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Abstract
Bertrand et al. [1] describe two-player zero-sum games in which one player tries to achieve a
reachability objective in n games (on the same finite arena) simultaneously by broadcasting actions,
and where the opponent has full control of resolving non-deterministic choices. They show EXPTIME
completeness for the question if such games can be won for every number n of games.

We consider the almost-sure variant in which the opponent randomizes their actions, and where
the player tries to achieve the reachability objective eventually with probability one. The lower
bound construction in [1] does not directly carry over to this randomized setting.1 In this note we
show EXPTIME hardness for the almost-sure problem by reduction from Countdown Games.
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1 Definitions

Population Control. Write M = (Q,Σ, δ) for a Markov Decision Process, where Q and
Σ, are finite sets of states and actions, and δ : Q× Σ→ Dist(Q) assigns to each state and
action a probability distribution over states. A successor of q on action a is a state p with
δ(q, a)(p) > 0. The n-fold synchronized product ofM is the MDPM(n) = (Q(n),Σ, δ) whose
states, called configurations here, are n-dimensional vectors with components in Q, and δ is
lifted to Q(n) in the natural way: δ(q, a)(p) =

∏n−1
i=0 δ(q(i), a)(p(i)) for all q,p ∈ Q(n) and

a ∈ Σ. A strategy σ : Q(n) → Σ assigns to every configuration q an action2. For every initial
state q ∈ Q(n), such a strategy induces a probability space (Ω,Pσq ) over all infinite sequences
in Ω = q(Q(n))ω (see [3] for details).

In a configuration q ∈ Q(n), we say m components mark state p ∈ Q if the number
of different indices 0 ≤ i < n with q(i) = p is equal to m. In case m > 0 we simply call
the state p marked in q. Let Start,End ∈ Q(n) denote the configurations in which all n
components mark a designated initial (or final, resp.) state ofM. A configuration q ∈ Q(n)

can be synchronized if there exists a strategy σ such that the probability Pσq ((Q(n))∗End),
of eventually visiting End, is one. M(n) can be synchronized if Start can be synchronized.

Given an MDP M equipped with initial and final states, the PopulationControl
problem asks whetherM(n) can be synchronized for every n ∈ N.

1 The construction in Theorem 6.1 would allow spurious wins for the controller by alternating actions
init and reset until an incorrect initialization of the ATM is reached. This must happen eventually
with probability one and can subsequently be exploited by controller to win directly.

2 We consider here only memoryless deterministic strategies as those suffice for almost-sure reachability
problems [3].

mailto:corto.mascle@ens-paris-saclay.fr
mailto:mahsa@irif.fr
http://orcid.org/0000-0001-5274-8190
mailto:totzke@liverpool.ac.uk


2

wait ready
wait

wait
wait W G A Bwait

go ΣG

next ΣAC

ΣMC

win

Figure 1 The waiting (on left) and the control gadgets (on right). Edges labelled by ΣX are
shorthand for several edges, one for each action in ΣX . All but the depicted actions are daemonic.

Countdown Games. A Countdown Game is given by a directed graph G = (V,E), where
edges carry positive integer weights, E ⊆ (V × N>0 × V ). For an initial pair (v, c0) ∈ V × N
of a vertex and a number, two opposing players (Player 1 and 2) alternatingly determine a
sequence of such pairs as follows. In each round, from (v, c), Player 1 picks a number d ≤ c
such that E contains at least one edge (v, d, v′); then Player 2 picks one such edge and the
game continues from (v′, c− d). Player 1 wins the game iff the play reaches a pair in V ×{0}.

CountdownGame is the decision problem which asks if Player 1 has a strategy to win a
given game for a given initial pair (v0, c0). All constants in the input are written in binary.

I Proposition 1 (Thm. 4.5 in [2]). CountdownGame is EXPTIME-complete.

2 The Reduction

In order to reduce CountdownGame to PopulationControl we first observe that the
number of turns in a Countdown Game cannot exceed the initial value of the counter, as
the initial counter value decreases at each turn. Thus, if Player 2 has a winning strategy,
choosing actions at random yields a positive probability of applying that strategy, hence a
positive probability of winning. Therefore Player 1 wins the initial game if, and only if, she
wins with probability one against a randomized adversary.

The main idea for our further construction is to require Player 1 to move components
one-by-one away from a waiting state, first into the control graph of the Countdown Game,
and ultimately into the goal. To avoid a loss in the intermediate phase she needs to win an
instance of that game against a randomizing opponent. This is enforced using a combination
of gadgets, including two binary counters that can effectively test for zero, be set to specific
numbers, and that are set up so that they can decrement at the same rate. As a result,
Player 1 has a winning strategy for the two-player Countdown Game if, and only if, the
controller can synchronize the n-fold product of the constructed MDP for all n.

For a given Countdown Game G with an initial pair (v0, c0) we construct an MDPM as
follows. We write that action a takes state s to successor t to mean that δ(s, a)(t) > 0. The
exact probability distributions δ do not matter in our construction so we let δ(s, a) be the
uniform distribution over such successors.

Whenever action a takes state s only back to itself we say that s ignores a. There are
states Heaven (the target) and Hell which ignore all actions. For a given state s, an action
a is angelic if it takes s only to Heaven, and daemonic if it takes s to Hell. An action a is
safe in a configuration if it is not daemonic for any marked state (in any gadget).

Besides the special states Heaven and Hell,M contains several gadgets described below.

Waiting. The waiting gadget has two states Wait and Ready which react to the action wait
as depicted in Figure 1 (left). Whenever a configuration marks one of these states, a strategy
that continuously plays wait will almost-surely reach a configuration in which exactly one
component marks Ready.

