s, n) is included in that of (s,m). This motivates our first variation of the
universality problem. The Initial-Value Universality problem asks if there exists a sufficiently
large initial counter to make the resulting language universal.

Input: An OCN with alphabet Σ and an initial state s0.
Question: Does there exist c0 ∈ N such that L(s0, c0) = Σ∗?

The second question we consider is the Bounded Universality problem, which asks if there
exists a large enough upper bound on the counter so that every word can be accepted via a
run that remains within this bound. Writing L≤b(s0, c0) ⊆ Σ∗ for the b-bounded language
from configuration (s0, c0), the decision problem is as follows.

Input: An OCN with alphabet Σ, an initial state s0, and c0 ∈ N.
Question: Does there exist b ∈ N such that L≤b(s0, c0) = Σ∗?

The motivation for studying these parameterized problems comes from the observation
that the “vanilla” universality problem, without existentially quantifying over parameters,
is decidable, but Ackermann-complete [15], and the lower bound depends strongly on the
assumption that we start with a fixed initial counter (and that its value is not bounded).
The two new variants of the universality problem relax these assumptions in an attempt to
allow efficient decision procedures via simple cycle analysis or similar.

Our Results. We show that both initial-value universality and bounded universality are
undecidable (Section 3). The proofs use techniques from weighted automata [12, 4], reducing
the halting problem of two-counter machines to our setting.

In light of these negative results, we proceed to study restricted classes of OCNs, for which
the problems become decidable, as we elaborate below. In most cases, the complexity crucially
depends on how transition updates are encoded: we consider both the case of “succinct”,
binary-encoded updates, and the case of unary-encoded updates, which corresponds to
systems where transitions can only update the counter by ±1.

The most intricate and interesting case is that of OCNs over a single-letter alphabet
(Section 4). In order to analyze this model, we split universality to criteria on “short” words,
and on longer words that admit a cyclic behavior. In particular, we devise a canonical
representation of “pumpable” paths, akin to the so-called linear-path schemes [18, 7]. We
show that the complexity of some of the problems is coNP complete, where others range
between coNP and coNPNP (see Tables 1 and 2).

We then consider deterministic, and unambiguous OCNs (Sections 5 and 6, respectively).
For such systems, deciding (bounded) universality problems mostly reduces to checking
simple conditions on the cyclic structure of the control automaton underlying the OCN.
Based on known (but in some cases very recent) results on unambiguous finite automata and
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Table 1 The complexity of the universality problems of one-counter nets in which weights are
encoded in unary.

Unary
encoding

Universality Initial-Value Universality Bounded Universality
Singleton
Alphabet

General
Alphabet

Singleton
Alphabet

General
Alphabet

Singleton
Alphabet

General
Alphabet

Deterministic L
Theorem 28

NL-comp.
Theorem 26

L
Theorem 28

NL-comp.
Theorem 26

L
Theorem 28

NL-comp.
Theorem 26

Unambiguous NL
Theorem 31

NC2; [11]
NL-hard

NL
Theorem 34

NC2

Theorem 34
NL

Theorem 36
NC2

Theorem 36
Non-

deterministic
coNP-comp.
Theorem 10

Ackermann
[15]

coNP-comp.
Theorem 15

Undecidable
Theorem 1

coNP-comp.
Theorem 22

Undecidable
Theorem 2

Table 2 The complexity of the bounded universality problems of one-counter nets in which
weights are encoded in binary.

Binary
encoding

Universality Initial-Value Universality Bounded Universality
Singleton
Alphabet

General
Alphabet

Singleton
Alphabet

General
Alphabet

Singleton
Alphabet

General
Alphabet

Deterministic NC2

Theorem 28
NC

Theorem 26
NC2

Theorem 28
NC2

Theorem 34
NC2

Theorem 28
NC

Theorem 26

Unambiguous coNP-comp.
Theorem 12

PSPACE; [11]
coNP-hard

NC2

Theorem 34
NC2

Theorem 34
coNPNP

Theorem 22
PSPACE

Theorem 36
Non-

deterministic
coNPNP

Theorem 12
Ackermann

[15]
coNP-comp.
Theorem 15

Undecidable
Theorem 1

coNPNP

Theorem 22
Undecidable
Theorem 2

vector-addition systems, we derive relatively low complexity upper bounds, in polynomial
time (assuming unary encoding) and space (assuming binary encoding). Tables 1 and 2
summarize the status quo, following our results.

Related work. The undecidability of language universality for pushdown automata is
textbook. In his 1973 PhD thesis [24], Valiant showed that the problem remains undecidable
for the strictly weaker model of one-counter automata (OCA, with zero tests) by recognizing
the complement of all accepting runs of a two-counter machine. Language inclusion is
undecidable for the further restricted model of OCNs [14]. If one considers ω-regular
languages defined by OCNs with Büchi acceptance condition then the resulting universality
problem is undecidable [8].

On the positive side, universality is decidable for vector addition systems [16] and
Ackermann-complete for the special case of OCNs [15]. One-counter systems have received
some attention in regards to checking bisimulation and simulation relations, which under-
approximate language equivalence (and inclusion, respectively) and are computationally
simpler. For OCAs/OCNs, bisimulation is PSPACE-complete [9], while weak bisimulation
is undecidable for OCNs [19]. Both strong and weak simulation are PSPACE-complete for
OCNs, and checking if an OCN simulates an OCA is decidable [1].

