Branching-Time Model Checking Gap-Order Constraint Systems

Richard Mayr Patrick Totzke

University of Edinburgh, UK

September 26, 2013

The Model			References
Gap Cl	auses		

Def: Gap Clauses

$$x - y \ge k$$

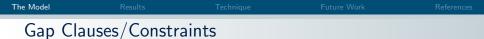
where x, y are integer variables or constants and $k \in \mathbb{Z}$.

The Model			
Gap CI	auses/Constra	aints	

Def: Gap Constraints

$$\bigwedge_{1\leq i\leq n} (x_i - y_i \geq k_i)$$

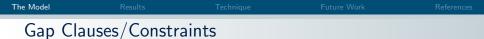
where x_i, y_i are integer variables or constants and $k_i \in \mathbb{Z}$.



Def: positive Gap Constraints

$$\bigwedge_{0 \le i \le n} (x_i - y_i \ge k_i)$$

where x_i, y_i are integer variables or constants and $k_i \in \mathbb{N}$.

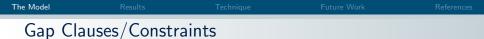


Def: positive Gap Constraints

$$\bigwedge_{1\leq i\leq n} (x_i-y_i\geq k_i)$$

where x_i, y_i are integer variables or constants and $k_i \in \mathbb{N}$.

positive GC are not negation-closed!



Def: positive Gap Constraints

$$\bigwedge_{1\leq i\leq n} (x_i-y_i\geq k_i)$$

where x_i, y_i are integer variables or constants and $k_i \in \mathbb{N}$.

0

positive GC are not negation-closed!

Write

 $Var = \{x, y, ...\} \text{ for the variables}$ $Const \subset \mathbb{Z} \text{ for the constants and}$ $Val \text{ for the set of valuations } \nu : Var \to \mathbb{Z}.$

The Model			References
Gap Co	onstraints		

can characterise subsets S ⊆ Val (of satisfied valuations)
 can determine how valuations evolve:

The Model			
Gap Co	onstraints		

can characterise subsets S ⊆ Val (of satisfied valuations)
 can determine how valuations evolve: For instance,

$$x-x'\geq 0$$

means the value of x does not increase.

The Model Results Technique Future Work References

Gap-Order Constraint Systems

Definition (CGS)

are given by finite sets

Var of variables ranging over \mathbb{Z} ,

Const of integer constants, and

 Δ of *positive* transitional gap contraints.

Gap-Order Constraint Systems

Definition (CGS)

 $\nu \longrightarrow \nu'$ iff $\nu \oplus \nu' \models C$ for some $C \in \Delta$.

Gap-Order Constraint Systems

Definition (CGS)

 $\nu \longrightarrow \nu'$ iff $\nu \oplus \nu' \models \mathcal{C}$ for some $\mathcal{C} \in \Delta$.

Gap-Order Constraint Systems

Definition (CGS)

 $\nu \longrightarrow \nu'$ iff $\nu \oplus \nu' \models \mathcal{C}$ for some $\mathcal{C} \in \Delta$.

$$u \oplus
u'(x) = \begin{cases}
\nu(x), & \text{if } x \in Var \\
\nu'(x), & \text{if } x \in Var'.
\end{cases}$$

 The Model
 Results
 Technique
 Future Work
 References

 Gap-Order Constraint Systems

Definition (CGS)

$$\nu \longrightarrow \nu'$$
 iff $\nu \oplus \nu' \models C$ for some $C \in \Delta$.

Example:

$$\begin{array}{l} \mathcal{C}_1 = (x-x' \geq 1) \land (y'-y \geq 0) \land (y-y' \geq 0) \land (x'-0 \geq 0) \\ \mathcal{C}_2 = (y-y' \geq 1) \land (x'-x \geq 0) \land (y'-0 \geq 0) \end{array}$$

Gap-Order Constraint Systems

Definition (CGS)

$$\nu \longrightarrow \nu'$$
 iff $\nu \oplus \nu' \models C$ for some $C \in \Delta$.

