
Branching-Time Model Checking Gap-Order
Constraint Systems

Richard Mayr Patrick Totzke

University of Edinburgh, UK

September 26, 2013

The Model Results Technique Future Work References

Gap Clauses

/Constraints

Def: Gap Clauses

x − y ≥ k

where x , y are integer variables or constants and k ∈ Z.

positive GC are not negation-closed!

Write

Var = {x , y , . . . } for the variables

Const ⊂ Z for the constants and

Val for the set of valuations ν : Var → Z.

The Model Results Technique Future Work References

Gap Clauses/Constraints

Def: Gap Constraints ∧
0≤i≤n

(xi − yi ≥ ki)

where xi , yi are integer variables or constants and ki ∈ Z.

positive GC are not negation-closed!

Write

Var = {x , y , . . . } for the variables

Const ⊂ Z for the constants and

Val for the set of valuations ν : Var → Z.

The Model Results Technique Future Work References

Gap Clauses/Constraints

Def: positive Gap Constraints∧
0≤i≤n

(xi − yi ≥ ki)

where xi , yi are integer variables or constants and ki ∈ N.

positive GC are not negation-closed!

Write

Var = {x , y , . . . } for the variables

Const ⊂ Z for the constants and

Val for the set of valuations ν : Var → Z.

The Model Results Technique Future Work References

Gap Clauses/Constraints

Def: positive Gap Constraints∧
0≤i≤n

(xi − yi ≥ ki)

where xi , yi are integer variables or constants and ki ∈ N.

positive GC are not negation-closed!

Write

Var = {x , y , . . . } for the variables

Const ⊂ Z for the constants and

Val for the set of valuations ν : Var → Z.

The Model Results Technique Future Work References

Gap Clauses/Constraints

Def: positive Gap Constraints∧
0≤i≤n

(xi − yi ≥ ki)

where xi , yi are integer variables or constants and ki ∈ N.

positive GC are not negation-closed!

Write

Var = {x , y , . . . } for the variables

Const ⊂ Z for the constants and

Val for the set of valuations ν : Var → Z.

The Model Results Technique Future Work References

Gap Constraints

1 can characterise subsets S ⊆ Val (of satisfied valuations)

2 can determine how valuations evolve:

For instance,

x − x ′ ≥ 0

means the value of x does not increase.

The Model Results Technique Future Work References

Gap Constraints

1 can characterise subsets S ⊆ Val (of satisfied valuations)

2 can determine how valuations evolve: For instance,

x − x ′ ≥ 0

means the value of x does not increase.

The Model Results Technique Future Work References

Gap-Order Constraint Systems

Definition (CGS)

are given by finite sets

Var of variables ranging over Z,

Const of integer constants, and

∆ of positive transitional gap contraints.

Step semantics:

ν−→ν ′ iff ν ⊕ ν ′ |= C for some C ∈ ∆.

The Model Results Technique Future Work References

Gap-Order Constraint Systems

Definition (CGS)

are given by finite sets

Var of variables ranging over Z,

Const of integer constants, and

∆ of positive transitional gap contraints.

Step semantics:

ν−→ν ′ iff ν ⊕ ν ′ |= C for some C ∈ ∆.

The Model Results Technique Future Work References

Gap-Order Constraint Systems

Definition (CGS)

are given by finite sets

Var of variables ranging over Z,

Const of integer constants, and

∆ of positive transitional gap contraints.

Step semantics:

ν−→ν ′ iff ν ⊕ ν ′ |= C for some C ∈ ∆.

The Model Results Technique Future Work References

Gap-Order Constraint Systems

Definition (CGS)

are given by finite sets

Var of variables ranging over Z,

Const of integer constants, and

∆ of positive transitional gap contraints.

Step semantics:

ν−→ν ′ iff ν ⊕ ν ′ |= C for some C ∈ ∆.

ν ⊕ ν ′(x) =

{
ν(x), if x ∈ Var

ν ′(x), if x ∈ Var ′.

