
Universal Safety for Timed Petri Nets is
PSPACE-complete
Parosh Aziz Abdulla
Uppsala University, Sweden

Mohamed Faouzi Atig
Uppsala University, Sweden

Radu Ciobanu
University of Edinburgh, UK

Richard Mayr
University of Edinburgh, UK

Patrick Totzke
University of Edinburgh, UK

https://orcid.org/0000-0001-5274-8190

Abstract
A timed network consists of an arbitrary number of initially identical 1-clock timed automata,
interacting via hand-shake communication. In this setting there is no unique central controller,
since all automata are initially identical. We consider the universal safety problem for such
controller-less timed networks, i.e., verifying that a bad event (enabling some given transition) is
impossible regardless of the size of the network.

This universal safety problem is dual to the existential coverability problem for timed-arc
Petri nets, i.e., does there exist a number m of tokens, such that starting with m tokens in a
given place, and none in the other places, some given transition is eventually enabled.

We show that these problems are PSPACE-complete.

2012 ACM Subject Classification Theory of computation → Timed and hybrid models

Keywords and phrases timed networks, safety checking, Petri nets, coverability

Digital Object Identifier 10.4230/LIPIcs.CONCUR.2018.6

Funding This work was supported by the EPSRC, grant EP/M027651/1.

1 Introduction

Background. Timed-arc Petri nets (TPN) [4, 16, 3, 8, 13] are an extension of Petri nets
where each token carries one real-valued clock and transitions are guarded by inequality
constraints where the clock values are compared to integer bounds (via strict or non-strict
inequalities). The known models differ slightly in what clock values newly created tokens
can have, i.e., whether newly created tokens can inherit the clock value of some input token
of the transition, or whether newly created tokens always have clock value zero. We consider
the former, more general, case.

Decision problems associated with the reachability analysis of (extended) Petri nets
include Reachability (can a given marking reach another given marking?) and Coverability
(can a given marking ultimately enable a given transition?).

While Reachability is undecidable for all these TPN models [15], Coverability is decidable
using the well-quasi ordering approach of [1, 10] and complete for the hyper-Ackermannian

© Parosh Aziz Abdulla, Mohamed Faouzi Atig, Radu Ciobanu, Richard Mayr and Patrick Totzke;
licensed under Creative Commons License CC-BY

29th International Conference on Concurrency Theory (CONCUR 2018).
Editors: Sven Schewe and Lijun Zhang; Article No. 6; pp. 6:1–6:18

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0001-5274-8190
http://dx.doi.org/10.4230/LIPIcs.CONCUR.2018.6
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

6:2 Universal Safety for Timed Petri Nets is PSPACE-complete

complexity class Fωωω [12]. With respect to Coverability, TPN are equivalent [7] to (linearly
ordered) data nets [14].

The Existential Coverability problem for TPN asks, for a given place p and transition
t, whether there exists a number m such that the marking M(m) def= m · {(p,0)} ultimately
enables t. Here, M(m) contains exactly m tokens on place p with all clocks set to zero
and no other tokens. This problem corresponds to checking safety properties in distributed
networks of arbitrarily many (namely m) initially identical timed processes that communicate
by handshake. A negative answer certifies that the ‘bad event’ of transition t can never
happen regardless of the number m of processes, i.e., the network is safe for any size. Thus
by checking existential coverability, one solves the dual problem of Universal Safety. (Note
that the m timed tokens/processes are only initially identical. They can develop differently
due to non-determinacy in the transitions.)

The corresponding problem for timed networks studied in [2] does not allow the dynamic
creation of new timed processes (unlike the TPN model which can increase the number of
timed tokens), but considers multiple clocks per process (unlike our TPN with one clock per
token).

The TPN model above corresponds to a distributed network without a central controller,
since initially there are no tokens on other places that could be used to simulate one. Adding
a central controller would make Existential Coverability polynomially inter-reducible with
normal Coverability and thus complete for Fωωω [12] (and even undecidable for > 1 clocks
per token [2]).

Aminof et. al. [6] study the model checking problem of ω-regular properties for the
controller-less model and in particular claim an EXPSPACE upper bound for checking
universal safety. However, their result only holds for discrete time (integer-valued clocks)
and they do not provide a matching lower bound.

Our contribution. We show that Existential Coverability (and thus universal safety) is
decidable and PSPACE-complete. This positively resolves an open question from [2] regarding
the decidability of universal safety in the controller-less networks. Moreover, a symbolic
representation of the set of coverable configurations can be computed (using exponential
space).

The PSPACE lower bound is shown by a reduction from the iterated monotone Boolean
circuit problem. (It does not follow directly from the PSPACE-completeness of the reachability
problem in timed automata of [5], due to the lack of a central controller.)

The main ideas for the PSPACE upper bound are as follows. First we provide a logspace
reduction of the Existential Coverability problem for TPN to the corresponding problem
for a syntactic subclass, non-consuming TPN. Then we perform an abstraction of the real-
valued clocks, similar to the one used in [3]. Clock values are split into integer parts and
fractional parts. The integer parts of the clocks can be abstracted into a finite domain, since
the transition guards cannot distinguish between values above the maximal constant that
appears in the system. The fractional parts of the clock values that occur in a marking
are ordered sequentially. Then every marking can be abstracted into a string where all
the tokens with the i-th fractional clock value are encoded in the i-th symbol in the string.
Since token multiplicities do not matter for existential coverability, the alphabet from which
these strings are built is finite. The primary difficulty is that the length of these strings
can grow dynamically as the system evolves, i.e., the space of these strings is still infinite
for a given TPN. We perform a forward exploration of the space of reachable strings. By
using an acceleration technique, we can effectively construct a symbolic representation of the

P.A. Abdulla, M. Atig, R. Ciobanu, R. Mayr and P. Totzke 6:3

set of reachable strings in terms of finitely many regular expressions. Finally, we can check
existential coverability by using this symbolic representation.

2 Timed Petri Nets

We use N and R≥0 to denote the sets of nonnegative integers and reals, respectively. For
n ∈ N we write [n] for the set {0, . . . , n}.

For a set A, we use A∗ to denote the set of words, i.e. finite sequences, over A, and write ε
for the empty word. If R is a regular expression over A then L(R) ⊆ A∗ denotes its language.

A multiset over a set X is a function M : X → N. The set X⊕ of all (finitely supported)
multisets over X is partially ordered pointwise (by ≤). The multiset union of M,M ′ ∈ X⊕
is (M ⊕M ′) ∈ X⊕ with (M ⊕M ′)(α) def= M(α) +M ′(α) for all α ∈ X. If M ≥M ′ then the
multiset difference (M 	M ′) is the unique M ′′ ∈ X⊕ with M = M ′ ⊕M ′′. We will use a
monomial representation and write for example (α + β3) for the multiset (α 7→ 1, β 7→ 3).
For a multiset M and a number m ∈ N we let m ·M denote the m-fold multiset sum of
M . We further lift this to sets of numbers and multisets on the obvious fashion, so that in
particular N · S def= {n ·M | n ∈ N,M ∈ S}.

Timed Petri nets are place/transition nets where each token carries a real value, sometimes
called its clock value or age. Transition firing depends on there being sufficiently many tokens
whose value is in a specified interval. All tokens produced by a transition either have age 0,
or inherit the age of an input-token of the transition. To model time passing, all token ages
can advance simultaneously by the same (real-valued) amount.

I Definition 1 (TPN). A timed Petri net (TPN) N = (P, T,Var , G,Pre,Post) consists of
finite sets of places P , transitions T and variables Var , as well as functions G,Pre,Post
defining transition guards, pre– and postconditions, as follows.

For every transition t ∈ T , the guard G(t) maps variables to (open, half-open or closed)
intervals with endpoints in N∪{∞}, restricting which values variables may take. All numbers
are encoded in unary. The precondition Pre(t) is a finite multiset over (P × Var). Let
Var(t) ⊆ Var be the subset of variables appearing positively in Pre(t). The postcondition
Post(t) is then a finite multiset over (P × ({0} ∪Var(t))), specifying the locations and clock
values of produced tokens. Here, the symbolic clock value is either 0 (demanding a reset to
age 0), or a variable that appeared already in the precondition.

