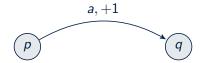
Decidability of Weak Simulation on One-Counter Nets

Piotr Hofman¹ Richard Mayr² Patrick Totzke²

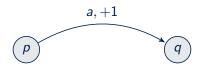
University of Warsaw¹ University of Edinburgh²

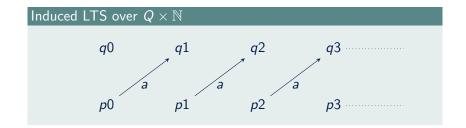
June 22, 2013

$$(Q, Act, \delta)$$
 $\delta \subseteq (Q \times Act \times \{-1, 0, +1\} \times Q)$

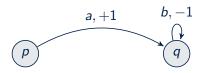


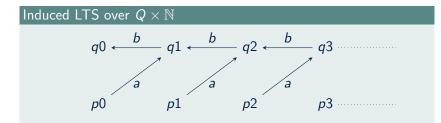
$$(Q, Act, \delta)$$
 $\delta \subseteq (Q \times Act \times \{-1, 0, +1\} \times Q)$



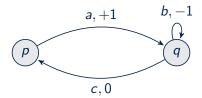


$$(Q, Act, \delta)$$
 $\delta \subseteq (Q \times Act \times \{-1, 0, +1\} \times Q)$



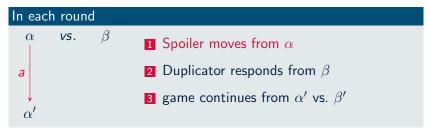


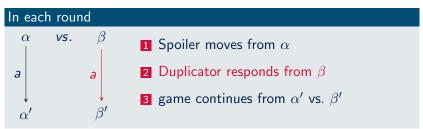
$$(Q, Act, \delta)$$
 $\delta \subseteq (Q \times Act \times \{-1, 0, +1\} \times Q)$

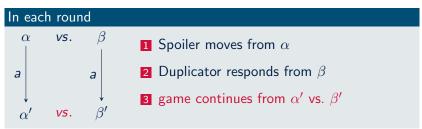


Induced LTS over $Q \times \mathbb{N}$ $q0 \xleftarrow{b} q1 \xleftarrow{b} q2 \xleftarrow{b} q3$ $\downarrow c \qquad \downarrow c \qquad \downarrow c$ $p0 \qquad p1 \qquad p2 \qquad p3$

In each round			
α	VS.	β	
			2 Duplicator responds from β
			3 game continues from α' vs. β'

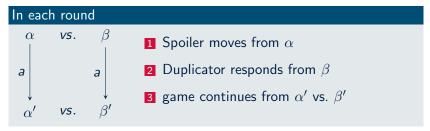






Simulation Games

... are played in rounds between Spoiler and Duplicator. If a player cannot move the other wins. Infinite plays are won by Duplicator.



Def: Simulation (\leq)

 $\alpha \leq \beta$ iff Duplicator has a strategy to win from α vs. β .

Simulation Approximant Games

... are played in rounds between Spoiler and Duplicator. If a player cannot move the other wins.



Def: Simulation Approximant (\leq_i)

 $\alpha \leq_i \beta$ iff Duplicator has a strategy to win from α vs. β .

Weak Notions

Weak Steps $(a \neq \tau \in Act)$

$$\stackrel{\tau}{\Longrightarrow} := \stackrel{\tau}{\longrightarrow}^* \qquad \stackrel{a}{\Longrightarrow} := \stackrel{\tau}{\longrightarrow}^* \stackrel{a}{\longrightarrow} \stackrel{\tau}{\longrightarrow}^*$$

Weak Notions

Weak Steps ($a \neq \tau \in Act$)

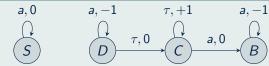
$$\stackrel{\tau}{\Longrightarrow} := \stackrel{\tau}{\longrightarrow}^* \qquad \stackrel{a}{\Longrightarrow} := \stackrel{\tau}{\longrightarrow}^* \stackrel{a}{\longrightarrow} \stackrel{\tau}{\longrightarrow}^*$$

Def: Weak Simulation \leq and Approximants \leq_i

by 2-player games as before where Duplicator makes weak steps. . .