Universality problems for OCNs over single-letter alphabets are related to the termination
problem for VASS, which asks if there exists an infinite run. Non-termination naturally
corresponds to the property that an ∈ L(s0,v0), i.e., all finite words are accepted, assuming
that all states are accepting. Termination reduces to boundedness (finiteness of the reachab-
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ility set) which is EXPSPACE-complete [21, 13] in general and PSPACE-complete for systems
with fixed dimensions [22]. In contrast, the structural termination problem (there exists no
infinite run, regardless of the initial configuration) is equivalent to finding an executable
cycle that is non-decreasing on all dimensions, and can be solved in polynomial time [17].

Finally, the idea to existentially quantify over some initial resource is commonplace in the
formal verification literature. Examples include unknown initial-credit problems for energy
games [10, 1] and R-Automata [3], timed Petri nets [2], and inclusion problems for weighted
automata [12, 4].

2 Preliminaries

One-Counter Nets. A one-counter net (OCN) is a finite directed graph where edges carry
both an integer weight and a letter from a finite alphabet. We write A = (Σ, Q, s0, δ, F) for
the net A where Q is a finite set of states, Σ is a finite set of letters, s0 ∈ Q is an initial
state, δ ⊆ Q × Σ × Z×Q is the transition relation, and F ⊆ Q are the accepting states.

For a transition t = (s, a, e, s′) ∈ δ we write effect(t) def= e for its (counter) effect, and
write ‖δ‖ for the largest absolute effect among all transitions. By the underlying automaton
of an OCN we mean the NFA obtained from the OCN by disregarding the transition effects.

A path in the OCN is a sequence π = (s1, a1, e1, s2)(s2, a2, e2, s3) . . . (sk, ak, ek, sk+1) ∈ δ∗.
Such a path π is a cycle if s1 = sk+1, and is a simple cycle if no other cycle is a proper infix
of it. We say that the path above reads word a1a2 . . . ak ∈ Σ∗ and is accepting if sk+1 ∈ F.
Its effect(π) def=

∑k
i=1 ei is the sum of its transition effects . Its height is the maximal effect

of any prefix and, similarly, its depth is the inverse of the minimal effect of any prefix.

An OCN naturally induces an infinite-state labelled transition system in which each
configuration is a pair (s, c) ∈ Q × N comprising a state and a non-negative integer. We call
such a configuration final, or accepting, if s ∈ F . Every letter a ∈ Σ induces a step relation
a−→ ⊆ (Q× N)2 between configurations where, for every two configurations (s, c) and (s′, c′),

(s, c) a−→ (s′, c′) ⇐⇒ (s, a, d, s′) ∈ δ and c′ = c+ d.

A run on a word w = a1a2 . . . ak ∈ Σ∗ is a path in this induced infinite system; that is, a
sequence ρ = (s0, c0), (s1, c1), (s2, c2), . . . (sk, ck) such that (si−1, ci−1) ai−→ (si, ci) holds for
all 1 ≤ i ≤ k. Naturally, a run uniquely describes a path in the underlying finite OCN.
Conversely, for every such path and initial counter value c0 ∈ N, there is at most one
corresponding run: A path π is executable from c0 if its depth is at most c0 (that is, we do
not allow the counter to become negative). A run as above is called a (simple) cycle if its
underlying path is a (simple) cycle. It is accepting if it ends in an accepting configuration.
We call a run bounded by b ∈ N if ci ≤ b for all 0 ≤ i ≤ k.

For any fixed initial configuration (s, c), we define its language LA(s, c) ⊆ Σ∗ to contain
exactly all words on which an accepting run starting in (s, c) exists. (We omit the subscript
A if the OCN is clear from context.) Similarly, the b-bounded language L≤b(s, c) is the set of
those words on which there is a b-bounded run starting in (s, c).

The OCN is deterministic if for every pair (s, a) ∈ Q × Σ there is at most one pair
(d, q) ∈ N × Q with (s, a, d, s′) ∈ δ. A net together with an initial configuration (s0, c0) is
unambiguous if for every word w ∈ Σ∗ there is at most one accepting run starting in (s0, c0).

Two-Counter Machines. A two-counter machine (Minsky Machine) M is a sequence
(l1, . . . , ln) of commands involving two counters x and y. We refer to {1, . . . , n} as the
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A:

Σ \ {‘inc x’, ‘dec x’, ‘x=0 then goto’, ‘halt’, #}, 0 Σ \ {#},−1

0

q5 and q6 are identical to q3 and q4,

0

‘dec x’, −1

q6

q0

q3

‘x=0 then goto’

q4

‘x>0 then goto’

‘dec x’, +1
‘inc x’, −1

Σ \ {‘inc x’, ‘dec x’, ‘x>0 then goto’, ‘halt’, #}, 0

#, 0−1

Σ \ {#}, 0
#, 00

‘inc x’, +1 q1
Σ, 0

heaven

q5

respectively, but with respect to y

q2 Command
Checker

#, 0 non-counting

#,−1

violation

Figure 1 The one-counter net A from the proof of Theorem 1.

locations of the machine. There are five possible forms of commands: inc(c), dec(c), goto
li, halt, if c=0 goto li else goto lj , where c ∈ {x, y} is a counter and 1 ≤ i, j ≤ n are
locations. The counters are initially set to 0. Since we can always check whether c = 0 before
a dec(c) command, we assume that the machine never reaches dec(c) with c = 0. That is,
the counters never have negative values.

3 Undecidability

We show that both initial-value universality and bounded universality are undecidable by
reduction from the undecidable halting problem of two-counter machines (2CM) [20].