A marking is a finite multiset over P × R≥0.

I Example 2. The picture below shows a place/transition representation of an TPN with
four places and one transition. Var(t) = {x, y}, Pre(t) = (p, x)2 + (q, y), G(t)(x) = [0, 5],
G(t)(y) =]1, 2] and Post(t) = (r, y)3 + (s, 0).

0 ≤ x ≤ 5
1 < y ≤ 2

t
p

q

r

s

x2

y

y3

0

The transition t consumes two tokens from place p, both of which have the same clock value
x (where 0 ≤ x ≤ 5) and one token from place q with clock value y (where 1 < y ≤ 2). It
produces three tokens on place r who all have the same clock value y (where y comes from
the clock value of the token read from q), and another token with value 0 on place s.

CONCUR 2018

6:4 Universal Safety for Timed Petri Nets is PSPACE-complete

There are two different binary step relations on markings: discrete steps −→t which fire
a transition t as specified by the relations G,Pre, and Post, and time passing steps −→d for
durations d ∈ R≥0, which simply increment all clocks by d.

I Definition 3 (Discrete Steps). For a transition t ∈ T and a variable evaluation π : Var →
R≥0, we say that π satisfies G(t) if π(x) ∈ G(t)(x) holds for all x ∈ Var . By lifting π to
multisets over (P ×Var) (respectively, to multisets over (P × ({0} ∪Var)) with π(0) = 0)
in the canonical way, such an evaluation translates preconditions Pre(t) and Post(t) into
markings π(Pre(t)) and π(Post(t)), where for all p ∈ P and c ∈ R≥0,

π(Pre(t))(p, c) def=
∑

π(v)=c

Pre(t)(p, v) and π(Post(t))(p, c) def=
∑

π(v)=c

Post(t)(p, v).

A transition t ∈ T is called enabled in markingM , if there exists an evaluation π that satisfies
G(t) and such that π(Pre(t)) ≤ M . In this case, there is a discrete step M −→t M

′ from
marking M to M ′, defined as M ′ = M 	 π(Pre(t))⊕ π(Post(t)).

I Definition 4 (Time Steps). Let M be a marking and d ∈ R≥0. There is a time step
M −→d M

′ to the marking M ′ with M ′(p, c) def= M(p, c − d) for c ≥ d, and M ′(p, c) def= 0,
otherwise. We also refer to M ′ as (M + d).

We write −→Time for the union of all timed steps, −→Disc for the union of all discrete
steps and simply −→ for −→Disc ∪ −→Time . The transitive and reflexive closure of −→ is ∗−→.
Cover (M) denotes the set of markings M ′ for which there is an M ′′ ≥M ′ with M ∗−→M ′′.

We are interested in the existential coverability problem (∃COVER for short), as follows.

Input: A TPN, an initial place p and a transition t.
Question: Does there exist M ∈ Cover (N · {(p, 0)}) that enables t?

We show that this problem is PSPACE-complete. Both lower and upper bound will be shown
(w.l.o.g., see Lemma 8) for the syntactic subclass of non-consuming TPN, defined as follows.

I Definition 5. A timed Petri net (P, T,Var , G,Pre,Post) is non-consuming if for all t ∈ T ,
p ∈ P and x ∈ Var it holds that both 1) Pre(t)(p, x) ≤ 1, and 2) Pre(t) ≤ Post(t).

In a non-consuming TPN, token multiplicities are irrelevant for discrete transitions. Intuitively,
having one token (p, c) is equivalent to having an inexhaustible supply of such tokens.

The first condition is merely syntactic convenience. It asks that each transition takes at
most one token from each place. The second condition in Definition 5 implies that for each
discrete step M −→t M

′ we have M ′ ≥ M . Therefore, once a token (p, c) is present on a
place p, it will stay there unchanged (unless time passes), and it will enable transitions with
(p, c) in their precondition.

Wherever possible, we will from now on therefore allow ourselves to use the set notation
for markings, that is simply treat markings M ∈ (P × R≥0)⊕ as sets M ⊆ (P × R≥0).

3 Lower Bound

PSPACE-hardness of ∃COVER does not follow directly from the PSPACE-completeness of
the reachability problem in timed automata of [5]. The non-consuming property of our TPN
makes it impossible to fully implement the control-state of a timed automaton. Instead our
proof uses multiple timed tokens and a reduction from the iterated monotone Boolean circuit
problem [11].

P.A. Abdulla, M. Atig, R. Ciobanu, R. Mayr and P. Totzke 6:5

Truej

Truei

Truek

Falsej

Falsei

Falsek

x = y = 1i.B

x = 1 i.L

x = 1 i.R

x

y

0

x

0

x

0

Figure 1 The transitions i.B, i.R and i.L that simulate the update of bit i according to constraint
i′ = j ∧ k. All transitions demand that incoming tokens are of age exactly 1 and only tokens of age
0 are produced.

A depth-1 monotone Boolean circuit is a function F : {0, 1}n → {0, 1}n represented
by n constraints: For every 0 ≤ i < n there is a constraint of the form i′ = j ⊗ k, where
0 ≤ j, k < n and ⊗ ∈ {∧,∨}, which expresses how the next value of bit i depends on the
current values of bits j and k. For every bitvector v ∈ {0, 1}n, the function F then satisfies
F (v)[i] def= v[j]⊗ v[k]. It is PSPACE-complete to check whether for a given vector v ∈ {0, 1}n
there exists a number m ∈ N such that Fm(v)[0] = 1.

Towards a lower bound for ∃COVER (Theorem 7) we construct a non-consuming TPN
as follows, for a given circuit. The main idea is to simulate circuit constraints by transitions
that reset tokens of age 1 (encoding v) to fresh ones of age 0 (encoding F (v)), and let time
pass by one unit to enter the next round.

For every bit 0 ≤ i < n, the net contains two places Truei and Falsei. A marking Mv ≤
P × R≥0 is an encoding of a vector v ∈ {0, 1}n if for every 0 ≤ i < n the following hold.
1. (Truei, 0) ∈Mv ⇐⇒ v[i] = 1.
2. (Falsei, 0) ∈Mv ⇐⇒ v[i] = 0.
3. If (p, c) ∈Mv then c = 0 or c ≥ 1.

Note that in particular one cannot have both (Truei, 0) and (Falsei, 0) in Mv. For every
constraint i′ = j ∧ k we introduce three transitions, i.L, i.R, and i.B, where

Pre(i.B) def= (Truej , x) + (Truek, y) Post(i.B) def= Pre(i.B) + (Truei, 0)

Pre(i.L) def= (Falsej , x) Post(i.L) def= Pre(i.L) + (Falsei, 0)

Pre(i.R) def= (Falsek, x) Post(i.R) def= Pre(i.R) + (Falsei, 0)

and the guard for all transitions is G(x) = G(y) = 1. See Figure 1 for an illustration. For
disjunctions i′ = j ∨ k the transitions are defined analogously, with True and False inverted.
The correctness proof of our construction rests on the following simple observation.

I Lemma 6. If F (v) = v′ then for every encoding Mv of v, there exists an encoding Mv′ of
v′ such that Mv −→1

∗−→Disc Mv′ . Conversely, if Mv −→1
∗−→Disc Mv′ for encodings Mv and

Mv′ of v and v′ respectively, then F (v) = v′.

Proof. For the first part, we construct a sequence M0 −→Disc M1 −→Disc . . . −→Disc Mn−1
where M0

def= (Mv + 1) and every step Mi−1 −→Disc Mi adds tokens simulating the ith
constraint of F . Since the TPN is non-consuming, we will have that Mi ≥ (Mv + 1), for
all i < n. Consider now constraint i′, and assume w.l.o.g. that i′ = j ∧ k (the other case is
analogous). There are two cases depending on v′[i].