Example:

$$\begin{aligned} \mathcal{C}_1 &= (x > x' \ge 0) \land (y' = y) \\ \mathcal{C}_2 &= (x \le x') \land (y > y' \ge 0) \end{aligned}$$

 The Model
 Results
 Technique
 Future Work
 References

 Gap-Order Constraint Systems

Definition (CGS)

$$\nu \longrightarrow \nu'$$
 iff $\nu \oplus \nu' \models C$ for some $C \in \Delta$.

Example:

lex. Countdown of
$$(y, x)$$

$$\begin{aligned} \mathcal{C}_1 &= (x > x' \ge 0) \land (y' = y) \\ \mathcal{C}_2 &= (x \le x') \land (y > y' \ge 0) \end{aligned}$$

The Model				
Overapp	roximating (Counter Mach	ines	

 $\begin{array}{l} {\sf Zero-tests} \\ (c_1-0\geq 0) \wedge (0-c_1\geq 0) \end{array}$

The Model				
Overappro	oximating (Counter Mach	ines	

Zero-tests $(c_1 = 0)$

The Model	Results	Technique	Future Work	References
Overap	proximating (Counter Mach	ines	
Zero-t	ests			
1	•			

 $(c_1 = 0)$

Finite Control $(state = 0) \land (state' = 1)$ $// s_0 \longrightarrow s_1$

The Model				
Overapp	roximating (Counter Mach	ines	

Zero-tests			
$(c_1 = 0)$			

Finite Control $(state = 0) \land (state' = 1)$ $// s_0 \longrightarrow s_1$

Increments/Decrements

 $(c_1' - c_1 \ge 0)$ // c_1 ++

The Model				
Overapp	proximating (Counter Mach	nines	

Zero-tests
$$(c_1 = 0)$$

Finite Control $(state = 0) \land (state' = 1)$ $// s_0 \longrightarrow s_1$

Increments/Decrements

 $egin{array}{lll} (c_1'-c_1\geq 0)& //c_1++\ (c_1-c_1'\geq 0)\wedge (c_1'-0\geq 0)& //c_1- \end{array}$

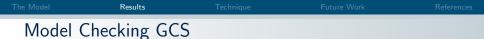
The Model				
Overa	pproximating C	Counter Mac	hines	

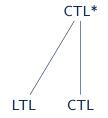
Zero-tests
$$(c_1 = 0)$$

Finite Control $(state = 0) \land (state' = 1)$ $// s_0 \longrightarrow s_1$

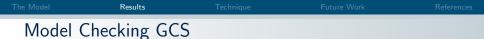
Increments/Decrements are imprecise!

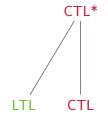
 $egin{array}{lll} (c_1'-c_1\geq 0)& //c_1++\ (c_1-c_1'\geq 0)\wedge (c_1'-0\geq 0)& //c_1- \end{array}$



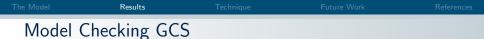


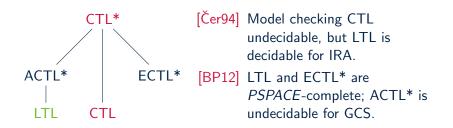
[Čer94] Model checking CTL undecidable, but LTL is decidable for IRA.

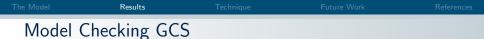


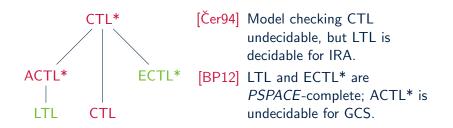


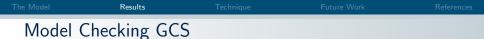
[Čer94] Model checking CTL undecidable, but LTL is decidable for IRA.