The Model Results Technique Future Work References

Gap-Order Constraint Systems

Definition (CGS)

are given by finite sets

Var of variables ranging over Z,

Const of integer constants, and

∆ of positive transitional gap contraints.

Step semantics:

ν−→ν ′ iff ν ⊕ ν ′ |= C for some C ∈ ∆.

Example:

lex. Countdown of (y , x)

C1 = (x − x ′ ≥ 1) ∧ (y ′ − y ≥ 0) ∧ (y − y ′ ≥ 0) ∧ (x ′ − 0 ≥ 0)
C2 = (y − y ′ ≥ 1) ∧ (x ′ − x ≥ 0) ∧ (y ′ − 0 ≥ 0)

The Model Results Technique Future Work References

Gap-Order Constraint Systems

Definition (CGS)

are given by finite sets

Var of variables ranging over Z,

Const of integer constants, and

∆ of positive transitional gap contraints.

Step semantics:

ν−→ν ′ iff ν ⊕ ν ′ |= C for some C ∈ ∆.

Example:

lex. Countdown of (y , x)

C1 = (x > x ′ ≥ 0) ∧ (y ′ = y)
C2 = (x ≤ x ′) ∧ (y > y ′ ≥ 0)

The Model Results Technique Future Work References

Gap-Order Constraint Systems

Definition (CGS)

are given by finite sets

Var of variables ranging over Z,

Const of integer constants, and

∆ of positive transitional gap contraints.

Step semantics:

ν−→ν ′ iff ν ⊕ ν ′ |= C for some C ∈ ∆.

Example: lex. Countdown of (y , x)

C1 = (x > x ′ ≥ 0) ∧ (y ′ = y)
C2 = (x ≤ x ′) ∧ (y > y ′ ≥ 0)

The Model Results Technique Future Work References

Overapproximating Counter Machines

Zero-tests

(c1 − 0 ≥ 0) ∧ (0− c1 ≥ 0)

Finite Control

(state = 0) ∧ (state ′ = 1) // s0−→s1

Increments/Decrements

(c ′1 − c1 ≥ 0) //c1++
(c1 − c ′1 ≥ 0) ∧ (c ′1 − 0 ≥ 0) //c1- -

The Model Results Technique Future Work References

Overapproximating Counter Machines

Zero-tests

(c1 = 0)

Finite Control

(state = 0) ∧ (state ′ = 1) // s0−→s1

Increments/Decrements

(c ′1 − c1 ≥ 0) //c1++
(c1 − c ′1 ≥ 0) ∧ (c ′1 − 0 ≥ 0) //c1- -

The Model Results Technique Future Work References

Overapproximating Counter Machines

Zero-tests

(c1 = 0)

Finite Control

(state = 0) ∧ (state ′ = 1) // s0−→s1

Increments/Decrements

(c ′1 − c1 ≥ 0) //c1++
(c1 − c ′1 ≥ 0) ∧ (c ′1 − 0 ≥ 0) //c1- -

The Model Results Technique Future Work References

Overapproximating Counter Machines

Zero-tests

(c1 = 0)

Finite Control

(state = 0) ∧ (state ′ = 1) // s0−→s1

Increments/Decrements

(c ′1 − c1 ≥ 0) //c1++

(c1 − c ′1 ≥ 0) ∧ (c ′1 − 0 ≥ 0) //c1- -

The Model Results Technique Future Work References

Overapproximating Counter Machines

Zero-tests

(c1 = 0)

Finite Control

(state = 0) ∧ (state ′ = 1) // s0−→s1

Increments/Decrements

(c ′1 − c1 ≥ 0) //c1++
(c1 − c ′1 ≥ 0) ∧ (c ′1 − 0 ≥ 0) //c1- -

The Model Results Technique Future Work References

Overapproximating Counter Machines

Zero-tests

(c1 = 0)

Finite Control

(state = 0) ∧ (state ′ = 1) // s0−→s1

Increments/Decrements are imprecise!