CONCUR 2018

6:6 Universal Safety for Timed Petri Nets is PSPACE-complete

1. Case v′[i] = 1. By our assumption that F (v) = v′ we know that v[j] = 1 and v[k] = 1.
So (Truej , 1) ∈ (Mv + 1) ≤Mi−1 and (Truek, 1) ∈ (Mv + 1) ≤Mi−1. By construction of
the net, there is a transition i.B with Pre(i.B) = (Truej , 1) + (Truek, 1) and Post(i.B) =
Pre(i.B) + (Truei, 0). This justifies step Mi−1 −→i.B Mi and therefore that (Truei, 0) ∈
Mi ≤Mn−1. Also notice that no marking reachable fromM0 using only discrete steps can
contain the token (Falsei, 0). This is because these can only be produced by transitions
requiring either (Falsej , 1) or (Falsek, 1), which are not contained in M0 by assumption
that Mv encodes v. Therefore (Falsei, 0) /∈Mn−1.

2. Case v′[i] = 0. W.l.o.g., v[j] = 0. Therefore, (Falsej , 1) ∈ (Mv + 1) ≤ Mi−1.
By construction of the net, there exists transition i.L with Pre(i.L) = (Falsej , 1)
and Post(i.L) = Pre(i.L) + (Falsei, 0). This justifies the step Mi−1 −→i.L Mi, with
(Falsei, 0) ∈Mi ≤Mn−1. Notice again that no marking reachable from M0 using only
discrete steps can contain the token (Truei, 0). This is because these can only be pro-
duced by transitions i.B, requiring both (Truej , 1), (Truek, 1) ∈ M0, contradicting our
assumptions. Hence, (Truei, 0) /∈Mn−1.

We conclude that the constructed marking Mn−1 is an encoding of v′.
For the other part of the claim, assume that there exist markings Mv and Mv′ which

are encodings of vectors v and v′, respectively, with Mv −→1
∗−→Disc Mv′ . We will show that

F (v) = v′. Recall that F (v)[i] def= v[j]⊗ v[k], where 0 ≤ j, k < n and ⊗ ∈ {∧,∨}. We will
show for each i < n that v′[i] = v[j]⊗ v[k]. Again, consider the constraint i′, and assume
w.l.o.g. that i′ = j ∧ k (the other case is analogous). There are two cases.
1. Case v′[i] = 1. By definition of a marking encoding, we have that (Truei, 0) ∈ Mv.

By construction, there is a transition i.B with Pre(i.B) = (Truej , 1) + (Truek, 1) and
Post(i.B) = Pre(i.B) + (Truei, 0). By assumption, it holds that (Mv + 1) ∗−→Disc M

′
v,

where Mv −→1 (Mv + 1). Note that (Truej , 1) ∈ (Mv + 1) and (Truek, 1) ∈ (Mv + 1).
Hence, we have that v[j] = 1 and v[k] = 1, and therefore that F (v)[i] = v′[i] = v[j]∧v[k].

2. Case v′[i] = 0. Then (Falsei, 0) ∈ Mv and, since this token can only be produced by
transitions i.L or i.R, either (Falsej , 1) ∈ (Mv + 1) or (Falsek, 1) ∈ (Mv + 1).
Therefore (Falsej , 0) ∈ (Mv) or (Falsek, 0) ∈ (Mv) and because Mv is an encoding of v,
this means that either v[j] = 0 or v[k] = 0. Therefore, F (v′)[i] = v[j] ∧ v[k] = 0. J

I Theorem 7. ∃COVER is PSPACE-hard for non-consuming TPN.

Proof. For a given monotone Boolean circuit, define a non-consuming TPN as above. By
induction on m ∈ N using Lemma 6, we derive that there exists m ∈ N with Fm(v) = v′

and v′[0] = 1 if, and only if, there exists encodings Mv of v and Mv′ of v′, with Mv
∗−→Mv′ .

Moreover, if there is a marking M such that Mv
∗−→M and 0 ∈ frac(M), where M contains

a token of age 0, then M ≤Mv′ for some encoding Mv′ of a vector v′ = Fm(v). This means
that it suffices to add one transition t with Pre(t) = (True0, 0) whose enabledness witnesses
the existence of a reachable encoding Mv′ containing a token (True0, 0). By the properties
above, there exists m ∈ N with Fm(v) = v′ and v′[0] = 1 iff Mv

∗−→Mv′
t−→. J

This lower bound holds even for discrete time TPN, e.g. [9], because the proof uses only
timed steps with duration d = 1.

4 Upper Bound

We start by observing that we can restrict ourselves, without loss of generality, to non-
consuming TPN (Definition 5) for showing the upper bound. Intuitively, since we start with

P.A. Abdulla, M. Atig, R. Ciobanu, R. Mayr and P. Totzke 6:7

an arbitrarily high number of tokens anyway, it does not matter how many of them are
consumed by transitions during the computation, since some always remain.

I Lemma 8. The ∃COVER problem for TPN logspace-reduces to the ∃COVER problem for
non-consuming TPN. That is, for every TPN N and for every place p and transition t of N ,
one can construct, using logarithmic space, a non-consumimg TPN N ′ together with a place
p′ and transition t′ of N ′, so that there exists M ∈ CoverN (N · {(p, 0)}) enabling t in N if
and only if there exists M ′ ∈ CoverN ′(N · {(p′, 0)}) that enables t′ in N ′.

4.1 Region Abstraction
We recall a constraint system called regions defined for timed automata [5]. The version for
TPN used here is similar to the one in [3].

Consider a fixed, nonconsuming TPN N = (P, T,Var , G,Pre,Post). Let cmax be the
largest finite value appearing in transition guards G. Since different tokens with age
> cmax cannot be distinguished by transition guards, we consider only token ages below
or equal to cmax and treat the integer parts of older tokens as equal to cmax + 1. Let
int(c) def= min{cmax + 1, bcc} and frac(c) def= c − bcc for a real value c ∈ R≥0. We will work
with an abstraction of TPN markings as words over the alphabet Σ def= 2P×[cmax+1]. Each
symbol X ∈ Σ represents the places and integer ages of tokens for a particular fractional
value.

I Definition 9. Let M ⊆ P × R≥0 be a marking and let frac(M) def= {frac(c) | (p, c) ∈ M}
be the set of fractional clock values that appear in M .

Let S ⊂ [0, 1[be a finite set of real numbers with 0 ∈ S and frac(M) ⊆ S and let
f0, f1, . . . , fn, be an enumeration of S so that fi−1 < fi for all i ≤ n. The S-abstraction of
M is

absS(M) def= x0x1 . . . xn ∈ Σ∗

where xi
def= {(p, int(c)) | (p, c) ∈ M ∧ frac(c) = fi} for all i ≤ n. We simply write abs(M)

for the shortest abstraction, i.e. with respect to S = {0} ∪ frac(M).

I Example 10. The abstraction of marking M = {(p, 2.1), (q, 2.2), (p, 5.1), (q, 5.1)} is
abs(M) = ∅ {(p, 2), (p, 5), (q, 5)} {(q, 2)}. The first symbol is ∅, because M contains no
token with an integer age (i.e., no token whose age has fractional part 0). The second and
third symbols represent sets of tokens with fractional values 0.1 and 0.2, respectively.

Clocks with integer values play a special role in the behavior of TPN, because the
constants in the transition guards are integers. Thus we always include the fractional part 0
in the set S in Definition 9.

We use a special kind of regular expressions over Σ to represent coverable sets of TPN
markings as follows.

I Definition 11. A regular expression E over Σ represents the downward-closed set of TPN
markings covered by one that has an abstraction in the language of E:

[[E]] def= {N | ∃M∃S. M ≥ N ∧ absS(M) ∈ L(E)}.

An expression is simple if it is of the form E = x0x1 . . . xk where for all i ≤ k either
xi ∈ Σ or xi = yi

∗ for some yi ∈ Σ. In the latter case we say that xi carries a star. That is,
a simple expression is free of Boolean combinators and uses only concatenation and Kleene
star. We will write x̂i to denote the symbol in Σ at position i: it is xi if xi ∈ Σ and yi
otherwise.