The idea underlying both reductions is that the initial counter value, or the bound on
the allowed counter, prescribes a bound on the number of steps until the OCN must make
a decision weather the input word, which encodes a prefix of the run of the 2CM, either
halts or cheats. After this decision the OCN is reset and continues to read the remaining
word within an adjusted bound. If the decision was correct then the bound remains the
same and otherwise, it is strictly reduced. The existence of a halting run of the 2CM now
implies that its length corresponds to a sufficient initial bound for this simulating OCN to
be universal. Conversely, if the run of the machine does not halt then for every bound n,
there exists a non-cheating, and non-terminating prefix of length n. Repeating this prefix n
times witnesses non-universality for the simulating OCN with initial counter n.

3.1 Initial-Value Universality
Given a two-counter machineM, we construct a one-counter net A as follows (see Figure 1).
Intuitively, an input word w to A is a sequence of segments separated by #, where each
segment is a sequence of commands fromM. Accordingly, the alphabet of A consists of #
and all possible commands ofM.

We build A to accept w, once starting with a big enough initial counter value, if one
of the following conditions holds: i) one of w’s segments is shorter than the length of the
(legal halting) run ofM; or ii) one of w’s segments does not respect the control structure
underlyingM, which is called a “non-counting cheat” here; or iii) all of w’s segments do not
describe a prefix of the run ofM, making “counting cheats”. The OCN reads every segment
in between two #’s starting in, and returning to, a central state q0.

Non-counting cheats are easy to verify—for every line l ofM, there is a corresponding
state q in A, and when A is at state q and reads a letter a, A checks if a matches the
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command in l. For example, if l =‘goto i’ and a = ‘inc x’, the transition from q goes
to a forever accepting state (heaven), and if a =‘goto i’, it goes to the state of A that
corresponds to the line li. This is the “command-checker gadget” of A.

Counting cheats are more challenging to verify, as OCNs cannot branch according to a
counter value. We consider separately “positive cheats” and “negative cheats”. The former
stands for the case that the input letter is ‘x=0 then goto’ (or ‘y=0 then goto’) while the
value of x (or y) in the legal run ofM should be positive. The latter stands for the case
that the input letter is ‘x>0 then goto’ (or ‘y>0 then goto’) while the value of x (or y) in
the legal run ofM should be 0.

Positive cheats can be verified by directly simulating the respective counter ofM using
the counter in A (states q3 and q5 in Figure 1). Once the cheat occurs, A can return to q0
with a penalty of −1, and since the counter inM is positive, we are guaranteed that the
counter in A did not decrease since leaving q0, allowing A to continue the run.

For verifying a negative cheat, we simulate the counting ofM by an “opposite-counting”
in A (states q4 and q6 in Figure 1), whereby an increment of the counter inM results in a
decrement of the counter in A, and vice versa—once the cheat occurs, A can return to q0
with no penalty, and since the counter inM is 0, we are guaranteed that the counter in A
did not decrease since leaving q0, allowing A to continue the run.

Formally, we construct A fromM as follows.
The alphabet Σ of A consists of # and the descriptive commands for the counter
machineM : ‘inc x’, ‘inc y’, ‘dec x’, ‘dec y’, ‘halt’, and for every line i ofM, the
commands ‘goto i’, ‘x=0 then goto i’, ‘y=0 then goto i’, ‘x>0 then goto i’, and
‘y>0 then goto i’.
The initial state q0 is accepting, it has a self transition over Σ \ {#} and nondeterministic
transitions to the states q1 . . . q6 over #, all with weight 0.
There is a heaven state, which is accepting, and has a self loop over Σ with weight 0.
The state q1 is accepting and intuitively allows to accept short segments between consec-
utive #’s: It has a self transition over Σ \ {#} and a transition to heaven over #, all
with weight −1.
The state q2 starts the command-checker gadget, which looks for a non-counting violation
ofM’s commands (which is a simple regular check). Once reaching a violation it goes to
heaven. All of its transitions are with weight 0. If it does not find a violation, it cannot
continue the run.
The state q3 is a positive-cheat checker for M’s counter x. It has a self loop over
‘inc x’ with weight +1 and over ‘dec x’ with weight −1. Over ‘x=0 then goto’ it can
nondeterministically choose between a self loop with weight 0 and a transition to q0 with
weight −1. Over the rest of the alphabet lettres, except for ‘halt’ and #, it has a self
loop with weight 0. (Over ‘halt’ and # it cannot continue the run.)
The state q4 is a negative-cheat checker for M’s counter x. It has a self loop over
‘inc x’ with weight −1 and over ‘dec x’ with weight +1. Over ‘x>0 then goto’ it can
nondeterministically choose between a self loop with weight 0 and a transition to q0 with
weight 0. Over the rest of the alphabet lettres, except for ‘halt’ and #, it has a self loop
with weight 0.
The states q5 and q6 provide positive-cheat checker and negative-cheat checker forM’s
counter y, respectively, analogously to states q3 and q4.

I Theorem 1. The initial-value universality problem for one-counter nets is undecidable.
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Proof. We show that a given two-counter machineM halts if and only if the corresponding
one-counter net A, as constructed in Section 3.1, is initial-value universal.

⇒: WhenM halts, its (legal) run has some length n− 1. We claim that A is universal with
the initial value n.