(c ′1 − c1 ≥ 0) //c1++
(c1 − c ′1 ≥ 0) ∧ (c ′1 − 0 ≥ 0) //c1- -

The Model Results Technique Future Work References

Model Checking GCS

CTL*

CTLLTL

ACTL* ECTL*

EFEG

[Čer94] Model checking CTL
undecidable, but LTL is
decidable for IRA.

[BP12] LTL and ECTL* are
PSPACE -complete; ACTL* is
undecidable for GCS.

We EF is decidable and EG
undecidable for GCS.

The Model Results Technique Future Work References

Model Checking GCS

CTL*

CTLLTL

ACTL* ECTL*

EFEG

[Čer94] Model checking CTL
undecidable, but LTL is
decidable for IRA.

[BP12] LTL and ECTL* are
PSPACE -complete; ACTL* is
undecidable for GCS.

We EF is decidable and EG
undecidable for GCS.

The Model Results Technique Future Work References

Model Checking GCS

CTL*

CTLLTL

ACTL* ECTL*

EFEG

[Čer94] Model checking CTL
undecidable, but LTL is
decidable for IRA.

[BP12] LTL and ECTL* are
PSPACE -complete; ACTL* is
undecidable for GCS.

We EF is decidable and EG
undecidable for GCS.

The Model Results Technique Future Work References

Model Checking GCS

CTL*

CTLLTL

ACTL* ECTL*

EFEG

[Čer94] Model checking CTL
undecidable, but LTL is
decidable for IRA.

[BP12] LTL and ECTL* are
PSPACE -complete; ACTL* is
undecidable for GCS.

We EF is decidable and EG
undecidable for GCS.

The Model Results Technique Future Work References

Model Checking GCS

CTL*

CTLLTL

ACTL* ECTL*

EFEG

[Čer94] Model checking CTL
undecidable, but LTL is
decidable for IRA.

[BP12] LTL and ECTL* are
PSPACE -complete; ACTL* is
undecidable for GCS.

We EF is decidable and EG
undecidable for GCS.

The Model Results Technique Future Work References

Model Checking GCS

CTL*

CTLLTL

ACTL* ECTL*

EFEG

[Čer94] Model checking CTL
undecidable, but LTL is
decidable for IRA.

[BP12] LTL and ECTL* are
PSPACE -complete; ACTL* is
undecidable for GCS.

We EF is decidable and EG
undecidable for GCS.

The Model Results Technique Future Work References

CTL over Gap Clauses

Syntax

ψ ::= C | ¬ψ | ψ ∨ ψ | Xψ | EFψ | EGψ | (ψUψ)

The Model Results Technique Future Work References

EG over Gap Clauses

Syntax

ψ ::= C | ¬ψ | ψ ∨ ψ | Xψ | ////////EFψ | EGψ ///////////| (ψUψ)

The Model Results Technique Future Work References

EG over Gap Clauses

Syntax

ψ ::= C | ¬ψ | ψ ∨ ψ | Xψ | ////////EFψ | EGψ ///////////| (ψUψ)

EG model checking GCS is undecidable.

Proof by enforcing exact increments/decrements (Simulating
Minski machines).

The Model Results Technique Future Work References

EF over Gap Clauses

Syntax

ψ ::= C | ¬ψ | ψ ∨ ψ | Xψ | EFψ | //////EGψ ///////////| (ψUψ)

EF model checking GCS is decidable.

Proof by finding finite representation for Sat(C) that is closed
under negation, union, Pre and Pre*.

The Model Results Technique Future Work References

EF over Gap Clauses

Syntax

ψ ::= C | ¬ψ | ψ ∨ ψ | Xψ | EFψ | //////EGψ ///////////| (ψUψ)

EF model checking GCS is decidable.

Proof by finding finite representation for Sat(C) that is closed
under negation, union, Pre and Pre*.

The Model Results Technique Future Work References

Monotonicity Graphs
Gap Constraints as finite labeled graphs over Var ∪ Const

C =(x − 0 ≥ 1)

∧(y − 0 ≥ 0)

∧(0− y ≥ 0)

∼ 0

x

y

0

0

1

Degree of MG: inverse of minimal negative value

Closure of MG has same denotation

represent S ⊆ Val by finite sets of (arbitrary) MG. Example:
{MC} represents S = Sat(C) = {ν | ν(x) > ν(y) = 0}.

