On Boundedness Problems for Pushdown Vector Addition Systems

Jérôme Leroux Grégoire Sutre Patrick Totzke

September 21, 2015

Vector Addition Systems - Recap

Definition

A VAS is a finite set of vectors $\mathbf{a} \in \mathbb{Z}^{d}$. For $\mathbf{v}, \mathbf{v}^{\prime}: \mathbb{N}^{d}$ it has a step

$$
\mathbf{v} \xrightarrow{\mathbf{a}} \mathbf{v}^{\prime} \quad \text { if } \quad \mathbf{v}^{\prime}=\mathbf{v}+\mathbf{a}
$$

- Equivalent to Petri Nets (concurrency, weak counters, event systems)
- Reachability: decidable

Mayr'81,Kosaraju'82, . . . Leroux and Schmitz'15

- Coverability, Boundedness: ExpSpace-complete Lipton'76, Rackoff'78
- Most Games/Equivalences undecidable (e.g. Bisimulation) Jančar'95

Pushdown Vector Addition Systems

... are products of VAS with pushdown automata.

Pushdown Vector Addition Systems

... are products of VAS with pushdown automata.

$$
\operatorname{push}(A),\binom{-1}{0} \text { nop, }\binom{0}{-1}
$$

$s, \perp,\binom{2}{1}$

Pushdown Vector Addition Systems

... are products of VAS with pushdown automata.

$$
s, \perp,\binom{2}{1} \longrightarrow \longrightarrow s, A A \perp,\binom{0}{1}
$$

Pushdown Vector Addition Systems

... are products of VAS with pushdown automata.

$$
s, \perp,\binom{2}{1} \longrightarrow \longrightarrow s, A A \perp,\binom{0}{1} \longrightarrow q, A A \perp,\binom{0}{0}
$$

Pushdown Vector Addition Systems

... are products of VAS with pushdown automata.

$$
s, \perp,\binom{2}{1} \longrightarrow \longrightarrow s, A A \perp,\binom{0}{1} \longrightarrow q, A A \perp,\binom{0}{0} \longrightarrow \longrightarrow q, \perp,\binom{4}{0}
$$

Pushdown Vector Addition Systems

. . . are products of VAS with pushdown automata. They can for example model recursive prorams with variables over \mathbb{N}.

1: $x \leftarrow n$
2: procedure DoubleX
3: if $(\star \wedge x>0)$ then
4: $\quad x \leftarrow(x-1)$
5: DoubleX
6: end if
7: $\quad x \leftarrow(x+2)$
8: end procedure

Pushdown Vector Addition Systems

- Reachability $=$ Coverability ($=$ State-Reachability) Tower-hard Lazic'13

Pushdown Vector Addition Systems

- Reachability d dim. $=$ Coverability $d+1 \mathrm{dim}$. Tower-hard Lazic'13

Pushdown Vector Addition Systems

- Reachability d dim. $=$ Coverability $d+1$ dim. Tower-hard Lazic'13
- Coverability in 1 dim. is decidable Leroux, Sutre, and T.'15

Pushdown Vector Addition Systems

- Reachability d dim. $=$ Coverability $d+1$ dim. Tower-hard Lazic'13
- Coverability in 1 dim. is decidable Leroux, Sutre, and T.'15
- Boundedness: decidable with Hyper-Ackermannian bounds Leroux, Praveen, and Sutre'14

Theorem [LSP'14]
If a PVAS configuration (p, \perp, n) is bounded then the cardinality of the reachability set is at most $F_{\omega^{d} \cdot|Q|}(d \cdot n)$.

Pushdown Vector Addition Systems

- Reachability d dim. $=$ Coverability $d+1$ dim. Tower-hard Lazic'13
- Coverability in 1 dim. is decidable Leroux, Sutre, and T.'15
- Boundedness: decidable with Hyper-Ackermannian bounds Leroux, Praveen, and Sutre'14
- Counter-, Stack-, and Combined Boundedness Problems.

Combined

Pushdown Vector Addition Systems

- Reachability d dim. $=$ Coverability $d+1$ dim. Tower-hard Lazic'13
- Coverability in 1 dim. is decidable Leroux, Sutre, and T.'15
- Boundedness: decidable with Hyper-Ackermannian bounds Leroux, Praveen, and Sutre'14
- Counter-, Stack-, and Combined Boundedness Problems.

Combined

The following is in ExpTime.
1-PVAS Counter-Boundedness
Given: 1-dim. PVAS, initial configuration (p, w, a).
Question: is $\left\{b \mid(p, w, a) \xrightarrow{*}\left(p^{\prime}, w^{\prime}, b\right)\right\}$ infinite?