CONCUR 2018

6:8 Universal Safety for Timed Petri Nets is PSPACE-complete

I Remark 12. Notice that for all simple expressions α, β so that |α| > 0, we have that
[[α∅β]] = [[αβ]]. However, unless α has length 0 or is of the form α = ∅α′, we have [[∅α]] 6= [[α]].
This is because a marking M that contains a token (p, c) with frac(c) = 0 has the property
that all abstractions absS(M) = x0 . . . xk of M have x0 6= ∅.

The following lemmas express the effect of TPN transitions at the level of the region
abstraction. Lemmas 13 and 15 state that maximally firing of discrete transitions (the
relation ∗−→Disc) is computable and monotone. Lemmas 16 and 17 state how to represent
timed-step successor markings.

I Lemma 13. For every non-consuming TPN N there are polynomial time computable
functions f : Σ× Σ× Σ→ Σ and g : Σ× Σ× Σ→ Σ with the following properties.
1. f and g are monotone (w.r.t. subset ordering) in each argument.
2. f(α, β, x) ⊇ x and g(α, β, x) ⊇ x for all α, β, x ∈ Σ.
3. Suppose that E = x0x1 . . . xk is a simple expression, α def= x0 and β

def=
⋃
i>0 x̂i, and

E′ = x′0x
′
1 . . . x

′
k is the derived expression defined by conditions:

a. x′0
def= f(α, β, x0),

b. x′i
def= g(α, β, x̂i)∗ for i > 0,

c. x′i carries a star iff xi does.
Then [[E′]] = {M ′′ | ∃M ∈ [[E]] ∧M ∗−→Disc M

′ ≥M ′′}.

I Definition 14. We will write SAT (E) def= E′ for the successor expression E′ of E guaranteed
by Lemma 13. I.e., SAT (E) is the saturation of E by maximally firing discrete transitions.

Notice that by definition it holds that [[E]] ⊆ [[SAT (E)]] ⊆ Cover ([[E]]), and consequently
also that Cover ([[SAT (E)]]) = Cover ([[E]]).

I Lemma 15. Suppose that X = x0x1 . . . xk is a simple expression of length k + 1 with
SAT(X) = x′0x

′
1 . . . x

′
k and x0, x

′
0 ∈ Σ. Let Y = y0α1y1α2 . . . αkyk be a simple expression

with SAT (Y) = y′0α
′
1y
′
1α
′
2 . . . α

′
ky
′
k and y0, y

′
0 ∈ Σ.

If x̂i ⊆ ŷi for all i ≤ k then x̂′i ⊆ ŷ′i for all i ≤ k.

Proof. The assumption of the lemma provides that αx
def= x0 ⊆ αy

def= y0 and βx
def=⋃

k≥i>0 x̂i ⊆ βy
def=
⋃
k≥i>0 ŷi. Therefore, by Item 1 of Lemma 13, we get that

x′0 = f(αx, βx, x0) ⊆ f(αy, βy, y0) = y′0

and similarly, for all k ≥ i ≥ 0, that x̂′i = g(αx, βx, x̂i) ⊆ g(αy, βy, ŷi) = ŷ′i. J

For x ∈ Σ we write (x+ 1) def= {(p, int(n+ 1)) | (p, n) ∈ x} for the symbol where token
ages are incremented by 1.

I Lemma 16. [[∅E]] = {M ′ | ∃M ∈ [[E]] ∧M −→d M
′ ∧ d < 1−max(frac(M))}.

I Lemma 17. Let αz be a simple expression where ẑ = z ∈ Σ (the rightmost symbol is
not starred). Then, [[(z + 1)α]] contains a marking N if, and only if, there exists markings
N ′ ≥ N and M , and a set S ⊆ [0, 1[so that
1. |S| = |αz|
2. absS(M) ∈ L(αz)
3. M −→d N

′ for d = 1−max(S).

P.A. Abdulla, M. Atig, R. Ciobanu, R. Mayr and P. Totzke 6:9

Proof. Suppose markings N,N ′,M , a set S ⊆ [0, 1[and d ∈ R≥0 so that the conditions 1
to 3 are satisfied. Let S′ def= {0} ∪ {s + d | s ∈ S \ {d}}. Then, |S′| = |S| and absS′(N ′) ∈
L((z + 1)α), which witnesses that N ∈ [[(z + 1)α]].

Conversely, let N ∈ [[(z + 1)α]] be a non-empty marking. If |α| = 0, then N ∈ [[(z + 1)]]
and so absS(N) ∈ L((z + 1)) for S def= frac(N) = {0}. This means that M −→1 N = (M + 1)
for a marking M with absS(M) ∈ L(z) = L(αz).

If |α| > 0, pick some marking N ′ ≥ N and set S′ so that absS′(N ′) = (z + 1)w, for some
word w ∈ L(α). Then we must have that |S′| = |(z + 1)α| > 1 and so d def= min(S′ \ {0})
exists. Let S def= {s− d | s ∈ S′} ∪ {1− d} and M be the unique marking with M −→d N

′.
Notice that 1− d = max(S). It follows that absS(M) = wz ∈ L(αz). J

We will often use the following simple fact, which is a direct consequence of Lemma 17.

I Corollary 18. [[(z + 1)α]] ⊆ Cover ([[αz]]).

Finally, the following lemma will be the basis for our exploration algorithm.

I Lemma 19. Let αx∗0 be a simple expression with SAT (αx∗0) = αx∗0. Then Cover ([[αx∗0]]) =
[[αx∗0]] ∪ Cover ([[(x0 + 1)αx∗0]]).

Proof. For the right to left inclusion notice that [[αx∗0]] ⊆ Cover ([[αx∗0]]) trivially holds.
For the rest, we have [[(x0 + 1)αx∗0]] ⊆ Cover ([[αx∗0]]) by Corollary 18, and therefore
Cover ([[(x0 + 1)αx∗0]]) ⊆ Cover (Cover ([[αx∗0]])) = Cover ([[αx∗0]]). For the left to right
inclusion, we equivalently show that

Cover ([[αx∗0]]) \ [[αx∗0]] ⊆ Cover ([[(x0 + 1)αx∗0]]) (1)

Using the assumption that SAT (αx∗0) = αx∗0, the set on the left contains everything coverable
from [[αx∗0]] by a sequence that starts with a (short) time step. It can therefore be written as

Cover ({N1 | ∃N0 ∈ [[αx∗0]] ∧N0 −→d N1 ∧ 0 < d < 1−max(frac(N0))}).

By Lemma 16 and because [[∅α]] ⊆ [[Xα]] for all X ∈ Σ and α ∈ Σ∗, we conclude that indeed,
Cover ([[αx∗0]]) \ [[αx∗0]] ⊆ Cover ([[∅αx∗0]]) ⊆ Cover ([[(x0 + 1)αx∗0]]). J

4.2 Acceleration

We propose an acceleration procedure based on unfolding expressions according to Lemma 19
(interleaved with saturation steps to guarantee its premise) and introducing new Kleene
stars to keep the length of intermediate expressions bounded. This procedure (depicted in
Algorithm 1), is used to characterize an initial subset of the coverability set.

CONCUR 2018

6:10 Universal Safety for Timed Petri Nets is PSPACE-complete

Algorithm 1 Accelerate
Input: a simple expression S0 = x1x

∗
0 (of length 2 and with last symbol starred)

Output: simple expressions S1, Si and R, of lengths 2, 4, and 2, respectively.
1: S1

def= x1
1(x1

0)∗ = SAT (x1x
∗
0)

2: S2
def= x2

2x
2
1(x2

0)∗ = SAT ((x1
0 + 1)S1)

3: S3
def= x3

3x
3
2x

3
1(x3

0)∗ = SAT ((x2
0 + 1)S2)

4: i← 3
5: repeat
6: xi+1

i+1x
i+1
i xi+1

i−1x
i+1
1 (xi+1

0)∗ def= SAT ((xi0 + 1)Si)
7: Si+1

def= xi+1
i+1(xi+1

i)∗xi+1
1 (xi+1

0)∗
8: i← i+ 1
9: until Si = Si−1

10: R def= (xi1 + 1)(xii−1)∗
11: return S1, Si, R

x∗0x1 start

(x1
0)∗x1

1 S1 = SAT (x1x
∗
0)

(x1
0)∗x1

1(x1
0 + 1) (x1

0 + 1)S1

(x2
0)∗x2

1x2
2 S2 = SAT ((x1

0 + 1)S1)

(x2
0)∗x2

1x2
2(x2

0 + 1) (x2
0 + 1)S2

(x3
0)∗x3

1x3
2x3

3 S3 = SAT ((x2
0 + 1)S2)

(x3
0)∗x3

1x3
2x3

3(x3
0 + 1) (x3

0 + 1)S3

(x4
0)∗x4

1x4
2x4

3x4
4 SAT ((x3

0 + 1)S3)

(x4
0)∗x4

1(x4
3)∗x4

4 S4

(x4
0)∗x4

1(x4
3)∗x4

4(x4
0 + 1) (x4

0 + 1)S4

(x5
0)∗x5

1(x5
3)∗x5

4x5
5 SAT ((x4

0 + 1)S4)

(x5
0)∗x5

1(x5
4)∗x5

5 S5

...
...