ψ ::= C | ψ ∨ ϕ | ¬ψ | Xψ | EFψ

The Model Results Technique Future Work References

Monotonicity Graphs
Gap Constraints as finite labeled graphs over Var ∪ Const

C =(x − 0 ≥ 1)

∧(y − 0 ≥ 0)

∧(0− y ≥ 0)

∼ 0

x

y

0

0

1

Degree of MG: inverse of minimal negative value

Closure of MG has same denotation

represent S ⊆ Val by finite sets of (arbitrary) MG. Example:
{MC} represents S = Sat(C) = {ν | ν(x) > ν(y) = 0}.

ψ ::= C | ψ ∨ ϕ | ¬ψ | Xψ | EFψ

The Model Results Technique Future Work References

Monotonicity Graphs
Gap Constraints as finite labeled graphs over Var ∪ Const

C =(x − 0 ≥ 1)

∧(y − 0 ≥ 0)

∧(0− y ≥ 0)

∼ 0

x

y

0

0

1

1

Degree of MG: inverse of minimal negative value

Closure of MG has same denotation

represent S ⊆ Val by finite sets of (arbitrary) MG. Example:
{MC} represents S = Sat(C) = {ν | ν(x) > ν(y) = 0}.

ψ ::= C | ψ ∨ ϕ | ¬ψ | Xψ | EFψ

The Model Results Technique Future Work References

Monotonicity Graphs
Gap Constraints as finite labeled graphs over Var ∪ Const

C =(x − 0 ≥ 1)

∧(y − 0 ≥ 0)

∧(0− y ≥ 0)

∼ 0

x

y

0

0

1

1

Degree of MG: inverse of minimal negative value

Closure of MG has same denotation

represent S ⊆ Val by finite sets of (arbitrary) MG.

Example:
{MC} represents S = Sat(C) = {ν | ν(x) > ν(y) = 0}.

ψ ::= C | ψ ∨ ϕ | ¬ψ | Xψ | EFψ

The Model Results Technique Future Work References

Monotonicity Graphs
Gap Constraints as finite labeled graphs over Var ∪ Const

C =(x − 0 ≥ 1)

∧(y − 0 ≥ 0)

∧(0− y ≥ 0)

∼ 0

x

y

0

0

1

1

Degree of MG: inverse of minimal negative value

Closure of MG has same denotation

represent S ⊆ Val by finite sets of (arbitrary) MG. Example:
{MC} represents S = Sat(C) = {ν | ν(x) > ν(y) = 0}.

ψ ::= C | ψ ∨ ϕ | ¬ψ | Xψ | EFψ

The Model Results Technique Future Work References

Monotonicity Graphs
Gap Constraints as finite labeled graphs over Var ∪ Const

C =(x − 0 ≥ 1)

∧(y − 0 ≥ 0)

∧(0− y ≥ 0)

∼ 0

x

y

0

0

1

1

Degree of MG: inverse of minimal negative value

Closure of MG has same denotation

represent S ⊆ Val by finite sets of (arbitrary) MG. Example:
{MC} represents S = Sat(C) = {ν | ν(x) > ν(y) = 0}.

ψ ::= C | ψ ∨ ϕ | ¬ψ | Xψ | EFψ

The Model Results Technique Future Work References

Negation

¬

Rep(S) =

¬

{M0,M1, . . . ,Mk}

∼

CM0 ∨ CM1 ∨ · · · ∨ CMk

... is a Gap-Formula in DNF.

 propagate negations to clauses

 negate clauses

 bring to DNF

 interpret as set of MG

The Model Results Technique Future Work References

Negation

¬

Rep(S) =

¬

{M0,M1, . . . ,Mk}

∼

CM0 ∨ CM1 ∨ · · · ∨ CMk

... is a Gap-Formula in DNF.