Another Perspective

Definition (Context-free Controlled VAS)
a VAS $\mathbf{A} \subseteq \mathbb{Z}^{d}$ together with a context-free language $\mathcal{L} \subseteq A^{*}$. There is a step $\mathbf{s} \longrightarrow \mathbf{t}$ between $\mathbf{s}, \mathbf{t} \in \mathbb{N}^{d}$ if

$$
\mathbf{a}_{1} \mathbf{a}_{2} \ldots \mathbf{a}_{k} \in \mathcal{L} \quad \text { and } \quad \mathbf{s} \xrightarrow{a_{1}} \xrightarrow{a_{2}} \cdots \xrightarrow{a_{k}} \mathbf{t} .
$$

Another Perspective

Definition (Context-free Controlled VAS)
a VAS $\mathbf{A} \subseteq \mathbb{Z}^{d}$ together with a context-free language $\mathcal{L} \subseteq A^{*}$.
There is a step $\mathbf{s} \longrightarrow \mathbf{t}$ between $\mathbf{s}, \mathbf{t} \in \mathbb{N}^{d}$ if

$$
\mathbf{a}_{1} \mathbf{a}_{2} \ldots \mathbf{a}_{\mathrm{k}} \in \mathcal{L} \quad \text { and } \quad \mathbf{s} \xrightarrow{\mathbf{a}_{1}} \xrightarrow{\mathbf{a}_{2}} \cdots \xrightarrow{\mathbf{a}_{k}} \mathbf{t} .
$$

Theorem
For Cf-Controlled VAS, Coverability (and Reachability) logspace reduces to Boundedness.

Another Perspective

Definition (Context-free Controlled VAS)

a VAS $\mathbf{A} \subseteq \mathbb{Z}^{d}$ together with a context-free language $\mathcal{L} \subseteq A^{*}$.
There is a step $\mathbf{s} \longrightarrow \mathbf{t}$ between $\mathbf{s}, \mathbf{t} \in \mathbb{N}^{d}$ if

$$
\mathbf{a}_{1} \mathbf{a}_{2} \ldots \mathbf{a}_{\mathbf{k}} \in \mathcal{L} \quad \text { and } \quad \mathbf{s} \xrightarrow{\mathbf{a}_{1}} \xrightarrow{\mathbf{a}_{2}} \cdots \xrightarrow{a_{k}} \mathbf{t} .
$$

Theorem
For Cf-Controlled VAS, Coverability (and Reachability) logspace reduces to Boundedness.

Observation
Relevant for the PVAS boundedness problem is the trace language $\left\{w \in \mathbf{A}^{*} \mid\left(p_{0}, \perp\right) \xrightarrow{w}\right\}$ defined by the PDA.

Another Perspective

Definition (Context-free Controlled VAS)

a VAS $\mathbf{A} \subseteq \mathbb{Z}^{d}$ together with a context-free language $\mathcal{L} \subseteq A^{*}$.
There is a step $\mathbf{s} \longrightarrow \mathbf{t}$ between $\mathbf{s}, \mathbf{t} \in \mathbb{N}^{d}$ if

$$
\mathbf{a}_{1} \mathbf{a}_{2} \ldots \mathbf{a}_{\mathrm{k}} \in \mathcal{L} \quad \text { and } \quad \mathbf{s} \xrightarrow{\mathbf{a}_{1}} \xrightarrow{\mathbf{a}_{2}} \cdots \xrightarrow{a_{k}} \mathbf{t} .
$$

Theorem
For Cf-Controlled VAS, Coverability (and Reachability) logspace reduces to Boundedness.

Observation
Relevant for the PVAS boundedness problem is the trace language $\left\{w \in \mathbf{A}^{*} \mid\left(p_{0}, \perp\right) \xrightarrow{w}\right\}$ defined by the PDA.

Another Perspective

Definition (Context-free Controlled VAS)

a VAS $\mathbf{A} \subseteq \mathbb{Z}^{d}$ together with a context-free language $\mathcal{L} \subseteq A^{*}$.
There is a step $\mathbf{s} \longrightarrow \mathbf{t}$ between $\mathbf{s}, \mathbf{t} \in \mathbb{N}^{d}$ if

$$
\mathbf{a}_{1} \mathbf{a}_{2} \ldots \mathbf{a}_{\mathbf{k}} \in \mathcal{L} \quad \text { and } \quad \mathbf{s} \xrightarrow{\mathbf{a}_{1}} \xrightarrow{\mathbf{a}_{2}} \cdots \xrightarrow{a_{k}} \mathbf{t} .
$$

Theorem
For Cf-Controlled VAS, Coverability (and Reachability) logspace reduces to Boundedness.

