Trace Inclusion for One-Counter Nets Revisited

Patrick Totzke Piotr Hofman
LaBRI, CNRS \& Université de Bordeaux
Universität Bayreuth

September 23, 2014

One-Counter Automata

$(Q, \operatorname{Act}, \delta) \quad \delta \subseteq(Q \times$ Act $\times\{-1,0,+1,=0\} \times Q)$

One-Counter Automata

$(Q$, Act,$\delta) \quad \delta \subseteq(Q \times$ Act $\times\{-1,0,+1,=0\} \times Q)$

Induced LTS over $Q \times \mathbb{N}$

One-Counter Automata

$(Q$, Act,$\delta) \quad \delta \subseteq(Q \times$ Act $\times\{-1,0,+1,=0\} \times Q)$

Induced LTS over $Q \times \mathbb{N}$

One-Counter Automata

$(Q$, Act,$\delta) \quad \delta \subseteq(Q \times$ Act $\times\{-1,0,+1,=0\} \times Q)$

Induced LTS over $Q \times \mathbb{N}$

One-Counter Automata

$(Q$, Act,$\delta) \quad \delta \subseteq(Q \times$ Act $\times\{-1,0,+1,=0\} \times Q)$

Induced LTS over $Q \times \mathbb{N}$

One-Counter Nets

$(Q$, Act,$\delta) \quad \delta \subseteq(Q \times$ Act $\times\{-1,0,+1,=0\} \times Q)$

Induced LTS over $Q \times \mathbb{N}$

One-Counter Nets

$(Q, \operatorname{Act}, \delta) \quad \delta \subseteq(Q \times$ Act $\times\{-1,0,+1\} \times Q)$

Induced LTS over $Q \times \mathbb{N}$

OCN and Related Models

Trace Inclusion for One-Counter Automata

$O C A \subseteq O C A$

Input:

- OCA \mathcal{A} and configuration $p m$
- OCA \mathcal{A}^{\prime} and configuration $p^{\prime} m^{\prime}$

Output: yes iff $p m \subseteq p^{\prime} m^{\prime}$

Trace Inclusion for One-Counter Automata

$O C A \subseteq O C A$

Input:

- OCA \mathcal{A} and configuration $p m$
- OCA \mathcal{A}^{\prime} and configuration $p^{\prime} m^{\prime}$

Output: yes iff $\left\{w \in \Sigma^{*} \mid p m \xrightarrow{w}\right\} \subseteq\left\{w \in \Sigma^{*} \mid p^{\prime} m^{\prime} \xrightarrow{w}\right\}$

Trace Inclusion for One-Counter Automata

$O C A \subseteq O C A$

Input:

- OCA \mathcal{A} and configuration $p m$
- OCA \mathcal{A}^{\prime} and configuration $p^{\prime} m^{\prime}$

Output: yes iff $\left\{w \in \Sigma^{*} \mid p m \xrightarrow{w}\right\} \subseteq\left\{w \in \Sigma^{*} \mid p^{\prime} m^{\prime} \xrightarrow{w}\right\}$

■ undecidable for DOCA [Valiant '73] or OCN [HMT '13]

Trace Inclusion for One-Counter Automata

$O C A \subseteq O C A$

Input:

- OCA \mathcal{A} and configuration $p m$
- OCA \mathcal{A}^{\prime} and configuration $p^{\prime} m^{\prime}$

Output: yes iff $\left\{w \in \Sigma^{*} \mid p m \xrightarrow{w}\right\} \subseteq\left\{w \in \Sigma^{*} \mid p^{\prime} m^{\prime} \xrightarrow{w}\right\}$

■ undecidable for DOCA [Valiant '73] or OCN [HMT '13]

- NL-complete for DOCN
- Ackermannian if \mathcal{A} is a NFA and \mathcal{A}^{\prime} a OCN

Normal-Form Assumption

Reduction

Normal-Form Assumption

Reduction

- \mathcal{A} is deterministic and cannot deadlock

Normal-Form Assumption

Reduction

- \mathcal{A} is deterministic and cannot deadlock
- all states in \mathcal{A}^{\prime} have transitions for all actions (potentially with effect -1)