 propagate negations to clauses

 negate clauses

 bring to DNF

 interpret as set of MG

The Model Results Technique Future Work References

Negation

¬

Rep(S) =

¬

{M0,M1, . . . ,Mk}

∼

CM0 ∨ CM1 ∨ · · · ∨ CMk

... is a Gap-Formula in DNF.

 propagate negations to clauses

 negate clauses

 bring to DNF

 interpret as set of MG

The Model Results Technique Future Work References

Negation

¬Rep(S) = ¬{M0,M1, . . . ,Mk}

∼

¬CM0 ∧ ¬CM1 ∧ · · · ∧ ¬CMk

... is a Gap-Formula in DNF.

 propagate negations to clauses

 negate clauses

 bring to DNF

 interpret as set of MG

The Model Results Technique Future Work References

Negation

¬Rep(S) = ¬{M0,M1, . . . ,Mk}

∼

¬CM0 ∧ ¬CM1 ∧ · · · ∧ ¬CMk

... is a Gap-Formula in DNF.

 propagate negations to clauses

 negate clauses

 bring to DNF

 interpret as set of MG

The Model Results Technique Future Work References

Negation

¬Rep(S) = ¬{M0,M1, . . . ,Mk}

∼

¬CM0 ∧ ¬CM1 ∧ · · · ∧ ¬CMk

... is a Gap-Formula in DNF.

 propagate negations to clauses

 negate clauses

 bring to DNF

 interpret as set of MG

The Model Results Technique Future Work References

Negation

¬Rep(S) = ¬{M0,M1, . . . ,Mk}

∼

¬CM0 ∧ ¬CM1 ∧ · · · ∧ ¬CMk

... is a Gap-Formula in DNF.

 propagate negations to clauses

 negate clauses

 bring to DNF

 interpret as set of MG

The Model Results Technique Future Work References

Negation

¬Rep(S) = ¬{M0,M1, . . . ,Mk}

∼

¬CM0 ∧ ¬CM1 ∧ · · · ∧ ¬CMk

... is a Gap-Formula in DNF.

 propagate negations to clauses

 negate clauses ← increases degree

 bring to DNF

 interpret as set of MG

The Model Results Technique Future Work References

Negation

¬Rep(S) = ¬{M0,M1, . . . ,Mk}

∼

¬CM0 ∧ ¬CM1 ∧ · · · ∧ ¬CMk

... is a Gap-Formula in DNF.

 propagate negations to clauses

 negate clauses ← increases degree

x − y 6≥ k ⇐⇒ y − x ≥ −(k − 1)

 bring to DNF

 interpret as set of MG

The Model Results Technique Future Work References

Computing Pre

S = {ν | ν(x) > ν(y) = 0}

C1 = (x − x ′ ≥ 1) ∧ (y ′ − y ≥ 0) ∧ (y − y ′ ≥ 0) ∧ (x ′ − 0 ≥ 0)

0

x

y 0

0

2

2 0

x x′

y y′

1

0

0

1

0

x

y

0

0

1

SPre(C1,S)

NB: Degree does not increase

The Model Results Technique Future Work References

Computing Pre

S = {ν | ν(x) > ν(y) = 0}

C1 = (x − x ′ ≥ 1) ∧ (y ′ − y ≥ 0) ∧ (y − y ′ ≥ 0) ∧ (x ′ − 0 ≥ 0)

0

x

y 0

0

2

2 0

x x′

y y′

1

0

0

1

0

x

y

0

0

1

SPre(C1,S)

NB: Degree does not increase

The Model Results Technique Future Work References

Computing Pre

S = {ν | ν(x) > ν(y) = 0}
C1 = (x − x ′ ≥ 1) ∧ (y ′ − y ≥ 0) ∧ (y − y ′ ≥ 0) ∧ (x ′ − 0 ≥ 0)

0

x

y 0

0

2

2

0

x x′

y y′

1

0

0

1

0

x

y

0

0

1

SPre(C1,S)