Observation
Relevant for the PVAS boundedness problem is the trace language $\left\{w \in \mathbf{A}^{*} \mid\left(p_{0}, \perp\right) \xrightarrow{w}\right\}$ defined by the PDA.
Main Theorem
Boundedness of 1-dim VAS controlled by a prefix-closed language is in ExpTime.

Another Perspective

given as GfG

Definition (Context-free Controlled VAS)

a VAS $\mathbf{A} \subseteq \mathbb{Z}^{d}$ together with a context-free language $\mathcal{L} \subseteq A^{*}$.
There is a step $\mathbf{s} \xrightarrow{X} \mathbf{t}$ between $\mathbf{s}, \mathbf{t} \in \mathbb{N}^{d}$ if

$$
X \stackrel{*}{\longrightarrow} \mathbf{a}_{1} \mathbf{a}_{2} \ldots \mathbf{a}_{\mathrm{k}} \quad \text { and } \quad \mathbf{s} \xrightarrow{\mathbf{a}_{1}} \xrightarrow{\mathbf{a}_{2}} \cdots \xrightarrow{\mathbf{a}_{\mathbf{k}}} \mathbf{t}
$$

Theorem
For Cf-Controlled VAS, Coverability (and Reachability) logspace reduces to Boundedness.
Observation
Relevant for the PVAS boundedness problem is the trace language $\left\{w \in \mathbf{A}^{*} \mid\left(p_{0}, \perp\right) \xrightarrow{w}\right\}$ defined by the PDA.
Main Theorem
Boundedness of 1-dim VAS controlled by a prefix-closed language is in ExpTime.

Flow Trees

A derivation tree with consistent in/out labels in $\mathbb{Z} \cup\{-\infty\}$.

Flow Trees

A derivation tree with consistent in/out labels in $\mathbb{Z} \cup\{-\infty\}$.

$$
X
$$

Flow Trees

A derivation tree with consistent in/out labels in $\mathbb{Z} \cup\{-\infty\}$.

Flow Trees

A derivation tree with consistent in/out labels in $\mathbb{Z} \cup\{-\infty\}$.

Flow Trees

A derivation tree with consistent in/out labels in $\mathbb{Z} \cup\{-\infty\}$.

Flow Trees

A derivation tree with consistent in/out labels in $\mathbb{Z} \cup\{-\infty\}$.

Flow Trees

A derivation tree with consistent in/out labels in $\mathbb{Z} \cup\{-\infty\}$.

Flow Trees

A derivation tree with consistent in/out labels in $\mathbb{Z} \cup\{-\infty\}$.

Flow Trees

A derivation tree with consistent in/out labels in $\mathbb{Z} \cup\{-\infty\}$.

Flow Trees

A derivation tree with consistent in/out labels in $\mathbb{Z} \cup\{-\infty\}$.

Flow Trees

A derivation tree with consistent in/out labels in $\mathbb{Z} \cup\{-\infty\}$.

Flow Trees

A derivation tree with consistent in/out labels in $\mathbb{Z} \cup\{-\infty\}$.

Flow Trees

A derivation tree with consistent in/out labels in $\mathbb{Z} \cup\{-\infty\}$.

Flow Trees

A derivation tree with consistent in/out labels in $\mathbb{Z} \cup\{-\infty\}$.

Flow Trees

A derivation tree with consistent in/out labels in $\mathbb{Z} \cup\{-\infty\}$.

Flow Trees

A derivation tree with consistent in/out labels in $\mathbb{Z} \cup\{-\infty\}$.

a X $_{b}$ means $a \xrightarrow{X} b^{\prime} \geq b ; \quad-\infty X b$ means $\exists a \in \mathbb{N} . a \xrightarrow{X} b^{\prime} \geq b$.

Flow Trees

A derivation tree with consistent in/out labels in $\mathbb{Z} \cup\{-\infty\}$.

Flow Trees

A derivation tree with consistent in/out labels in $\mathbb{Z} \cup\{-\infty\}$.

Certificates

Definition

A certificate is a flow tree with a node $b{ }^{\mathrm{X}} b^{\prime}$ and a descendant ${ }^{c} \mathrm{X} c^{\prime}$ such that

1. $b<c$ or
2. $b=c$ and $c^{\prime}<b^{\prime}$.