...
...

...
...

line

1:

2:

3:

6:

7:

6:

7:

Figure 2 A Run of Algorithm 1 (initial steps). The column on the left indicates the line of code,
the middle depicts the current expression and the column on the right recalls its origin. Gray bars
indicate that the respective symbols are equal. Arrows denote (set) inclusion between symbols.
The gray vertical arrows indicate inclusions due to saturation (Lemma 13), as claimed in item 1 of
Lemma 20. Red and blue arrows indicate derived inclusions (as stated in Lemma 20).

P.A. Abdulla, M. Atig, R. Ciobanu, R. Mayr and P. Totzke 6:11

Given a length-2 simple expression S0 where the rightmost symbol is starred, the algorithm
will first saturate (Definition 14, in line 1), and then alternatingly rotate a copy of the
rightmost symbol (Lemma 17), and saturate the result (see lines 2, 3, 6). Since each such
round extends the length of the expression by one, we additionally collapse them (in line 7)
by adding an extra Kleene star to the symbol at the second position. The crucial observation
for the correctness of this procedure is that the subsumption step in line 7 does not change
the cover sets of the respective expressions.

Observe that Algorithm 1 is well defined because the SAT(Si) are computable by
Lemma 13. Termination is guaranteed by the following simple observation.

I Lemma 20. Let xij ∈ Σ be the symbols computed by Algorithm 1. Then
1. xi+1

j ⊇ xij, for all i > j ≥ 0.
2. xii ⊇ xi−1

i−1 and xi+1
i ⊇ xii−1, for all i ≥ 3.

Proof. The first item is guaranteed by Point 2 of Lemma 13. In particular this means that
xi+1

0 ⊇ xi0 and therefore that (xi+1
0 + 1) ⊇ (xi0 + 1) for all i ≥ 0 (indicated as red arrows in

Figure 2). The second item now follows from this observation by Lemma 15. J

I Lemma 21 (Termination). Algorithm 1 terminates with i ≤ 4 · |P | · (cmax + 1).

Proof. From Lemma 20 we deduce that for all i ≥ 2, the expression Si+1 is point-wise larger
than or equal to Si with respect to the subset ordering on symbols. The claim now follows
from the observation that all expressions Si≥3 have length 4 and that every symbol xi ∈ Σ
can only increase at most |P | · (cmax + 1) times. J

I Lemma 22 (Correctness). Suppose that S1, S`, R be the expressions computed by Algorithm 1
applied to the simple expression x1x

∗
0. Then Cover ([[x1x

∗
0]]) = [[S1]] ∪ [[S`]] ∪ Cover ([[R]]).

Proof. Let S1, . . . S` denote the expressions defined in lines 1,2,3, and 7 of the algorithm. That
is, ` is the least index i such that Si+1 = Si. We define a sequence Ei of expressions inductively,
starting with E1

def= S1 and if Ei = eiie
i
i−1 . . . e

i
0, we let Ei+1

def= ei+1
i+1e

i+1
i ei+1

i−1 . . . e
i+1
0

def=
SAT ((êi0 + 1)Ei). Here, the superscript indicates the position of a symbol and not iteration.
This is the sequence of expressions resulting from unfolding Lemma 19, interleaved with
saturation steps, just in line 6 of the algorithm. That is, the expressions Ei are not collapsed
(line 7) and instead grow in length with i. Still, E1 = S1, E2 = S2 and E2 = S3, but E4 6= S4,
because the latter is the result of applying the subsumption step of line 7 in our algorithm.
Notice that Cover ([[x1x

∗
0]]) =

(⋃
k−1≥i≥1[[Ei]]

)
∪ Cover ([[Ek]]) holds for all k ∈ N. We will

use that⋃
i≥2

[[Ei]] =
⋃
i≥2

[[Si]] = [[S`]]. (2)

We start by observing that for all i, j ∈ N it holds that eij = xij . For i ≤ 3 this holds trivially by
definition of Ei = Si. For larger i, this can be seen by induction using Lemma 13. Towards the
first equality in Equation (2), let Sji be the expression resulting from Si = xii(xii−1)∗xi1(xi0)∗

by unfolding the first star j times. That is, Sji
def= xii(xii−1)(j)xi1(xi0)∗, where the superscript

(j) denotes j-fold concatenation. Clearly, [[Si]] =
⋃
j≥0[[Sji]] and so the ⊇-direction of the first

equality in Equation (2) follows by

[[Sji]] = [[xii(xii−1)(j)xi1(xi0)∗]] ⊆ [[xi+ji+j

(
xi+ji+j−1x

i+j
i+j−2 . . . x

i+j
i

)
xi+1

1 (xi+1
0)∗]]

⊆ [[xi+ji+j

(
xi+ji+j−1x

i+j
i+j−2 . . . x

i+j
i

)(
xi+ji−1 . . . x

i+j
2

)
xi+1

1 (xi+j0)∗]]

= [[Ei+j]],

CONCUR 2018

6:12 Universal Safety for Timed Petri Nets is PSPACE-complete

where the first inclusion is due to Lemma 20. The same helps for the other direction:

[[Ei]] = [[xiixii−1x
i
i−2 . . . x

i
2x
i
1x
i
0]] ⊆ [[xii(xii−1)(i−2)

xi1x
i
0]] = [[Si−2

i]] = [[Si]], (3)

which completes the proof of the first equality in Equation (2). The second equality holds
because [[Si]] ⊆ [[Si+1]] for all i ≥ 2, by Lemma 20, and by definition of S` = S`+1. As a next
step we show that

Cover ([[S`]]) = [[S`]] ∪ Cover ([[R]]) (4)

First observe that [[R]] = [[(x`1 + 1)(x``−1)∗]] = [[(x`1 + 1)x``(x``−1)∗]] and consequently,

Cover ([[R]]) = Cover
(

[[(x`1 + 1)x``(x``−1)∗]]
)

⊆ Cover
(

[[x``(x``−1)∗x`1]]
)

⊆ Cover
(

[[x``(x``−1)∗x`1(x`0)∗]]
)

= Cover ([[S`]])

where the first equation follows by Corollary 18 and the second because L
(
x``(x``−1)∗x`1

)
⊆

L
(
x``(x``−1)∗x`1(x`0)∗

)
. For the left to right inclusion in Equation (4), consider a marking

M ∈ Cover ([[S`]]) \ [[S`]]. We show that M ∈ Cover ([[R]]). Recall that Cover ([[S`]]) consists
of all those markings M so that there exists a finite path

M0
∗−→Disc M

′
0
d1−→Time M1

∗−→Disc M
′
1
d2−→Time M2 . . .M

′
k−1

∗−→Disc Mk

alternating between timed and (sequences of) discrete transition steps, with M0 ∈ [[S`]],
Mk ≥M and all di ≤ max(frac(M ′i)).

By our choice of M , there must be a first expression in the sequence which is not a
member of [[S`]]. Since [[SAT (S`)]] = [[S`]], we can assume an index i > 0 so that Mi /∈ [[S`]]
but M ′i−1 ∈ [[S`]] that is, the step that takes us out of [[S`]] is a timed step.