Countdown game

Countdown game



Strong Simulation:

Countdown game

Strong Simulation:

- \blacksquare S0 \leq_0 D0
- *S*0 <u></u> ∠₁ *D*0

Countdown game

Strong Simulation:

- $S0 \leq_0 D0$
- S0 <u></u> ∠₁ D0

Weak Simulation:

Countdown game

Strong Simulation:

- $S0 \leq_0 D0$
- S0 <u></u> ∠₁ D0

Weak Simulation:

■ S0
$$\not \leq_{\omega+1} D0$$

Countdown game

Strong Simulation:

- \bullet S0 \leq_0 D0
- S0 <u></u> ∠₁ D0

Weak Simulation:

- *S*0 ≦_ω *D*0
- S0 $\not \leq_{\omega+1} D0$
- *S*0 *≨ D*0

Our Main Contribution

We show decidability of the

OCN Weak Simulation Problem

Input: A net $N = (Q, Act, \delta)$ and configurations pm, qn.

Question: $pm \leq qn$?

Our Main Contribution

We show decidability of the

OCN Weak Simulation Problem

Input: A net $N = (Q, Act, \delta)$ and configurations pm, qn.

Question: $pm \leq qn$?

Theorem

For a given net, the relation \leq is effectively semilinear.

Why should you care?

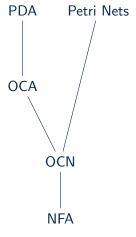
In practice, modelling might use both ∞ -states and branching:

- network protocols/queues keeping track of their workload
- random guesses

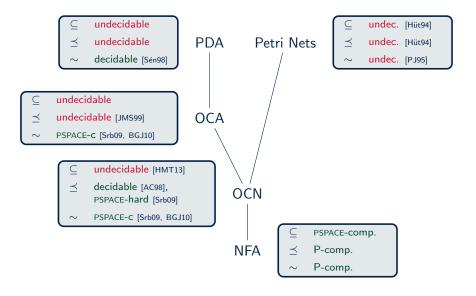
Theoretically, surprising:

- \blacksquare rare positive result for behavioral preorder that is not finitely approximable $\leqq \neq \leqq_{\omega}$.
- goes against the usual 'finer is easier' trend

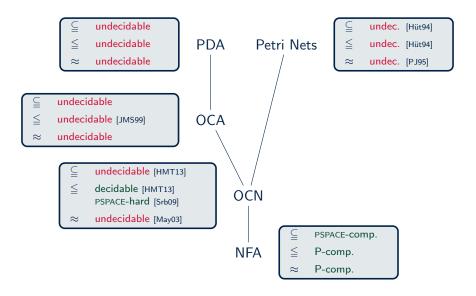
Some Context – Strong Case



Some Context - Strong Case



Some Context – Weak Case



Monotonicity in Nets

If
$$pm \xrightarrow{a} qn$$
 Then $p(m+1) \xrightarrow{a} q(n+1)$.

Monotonicity in Nets

If
$$pm \xrightarrow{a} qn$$
 Then $p(m+1) \xrightarrow{a} q(n+1)$.

If $m' \leq m$ Then $pm' \leq pm$.

Monotonicity in Nets

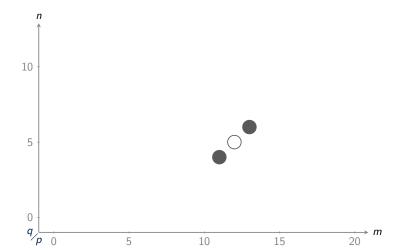
If
$$pm \xrightarrow{a} qn$$
 Then $p(m+1) \xrightarrow{a} q(n+1)$.

If $m' \leq m$ Then $pm' \leq pm$.

If $m' \leq m$, $pm \leq qn$ and $n \leq n'$ Then $pm' \leq qn'$.

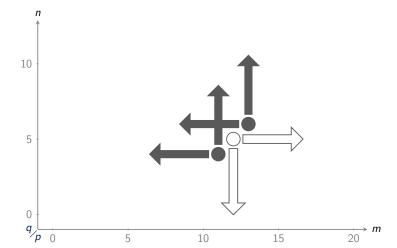
Monotonicity illustrated

(m, n) is black iff $pm \leq qn$



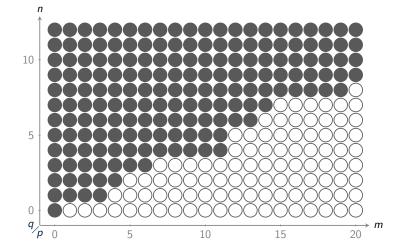
Monotonicity illustrated

(m, n) is black iff $pm \leq qn$



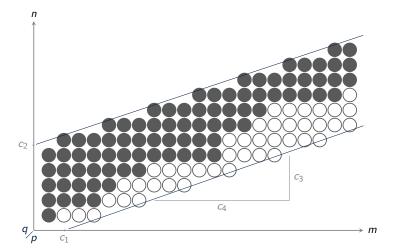
Monotonicity illustrated

(m, n) is black iff $pm \leq qn$



Belt Theorem [JKM00, AC98]

"Every frontier lies in a belt with rational slope".