NB: Degree does not increase

The Model Results Technique Future Work References

Computing Pre

S = {ν | ν(x) > ν(y) = 0}
C1 = (x − x ′ ≥ 1) ∧ (y ′ − y ≥ 0) ∧ (y − y ′ ≥ 0) ∧ (x ′ − 0 ≥ 0)

0

x

y 0

0

2

2

0

x x′

y y′

1

0

0

1

0
0

0

x

y

0

0

1

SPre(C1,S)

NB: Degree does not increase

The Model Results Technique Future Work References

Computing Pre

S = {ν | ν(x) > ν(y) = 0}
C1 = (x − x ′ ≥ 1) ∧ (y ′ − y ≥ 0) ∧ (y − y ′ ≥ 0) ∧ (x ′ − 0 ≥ 0)

0

x

y 0

0

2

2

0

x x′

y y′

1

0

0

1

0
0

2

00

2 1

22

0

x

y

0

0

1

SPre(C1,S)

NB: Degree does not increase

The Model Results Technique Future Work References

Computing Pre

S = {ν | ν(x) > ν(y) = 0}
C1 = (x − x ′ ≥ 1) ∧ (y ′ − y ≥ 0) ∧ (y − y ′ ≥ 0) ∧ (x ′ − 0 ≥ 0)

0

x

y 0

0

2

2 0

x x′

y y′

1

0

0

1

0
0

2

00

2 1

22

0

x

y

0

0

1

SPre(C1,S)

NB: Degree does not increase

The Model Results Technique Future Work References

Computing Pre

S = {ν | ν(x) > ν(y) = 0}
C1 = (x − x ′ ≥ 1) ∧ (y ′ − y ≥ 0) ∧ (y − y ′ ≥ 0) ∧ (x ′ − 0 ≥ 0)

0

x

y 0

0

2

2 0

x x′

y y′

1

0

0

1

0
0

2

00

2 1

22

0

x

y

0

0

1

SPre(C1, S)

NB: Degree does not increase

The Model Results Technique Future Work References

Computing Pre

S = {ν | ν(x) > ν(y) = 0}
C1 = (x − x ′ ≥ 1) ∧ (y ′ − y ≥ 0) ∧ (y − y ′ ≥ 0) ∧ (x ′ − 0 ≥ 0)

0

x

y 0

0

2

2 0

x x′

y y′

1

0

0

1

0
0

2

00

2 1

22

0

x

y

0

0

1

SPre(C1, S)

NB: Degree does not increase

The Model Results Technique Future Work References

Computing Pre∗

Definition (v)

M v M ′ if M(x , y) ≤ M ′(x , y) for all x , y ∈ Var ∪ Const.

1 M v M ′ implies JMK ⊇ JM ′K
2 v is a well-order over MG n

Compute Pre∗(M):

iteratively unfold the finite! backwards coverability tree and take
the union of all nodes. . .

The Model Results Technique Future Work References

Computing Pre∗

Definition (v)

M v M ′ if M(x , y) ≤ M ′(x , y) for all x , y ∈ Var ∪ Const.

1 M v M ′ implies JMK ⊇ JM ′K

2 v is a well-order over MG n

Compute Pre∗(M):

iteratively unfold the finite! backwards coverability tree and take
the union of all nodes. . .

The Model Results Technique Future Work References

Computing Pre∗

Definition (v)

M v M ′ if M(x , y) ≤ M ′(x , y) for all x , y ∈ Var ∪ Const.

1 M v M ′ implies JMK ⊇ JM ′K
2 v is a well-order over MG n

Compute Pre∗(M):

iteratively unfold the finite! backwards coverability tree and take
the union of all nodes. . .

The Model Results Technique Future Work References

Computing Pre∗

Definition (v)

M v M ′ if M(x , y) ≤ M ′(x , y) for all x , y ∈ Var ∪ Const.

1 M v M ′ implies JMK ⊇ JM ′K
2 v is a well-order over MG n

Compute Pre∗(M):

iteratively unfold the finite! backwards coverability tree and take
the union of all nodes. . .