Normal-Form Assumption

Reduction

- \mathcal{A} is deterministic and cannot deadlock
- all states in \mathcal{A}^{\prime} have transitions for all actions (potentially with effect -1)
- reduction works in logspace and preserves determinisim

Trace Inclusion for One-Counter Automata

$O C A \subseteq O C A$

Input:

- OCA \mathcal{A} and configuration $p m$
- OCA \mathcal{A}^{\prime} and configuration $p^{\prime} m^{\prime}$

Output:
yes iff $p m \subseteq p^{\prime} m^{\prime}$

- undecidable for DOCA [Valiant '73] or OCN [HMT '13]
- NL-complete for DOCN

■ Ackermannian if \mathcal{A} is a NFA and \mathcal{A}^{\prime} a OCN

Trace Inclusion for One-Counter Automata

$O C A \subseteq O C A$

InPut:

- OCA \mathcal{A} and configuration $p m$
- OCA \mathcal{A}^{\prime} and configuration $p^{\prime} m^{\prime}$

Output:
yes iff $p m \subseteq p^{\prime} m^{\prime}$

- undoridablo for DOCA [Valiant '73] or OCN [HMT '13]

NL-complete for DOCN

- Ackermannian if \mathcal{A} is a NFA and \mathcal{A}^{\prime} a OCN

Loops in the synchronous product

Loops in the synchronous product

$\mathcal{A} \times \mathcal{A}^{\prime}$

Loops in the synchronous product

$\mathcal{A} \times \mathcal{A}^{\prime}$

- L_{0} is a loop with effect $(3,1)$.

Loops in the synchronous product

$\mathcal{A} \times \mathcal{A}^{\prime}$

Loops in the synchronous product

$\mathcal{A} \times \mathcal{A}^{\prime}$

Example: Witnesses for $p_{0} 0 \nsubseteq p_{0}^{\prime} 5$

Example: Witnesses for $p_{0} 0 \nsubseteq p_{0}^{\prime} 5$

Example: Witnesses for $p_{0} 0 \nsubseteq p_{0}^{\prime} 5$

Example: Witnesses for $p_{0} 0 \nsubseteq p_{0}^{\prime} 5$

Example: Witnesses for $p_{0} 0 \nsubseteq p_{0}^{\prime} 5$

Example: Witnesses for $p_{0} 0 \nsubseteq p_{0}^{\prime} 5$

Example: Witnesses for $p_{0} 0 \nsubseteq p_{0}^{\prime} 5$

Example: Witnesses for $p_{0} 0 \nsubseteq p_{0}^{\prime} 5$

Example: Witnesses for $p_{0} 0 \nsubseteq p_{0}^{\prime} 5$

Characterizing Witnesses

Idea

Stepwise rewrite witnesses to "better" ones such that
1 the loop-structure is the same.
2 the effect on \mathcal{A}^{\prime} is the same,
3 the effect on \mathcal{A} does not decrease,
4 the length is minimal.

Characterizing Witnesses

Idea

Stepwise rewrite witnesses to "better" ones such that
1 the loop-structure is the same.
2 the effect on \mathcal{A}^{\prime} is the same,
3 the effect on \mathcal{A} does not decrease,
4 the length is minimal.
\rightsquigarrow unique normal form for each witness

Characterizing Witnesses

Theorem
If $p m \nsubseteq p^{\prime} m^{\prime}$ then there is a short witness, or one of forms

Here, \rightarrow are short paths and \rightarrow, \rightarrow are loops that may occur often.

Characterizing Witnesses

Theorem

If $p m \nsubseteq p^{\prime} m^{\prime}$ then there is a short witness, or one of forms

Here, \rightarrow are short paths and \rightarrow, \rightarrow are loops that may occur often.