Strong Simulation for OCN

Theorem [JKM00, AC98]

For any given OCN, $\, \leq \,$ is an effectively semilinear set.

Proof of the main result

Symbolic infinite branching

1

Reduce (OCN \leq OCN) \rightsquigarrow (OCN $\leq \omega$ -Net)

Proof of the main result

Symbolic infinite branching

1

Reduce (OCN \leq OCN) \rightsquigarrow (OCN $\leq \omega$ -Net)

Approximants for the new game

2

 \exists finite sequence $\preceq^0 \supseteq \preceq^1 \supseteq \preceq^2 \supset \cdots \supset \preceq^k = \preceq$

Proof of the main result

Symbolic infinite branching

Reduce (OCN \leq OCN) \rightsquigarrow (OCN $\leq \omega$ -Net)

Approximants for the new game

)

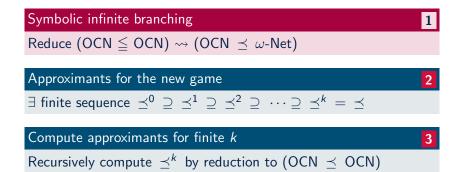
 \exists finite sequence $\preceq^0 \supseteq \preceq^1 \supseteq \preceq^2 \supseteq \cdots \supseteq \preceq^k = \preceq$

Compute approximants for finite k

3

Recursively compute \leq^k by reduction to (OCN \leq OCN)

Proof of the main result



Symbolic Infinite Branching

ω -Net $N = (Q, Act, \delta)$ with transitions

$$\delta \subseteq Q \times Act \times \{-1, 0, 1, \omega\} \times Q$$

 \ldots induces LTS over $Q \times \mathbb{N}$ like OCN. A transition



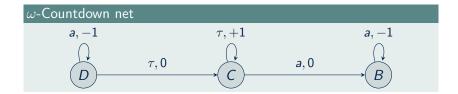
introduces strong steps $pm \xrightarrow{a} qn$ for any $n \ge m$.

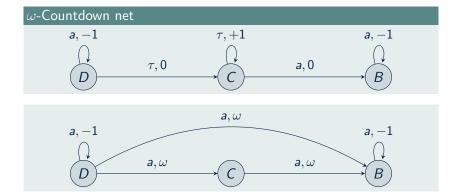
Reduction to Strong Simulation (OCN vs. ω -Net)

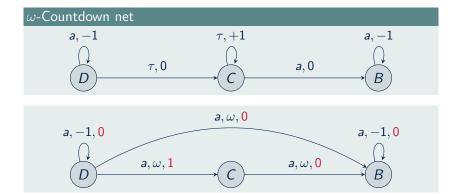
Lemma

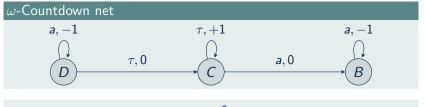
For a OCN N one can construct a OCN M \supseteq N and an ω -net M' \supseteq N where for all configurations pm, qn holds that

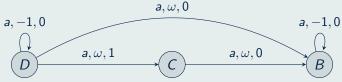
 $pm \leq qn \ w.r.t. \ N \iff pm \leq qn \ w.r.t. \ M, M'.$

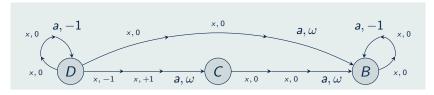




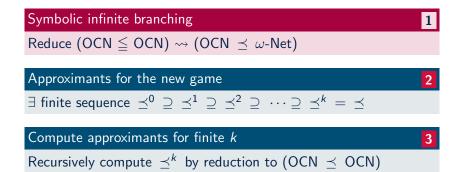








Proof of the main result



Proof of the main result

Symbolic infinite branching

l

Reduce (OCN \leq OCN) \rightsquigarrow (OCN $\leq \omega$ -Net)

Approximants for the new game

,

 \exists finite sequence $\preceq^0 \supseteq \preceq^1 \supseteq \preceq^2 \supseteq \cdots \supseteq \preceq^k = \preceq$

Compute approximants for finite k

3

Recursively compute \leq^k by reduction to (OCN \leq OCN)

Approximants for strong simulation (OCN vs. ω -Net)

Approximants for strong simulation (OCN vs. ω -Net)

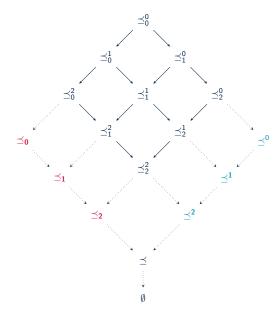
- ... holds if Duplicator can guarantee to either
 - \blacksquare survive α (ordinal) rounds or
 - make an ω -move at least β times.