Because [[S`]] =
⋃
i≥2[[Si]], it must hold that M ′i−1 ∈ [[Sj]] = [[xjj(x

j
j−1)∗xj1(xj0)∗]] for some

index j ≥ 2. We claim that it already holds that

M ′i−1 ∈ [[xjj(x
j
j−1)

∗
xj1]]. (5)

Suppose not. If di < max(frac(M ′i−1)) then Mi ∈ [[∅Sj]] ⊆ [[Sj]] by Lemma 16, contradiction.
Otherwise, if di = max(frac(M ′i−1)), notice that every abstraction absS(M ′i−1) ∈ L(Sj) must
have |S| = 4. So by Lemma 17, Mi ∈ [[(xj0 + 1)Sj]]. But then again

[[(xj0 + 1)Sj]] ⊆ [[SAT ((xj0 + 1)Sj)]] ⊆ [[Sj+1]], (6)

contradicting our assumption that Mi /∈ [[S`]]. Therefore Equation (5) holds. By Lemma 17
we derive that Mi ∈ [[(xj1 + 1)xjj(x

j
j−1)∗]] = [[(xj1 + 1)(xjj−1)∗]] ⊆ [[(x`1 + 1)(x``−1)∗]] = [[R]].

This concludes the proof of Equation (4).

Notice that by Lemma 19 we have that

Cover ([[x1x
∗
0]]) = [[SAT (x1x

∗
0)]] ∪ Cover ([[SAT (x1x

∗
0)]]) = [[S1]] ∪ Cover ([[S1]]). (7)

Analogously, we get for every i ≥ 1 that

Cover ([[Ei]]) = [[SAT (Ei)]] ∪ Cover
(
[[SAT ((xi0 + 1)Ei)]]

)
= [[Ei]] ∪ Cover ([[Ei+1]]) (8)

P.A. Abdulla, M. Atig, R. Ciobanu, R. Mayr and P. Totzke 6:13

This used Lemma 19 and the fact that SAT (Ei) = Ei by construction. Using Equation (8)
and that [[Ei]] ⊆ [[Ei+1]] for i ≥ 2, we deduce

Cover ([[S1]]) = Cover ([[E1]]) = [[E1]] ∪

⋃
i≥2

Cover ([[Ei]])

. (9)

Finally we can conclude the desired result as follows.

Cover ([[x1x
∗
0]]) (7)= [[S1]] ∪ Cover ([[S1]]) (9)= [[S1]] ∪ Cover

⋃
i≥2

[[Ei]]


(2)= [[S1]] ∪ Cover ([[S`]])
(4)= [[S1]] ∪ [[S`]] ∪ Cover ([[R]]) J

4.3 Main Result
The following theorem summarizes our main claims regarding the ∃COVER problem.

I Theorem 23. Consider an instance of ∃COVER with N = (P, T,Var , G,Pre,Post) a
non-consuming TPN where cmax is the largest constant appearing in the transition guards G
encoded in unary, and let p be an initial place and t be a transition.
1. The number of different simple expressions of length m is B(m) def= 2(|P |·(cmax+2)·m)+m.
2. It is possible to compute a symbolic representation of the set of markings coverable from

some marking in the initial set N · {(p, 0)}, as a finite set of simple expressions. I.e.,
one can compute simple expressions S1, . . . , S` s.t.

⋃
1≤i≤`[[Si]] = Cover (N · {(p, 0)}) and

where ` ≤ 3 ·B(2). Each of the Si has length either 2 or 4.
3. Checking if there exists M ∈ Cover (N · {(p, 0)}) with M −→t can be done in O(|P | ·cmax)

deterministic space.

Proof. For Item 1 note that a simple expression is described by a word where some symbols
have a Kleene star. There are |Σ|m different words of length m and 2m possibilities to attach
stars to symbols. Since the alphabet is Σ def= 2P×[cmax+1] and |[cmax + 1]| = cmax + 2, the
result follows.

Towards Item 2, we can assume w.l.o.g. that our TPN is non-consuming by Lemma 8,
and thus the region abstraction introduced in Section 4.1 applies. In particular, the initial
set of markings N · {(p, 0)} is represented exactly by the expression S0

def= {(p, 0)}∅∗ where
∅ ∈ Σ is the symbol corresponding to the empty set. That is, we have [[S0]] = N · {(p, 0)} and
thus Cover ([[S0]]) = Cover (N · {(p, 0)}).

The claimed expressions Si are the result of iterating Algorithm 1 until a previously seen
expression is revisited. Starting at i = 0 and S0

def= {(p, 0)}∅∗, each round will set Si+1, Si+2
and Si+3 to the result of applying Algorithm 1 to Si, and increment i to i+ 3.

Notice that then all Si are simple expressions of length 2 or 4 and that in particular, all
expressions with index divisible by 3 are of the form ab∗ for a, b ∈ Σ. Therefore after at most
B(2) iterations, an expression S` is revisited (with ` ≤ 3B(2)). Finally, an induction using
Lemma 22 provides that

⋃
1≤i≤`[[Si]] = Cover (N · {(p, 0)}).

Towards Item 3, we modify the above algorithm for the ∃COVER problem with the
sliding window technique. The algorithm is the same as above where instead of recording
all the expressions S1, . . . , S`, we only store the most recent ones and uses them to decide

CONCUR 2018

6:14 Universal Safety for Timed Petri Nets is PSPACE-complete

whether the transition t is enabled. If the index i reaches the maximal value of 3 ·B(2) we
return unsuccessfully.

The bounded index counter uses O(log(B(2))) space; Algorithm 1 uses space O(log(B(5)))
because it stores only simple expressions of length ≤ 5. The space required to store the three
expressions resulting from each application of Algorithm 1 is O(3 · log(B(4))). For every
encountered simple expression we can check in logarithmic space whether the transition t is
enabled by some marking in its denotation. Altogether the space used by our new algorithm
is bounded by O(log(B(5))). By Item 1, this is O(|P | · (cmax + 2)) = O(|P | · cmax). J

I Corollary 24. The ∃COVER problem for TPN is PSPACE-complete.

Proof. The PSPACE lower bound was shown in Theorem 7. The upper bound follows from
Lemma 8 and Item 3 of Theorem 23. J

5 Conclusion and Future Work

We have shown that Existential Coverability (and its dual of universal safety) is PSPACE-
complete for TPN with one real-valued clock per token. This implies the same complexity for
checking safety of arbitrarily large timed networks without a central controller. The absence
of a central controller makes a big difference, since the corresponding problem with a central
controller is complete for Fωωω [12].

It remains an open question whether these positive results for the controller-less case can
be generalized to multiple real-valued clocks per token. In the case with a controller, safety
becomes undecidable already for two clocks per token [2].

Another question is whether our results can be extended to more general versions of
timed Petri nets. In our version, clock values are either inherited, advanced as time passes,
or reset to zero. However, other versions of TPN allow the creation of output-tokens with
new non-deterministically chosen non-zero clock values, e.g., the timed Petri nets of [3, 4]
and the read-arc timed Petri nets of [8].

References

1 Parosh Aziz Abdulla, Karlis Čerāns, Bengt Jonsson, and Yih-Kuen Tsay. Algorithmic ana-
lysis of programs with well quasi-ordered domains. Information and Computation, 160(1–
2):109–127, 2000.

2 Parosh Aziz Abdulla, Johann Deneux, and Pritha Mahata. Multi-clock timed networks. In
Annual IEEE Symposium on Logic in Computer Science (LICS), pages 345–354, 2004.

3 Parosh Aziz Abdulla, Pritha Mahata, and Richard Mayr. Dense-timed Petri nets: Checking
Zenoness, token liveness and boundedness. Logical Methods in Computer Science, 3(1),
2007.

4 Parosh Aziz Abdulla and Aletta Nylén. Timed Petri nets and BQOs. In International
Conference on Application and Theory of Petri Nets (ICATPN), volume 2075 of LNCS,
pages 53–70. Springer, 2001.