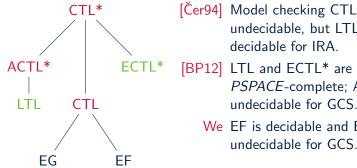






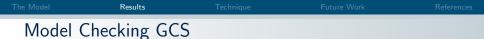


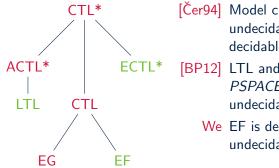




undecidable. but LTL is decidable for IRA. [BP12] LTL and ECTL* are PSPACE-complete; ACTL* is undecidable for GCS.

> We EF is decidable and EG undecidable for GCS.





[Čer94] Model checking CTL undecidable, but LTL is decidable for IRA. [BP12] LTL and ECTL* are

[BP12] LTL and ECTL* are *PSPACE*-complete; ACTL* is undecidable for GCS.

We EF is decidable and EG undecidable for GCS.

The Model		Results		Technique		Future Wor	k	References
CTL	over G	ap Cla	auses					
Syn	tax							
,	$\psi ::= \mathcal{C} \mid$	$\neg\psi\mid$	$\psi \lor \psi \mid$	$X\psi \mid$	$EF\psi \mid$	$EG\psi$	$\mid (\psi U\psi)$	

The Model	Model Results		Technique		Future Work		References
EG (over Gap	Clauses					
Syr	ntax						
	$\psi ::= \mathcal{C} \mid$	$\neg\psi \mid \ \psi \lor \psi$	$\mid X\psi \mid$	FF/ #/ N	$EG\psi$	/X/X44/ U 14/X	



Syntax

- EG model checking GCS is undecidable.
- Proof by enforcing exact increments/decrements (Simulating Minski machines).

The M	odel	Results	Technique		Future Work		References
E	F over Ga	p Clauses					
	Syntax						
	$\psi ::= \mathcal{C} \mid$	$\neg\psi\mid \psi\vee\psi\mid$	$X\psi \mid$	$EF\psi \mid$	ÆĢ⋪¢	/X/X44/ U 14/X	

Syntax

$\psi ::= \mathcal{C} \mid \neg \psi \mid \psi \lor \psi \mid X\psi \mid EF\psi \mid \not E\mathcal{G}/\psi \quad //(\langle \psi / \mathcal{U}/ \psi / \mathcal{V}))$

- EF model checking GCS is decidable.
- Proof by finding finite representation for Sat(C) that is closed under negation, union, Pre and Pre*.

$$egin{aligned} \mathcal{C} =& (x-0 \geq 1) \ \wedge (y-0 \geq 0) \ \wedge (0-y \geq 0) \end{aligned}$$

 \sim

Degree of MG: inverse of minimal negative value

- Degree of MG: inverse of minimal negative value
- Closure of MG has same denotation

- Degree of MG: inverse of minimal negative value
- Closure of MG has same denotation
- represent S ⊆ Val by finite sets of (arbitrary) MG.

 The Model
 Results
 Technique
 Future Work
 References

 Monotonicity Graphs

 Gap Constraints as finite labeled graphs over Var U Const

- Degree of MG: inverse of minimal negative value
- Closure of MG has same denotation
- represent $S \subseteq Val$ by finite sets of (arbitrary) MG. Example: { M_C } represents $S = Sat(C) = \{\nu \mid \nu(x) > \nu(y) = 0\}.$

 The Model
 Results
 Technique
 Future Work
 References

 Monotonicity Graphs

 Gap Constraints as finite labeled graphs over Var U Const

- Degree of MG: inverse of minimal negative value
- Closure of MG has same denotation
- represent $S \subseteq Val$ by finite sets of (arbitrary) MG. Example: { M_C } represents $S = Sat(C) = \{\nu \mid \nu(x) > \nu(y) = 0\}.$

$$\psi ::= \mathcal{C} \mid \psi \lor \varphi \mid \neg \psi \mid X\psi \mid EF\psi$$

