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Context Monotonicity Proof Technique Summary

Simulation Games

. . . are played in rounds between Spoiler and Duplicator. If a player
cannot move the other wins. Infinite plays are won by Duplicator.

In each round

α βvs.

α′

a

β′

a

1 Spoiler moves from α

2 Duplicator responds from β

3 game continues from α′ vs. β′

Def: Simulation (� )

α � β iff Duplicator has a strategy to win from α vs. β.
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Simulation Approximant Games

. . . are played in rounds between Spoiler and Duplicator. If a player
cannot move the other wins.

In round from α, β, i

α βvs.

α′

a

β′

a

vs.

1 Spoiler moves from α; picks ordinal j < i

2 Duplicator responds from β

3 game continues from α′, β′, j

Def: Simulation Approximant (�i )

α �i β iff Duplicator has a strategy to win from α vs. β.
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Weak Notions

Weak Steps (a 6= τ ∈ Act)
τ

=⇒ :=
τ−→∗ a

=⇒ :=
τ−→∗ a−→ τ−→∗

Def: Weak Simulation 5 and Approximants 5i

by 2-player games as before where Duplicator makes weak steps. . .
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Our Main Contribution

We show decidability of the

OCN Weak Simulation Problem

Input: A net N = (Q,Act, δ) and configurations pm, qn.

Question: pm 5 qn?

Theorem

For a given net, the relation 5 is effectively semilinear.
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Why should you care?

In practice, modelling might use both ∞-states and branching:

network protocols/queues keeping track of their workload

random guesses

Theoretically, surprising:

rare positive result for behavioral preorder that is not finitely
approximable 5 6=5ω .

goes against the usual ‘finer is easier’ trend
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Some Context – Strong Case

OCN

OCA

PDA Petri Nets

NFA

⊆ undecidable [HMT13]

� decidable [AC98],
PSPACE-hard [Srb09]

∼ PSPACE-c [Srb09, BGJ10]

⊆ undecidable

� undecidable [JMS99]

∼ PSPACE-c [Srb09, BGJ10]

⊆ undec. [Hüt94]

� undec. [Hüt94]

∼ undec. [PJ95]

⊆ undecidable

� undecidable

∼ decidable [Sén98]

⊆ PSPACE-comp.

� P-comp.

∼ P-comp.
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Some Context – Weak Case

OCN

OCA

PDA Petri Nets

NFA

j undecidable [HMT13]

5 decidable [HMT13]

PSPACE-hard [Srb09]

≈ undecidable [May03]

j undecidable

5 undecidable [JMS99]
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Monotonicity in Nets

If pm
a−→qn Then p(m + 1)

a−→q(n + 1).

If m′ ≤ m Then pm′ � pm.

If m′ ≤ m, pm � qn and n ≤ n′ Then pm′ � qn′.
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Monotonicity illustrated

(m, n) is black iff pm � qn
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Belt Theorem [JKM00, AC98]

“Every frontier lies in a belt with rational slope”.

q
p

m

n

c1

c2

c3

c4
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Strong Simulation for OCN

Theorem [JKM00, AC98]

For any given OCN, � is an effectively semilinear set.
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Proof of the main result

Symbolic infinite branching 1

Reduce (OCN 5 OCN)  (OCN � ω-Net)

Approximants for the new game 2

∃ finite sequence �0 ⊇ �1 ⊇ �2 ⊇ · · · ⊇ �k = �

Compute approximants for finite k 3

Recursively compute �k by reduction to (OCN � OCN)
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Symbolic Infinite Branching

ω-Net N = (Q,Act, δ) with transitions

δ ⊆ Q × Act × {−1, 0, 1, ω} × Q

. . . induces LTS over Q × N like OCN. A transition

p q

a, ω

introduces strong steps pm
a−→qn for any n ≥ m.
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Reduction to Strong Simulation (OCN vs. ω-Net)

Lemma

For a OCN N one can construct a OCN M ⊇ N and an ω-net
M ′ ⊇ N where for all configurations pm, qn holds that

pm 5 qn w.r.t. N ⇐⇒ pm � qn w.r.t. M,M ′.
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Reduction to Strong Simulation (OCN vs. ω-Net)

ω-Countdown net
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Approximants for strong simulation (OCN vs. ω-Net)

�βα

. . . holds if Duplicator can guarantee to either

survive α (ordinal) rounds or

make an ω-move at least β times.

�α =
⋂
β �

β
α �β =

⋂
α �

β
α
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Approximants illustrated
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Example

(ω · 2)-Countdown game
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Computing �k+1

Observation

If a response via −→ω leads to (game) position pm 6�k qn then
pm 6�k qn′ for all n′ ∈ N.

For any pair p, q of states there is a minimal sufficient value m with

pm 6�k qn for all n
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Computing �k+1

Compute minimal sufficient values ∈ N ∪ {∞} for all (p, q)

Build gadget nets that test if Spoiler’s counter is sufficient.

Use Defenders Forcing to substitute ω-transitions by the
ability to move into testing gadgets.

 Strong simulation game OCN vs. OCN.
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Conclusion

Weak Simulation is decidable for One-Counter Nets

Our proof crucially depends on monotonicity! We

symbolically capture ∞ branching,

derive finite sequence of approximants and

use semilinearity of OCN � OCN to compute approximants

and check convergence.

We also consider (weak) trace inclusion for OCN and (weak)

Simulation between OCN and NFA.
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