Consider some word w over the alphabet of A. We shall describe an accepting run ρ of A
on w. Until the first occurrence of #, the run ρ is deterministically in q0, which is accepting.
We show that for every segment between two consecutive #’s, as well as the segment after
the last #, the run ρ may either reach heaven or reach q0 with counter value at least n
(and remains there until the next # or the end of the word), from which it follows that ρ is
accepting.

If the segment is shorter than n, q0 can choose to go to q1 over #, and from there it will
reach heaven. If the segment is longer than n, it cannot describe the legal run ofM. Then,
it must cheat within up to n steps. We show that each of the 5 possible cheats fulfills the
claim.
1. If it makes a non-counting cheat, q0 will go to q2 over #, and will reach heaven. (This is

also the case if it has additional letters different from # after the ‘halt’ letter.)
2. If it makes a positive cheat on x, q0 will go to q3 upon reading the next #. When the cheat

occurs, the value of x is positive, while reading the letter ‘x=0 then goto’. Notice that
the value of A’s counter is accordingly bigger than its value when entering q3 (and by the
inductive assumption bigger than n). Then, q3 goes to q0 with weight −1, guaranteeing
that A’s counter value is at least n. Notice that the counter value cannot go below n at
any point, sinceM cannot make the value of x negative without a counting cheat. (We
equippedM with a counter check before every decrement.)

3. If it makes a negative cheat on x, q0 will go to q4. Then, when the cheat occurs, the value
of x is 0, while there is the letter ‘x>0 then goto’. Notice that the value of A’s counter
is accordingly exactly its value when entering q3 (and by the inductive assumption at
least n). Then, q4 goes to q0 with weight 0, guaranteeing that A’s counter value is at
least n. Notice that the counter might go below n between getting to q4 and returning to
q0. Yet, since the violation must occur within up to n steps, and the value of the counter
when entering q4 is at least n, we are guaranteed to be able to properly continue with
the run, as the counter need not go below 0.

4-5. Analogously, if it makes a positive or negative cheat over y, the choice of q0 will be q5
or q6, respectively.

⇐: WhenM does not halt, for every positive integer n, we build the word wn and show that
it is not accepted by A with an initial counter value n.

The word wn consists of n+ 1 segments between #’s, where each segment is the prefix of
length n+ 1 of the (legal) run ofM. Consider the possible runs of A on wn. It cannot go
from q0 to q1, because it will stop after n steps. It also cannot go to q2, because there is no
cheating. We show that if it goes to q3..q6, it must return to q0 before the next #, while
decreasing the value of A’s counter, which can be done only n times until the run stops.

If it goes to q3, it must return to q0 upon some ‘x=0 then goto’, as it cannot continue
the run on #. Yet, as there is no cheating, it returns to q0 when x = 0, which implies
that A’s counter has the same value as when entering q3, and due to the −1 weight of the
transition to q0, it returns to q0 while decreasing the value of A’s counter by 1. An analogous
argument follows if it goes to q5.

If it goes to q4, it must return to q0 upon some ‘x>0 then goto’, as it cannot continue
the run on #. Yet, as there is no cheating, it returns to q0 while the value of x is indeed
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A′:

.

q′
0 Σ, 0

q7

q0

Σ \ {#}, 0

q6

The transitions of q1..q6 are as in A.

Σ,−1

#, 0

Σ,−1

q1

Σ,+1

#, 0 .

Figure 2 The one-counter net A′ from the proof of Theorem 2.

strictly positive, which implies that the value of A’s counter is smaller than the value it had
when entering q4, and therefore due to the 0-weight transition to q0, it returns to q0 with a
smaller value of A’s counter. An analogous argument follows if it goes to q6. J

3.2 Bounded Universality
We show that the problem is undecidable by making some changes to the undecidability
proof of the initial-value universality problem.

Given a two-counter machineM, we construct a one-counter net A′ that is similar to A,
as constructed above, except for the following changes (see Figure 2):

There is an additional state q′0 that is accepting, it is the new initial state, and it has a
nondeterministic choice over Σ of either taking a self loop with weight +1 or going to q0
with weight 0.
The state q0 is no longer initial, and it has an additional transition over # to a new state
q7 with weight 0.
The state q7 is accepting, and it has nondeterministic choice over Σ of either taking a self
loop with weight −1 or going to q0 with weight −1.

NowM halts if and only if A′ is bounded universal for an initial counter value 0. We refer
the reader to the full version [5] for a detailed proof.

I Theorem 2. The bounded universality problem for one-counter nets is undecidable.

4 Singleton Alphabet

In this section we study universality problems on OCN over singleton alphabets. The
universality problem for NFA over singleton alphabets is already coNP-hard [23], a lower
bound which trivially carries over to all problems considered here1.

For simplicity, we identify languages L ⊆ {a}∗ with their Parikh image, so that the
universality problems ask if the (bounded) language of a given OCN equals N. Throughout
this section, fix an OCN A = (Σ, Q, s0, δ, F).

We start by sketching our approach. Observe that the language of an OCN is not universal
iff the OCN does not accept some word w. To show that such w exists, we distinguish
between two cases: either w is “relatively short”, in which case we use a guess-and-check
approach to find it, or it is long, in which case we deduce its existence by analyzing some

1 The proof in [23, Theorem 6.1] in fact shows NP-completeness of the problem of whether two regular
expressions over {0} define different languages. Hardness is shown by reduction from Boolean satisfiability
to non-universality of expressions using prime-cycles, and it is straightforward to rephrase it in terms of
DFAs.
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cyclic behaviour of the OCN. The details of both the guess-and-check elements and the cyclic
behaviour depend on the encoding of the weights and the variant of universality.