	Technique	
Negation		

 $Rep(S) = \{M_0, M_1, \ldots, M_k\}$

	Technique	References
Negation		

$Rep(S) = \{M_0, M_1, \ldots, M_k\}$

 \sim

 $\mathcal{C}_{M_0} \vee \mathcal{C}_{M_1} \vee \cdots \vee \mathcal{C}_{M_k}$

	Technique	References
Negation		

$$Rep(S) = \{M_0, M_1, \dots, M_k\}$$

$\sim \mathcal{C}_{\mathcal{M}_0} \vee \mathcal{C}_{\mathcal{M}_1} \vee \cdots \vee \mathcal{C}_{\mathcal{M}_k}$

... is a Gap-Formula in DNF.

	Technique	References
Negation		

$$\neg Rep(S) = \neg \{M_0, M_1, \ldots, M_k\}$$

$$\sim$$

 $\neg C_{M_0} \land \neg C_{M_1} \land \cdots \land \neg C_{M_k}$

	Technique	
Negation		

$$\neg Rep(S) = \neg \{M_0, M_1, \ldots, M_k\}$$

$$\sim \\ \neg \mathcal{C}_{M_0} \land \neg \mathcal{C}_{M_1} \land \cdots \land \neg \mathcal{C}_{M_k}$$

... is a Gap-Formula in DNF. → propagate negations to clauses → negate clauses

	Technique	
Negation		

$$\neg Rep(S) = \neg \{M_0, M_1, \ldots, M_k\}$$

$$\sim \\ \neg \mathcal{C}_{M_0} \land \neg \mathcal{C}_{M_1} \land \cdots \land \neg \mathcal{C}_{M_k}$$

... is a Gap-Formula in DNF. → propagate negations to clauses → negate clauses → bring to DNF

	Technique	
Negation		

$$\neg Rep(S) = \neg \{M_0, M_1, \ldots, M_k\}$$

$$\sim \\ \neg \mathcal{C}_{M_0} \land \neg \mathcal{C}_{M_1} \land \cdots \land \neg \mathcal{C}_{M_k}$$

... is a Gap-Formula in DNF.

- \rightsquigarrow propagate negations to clauses
- → negate clauses
- \rightsquigarrow bring to DNF
- \rightsquigarrow interpret as set of MG

	Technique	
Negation		

$$\neg Rep(S) = \neg \{M_0, M_1, \ldots, M_k\}$$

$$\sim \\ \neg \mathcal{C}_{M_0} \land \neg \mathcal{C}_{M_1} \land \cdots \land \neg \mathcal{C}_{M_k}$$

... is a Gap-Formula in DNF.

→ propagate negations to clauses
 → negate clauses ← increases degree
 → bring to DNF
 → interpret as set of MG

	Technique	References
Negation		

$$\neg Rep(S) = \neg \{M_0, M_1, \dots, M_k\}$$

$$\sim \\ \neg \mathcal{C}_{M_0} \land \neg \mathcal{C}_{M_1} \land \cdots \land \neg \mathcal{C}_{M_k}$$

... is a Gap-Formula in DNF.

→ propagate negations to clauses
 → negate clauses ← increases degree

$$x-y \not\geq k \iff y-x \geq -(k-1)$$

 $\ \, \stackrel{\longrightarrow}{\rightarrow} \ \, \text{bring to DNF} \\ \ \, \stackrel{\longrightarrow}{\rightarrow} \ \, \text{interpret as set of MG}$

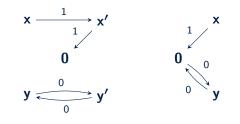
The Model	Results	Technique	Future Work	References
Computing	Pre			
$S = \{ \nu \mid \nu \}$	$(x) > \nu(y) =$	0}		