Certificates

Definition
A certificate is a flow tree with a node $b{ }^{\triangle} \mathrm{X} b^{\prime}$ and a descendant ${ }^{c} \mathrm{X} c^{\prime}$ such that

1. $b<c$ or
2. $b=c$ and $c^{\prime}<b^{\prime}$.

Certificates (cont.)

Theorem
$\left\{a^{\prime} \mid a \xrightarrow{S} a^{\prime}\right\}$ is infinite iff there is a certificate with root $(\leq a) S$.
Unboundedness \Longrightarrow Certificate:

- $a \xrightarrow{S} b$ for sufficiently large b

Certificates (cont.)

Theorem
$\left\{a^{\prime} \mid a \xrightarrow{S} a^{\prime}\right\}$ is infinite iff there is a certificate with root $(\leq a) S$.
Unboundedness \Longrightarrow Certificate:

- $a \xrightarrow{S} b$ for sufficiently large b
- a minimal flow tree must have long branch

Certificates (cont.)

Theorem
$\left\{a^{\prime} \mid a \xrightarrow{S} a^{\prime}\right\}$ is infinite iff there is a certificate with root $(\leq a) S$.
Unboundedness \Longrightarrow Certificate:

- $a \xrightarrow{S} b$ for sufficiently large b
- a minimal flow tree must have long branch
- wqo $(\leq,=)$ on (input $\times V$) implies matching nodes with $b \leq c$

Certificates (cont.)

Theorem
$\left\{a^{\prime} \mid a \xrightarrow{S} a^{\prime}\right\}$ is infinite iff there is a certificate with root $(\leq a) S$.
Unboundedness \Longrightarrow Certificate:

- $a \xrightarrow{S} b$ for sufficiently large b
- a minimal flow tree must have long branch
- wqo $(\leq,=)$ on (input $\times V$) implies matching nodes with $b \leq c$
- minimality excludes $b=c \wedge c^{\prime}>b^{\prime}$

Certificates (cont.)

Theorem
$\left\{a^{\prime} \mid a \xrightarrow{S} a^{\prime}\right\}$ is infinite iff there is a certificate with root $(\leq a) S$.
Unboundedness \Longrightarrow Certificate:

- $a \xrightarrow{S} b$ for sufficiently large b
- a minimal flow tree must have long branch
- wqo $(\leq,=)$ on (input $\times V$) implies matching nodes with $b \leq c$
- minimality excludes $b=c \wedge c^{\prime}>b^{\prime}$

Unboundedness \Longleftarrow Certificate:

- yield is $u v w x y \in \mathcal{L}$ with $\sum v \geq 0$ and $\sum v+\sum x>0$

Certificates (cont.)

Theorem
$\left\{a^{\prime} \mid a \xrightarrow{S} a^{\prime}\right\}$ is infinite iff there is a certificate with root $(\leq a) S$.
Unboundedness \Longrightarrow Certificate:

- $a \xrightarrow{S} b$ for sufficiently large b
- a minimal flow tree must have long branch
- wqo $(\leq,=)$ on (input $\times V$) implies matching nodes with $b \leq c$
- minimality excludes $b=c \wedge c^{\prime}>b^{\prime}$

Unboundedness \Longleftarrow Certificate:

- yield is $u v w x y \in \mathcal{L}$ with $\sum v \geq 0$ and $\sum v+\sum x>0$
- All $u v^{n} w x^{n}$ are in \mathcal{L} and executable.

Certificates (cont.)

Theorem
$\left\{a^{\prime} \mid a \xrightarrow{S} a^{\prime}\right\}$ is infinite iff there is a certificate with root $(\leq a) S$.
Unboundedness \Longrightarrow Certificate:

- $a \xrightarrow{S} b$ for sufficiently large b
- a minimal flow tree must have long branch
- wqo $(\leq,=)$ on (input $\times V$) implies matching nodes with $b \leq c$
- minimality excludes $b=c \wedge c^{\prime}>b^{\prime}$

Unboundedness \Longleftarrow Certificate:

- yield is $u v w x y \in \mathcal{L}$ with $\sum v \geq 0$ and $\sum v+\sum x>0$
- All $u v^{n} w x^{n}$ are in \mathcal{L} and executable.
- Prefix-closedness of \mathcal{L} implies $u v^{n}$ and $u v^{n} w x^{n} \in \mathcal{L}$.

Certificates (cont.)