4.1 Universality
We start by describing a procedure to decide the ordinary universality problem for OCN over
singleton alphabets – with fixed initial configuration and no bounds on the counter.

Consider a cycle γ = s1, s2, . . . , sk (with s1 = sk). Recall that effect(γ) is the sum of
weights along γ and depth(γ) is the inverse of the lowest effect along the prefixes of γ. We
call 1 ≤ d ≤ k a nadir of γ if it is the index of a prefix that attains the depth of γ. That is,
effect(s1, . . . , sd) = −depth(γ). We say that γ is positive if effect(γ) is positive (and similarly
for negative, non-negative, zero, etc.). We call γ good if it a simple, non-negative cycle, and
depth(γ) = 0.

I Observation 3. If γ is non-negative and it has a nadir d, then the shifted cycle γ←d def=
sd sd+1, · · · , sk, s2, · · · , sd is good. Similarly, if γ is negative, then effect(γ←d) = −depth(γ←d).

For a state r ∈ Q and an initial configuration s0, c0, let Lr(s0, c0) ⊆ L(s0, c0) be the
language of words accepted by a run that visits r.

The first tool we use in studying the universality problem is a canonical form for accepting
runs, akin to linear path schemes of [18, 7].

I Definition 4 (Linear Forms). A path π is in linear form if there exist simple cycles γ1, . . . , γk
and paths τ0, . . . , τk such that π = τ0γ

e1
1 τ1 · · · τk−1γ

ek

k τk for some numbers e1, . . . , ek ∈ N,
and such that every non-negative cycle γi, is taken from a nadir, and so is executable with
any counter value.

We call ei the exponent of γi, and we refer to τ0γ1τ1 . . . γkτk as the underlying path of
π. The length of the linear form is the length of the underlying path.

A linear form is described by the components above, where the exponents are given in
binary. In the following, we show that every path can be transformed to a path in linear
form with a small description size.

I Lemma 5. Let π be an executable path of length n from (p, c) to (q, c′). Then there exists
an executable path π′ of length n in linear form whose length is at most 2|Q|2, from (p, c) to
(q, c′′) with c′′ ≥ c′.

Proof Sketch: π′ is obtained from π in two steps, namely rearranging simple cycles, and
then choosing a small set of “representative” simple cycles to replace others. The crux of
the proof is the first step, where instead of simply moving a cycle, we also shift it so that it
is taken from its nadir. Then, for every set of simple cycles of the same length and on the
same state, we take the one with maximal effect as a representative. J

We now turn to identify states that have a special significance in analyzing universality.

I Definition 6. Let Pump ⊆ Q be the set of states that admit good cycles. For each such
state r fix a shortest good cycle γr.

Intuitively, a state r is in Pump if it has a cycle that can be taken with any counter value,
any number of times. That is, it can be used to “pump” the length of the word. Another
important property is that if a path never visits a state in Pump then all its simple cycles
must be negative. Indeed, any non-negative cycle must contain a non-negative simple cycle
and any state at a nadir of such cycle must be in Pump.
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If however, a state in Pump occurs along an accepting run, we can accept the same word
using a run in a short linear form, as we now show.

I Lemma 7. There exists a bound B1 ∈ poly(|Q|, ‖δ‖) such that, for every n ∈ N, if n is
accepted by a run that visits a state r ∈ Pump, then n has an accepting run of the form
η1γ

t
rη2 for paths η1, η2 of length at most B1.

Proof Sketch: Using Lemma 5, we split an accepting run on n that visits r to the form
π1, r, π2 where π1 and π2 are in linear form. Then, we successively shorten π1 and π2 by
eliminating simple cycles along them, and instead pumping the non-negative cycle γr. Some
careful accounting is needed so that the length of the path is maintained, and so that it
remains executable. J

We now characterize the regular language Lr(s0, c0) using a DFA of bounded size.

I Lemma 8. There exists a bound B2 ∈ poly(‖δ‖ · |Q|) such that, for every r ∈ Pump, there
exists a DFA that accepts Lr(s0, c0) and is of size at most B2.

Define P def=
⋃
r∈Pump Lr(s0, c0). Notice that P ⊆ L(s0, c0) and that L(s0, c0) \ P must

be finite. Indeed, if w ∈ L(s0, c0) \P then it can only be accepted by runs with only negative
cycles, of which there are finitely many. In particular, if N \ P is infinite, then L(s0, c0) 6= N.

Using the bounds from Lemma 8, we have the following.

I Lemma 9. There exists B3 ∈ poly(‖δ‖, |Q|) such that L(s0, c0) 6= N if, and only if, there
exists n ∈ N such that either n < B2 and n /∈ L(s0, c0), or B|Q|3 ≤ n ≤ 2B|Q|3 and n /∈ P.

Lemma 9 suggests the following algorithmic scheme for deciding non-universality: non-
deterministically either (1) guess n < B3, and check that n /∈ L(s0, c0), or (2) guess
B
|Q|
3 ≤ n ≤ 2B|Q|3 and check that n /∈ Lr(s0, c0) for all r ∈ Pump, which implies that n /∈ P .
Note that even if the transitions are encoded in unary, n still needs to be guessed in

binary for part (2) (and also for part (1) if the encoding is binary). The complexity of the
checks involved in both parts of the algorithm depend on the encoding of the transitions,
and are handled separately in the following.