Solving DOCN $\nsubseteq D O C N$ in NL

- guess short components of a witness $\pi=\pi_{0} L_{0}^{L_{0}} \pi_{1} L_{1}^{L_{1}} \pi_{2}$
- compute and memorize their effects
- check existence of coefficients $I_{0}, I_{1} \in \mathbb{N}$ such that both $m+\Delta(\pi) \geq 0$ and $m^{\prime}+\Delta^{\prime}(\pi)=-1$

Trace Inclusion for One-Counter Automata

$O C A \subseteq O C A$

InPut:

- OCA \mathcal{A} and configuration $p m$
- OCA \mathcal{A}^{\prime} and configuration $p^{\prime} m^{\prime}$

Output:
yes iff $p m \subseteq p^{\prime} m^{\prime}$

- undoridablo for DOCA [Valiant '73] or OCN [HMT '13]

NL-complete for DOCN

- Ackermannian if \mathcal{A} is a NFA and \mathcal{A}^{\prime} a OCN

Trace Inclusion for One-Counter Automata

$O C A \subseteq O C A$

Input:

- OCA \mathcal{A} and configuration $p m$
- OCA \mathcal{A}^{\prime} and configuration $p^{\prime} m^{\prime}$

Output:
yes iff $p m \subseteq p^{\prime} m^{\prime}$
■ undecidable for DOCA [Valiant '73] or OCN [HMT '13]

- NL-camun

Ackermannian if \mathcal{A} is a NFA and \mathcal{A}^{\prime} a OCN

$N F A \subseteq O C N$

Reduction to Trace Universality of OCN
 NFA $\subseteq \mathrm{OCN}$
 $$
\Sigma^{*} \subseteq \mathrm{OCN}
$$

OCN Universality: Decidability

Intuition: witnessing non-Universality in a NFA

$$
\left(\begin{array}{l}
\top \\
\perp \\
\perp
\end{array}\right) \xrightarrow{a}\left(\begin{array}{c}
\perp \\
T \\
\top
\end{array}\right) \xrightarrow{b}\left(\begin{array}{c}
\top \\
\perp \\
\perp
\end{array}\right) \xrightarrow{?} *\left(\begin{array}{c}
\perp \\
\perp \\
\perp
\end{array}\right)
$$

OCN Universality: Decidability

$$
\left(\begin{array}{l}
T \\
\perp \\
\perp
\end{array}\right) \xrightarrow{a}\left(\begin{array}{c}
\perp \\
T \\
T
\end{array}\right) \xrightarrow{b}\left(\begin{array}{l}
T \\
\perp \\
\perp
\end{array}\right) \xrightarrow{?} *\left(\begin{array}{c}
\perp \\
\perp \\
\perp
\end{array}\right)
$$

Observation due to $p m \subseteq p(m+1)$:

Combined traces of sets of configurations are representable by maximal elements.

OCN Universality: Decidability

Observation due to $p m \subseteq p(m+1)$:
Combined traces of sets of configurations are representable by maximal elements.
\rightsquigarrow Reachability of $(\perp)^{k}$ in a "maximizing" k-counter automaton

OCN Universality: Decidability

Observation due to $p m \subseteq p(m+1)$:

Combined traces of sets of configurations are representable by maximal elements.
\rightsquigarrow Reachability of $(\perp)^{k}$ in a "maximizing" k-counter automaton

Fast-Growing Functions $F_{n}: \mathbb{N} \rightarrow \mathbb{N}$

$$
F_{0}(x)=x+1 \quad F_{k+1}(x)=F_{k}^{x+1}(x) \quad F_{\omega}(x)=F_{x}(x)
$$

The Fast-Growing Hierarchy at level k is the class \mathfrak{F}_{k} that contains all constants and is closed under substitution, sum, projections, limited recursion and applications of functions F_{n} for $n \leq k$.

■ $\mathfrak{F}_{k} \approx \operatorname{NSPACE}\left(F_{k}(1)\right)$, for $k \geq 2$.
■ A function is called Ackermannian if it is in $\mathfrak{F}_{\omega} \backslash \bigcup_{k \in \mathbb{N}} \mathfrak{F}_{k}$.

Theorem

OCN Trace Universality is Ackermannian

in \mathfrak{F}_{ω} :
naive search for witness as above...
(shortest witnesses are bad succ-controlled sequences in \mathbb{N}_{\perp}^{k}).

Theorem

OCN Trace Universality is Ackermannian

in \mathfrak{F}_{ω} :
naive search for witness as above...
(shortest witnesses are bad succ-controlled sequences in \mathbb{N}_{\perp}^{k}).
not in $\bigcup_{k \in \mathbb{N}} \mathfrak{F}_{k}$:
by reduction from the (Ackermannian) control-state reachability problem for lossy counter systems.