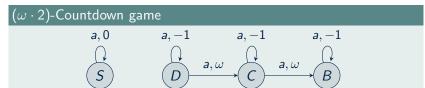
Approximants for strong simulation (OCN vs. ω -Net)

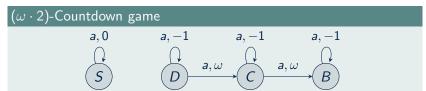
- ... holds if Duplicator can guarantee to either
 - \blacksquare survive α (ordinal) rounds or
 - make an ω -move at least β times.

$$\preceq_{\alpha} = \bigcap_{\beta} \preceq_{\alpha}^{\beta} \qquad \qquad \preceq^{\beta} = \bigcap_{\alpha} \preceq_{\alpha}^{\beta}$$

Approximants illustrated







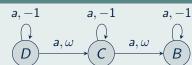
■
$$S0 \leq^2 D0$$

$(\omega \cdot 2)$ -Countdown game



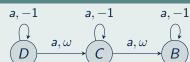
- $S0 \leq^2 D0$ $S0 \leq_{\omega \cdot 2} D0$

$(\omega \cdot 2)$ -Countdown game



- \blacksquare S0 \leq ² D0
- \blacksquare S0 $\leq_{\omega \cdot 2}$ D0
- $S0 \not\preceq^3_{\omega \cdot 2+1} D0$

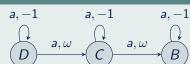
$(\omega \cdot 2)$ -Countdown game



- $S0 \leq^2 D0$
- \blacksquare S0 $\leq_{\omega \cdot 2}$ D0
- $S0 \not\preceq_{\omega \cdot 2+1}^3 D0$

 \blacksquare S0 \pm 3 D0

$(\omega \cdot 2)$ -Countdown game



- \blacksquare S0 \leq ² D0
- *S*0 <u>≺</u>ω⋅2 *D*0
- $S0 \not\preceq^3_{\omega \cdot 2+1} D0$

■
$$S0 \not \leq^3 D0$$

■ $\preceq = \preceq^3$

$(\omega \cdot 2)$ -Countdown game

- $S0 \leq^2 D0$
- *S*0 <u>≺</u>ω⋅2 *D*0
- $S0 \not\preceq_{\omega \cdot 2+1}^3 D0$

■
$$S0 \not\preceq^3 D0$$

■ $\prec = \prec^3$

$$= \preceq = \preceq^{3}$$

Lemma

For any OCN N and ω -Net M, there is $k \in \mathbb{N}$ such that

$$\preceq = \preceq^k$$

Proof of the main result

Symbolic infinite branching

l

Reduce (OCN \leq OCN) \rightsquigarrow (OCN $\leq \omega$ -Net)

Approximants for the new game

,

 \exists finite sequence $\preceq^0 \supseteq \preceq^1 \supseteq \preceq^2 \supseteq \cdots \supseteq \preceq^k = \preceq$

Compute approximants for finite k

3

Recursively compute \leq^k by reduction to (OCN \leq OCN)

Proof of the main result

Symbolic infinite branching	1
$Reduce \; (OCN \leqq OCN) \leadsto (OCN \; \preceq \; \omega\text{-Net})$	
Approximants for the new game	2
\exists finite sequence $\preceq^0 \supseteq \preceq^1 \supseteq \preceq^2 \supseteq \cdots \supseteq \preceq^k = \preceq$	
Compute approximants for finite k	3
Recursively compute \leq^k by reduction to (OCN \leq OCN)	

Computing \leq^{k+1}

Observation

If a response via \longrightarrow_{ω} leads to (game) position $pm \not\preceq^k qn$ then $pm \not\preceq^k qn'$ for all $n' \in \mathbb{N}$.

Observation

If a response via \longrightarrow_{ω} leads to (game) position $pm \not\preceq^k qn$ then $pm \not\preceq^k qn'$ for all $n' \in \mathbb{N}$.

For any pair p,q of states there is a minimal sufficient value m with

$$pm \not \leq^k qn$$
 for all n

- Compute minimal sufficient values $\in \mathbb{N} \cup \{\infty\}$ for all (p,q)
- Build gadget nets that test if Spoiler's counter is sufficient.