Unary Encoding. If the transitions are encoded in unary, then B3 is polynomial in the size
of the OCN. Consequently, we can check for n < B3 whether n ∈ L(s0, c0) by simulating the
OCN for n steps, while keeping track of the maximal run to each state. Indeed, due to the
monotonicity of executability of OCN paths it suffices to remember, for each state s, the
maximal possible counter-value c so that (s, c) is reachable via the current prefix, which must
be a number ≤ c0 + n · ‖δ‖ or −∞ (to represent that no configuration (s, c) can be reached).

Next, in order to check whether n /∈ Lr(s0, c0) for all r ∈ Pump for B|Q|3 ≤ n ≤ 2B|Q|3
written in binary, we notice that since B3 is polynomial in the description of the OCN, then
the size of each DFA for Lr(s0, c0) constructed as per Lemma 8 is polynomial in the OCN.
Since the proof in Lemma 8 is constructive, we can obtain an explicit representation of these
DFAs. Finally, given a DFA (or indeed, and NFA) over a singleton alphabet and n written
in binary, we can check whether n is accepted in time O(logn) by repeated squaring of the
transition matrix for the DFA [23]. We conclude with the following.

I Theorem 10. The universality problem for singleton-alphabet one-counter nets with
transitions encoded in unary is in coNP, and is thus coNP-complete.



S. Almagor, U. Boker, P. Hofman, P. Totzke 34:11

Binary Encoding. When the transitions are encoded in binary, B3 is potentially exponential
in the encoding of the OCN. Thus, naively adapting the methods taken in the unary case
(with basic optimization) will lead to a PSPACE algorithm for universality (using Savitch’s
Theorem). As we now show, by taking a different approach, we can obtain an upper bound
of coNPNP, placing the problem in the second level of the polynomial hierarchy.

In order to obtain this bound, we essentially show that given n encoded in binary, checking
whether n is accepted by the OCN can be done in NP. This is based on the linear form of
Lemma 5.

I Lemma 11. Let π = τ0γ
e1
1 τ1 · · · τk−1γ

ek

k τk be a run in linear form, then we can check
whether π is executable from counter value c in time polynomial in the description of π.

Lemma 11 shows that, given n in binary, we can check whether n ∈ L(s0, c0) in NP.
Indeed, we guess the structure of an accepting run in linear form (including the exponents of
the cycles), and check in polynomial time whether this run is executable, and whether it is
accepting.

In order to complete our algorithmic scheme for universality, it remains to show how we
can check in NP, given n in binary, whether n /∈ Lr(s0, c0) for every r. In contrast to the
case of unary encoding, this is fairly simple.

Given r, we can construct an OCN Ar such that LAr (s0, c0) = LrA(s0, c0) by taking
two copies of A, and allowing a transition to the second copy only once r is reached. The
accepting states are then those of the second copy. Thus, checking whether n /∈ Lr(s0, c0)
amounts to checking whether n /∈ LAr (s0, c0). We can now complete the algorithmic scheme.

I Theorem 12. The universality problem for singleton-alphabet one-counter nets with
transitions encoded in binary is in coNPNP.

4.2 Initial-Value Universality

The characterization of universality given in Lemma 9 can be simplified in the case of
initial-value universality, in the sense that the freedom in choosing an initial value allows us
to work with the underlying automaton of the OCN, disregarding the transition effects. This
also allows us to obtain the same complexity results under unary and binary encodings.

Recall that Pump is the set of states that admit good cycles (see Definition 6). Let N
be the underlying NFA of A. For a state r ∈ Pump, define LrN (s0) to be the set of words
accepted by N via a run that visits r. Overloading the notation of Section 4.1, we define
P def=

⋃
r∈Pump LrN (s0).

I Lemma 13. There exists c0 such that LA(s0, c0) = N iff LN (s0) = N and N \ P is finite.

Following similar arguments to those in Lemmas 7 and 8, and using the fact that we
work with the underlying NFA, we can show the following.

I Lemma 14. There exists a bound B4 ∈ poly(|Q|) such that, for every r ∈ Pump there
exists a DFA that accepts Lr(s0) and which is of size at most B4.

We can now solve the initial-value universality problem.

I Theorem 15. The initial-value universality problem for one-counter nets (in unary or
binary encoding) is coNP-complete.

CONCUR 2020



34:12

Proof. First, observe that the problem is coNP-hard by reduction from the universality
problem for NFAs. We now turn to show the upper bound.

By Lemma 13, it is enough to decide whether LN (s0) = N and N \ P is finite. Checking
whether LN (s0) = N, i.e., deciding the universality problem for NFA over a single-letter
alphabet, can be done in coNP [23].

By Lemma 14, there exists a DFA D for N \ P of size at most M = B
|Q|
4 , by taking the

intersection of the respective DFAs over every r ∈ Pump. Thus, N \P is infinite iff D accepts
a word of length M < n ≤ 2M (as such a word induces infinitely many other words). Thus,
we can decide in NP whether N \ P is infinite, by guessing M < n ≤ 2M , and checking that
it is in Lr(s0) for every r ∈ Pump (using repeated squaring on the respective DFAs).

We conclude that both checking whether LN (s0) = N and whether N \ P is finite can be
done in coNP, and so the initial value universality problem is also in coNP. J

4.3 Bounded Universality
For bounded universality, the states in Pump are not restrictive enough: in order to keep
the counter bounded, a state must admit a 0-effect cycle. However, these cycles need not be
simple. Thus, we need to adjust our definitions somewhat. Fortunately, however, once the
correct definitions are in place, most of the proofs carry out similarly to those of Section 4.1.