5 R. Alur and D. L. Dill. A theory of timed automata. Theoretical Computer Science,
126(2):183–235, 1994.

6 Benjamin Aminof, Sasha Rubin, Florian Zuleger, and Francesco Spegni. Liveness of para-
meterized timed networks. In International Colloquium on Automata, Languages and Pro-
gramming (ICALP), volume 9135 of LNCS, 2015.

7 Rémi Bonnet, Alain Finkel, Serge Haddad, and Fernando Rosa-Velardo. Comparing Petri
data nets and timed Petri nets. Technical Report LSV-10-23, LSV Cachan, 2010.

P.A. Abdulla, M. Atig, R. Ciobanu, R. Mayr and P. Totzke 6:15

8 Patricia Bouyer, Serge Haddad, and Pierre-Alain Reynier. Timed Petri nets and timed
automata: On the discriminating power of Zeno sequences. In International Colloquium
on Automata, Languages and Programming (ICALP), pages 420–431. Springer, 2006.

9 David de Frutos Escrig, Valentín Valero Ruiz, and Olga Marroquín Alonso. Decidability of
properties of timed-arc Petri nets. In International Conference on Application and Theory
of Petri Nets (ICATPN), volume 1825 of LNCS, pages 187–206. Springer, 2000.

10 Alain Finkel and Philippe Schnoebelen. Well-structured transition systems everywhere!
Theoretical Computer Science, 256(1–2):63–92, 2001.

11 Eric Goles, Pedro Montealegre, Ville Salo, and Ilkka Törmä. PSPACE-completeness of
majority automata networks. Theoretical Computer Science, 609(1):118 – 128, 2016.

12 Serge Haddad, Sylvain Schmitz, and Philippe Schnoebelen. The ordinal recursive complex-
ity of timed-arc Petri nets, data nets, and other enriched nets. In Annual IEEE Symposium
on Logic in Computer Science (LICS), pages 355–364, 2012.

13 Lasse Jacobsen, Morten Jacobsen, Mikael H. Møller, and Jiří Srba. Verification of timed-
arc Petri nets. In International Conference on Current Trends in Theory and Practice of
Computer Science (SOFSEM), volume 6543 of LNCS, pages 46–72, 2011.

14 Ranko Lazić, Tom Newcomb, Joël Ouaknine, A.W. Roscoe, and James Worrell. Nets with
tokens which carry data. Fundamenta Informaticae, 88(3):251–274, 2008.

15 Valentin Valero Ruiz, Fernando Cuartero Gomez, and David de Frutos Escrig. On non-
decidability of reachability for timed-arc Petri nets. In International Workshop on Petri
Nets and Performance Models. IEEE Computer Society, 1999.

16 Jiří Srba. Timed-arc Petri nets vs. networks of timed automata. In International Conference
on Application and Theory of Petri Nets (ICATPN), volume 3536 of LNCS, pages 385–402.
Springer, 2005.

CONCUR 2018

6:16 Universal Safety for Timed Petri Nets is PSPACE-complete

A Missing Proofs from Section 2

I Lemma 8. The ∃COVER problem for TPN logspace-reduces to the ∃COVER problem for
non-consuming TPN. That is, for every TPN N and for every place p and transition t of N ,
one can construct, using logarithmic space, a non-consumimg TPN N ′ together with a place
p′ and transition t′ of N ′, so that there exists M ∈ CoverN (N · {(p, 0)}) enabling t in N if
and only if there exists M ′ ∈ CoverN ′(N · {(p′, 0)}) that enables t′ in N ′.

Proof. First notice that the first condition in Definition 5, that asks that every transition
takes at most one token each place, is merely a syntactic convenience. A net satisfying this
condition can be constructed by adding a few extra places and intermediate transitions to
first distribute tokens to those extra places for the original transition to consume.

So let’s assume w.l.o.g., that N satisfies this condition and let N ′ be the non-consuming
variant derived from N where for all transitions T , PostN ′(t) def= PostN (t)⊕PreN (t). Notice
that then, for every discrete step M −→t M

′ we have that M ≤M ′. We prove the following
claim.
I Claim 0.1. For every place p and transition t of N there exists M ∈ CoverN (N · {(p, 0})
enabling t in N if, and only if there exists M ′ ∈ CoverN ′(N · {(p, 0)}) that enables t in N ′.

The “N → N ′” direction follows from the observation that the pointwise ordering ≤
on markings, is a simulation: If M −→ N and M ′ ≥ M then there exists an N ′ ≥ N with
M ′ −→ N ′. For the other direction, suppose there exists a witnessing path

m · {(p, 0)} = M0 −→M1 −→M2 −→ · · · −→Mk
t−→

of length k in N ′. We can inductively derive a witnessing path in N backwards, again using
the fact that ≤ is a simulation. First note that if M ′ enables t, then every m′ ·M ′ with
m′ > 0 enables t, (in both nets). Suppose Mi

ρ−→ is a path of length (k − i) that ends in
a t-transition. By the simulation property, there is such a path from every m ·Mi, m > 0.
Further, there must exist markings M ′i−1 ∈ ↓ (N ·Mi−1) and M ′i ∈ ↓ (N ·Mi) such that
M ′i−1 −→M ′i . It suffices to pick M ′i−1

def= B ·Mi−1, where B ∈ N is the maximal cardinality
of any multiset Pre(t) (This number is itself bounded by |P | · |Var | by our assumption on
Pre(t)). We conclude that in N there is a path ending in a t-transition and starting in
marking (B · k) ·M0, which is in N · {(p, 0)}. J

B Missing Proofs From Section 4

I Lemma B.1. For every non-consuming TPN N there are polynomial time computable
functions f : Σ× Σ× Σ→ Σ and g : Σ× Σ× Σ→ Σ with the following properties.
1. f and g are monotone (w.r.t. subset ordering) in each argument.
2. f(α, β, x) ⊇ x and g(α, β, x) ⊇ x for all α, β, x ∈ Σ.
3. For every word w = x0x1 . . . xk over Σ, α def= x0 and β def=

⋃
i>0 xi, and

w′
def= f(α, β, x0)g(α, β, x1) . . . g(α, β, xk) we have [[w′]] = {M ′′ | ∃M ∈ [[w]] ∧M ∗−→Disc

M ′ ≥M ′′}.

Proof. (Sketch). It suffices to show the existence of such functions ft and gt for individual
transitions t ∈ T and −→t instead of ∗−→Disc. The functions f and g can then be obtained
by iterated applications of ft and gt (for all transitions t) until convergence. (In addition
to expanding x, the results of each application ft and gt are also added to α and β,
respectively.) This works, because the functions ft and gt are monotone and operate on the

P.A. Abdulla, M. Atig, R. Ciobanu, R. Mayr and P. Totzke 6:17

finite domain/range Σ. Since we have a polynomial number of transitions, and each symbol
in Σ can increase (by strict subset ordering) at most |P | · (cmax + 1) times, the number of
iterations is polynomial. Moreover, the properties of Item 1, Item 2 and Item 3 carry over
directly from ft and gt to f and g, respectively.

Now we consider the definitions and properties of the functions ft and gt for a particular
transition t. Given a variable evaluation π : Var → R≥0, we define the functions π0 and π>0
from sets over (P×Var) to sets over (P×N) as follows. Intuitively, they cover the parts of the
assignment π with zero/nonzero fractional values, respectively. Let π0(S) def= {(p, c) | (p, y) ∈
S ∧ π(y) = c ∈ N} and π>0(S) def= {(p, c) | (p, y) ∈ S ∧ bπ(y)c = c ∧ frac(π(y)) > 0}. The
definitions are lifted to multisets in the straightforward way.

Now let t be a transition. We say that (α, β) enables t iff ∃π : Var → R≥0 such
that π(y) ∈ G(t)(y) for all variables y and π0(Pre(t)) ⊆ α and π>0(Pre(t)) ⊆ β. Thus if
abs(M) = x0x1 . . . xn then M enables t iff (x0,

⋃
i>0 xi) enables t, since all transition guards

in G(t) are intervals bounded by integers (i.e., t cannot distinguish between different nonzero
fractional values). Moreover, enabledness can be checked in polynomial time (choose integers
for the part in α and rationals with fractional part 1/2 for the part in β).