- Compute minimal sufficient values $\in \mathbb{N} \cup \{\infty\}$ for all (p,q)
- Build gadget nets that test if Spoiler's counter is sufficient.
- Use *Defenders Forcing* to substitute ω -transitions by the ability to move into testing gadgets.

- Compute minimal sufficient values $\in \mathbb{N} \cup \{\infty\}$ for all (p,q)
- Build gadget nets that test if Spoiler's counter is sufficient.
- Use *Defenders Forcing* to substitute ω -transitions by the ability to move into testing gadgets.
- → Strong simulation game OCN vs. OCN.

Proof of the main result

Symbolic infinite branching	1
$Reduce \; (OCN \leqq OCN) \leadsto (OCN \; \preceq \; \omega\text{-Net})$	
Approximants for the new game	2
\exists finite sequence $\preceq^0 \supseteq \preceq^1 \supseteq \preceq^2 \supseteq \cdots \supseteq \preceq^k = \preceq$	
Compute approximants for finite k	3
Recursively compute \leq^k by reduction to (OCN \leq OCN)	

Conclusion

- Weak Simulation is decidable for One-Counter Nets
- Our proof crucially depends on monotonicity! We
 - $lue{}$ symbolically capture ∞ branching,
 - derive finite sequence of approximants and
 - use semilinearity of $OCN \leq OCN$ to compute approximants and check convergence.
- We also consider (weak) trace inclusion for OCN and (weak) Simulation between OCN and NFA.

Bibliography

Stanislav Böhm, Stefan Göller, and Petr Jančar. Bisimilarity of one-counter processes is pspace-complete. In CONCUR, pages 177–191, 2010.

Hans Hüttel. Undecidable equivalences for basic parallel processes. In *TACS*, pages 454–464, 1994.

Petr Jančar, Antonín Kučera, and Faron Moller. Simulation and bisimulation over one-counter processes. In *Proceedings of the 17th Annual Symposium on Theoretical Aspects of Computer Science*, STACS '00, pages 334–345, London, UK, 2000. Springer-Verlag.

Petr Jančar, Faron Moller, and Zdenek Sawa. Simulation problems for one-counter machines. In SOFSEM, pages 404–413, 1999.

Richard Mayr. Undecidability of weak bisimulation equivalence for 1-counter processes. In *Proceedings* of the 30th international conference on Automata, languages and programming, ICALP'03, pages 570–583, Berlin, Heidelberg, 2003. Springer-Verlag.

P. Petr Jančar. Undecidability of bisimilarity for petri nets and some related problems. *Theor. Comput. Sci.*, 148(2):281–301, 1995.

Géraud Sénizergues. Decidability of bisimulation equivalence for equational graphs of finite out-degree. In FOCS, pages 120–129, 1998.

Jirí Srba. Beyond language equivalence on visibly pushdown automata. Logical Methods in Computer Science, 5(1):1–22, 2009.

Bibliography

- Stanislav Böhm, Stefan Göller, and Petr Jančar. Bisimilarity of one-counter processes is pspace-complete. In CONCUR, pages 177–191, 2010.
- P. Hofman, R. Mayr, and P. Totzke. Decidability of weak simulation on one-counter nets. Technical Report EDI-INF-RR-1415, University of Edinburgh, 2013.
- Hans Hüttel. Undecidable equivalences for basic parallel processes. In TACS, pages 454–464, 1994.
- Petr Jančar, Antonín Kučera, and Faron Moller. Simulation and bisimulation over one-counter processes. In Proceedings of the 17th Annual Symposium on Theoretical Aspects of Computer Science, STACS '00, pages 334–3 5, Landon UK 2000 Engineer Verlag.
- Petr Jančar, Faron Molles Z er ik proji vil the reple mor ene-counter machines. In SOFSEM, pages 404–413, 1950.
 - Richard Mayr. Undecidability of weak bisimulation equivalence for 1-counter processes. In Proceedings of the 30th international conference on Automata, languages and programming, ICALP'03, pages 570–583, Berlin, Heidelberg, 2003. Springer-Verlag.
- P. Petr Jančar. Undecidability of bisimilarity for petri nets and some related problems. Theor. Comput. Sci., 148(2):281–301, 1995.
- Géraud Sénizergues. Decidability of bisimulation equivalence for equational graphs of finite out-degree. In FOCS, pages 120–129, 1998.
- Jirí Srba. Beyond language equivalence on visibly pushdown automata. Logical Methods in Computer Science, 5(1):1–22, 2009.