The Model Results Technique Future Work References

EF Model Checking GCS is decidable

Theorem

For given GCS and EF formula ϕ, the set Sat(ϕ) is effectively
Gap-definable.

Works even with

arbitrary gap-formulae as atoms and

positive (trans.) gap-constraints on X/EF operators.

The Model Results Technique Future Work References

EF Model Checking GCS is decidable

Theorem

For given GCS and EF formula ϕ, the set Sat(ϕ) is effectively
Gap-definable.

Works even with

arbitrary gap-formulae as atoms and

positive (trans.) gap-constraints on X/EF operators.

The Model Results Technique Future Work References

WIP: Equivalence Checking

1 Bisimulation

GCS ≈ FS is decidable using char. formulae in EF
Strong Bisimulation GCS ∼ GCS is undecidable

2 Trace inclusion/equivalence

GCS ⊆ GCS is in EXPSPACE
Universality is EXPSPACE-hard

3 Simulation Preorder

GCS � FS and vv. are decidable (wqo)
GCS � GCS ? WIP.

The Model Results Technique Future Work References

WIP: Equivalence Checking

1 Bisimulation

GCS ≈ FS is decidable using char. formulae in EF
Strong Bisimulation GCS ∼ GCS is undecidable

2 Trace inclusion/equivalence

GCS ⊆ GCS is in EXPSPACE
Universality is EXPSPACE-hard

3 Simulation Preorder

GCS � FS and vv. are decidable (wqo)
GCS � GCS ? WIP.

The Model Results Technique Future Work References

WIP: Equivalence Checking

1 Bisimulation

GCS ≈ FS is decidable using char. formulae in EF
Strong Bisimulation GCS ∼ GCS is undecidable

2 Trace inclusion/equivalence

GCS ⊆ GCS is in EXPSPACE
Universality is EXPSPACE-hard

3 Simulation Preorder

GCS � FS and vv. are decidable (wqo)
GCS � GCS ? WIP.

The Model Results Technique Future Work References

References

P. A. Abdulla and G. Delzanno. “Constrained Multiset Rewriting”. In:
Proc. AVIS’06, 5th int. workshop on on Automated Verification of
InfiniteState Systems. 2006.

L. Bozzelli. “Strong Termination for Gap-Order Constraint Abstractions
of Counter Systems”. In: LATA. 2012, pp. 155–168.

L. Bozzelli and S. Pinchinat. “Verification of Gap-Order Constraint
Abstractions of Counter Systems”. In: VMCAI. 2012, pp. 88–103.

K. Čerāns. “Deciding Properties of Integral Relational Automata”. In:
ICALP. 1994, pp. 35–46.

L. Fribourg and J. Richardson. “Symbolic Verification with Gap-Order
Constraints”. In: LOPSTR. 1996, pp. 20–37.

L. Segoufin and S. Torunczyk. “Automata based verification over linearly
ordered data domains ”. In: STACS. Vol. 9. Dagstuhl, Germany, 2011,
pp. 81–92.

Questions?

The Model Results Technique Future Work References

References

P. A. Abdulla and G. Delzanno. “Constrained Multiset Rewriting”. In:
Proc. AVIS’06, 5th int. workshop on on Automated Verification of
InfiniteState Systems. 2006.

L. Bozzelli. “Strong Termination for Gap-Order Constraint Abstractions
of Counter Systems”. In: LATA. 2012, pp. 155–168.

L. Bozzelli and S. Pinchinat. “Verification of Gap-Order Constraint
Abstractions of Counter Systems”. In: VMCAI. 2012, pp. 88–103.

K. Čerāns. “Deciding Properties of Integral Relational Automata”. In:
ICALP. 1994, pp. 35–46.

L. Fribourg and J. Richardson. “Symbolic Verification with Gap-Order
Constraints”. In: LOPSTR. 1996, pp. 20–37.

L. Segoufin and S. Torunczyk. “Automata based verification over linearly
ordered data domains ”. In: STACS. Vol. 9. Dagstuhl, Germany, 2011,
pp. 81–92.

Questions?

	The Model
	Results
	Technique
	Future Work
	References