In the case where (α, β) does not enable t we just let gt(α, β, x) def= x and ft(α, β, x) def= x.
The conditions above are trivially satisfied in this case.

In the case where (α, β) enables t, let gt(α, β, x) def= x ∪ γ where γ is defined as follows.
We have (p, c) ∈ γ iff there is a (p, y) ∈ Post(t) and (q, y) ∈ Pre(t) such that (q, c) ∈ x.
Similarly, let ft(α, β, x) def= x ∪ γ where γ is defined as follows. We have (p, c) ∈ γ iff either
(1) there is a (p, y) ∈ Post(t) and (q, y) ∈ Pre(t) such that (q, c) ∈ x, or (2) c = 0 and there
is a (p, 0) ∈ Post(t). All these conditions can be checked in polynomial time. Item 1 and
Item 2 follow directly from the definition.

Towards Item 3, we show [[w′]] ⊇ {M ′′ | ∃M ∈ [[w]] ∧M −→t M
′ ≥M ′′}. (The proof of

the reverse inclusion ⊆ is similar.) Let w = x0x1 . . . xk, α
def= x0, β

def=
⋃
i>0 xi such that (α, β)

enables t and w′ def= ft(α, β, x0)gt(α, β, x1) . . . gt(α, β, xk). If M ∈ [[w]] and M −→t M
′ then

M ′ ≥M since N is non-consuming. We show that every additional token (p, u) ∈M ′ 	M
is included in [[w′]]. (This implies the inclusion above, since M ′ 	M ≥M ′′ 	M .) For every
additional token (p, u) ∈M ′ 	M there are two cases.

Assume frac(u) > 0. Then the token (p, u) must have inherited its clock value from
some token (q, u) ∈ M via a variable y specified in the Pre/Post of t (since discrete
transitions cannot create new fractional parts of clock values). This case is covered by γ
in the definition of gt above. In particular, if (q, u) ∈M was abstracted to xi in w then
(p, u) ∈M ′ is abstracted to gt(α, β, xi) in w′.
Assume frac(u) = 0. Then there are two cases. In the first case the token (p, u) inherited
its clock value from some token (q, u) ∈ M via a variable y specified in the Pre/Post
of t. This case is covered by part (1) of γ in the definition of ft above. In particular,
(q, u) ∈M was abstracted to x0 in w, because frac(u) = 0. Thus (p, u) ∈M ′ is abstracted
to ft(α, β, x0) in w′. In the second case the token (p, u) got its clock value via a clock-reset
to zero. This case is covered by part (2) of γ in the definition of ft above. In particular,
in this case we must have u = 0, and (p, 0) ∈M ′ was abstracted to ft(α, β, x0) in w′.

It follows that abs(M ′) ≤ w′, i.e., by the ordering on symbols in Σ, every letter in abs(M ′)
is smaller than the corresponding letter in w′. Thus M ′ ∈ [[w′]]. Since M ′ ≥M ′′ and [[w′]] is
downward closed, we also have M ′′ ∈ [[w′]] as required. J

I Lemma 13. For every non-consuming TPN N there are polynomial time computable
functions f : Σ× Σ× Σ→ Σ and g : Σ× Σ× Σ→ Σ with the following properties.
1. f and g are monotone (w.r.t. subset ordering) in each argument.

CONCUR 2018

6:18 Universal Safety for Timed Petri Nets is PSPACE-complete

2. f(α, β, x) ⊇ x and g(α, β, x) ⊇ x for all α, β, x ∈ Σ.
3. Suppose that E = x0x1 . . . xk is a simple expression, α def= x0 and β

def=
⋃
i>0 x̂i, and

E′ = x′0x
′
1 . . . x

′
k is the derived expression defined by conditions:

a. x′0
def= f(α, β, x0),

b. x′i
def= g(α, β, x̂i)∗ for i > 0,

c. x′i carries a star iff xi does.
Then [[E′]] = {M ′′ | ∃M ∈ [[E]] ∧M ∗−→Disc M

′ ≥M ′′}.

Proof. Let f and g be the functions from Lemma B.1, which immediately yields Item 1 and
Item 2. Towards Item 3, consider all words w in L(E) that contain each starred symbol in E at
least once. (The other cases are irrelevant for [[E]] since they are subsumed by monotonicity.)
For each such word w, the α, β derived from w in Lemma B.1 are the same as the α, β
derived from E in Item 3. If xi in E carries a star then w contains a corresponding nonempty
subsequence xi . . . xi. We apply Lemma B.1 to each such w to obtain the corresponding w′.
The word w′ then contains the corresponding subsequence g(α, β, xi) . . . g(α, β, xi). Let E′
then be defined as in Item 3, i.e., by applying functions to the symbols and keeping the stars
at the same symbols as in E. By Lemma B.1, this is computable in polynomial time. We have
L(E′) =

⋃
w∈L(E){w′}. Thus [[E′]] =

⋃
w∈L(E)[[w′]] =

⋃
w∈L(E){M ′′ | ∃M ∈ [[w]] ∧M ∗−→Disc

M ′ ≥M ′′} = {M ′′ | ∃M ∈ [[E]] ∧M ∗−→Disc M
′ ≥M ′′} for Item 3 as required. J

I Lemma 16. [[∅E]] = {M ′ | ∃M ∈ [[E]] ∧M −→d M
′ ∧ d < 1−max(frac(M))}.

Proof. “⊇” : Suppose that M is a non-empty marking in [[E]], d < 1 − max(frac(M))
and M −→d M

′. The assumption on d implies that for every token (p, c) ∈ M we have
int(c) = int(c+ d). In other words, the integral part of the token age remained the same.
Therefore (p, int(c)) = (p, int(c+ d)) ∈M ′. Also from the assumption on d we get that

frac(M ′) = {x+ d | x ∈ frac(M)}

Recall that abs(M) = absS(M) and abs(M ′) = absS′(M ′) for the sets S def= {0} ∪ frac(M)
and S′ def= {0} ∪ frac(M ′). Clearly, 0 /∈ frac(M ′). There are two cases:

1. 0 ∈ frac(M). Then abs(M ′) = ∅abs(M) ∈ L(∅E), and consequently, M ′ ∈ [[∅E]].
2. 0 /∈ frac(M). Then abs(M ′) = abs(M) = ∅w ∈ L(E). Suppose that E = x0α, i.e., E

has x0 ∈ Σ as its leftmost symbol, and w ∈ L(α). If x0 = ∅ then [[E]] = [[∅E]] and thus
abs(M ′) ∈ [[∅E]]. Otherwise, if x0 6= ∅ then x0w ∈ L(E) and x0w = abs(M ′′) for some
marking M ′′ ≥M ′. So again, M ′ ∈ [[∅E]].

“⊆” : W.l.o.g., pick a non-empty marking M ′ ∈ [[∅E]]. If E has ∅ as its leftmost symbol,
then [[∅E]] = [[E]] and the claim follows using d = 0, since then M ′ ∈ [[E]]. So suppose that
E does not start with ∅. Note that by Definition 9, there are no tokens in the marking M ′
whose clocks have fractional value zero. Let

d
def= min(frac(M ′))

be the minimal fractional clock value among the tokens of M ′ and based on this, define
M

def= {(p, c − d) | (p, c) ∈ N ′}. By construction of M we get M −→d M ′ and also
that max(frac(M)) = max(frac(M ′)) − d < 1. Therefore that 1 −max(frac(M)) < 1 − d.
Finally, observe that frac(M) = {x − d | x ∈ frac(M ′)} and 0 ∈ frac(M). It follows that
abs(M ′) = ∅abs(M) and therefore that abs(M) ∈ L(E) and M ∈ [[E]]. This means that M ′
is included in the set on the right in the claim. J

	Introduction
	Timed Petri Nets
	Lower Bound
	Upper Bound
	Region Abstraction
	Acceleration
	Main Result

	Conclusion and Future Work
	Missing Proofs from sec:model
	Missing Proofs From sec:upperbound