A special action go (to indicate successful isolation of one component) takes Ready to the
initial state v0 of the game G. All other actions (in gadgets described below) are ignored.
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Figure 2 A (4-bit) Binary Counter. Not displayed are edges labelled by (deci) that make the
respective actions daemonic for state (i:0), and error actions errori, which are daemonic for (i:0)
and (i:1), for all bits i ∈ {0, 1, 2, 3}.

Game. The game G = (G,E) is directly interpreted as MDP: For every edge (s, d, s′) ∈ E
there is an action (s, d) which takes s to s′ and which is daemonic for all states s′ 6= s.

The action win is is angelic for every state of G. All other actions are ignored.

Binary Counters. A (k-bit) Counter consists of states (i:j) for all 0 ≤ i < k and j ∈ {0, 1}.
For every bit i there is a decrement action (deci) which

takes (j:0) only to (j:1) for all 0 ≤ j < i,
takes (i:1) only to (i:0),
is daemonic for (i:0), and
is ignored by all (j:l), for all i < j and l ∈ {0, 1}.

We say that a configuration holds the number c < 2k in this counter if it marks those
states that represent the binary expansion of c: for all 0 ≤ i ≤ k − 1, state (i:j) is marked
iff the ith bit in the binary expansion of c is j. An action a sets the counter to number d if
for all 0 ≤ i < k, it takes (i:0) to only (i:j) where j ∈ {0, 1} is the ith bit in the binary
expansion of d, and is daemonic for all (i:1) (to ensure that the counter can only be set if
it holds 0). Observe that if a counter holds c then there is a unique maximal sequence of
safe decrement actions, that has length c and after which the counter holds 0.

Additionally, for every bit i the gadget has an error action errori, which is daemonic for
(i:0) and (i:1), and angelic for every other state (ofM). These actions can be used to
quickly synchronize any configuration in which the counter is not correctly initialized, i.e.,
does not hold a number. See Figure 2 for a depiction of a 4-bit counter.

The MDPM will contain two distinct counter gadgets. A main counter MC has log2(n0)
bits to hold possible counter values of the Countdown Game. An auxiliary counter AC has
log2(dmax) many bits to hold the largest edge weight dmax in G. These have distinct sets of
states and actions, so for clarity, we write C.x to refer to state (or action) x in gadget C.
We connect some new actions to these two counters as follows.

The action go sets MC to n0; this ensures that MC holds n0 when starting to simulate G.
The action win is daemonic for every state MC.(i:1). This enforces that the MC must
hold 0 when a strategy claims Player 1 wins G.
Any action (v, d) ∈ ΣG sets AC to d;
The action next is daemonic for every state AC.(i:1). This enforces that a strategy
must first count down from d to 0 before it can simulate the next move in G.

Control. The control gadget will enforce that a synchronizing strategy proposes actions
in a proper order; see Figure 1. It consists of states W,G,A,B, and contains actions of all
gadgets above (including go, win, next) and a new error action, which is angelic for all
states except W , for which it is daemonic. All omitted edges in Figure 1 are daemonic.
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Start/End. To complete the construction of M, we introduce an initial state Init and
actions start and end. The action start takes Init to Wait (Waiting gadget), W (Control
gadget), and all (i:0) states of counters AC and MC. It is daemonic for every other state.

The action end is daemonic for Wait and Ready, and angelic for every other state inM.

I Lemma 2. M(n) is synchronizable for all n ∈ N iff Player 1 wins G.

Proof. Suppose Player 1 wins the game G. Fix n. Recall that inM(n) all components of
the initial configuration mark Init. A synchronizing strategy proceeds as follows:

Play start to initialize the Waiting and Control gadgets, and to set AC and MC to 0. If
any of the gadgets is not correctly initialized afterwards, play the respective error action
to win directly. For instance, if W is unmarked, play error to synchronize.
Reduce the number of components marking Wait one by one until a configuration is
reached in which Wait is not marked. Once this is true, play end to synchronize.
To reduce the number of components marking Wait, isolate one of them, and move it to
Heaven by simulating the Countdown Game:
1. Play wait until only a single component marks Ready, then play go. This will mark v0

in the game gadget and sets MC to n0. Recall that (v0, n0) is the initial pair of G.
2. Simulate rounds of the game G: assume state v in the game gadget is marked and

the counter MC holds c, then let d be the the number Player 1 plays to win from the
pair (v, c) in G. Play (v, d). This action will set AC to d. Alternate between (safe)
decrement actions in AC and AB until they hold 0 and c− d, respectively. Play next.

3. The above simulation of rounds in G is repeated until both AC and AB hold 0, by
assumption that Player 1 wins G this is possible. At this point it is safe to play win.

Conversely, assume that Player 1 cannot win G. Suppose that after the (only possible)
initial move start, all gadgets are correctly initialized. Clearly, for every n, this event has
strictly positive probability. We argue that no strategy can synchronize such a configuration.
Indeed, a successful strategy had to play a sequence in wait∗ · go first, followed by actions in
(ΣG · (ΣAC · ΣMC · next)∗)∗, by construction of the control gadget. If after playing go, more
than one component mark v0, there is a non-zero chance that these will diverge, making
subsequent actions in ΣG unsafe. If exactly one component marks v0 then the second sequence
of actions (assuming all actions are safe) corresponds to a play of G. This inevitably leads to
a configuration in which counter MC holds 0 and the control enforces that the next action is
in ΣMC . But any such action will be daemonic for some state in MC and thus not be safe.
We conclude that every strategy will lead to a configuration that at least one component
marks Hell and thus cannot be synchronized. J

Our claim follows immediately from Proposition 1 and Lemma 2.

I Theorem 3. PopulationControl is EXPTIME-hard.
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