I Definition 16. A state q ∈ Q is stable if either:
1. it is at the nadir of a simple positive cycle, and admits a negative cycle, or
2. it is at the nadir of a simple zero cycle.
We denote by Stable the set of stable states.

Identifying stable states can be done in polynomial time (see e.g. Lemma 24). The motivation
behind this definition is to identify states that admit a zero-effect (not necessarily simple)
cycle.

I Lemma 17. There exists a bound B5 ∈ poly(|Q|, ‖δ‖) such that, every stable state q admits
a zero cycle of length and depth at most B5.

By Lemma 17 we can fix, for each q ∈ Stable, some zero-cycle ζq with effect and depth
bounded by B5. Recall that Lr(s0, c0) is the set of words that are accepted with a path that
passes through r. Let S def=

⋃
r∈Stable Lr(s0, c0). We prove an analogue of Lemma 7.

I Lemma 18. There exists a bound B6 ∈ poly(|Q|, ‖δ‖) such that every n ∈ Lr(s0, c0) has
an accepting run of the form η1ζ

t
rη2 for paths η1, η2 of length at most B6.

Proof. The proof follows mutatis-mutandis that of Lemma 7, with one important difference:
before replacing cycles with iterations of the zero cycle ζr, we replace a bounded number of
cycles with the positive cycle on r, on which r is at a nadir,2 so that the counter value goes
above depth(ζr), enabling us to take ζr arbitrarily many times. Note that this lengthens the
prefix η1 at most polynomially in (|Q| · ‖δ‖). J

Lemma 18 implies that every word n ∈ S can be accepted by a run whose counter values
are bounded because there must by an accepting run that, except for some bounded prefix
and suffix, only iterates some zero-cycle ζr. More precisely, we have the following.

2 That is, unless r is the nadir of a zero cycle, in which case the proof requires no changes.
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I Theorem 19. There exists B6 ∈ poly(|Q|, ‖δ‖) such that every word n ∈ S is accepted by
a run whose counter value remains below 2B6 + c0.

In addition, Lemma 18 immediately gives us (with an identical proof) an analogue of Lemma 8.

I Lemma 20. There exists a bound B7 ∈ poly(|Q|, ‖δ‖) such that, for every r ∈ Stable there
exists a DFA that accepts Lr(s0, c0) and is of size at most B7.

We can now characterize bounded universality in terms of S, the set of stable states.

I Lemma 21. L(s0, c0) is bounded-universal if, and only if, the underlying automaton N is
universal (LN (s0) = N) and N \ S is finite.

Finally, checking whether N \ S is finite can be done similarly to Section 4.1 (and the
complexity depends on the transition encoding), by checking that a candidate word n of
bounded length is not in Lr(s0, c0) for all stable states r. We conclude with the following.

I Theorem 22. Bounded universality of one-counter nets is coNP-complete assuming unary
encoding, and in coNPNP assuming binary encoding.

5 Deterministic Systems

We turn to deterministic one-counter nets (DOCNs) for which the underlying finite automaton
is a DFA. We assume without loss of generality that the graphs underlying the DOCNs are
connected, i.e., that all states are reachable from the initial state.

For such systems, (bounded) universality problems can be decided by checking a suitable
combination of simple conditions on cycles and short words. Lemma 24 lists these conditions
and upper complexity bounds for checking them. We then show which combination allows
to solve each decision problem (Lemma 25). All mentioned upper bounds follow either
easily from first principles, or from the result that the state reachability problem (a.k.a.,
coverability) for OCN is in NC [6, Theorem 15]. We will also use the following fact which
follows from [25].

I Lemma 23. Given a set S = {α1, α2 . . . αn} of integers written in binary, the question
whether the sum of all elements in S is non-negative is in NC2.

I Lemma 24 (Basic Conditions). Consider the following conditions on a deterministic
one-counter net A = (Σ, Q, s0, δ, F), initial value c0 ∈ N, and bound b ∈ N.
(C1) The underlying automaton is universal.
(C2) Every word w of length |w| ≤ |Q| is in L(s0, c0)
(C3) Every word w of length |w| ≤ |Q| is in L≤b(s0, c0)
(C4) All simple cycles have non-negative effect.
(C5) All simple cycles have 0-effect.
Condition (C1) can be checked in non-deterministic logspace (NL), independently of the
encoding of numbers. All other conditions can be verified in NL assuming unary encoding,
and in NC (conditions (C4) and (C5) even in NC2) assuming binary encoding.

I Lemma 25. Consider a deterministic one-counter net with initial state s0.
1. For any c0 ∈ N, the language L(s0, c0) is universal if, and only if, all simple cycles are

non-negative (C4), and all words shorter than the number of states are accepting (C2).
2. There exists an initial counter value c0 ∈ N such that L(s0, c0) is universal if, and only if,

all simple cycles are non-negative (C4), and the underlying automaton is universal (C1).
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3. For any c0 ∈ N, there exists a bound b ∈ N such that the bounded language L≤b(s0, c0)
is universal if, and only if, (C5) the effect of all simple cycles is 0 and (C3) all words
shorter than the number of states are in L≤b′(s0, c0) for b′ def= |Q| · ‖δ‖.

The following is a direct consequence of Lemmas 24 and 25.

I Theorem 26. The universality, initial-value universality, and bounded universality problems
for deterministic one-counter nets are in NL assuming unary encoding, and in NC assuming
binary encoding.