		Technique	
Computi	ng <i>Pre</i>		

$$S = \{ \nu \mid \nu(x) > \nu(y) = 0 \}$$

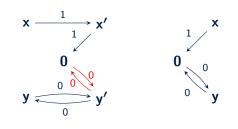
		Technique	
Computing	Pre		

$$\begin{array}{l} S \ = \{\nu \ | \ \nu(x) > \nu(y) = 0\} \\ \mathcal{C}_1 = (x - x' \geq 1) \land (y' - y \geq 0) \land (y - y' \geq 0) \land (x' - 0 \geq 0) \end{array}$$



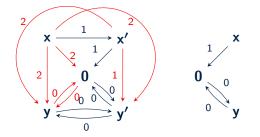
		Technique	
Computing	Pre		

$$\begin{array}{l} S \ = \{\nu \ | \ \nu(x) > \nu(y) = 0\} \\ \mathcal{C}_1 = (x - x' \geq 1) \land (y' - y \geq 0) \land (y - y' \geq 0) \land (x' - 0 \geq 0) \end{array}$$



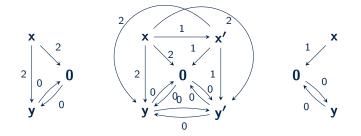
		Technique	
Computing	Pre		

$$\begin{array}{l} S \ = \{ \nu \ | \ \nu(x) > \nu(y) = 0 \} \\ \mathcal{C}_1 = (x - x' \geq 1) \land (y' - y \geq 0) \land (y - y' \geq 0) \land (x' - 0 \geq 0) \end{array}$$



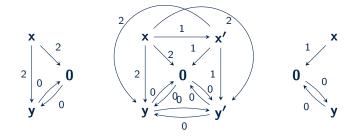
		Technique	
Computing	Pre		

$$egin{aligned} S &= \{
u \mid
u(x) >
u(y) = 0 \} \ \mathcal{C}_1 &= (x - x' \geq 1) \land (y' - y \geq 0) \land (y - y' \geq 0) \land (x' - 0 \geq 0) \end{aligned}$$



		Technique	
Computing	Pre		

$$egin{aligned} S &= \{
u \mid
u(x) >
u(y) = 0 \} \ \mathcal{C}_1 &= (x - x' \geq 1) \land (y' - y \geq 0) \land (y - y' \geq 0) \land (x' - 0 \geq 0) \end{aligned}$$

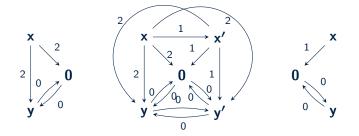


 $Pre(C_1, S)$

S

		Technique	
Computing	Pre		

$$egin{aligned} S &= \{
u \mid
u(x) >
u(y) = 0 \} \ \mathcal{C}_1 &= (x - x' \geq 1) \land (y' - y \geq 0) \land (y - y' \geq 0) \land (x' - 0 \geq 0) \end{aligned}$$



 $Pre(C_1, S)$

NB: Degree does not increase

S

		Technique	
Computing	Pre*		

 $M \sqsubseteq M'$ if $M(x, y) \le M'(x, y)$ for all $x, y \in Var \cup Const$.

		Technique	
Computing	Pre*		

$M \sqsubseteq M'$ if $M(x, y) \le M'(x, y)$ for all $x, y \in Var \cup Const$.

1 $M \sqsubseteq M'$ implies $\llbracket M \rrbracket \supseteq \llbracket M' \rrbracket$

		Technique	
Computing	Pre*		

 $M \sqsubseteq M'$ if $M(x, y) \le M'(x, y)$ for all $x, y \in Var \cup Const$.

- **1** $M \sqsubseteq M'$ implies $\llbracket M \rrbracket \supseteq \llbracket M' \rrbracket$
- **2** \sqsubseteq is a well-order over MG^n

		Technique	
Computing	Pre*		

 $M \sqsubseteq M'$ if $M(x, y) \le M'(x, y)$ for all $x, y \in Var \cup Const$.

