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Vector Addition Systems – Recap

Definition
A VAS is a finite set of vectors a ∈ Zd . For v, v′ : Nd it has a step

v
a−−→ v′ if v′ = v + a.

I Equivalent to Petri Nets
(concurrency, weak counters, event systems)

I Reachability: decidable
Mayr’81,Kosaraju’82, . . . Leroux and Schmitz’15

I Coverability, Boundedness: ExpSpace-complete
Lipton’76, Rackoff’78

I Most Games/Equivalences undecidable (e.g. Bisimulation)
Jančar’95
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Pushdown Vector Addition Systems

. . . are products of VAS with pushdown automata.
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Pushdown Vector Addition Systems

. . . are products of VAS with pushdown automata. They can for
example model recursive prorams with variables over N.

1: x ← n
2: procedure DoubleX
3: if (? ∧ x > 0) then
4: x ← (x − 1)
5: DoubleX
6: end if
7: x ← (x + 2)
8: end procedure

2start

3

5

6

7

8

−1

push(A)

+2

pop(A)
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Pushdown Vector Addition Systems

I Reachability = Coverability (= State-Reachability)
Tower-hard Lazic’13

I Coverability in 1 dim. is decidable Leroux, Sutre, and T.’15

I Boundedness: decidable with Hyper-Ackermannian bounds
Leroux, Praveen, and Sutre’14

I Counter-, Stack-, and Combined Boundedness Problems.

Combined

Stack Counter

The following is in ExpTime.

1-PVAS Counter-Boundedness
Given: 1-dim. PVAS, initial configuration (p,w , a).

Question: is {b | (p,w , a)
∗−−→ (p′,w ′, b)} infinite?
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Another Perspective

Definition (Context-free Controlled VAS)

a VAS A ⊆ Zd together with a context-free language L ⊆ A∗.
There is a step s −−→ t between s, t ∈ Nd if

a1a2 . . . ak ∈ L and s
a1−−→ a2−−→ · · · ak−−→ t.

Theorem
For Cf-Controlled VAS, Coverability (and Reachability) logspace
reduces to Boundedness.

Observation
Relevant for the PVAS boundedness problem is the trace language
{w ∈ A∗ | (p0,⊥)

w−−→} defined by the PDA.

Main Theorem
Boundedness of 1-dim VAS controlled by a prefix-closed language
is in ExpTime.
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Another Perspective

Definition (Context-free Controlled VAS)

a VAS A ⊆ Zd together with a context-free language L ⊆ A∗.

There is a step s
X−−→ t between s, t ∈ Nd if

X
∗

==⇒ a1a2 . . . ak and s
a1−−→ a2−−→ · · · ak−−→ t.

Theorem
For Cf-Controlled VAS, Coverability (and Reachability) logspace
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is in ExpTime.

given as GfG
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Flow Trees

A derivation tree with consistent in/out labels in Z ∪ {−∞}.

X

5 5

−1

5 4

Y

4 6

Z

6 5

1

4 5

Y

5 6

1

5 6

−1

6 5

T v T ′ if

1. |T | < |T ′| or

2. |T | = |T ′| and
∑

(labels > −∞) on T is smaller than on T ′
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Flow Trees
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Flow Trees

A derivation tree with consistent in/out labels in Z ∪ {−∞}.
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Xa b means a
X−−→ b′ ≥ b; X−∞ b means ∃a ∈ N. a X−−→ b′ ≥ b.
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Certificates

Definition
A certificate is a flow tree with a node Xb b′ and a descendant

Xc c ′ such that

1. b < c or

2. b = c and c ′ < b′.

Sa

Xb b’

Xc c’

> 0
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Certificates (cont.)

Theorem
{a′ | a S−−→ a′} is infinite iff there is a certificate with root S(≤ a) .

Unboundedness =⇒ Certificate:

I a
S−−→ b for sufficiently large b

I a minimal flow tree must have long branch

I wqo (≤,=) on (input ×V ) implies matching nodes with b ≤ c

I minimality excludes b = c ∧ c ′ > b′

Unboundedness ⇐= Certificate:

I yield is uvwxy ∈ L with
∑

v ≥ 0 and
∑

v +
∑

x > 0

I All uvnwxn are in L and executable.

I Prefix-closedness of L implies uvn and uvnwxn ∈ L.
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Bounding @-minimal Certificates

(maybe on blackboard if time)

Theorem
Let G = (V ,A,R, S) be a CfG generating a prefix-closed language
over A = {−1, 0, 1} and n ∈ N an initial value. Then

{m | n S−−→ m} is infinite iff it admits a certificate with height and
all input/output values bounded by n + 44(|V |+1).

9 / 12



Conclusion

Discussed here

I Pushdown VAS; Boundedness of counter/stack/both

I Cf-controlled VAS; Flow Trees

I prefix-closed control ∼ counter-Boundedness

I Counter-Boundedness in 1-PVAS is in ExpTime

Open Problems

I Decidability of PVAS Reachability (even in dim 1)

I is Boundedness reducible to Reachability in Cf-C-VAS?

I Complexity of 1-PVAS counter-Boundedness
(NP– ExpTime)

I Complexity of 1-PVAS Coverability (NP– ExpSpace)
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Weak Computation of Ackermann Functions Am : N→ N

Am(n)
def
=

{
n + 1 if m = 0

An+1
m−1(1) if m > 0

(s0,m⊥, n)
∗−−→ (s0,⊥,Am(n))

If (s0,m⊥, n)
∗−−→ (s0,⊥, n′) then n′ ≤ Am(n)
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