Theorem
$\left\{a^{\prime} \mid a \xrightarrow{S} a^{\prime}\right\}$ is infinite iff there is a certificate with root $(\leq a) S$.
Unboundedness \Longrightarrow Certificate:

- $a \xrightarrow{S} b$ for sufficiently large b
- a minimal flow tree must have long branch
- wqo $(\leq,=)$ on (input $\times V$) implies matching nodes with $b \leq c$
- minimality excludes $b=c \wedge c^{\prime}>b^{\prime}$

Unboundedness \Longleftarrow Certificate:

- yield is $u v w x y \in \mathcal{L}$ with $\sum v \geq 0$ and $\sum v+\sum x>0$

Prefix-closedness of \mathcal{L} nplies $u v^{n}$ and $u v^{n} w x^{n} \in \mathcal{L}$.

Bounding \sqsubset-minimal Certificates

(maybe on blackboard if time)

Theorem
Let $G=(V, \mathbf{A}, R, S)$ be a CfG generating a prefix-closed language over $\mathbf{A}=\{-1,0,1\}$ and $n \in \mathbb{N}$ an initial value. Then $\{m \mid n \xrightarrow{S} m\}$ is infinite iff it admits a certificate with height and all input/output values bounded by $n+4^{4(|V|+1)}$.

Conclusion

Discussed here

- Pushdown VAS; Boundedness of counter/stack/both
- Cf-controlled VAS; Flow Trees
- prefix-closed control \sim counter-Boundedness
- Counter-Boundedness in 1-PVAS is in ExpTime

Open Problems

- Decidability of PVAS Reachability (even in dim 1)
- is Boundedness reducible to Reachability in Cf-C-VAS?
- Complexity of 1-PVAS counter-Boundedness (NP- ExpTime)
- Complexity of 1-PVAS Coverability (NP- ExpSpace)

Conclusion

Discussed hereaxmat

- Complexivvof 1 PRV誉S Coverability

Additional Stuff

Weak Computation of Ackermann Functions A_{m}

$$
A_{m}(n) \stackrel{\text { def }}{=} \begin{cases}n+1 & \text { if } m=0 \\ A_{m-1}^{n+1}(1) & \text { if } m>0\end{cases}
$$

Weak Computation of Ackermann Functions A_{m}

$$
A_{m}(n) \stackrel{\text { def }}{=} \begin{cases}n+1 & \text { if } m=0 \\ A_{m-1}^{n+1}(1) & \text { if } m>0\end{cases}
$$

$$
\begin{aligned}
& A_{0}(n)=n+1 \\
& A_{1}(n)=n+2 \\
& A_{2}(n)=2 n+2 \\
& A_{3}(n)=2^{n}-1
\end{aligned}
$$

Weak Computation of Ackermann Functions A_{m}

$$
A_{m}(n) \stackrel{\text { def }}{=} \begin{cases}n+1 & \text { if } m=0 \\ A_{m-1}^{n+1}(1) & \text { if } m>0\end{cases}
$$

$\operatorname{pop}(\mathbf{0})$,

Weak Computation of Ackermann Functions A_{m}

$$
A_{m}(n) \stackrel{\text { def }}{=} \begin{cases}n+1 & \text { if } m=0 \\ A_{m-1}^{n+1}(1) & \text { if } m>0\end{cases}
$$

Weak Computation of Ackermann Functions A_{m}

$$
A_{m}(n) \stackrel{\text { def }}{=} \begin{cases}n+1 & \text { if } m=0 \\ A_{m-1}^{n+1}(1) & \text { if } m>0\end{cases}
$$

Weak Computation of Ackermann Functions A_{m}

$$
A_{m}(n) \stackrel{\text { def }}{=} \begin{cases}n+1 & \text { if } m=0 \\ A_{m-1}^{n+1}(1) & \text { if } m>0\end{cases}
$$

Weak Computation of Ackermann Functions A_{m}

$$
A_{m}(n) \stackrel{\text { def }}{=} \begin{cases}n+1 & \text { if } m=0 \\ A_{m-1}^{n+1}(1) & \text { if } m>0\end{cases}
$$

Weak Computation of Ackermann Functions A_{m}

$$
A_{m}(n) \stackrel{\text { def }}{=} \begin{cases}n+1 & \text { if } m=0 \\ A_{m-1}^{n+1}(1) & \text { if } m>0\end{cases}
$$

$$
\left(s_{0}, \mathbf{m} \perp, n\right) \xrightarrow{*}\left(s_{0}, \perp, A_{m}(n)\right)
$$

$$
\text { If }\left(s_{0}, \mathbf{m} \perp, n\right) \xrightarrow{*}\left(s_{0}, \perp, n^{\prime}\right) \text { then } n^{\prime} \leq A_{m}(n)
$$