- **1** $M \sqsubseteq M'$ implies $\llbracket M \rrbracket \supseteq \llbracket M' \rrbracket$
- **2** \sqsubseteq is a well-order over MG^n

Compute $Pre^*(M)$:

iteratively unfold the finite! backwards coverability tree and take the union of all nodes...

The Model

Results

Technique

Future Worl

References

EF Model Checking GCS is decidable

Theorem

For given GCS and EF formula φ , the set $Sat(\varphi)$ is effectively Gap-definable.

The Model

EF Model Checking GCS is decidable

Theorem

For given GCS and EF formula φ , the set $Sat(\varphi)$ is effectively Gap-definable.

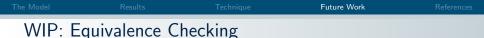
Works even with

- arbitrary gap-formulae as atoms and
- positive (trans.) gap-constraints on X/EF operators.

			Future Work	
WIP: E	Equivalence Ch	necking		

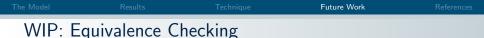
Bisimulation

- $GCS \approx FS$ is decidable using char. formulae in EF
- Strong Bisimulation $GCS \sim GCS$ is undecidable



1 Bisimulation

- $GCS \approx FS$ is decidable using char. formulae in EF
- Strong Bisimulation $GCS \sim GCS$ is undecidable
- 2 Trace inclusion/equivalence
 - $GCS \subseteq GCS$ is in EXPSPACE
 - Universality is EXPSPACE-hard



1 Bisimulation

- $GCS \approx FS$ is decidable using char. formulae in EF
- Strong Bisimulation GCS ~ GCS is undecidable
- 2 Trace inclusion/equivalence
 - $GCS \subseteq GCS$ is in EXPSPACE
 - Universality is EXPSPACE-hard
- 3 Simulation Preorder
 - $GCS \leq FS$ and vv. are decidable (wqo)
 - GCS \leq GCS ? WIP.

		References
References		

- P. A. Abdulla and G. Delzanno. "Constrained Multiset Rewriting". In: Proc. AVIS'06, 5th int. workshop on on Automated Verification of InfiniteState Systems. 2006.
- L. Bozzelli. "Strong Termination for Gap-Order Constraint Abstractions of Counter Systems". In: *LATA*. 2012, pp. 155–168.
- L. Bozzelli and S. Pinchinat. "Verification of Gap-Order Constraint Abstractions of Counter Systems". In: VMCAI. 2012, pp. 88–103.
- K. Čerāns. "Deciding Properties of Integral Relational Automata". In: *ICALP*. 1994, pp. 35–46.
- L. Fribourg and J. Richardson. "Symbolic Verification with Gap-Order Constraints". In: *LOPSTR*. 1996, pp. 20–37.
- L. Segoufin and S. Torunczyk. "Automata based verification over linearly ordered data domains". In: *STACS*. Vol. 9. Dagstuhl, Germany, 2011, pp. 81–92.

References		

P. A. Abdulla and G. Delzanno. "Constrained Multiset Rewriting". In: Proc. AVIS'06, 5th int. workshop on on Automated Verification of InfiniteState Systems. 2006.

L. Bozzelli. "Strong Termination for Gap-Order Constraint Abstractions of Counter Systems". In: *LATA*. 2012, pp. 155–168.

L. Boz elli and S. Pinchinat. "Verification of Gap-Oler Constraint Abstration of Gap-Oler Constraint MSS2012, pp. 88–103.

K. Čerāns. "Deciding Properties of Integral Relational Automata". In: ICALP. 1994, pp. 35–46.

L. Fribourg and J. Richardson. "Symbolic Verification with Gap-Order Constraints". In: LOPSTR. 1996, pp. 20–37.

L. Segoufin and S. Torunczyk. "Automata based verification over linearly ordered data domains". In: *STACS*. Vol. 9. Dagstuhl, Germany, 2011, pp. 81–92.