For the special case of DOCN over single letter alphabets, it is possible to derive even
better upper bounds, based on the particular shape of the underlying automaton.

Recall that a deterministic automaton over a singleton alphabet is in the shape of a lasso:
it consists of an acyclic path that ends in a cycle.

I Lemma 27. For any given deterministic one-counter net A = (Σ, Q, s0, δ, F) with |Σ| = 1
and c0, b ∈ N, one can verify in deterministic logspace (L) that (C1) the underlying DFA is
universal. Moreover, conditions (C2), (C3), (C4), and (C5) as defined in Lemma 24 can be
verified in L assuming unary encodings and in NC2 assuming binary encodings.

Using Lemma 27 and the characterisation of the three universality problems by Lemma 25,
we get the desired complexity upper bounds.

I Theorem 28. The universality, initial-value universality, and bounded universality problems
of deterministic one-counter nets over a singleton alphabet are in L assuming unary encoding
and in NC2 assuming binary encoding.

6 Unambiguous Systems

In line with the usual definition of unambiguous finite automata, we call an OCN with a
given initial configuration unambiguous iff for every word in its language there exists exactly
one accepting run. Since the language of an OCN depends in a monotone fashion on the
initial counter value, there is also a related, but different, notion of unambiguity. We call
an OCN (which has a fixed initial state s0) structurally unambiguous if the unambiguity
condition holds for every initial counter c0. Notice that every OCN that has an unambiguous
underlying automaton is necessarily structurally unambiguous. We will show (Lemma 32)
that these conditions are in fact equivalent.

In [11], the complexity of the universality problem for unambiguous vector addition
systems with states (VASSs) was studied. In particular, for unambiguous OCNs, it is shown
that checking universality is in NC2 and NL-hard, assuming unary encoded inputs, and in
PSPACE and coNP-hard, assuming binary encoding. The special case of unambiguous OCN
over a single letter alphabet is not considered there, nor are the initial-counter – and bounded
universality problems. We discuss these problems in the remainder of this section.

We assume w.l.o.g, that for any given OCN, all states in the underlying automaton are
reachable from the initial state, and that from every state it is possible to reach an accepting
state. States that do not satisfy these properties can be removed in NL. Moreover, all
algorithms we propose need to check universality for the underlying automaton, and hence
rely on the following computability result (see [26] for a proof for general alphabet, and the
full paper for singleton alphabet).

I Lemma 29. Universality of an unambiguous finite automaton over single letter alphabet is
in NL, and over general alphabet is in NC2.
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We will start by considering the universality problem for unambiguous OCNs over a single
letter alphabet. Here, unambiguity implies a strong restriction on accepting runs: if a run is
accepting then it contains at most one positive cycle (which may be iterated multiple times).

I Lemma 30. Let π = π1π2π3 be an accepting run where π2 is a positive simple cycle. Then
π3 = πk2π4 for some k ∈ N and acyclic path π4.

Proof. Assume towards contradiction that there is an accepting run π = π1π2π3π4π5, where
π2 is a positive simple cycle and π4 is a simple cycle. Based on this we show that the system
cannot be unambiguous. Let c = |Q| · ‖δ‖ and denote by |π| the length of path π.

Since π2 has a positive effect, it follows that π′ = π1π
|π4|+c·|π2|
2 π3π4π5 is an accepting

run. But there is a second run that reads the same word, namely π′′ = π1π
c·|π2|
2 π3π

|π2|
4 π5.

The second run is indeed a run as the increment along πc·|π2|
2 is bigger than any possible

negative effect of π|π2|
4 . Moreover the lengths of both runs are the same as π|π4|

2 = π
|π2|
4 . J

A consequence of Lemma 30 is that if along any accepting run the value of the counter
exceeds B0 = |Q| · ‖δ‖ then it cannot drop to zero afterwards, as it would require at least
one negative cycle to do so. One can therefore encode all counter values up to B0 into the
finite-state control and solve universality for the resulting UFA. Lemma 29 thus yields the
following.

I Theorem 31. The universality problem of unary encoded unambiguous one-counter nets
over a singleton alphabet is in NL.

We consider next the initial-value universality problem for unambiguous OCNs. Since
whether an OCN is unambiguous depends on the initial counter value, the initial-value
universality problem is only meaningful for structurally unambiguous systems, those which
are unambiguous regardless of the initial counter. We first observe a simple fact about these
definitions.

I Lemma 32. An OCN is structurally unambiguous if and only if its underlying automaton
is unambiguous.

I Lemma 33. Consider a structurally unambiguous OCN with initial state s0. There exists
an initial counter c0 so that L(s0, c0) = Σ∗ if, and only if, the underlying automaton is
universal and has no negative cycles.

The following is a direct consequence of Lemma 33 and the complexity bounds provided
by Lemmas 24 and 29, for the cycle condition (C4).

I Theorem 34. The initial-value universality problem of structurally unambiguous one-
counter nets is in NC2 assuming binary encoding, and in NL assuming unary encoding and
single-letter alphabets.

Finally, we turn our attention to the bounded universality problem for unambiguous
OCNs. This turns out to be quite easy, due to the following observation.

I Lemma 35. If an unambiguous OCN is bounded universal then no accepting run contains
a positive cycle.

I Theorem 36. The bounded universality problem of unambiguous one-counter nets with
unary-encoded transition weights is in NC2, and in NL if the alphabet has only one letter, and
for binary-encoded transition weights it is in PSPACE.
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