OCN Universality: Hardness

Example

$$
\left(\begin{array}{c}
0 \\
\perp \\
\perp
\end{array}\right) \xrightarrow{a}\left(\begin{array}{c}
\perp \\
1 \\
1
\end{array}\right) \xrightarrow{a}\left(\begin{array}{l}
\perp \\
\perp \\
\perp
\end{array}\right)
$$

OCN Universality: Hardness

Example: Obstacles

OCN Universality: Hardness

Example: Obstacles

$$
\left(\begin{array}{c}
0 \\
\perp \\
\perp \\
\perp
\end{array}\right) \xrightarrow{a}\left(\begin{array}{c}
\perp \\
1 \\
1 \\
\perp
\end{array}\right) \xrightarrow{a}\left(\begin{array}{c}
\perp \\
\perp \\
\perp \\
1
\end{array}\right)
$$

State C is an obstacle for letter a:
If $w \in$ Act * leads to vector with $v(C) \neq \perp$, then no continuation of wa can be a witness!

Witnesses for non-Universality of length $F_{3}(0)$

start in $\left\{A 0, F_{3} 1\right\}$

Trace Inclusion for One-Counter Automata / Nets

Trace Inclusion for One-Counter Automata / Nets

C/,	NFA	OCN	OCA
NFA	PSPACE	decidable	undecidable
OCN			undecidable
OCA			undecidable

Trace Inclusion for One-Counter Automata / Nets

C/	NFA	OCN	OCA
NFA	PSPACE	decidable	undecidable
OCN	PSPACE	undecidable	undecidable
OCA	PSPACE	undecidable	undecidable

Trace Inclusion for One-Counter Automata / Nets

C/	NFA	OCN	OCA
NFA	PSPACE	Ackermanian	undecidable
OCN	PSPACE	undecidable	undecidable
OCA	PSPACE	undecidable	undecidable

Trace Inclusion for One-Counter Automata / Nets

C/	NFA	OCN	OCA
NFA	PSPACE	Ackermanian	undecidable
OCN	PSPACE	undecidable	undecidable
OCA	PSPACE	undecidable	undecidable

C,	DFA	DOCN	DOCA
$D F A$	NL		
$D O C N$			
$D O C A$			

Trace Inclusion for One-Counter Automata / Nets

C/	NFA	OCN	OCA
NFA	PSPACE	Ackermanian	undecidable
OCN	PSPACE	undecidable	undecidable
OCA	PSPACE	undecidable	undecidable

$C /$	DFA	DOCN	DOCA
$D F A$	NL		
$D O C N$			
$D O C A$			undecidable

Trace Inclusion for One-Counter Automata / Nets

C/	NFA	OCN	OCA
NFA	PSPACE	Ackermanian	undecidable
OCN	PSPACE	undecidable	undecidable
OCA	PSPACE	undecidable	undecidable

C,	DFA	DOCN	DOCA
$D F A$	NL	NL	NL
$D O C N$	NL		
$D O C A$	NL		undecidable

Trace Inclusion for One-Counter Automata / Nets

C/	NFA	OCN	OCA
NFA	PSPACE	Ackermanian	undecidable
OCN	PSPACE	undecidable	undecidable
OCA	PSPACE	undecidable	undecidable

C,	DFA	DOCN	DOCA
$D F A$	NL	NL	NL
$D O C N$	NL	NL	
$D O C A$	NL		undecidable

Trace Inclusion for One-Counter Automata / Nets

C/	NFA	OCN	OCA
NFA	PSPACE	Ackermanian	undecidable
OCN	PSPACE	undecidable	undecidable
OCA	PSPACE	undecidable	undecidable

$\mathrm{C}, ~$	DFA	DOCN	DOCA
$D F A$	NL	NL	NL
$D O C N$	NL	NL	$?$
$D O C A$	NL	NL	undecidable

Trace Inclusion for One-Counter Automata / Nets

C,	NFA	OCN	OCA
NFA	PSPACE	Ackermanian	undecidable
OCN	PSPACE	undecidable	undecidable
OCA	SPACE	ndecidable	?
		ecidable	
C,	DFA	DOCN	DOCA
DFA	NL	NL	NL
DOCN	NL	NL	?
DOCA	NL	NL	undecidable

