
History-deterministic Timed Automata are Not
Determinizable

Sougata Bose1, Thomas A. Henzinger2, Karoliina Lehtinen3, Sven Schewe1,
and Patrick Totzke1

1 University of Liverpool, UK
2 IST Austria

3 CNRS, Aix-Marseille University, University of Toulon, LIS

Abstract. An automaton is history-deterministic (HD) if one can safely
resolve its non-deterministic choices on the fly. In a recent paper, Hen-
zinger, Lehtinen and Totzke studied this in the context of Timed Au-
tomata [9], where it was conjectured that the class of timed ω-languages
recognised by HD-timed automata strictly extends that of deterministic
ones. We provide a proof for this fact.

Keywords: Timed Automata · History-determinism.

1 Introduction

History-determinism asks for the existence of a strategy to produce a run on
an input word that is given one letter at a time, so that the resulting run is
accepting whenever the given word is in the language.

Similar to automata with bounded ambiguity, history-deterministic ones pro-
vide a middle ground between determinism and non-determinism. They are typ-
ically more succinct, or even more expressive, than their deterministic counter-
parts while preserving some of their good algorithmic properties. For example,
when verifying finite or ω-automata against history-deterministic specifications
(i.e. checking inclusion with languages given by a HD automaton), the costly step
of complementing the specification automaton can be avoided, as checking lan-
guage inclusion can be replaced by checking fair simulation [9], which is polyno-
mial for finite, Büchi and co-Büchi automata [8]. For some coBüchi-recognisable
languages, history-deterministic automata can be exponentially more succinct
than any equivalent deterministic automaton [12], and checking if a Büchi or
coBüchi automaton is history-deterministic is decidable in polynomial time [2,
12].

History-determinism has mostly been studied in the ω-regular setting, i.e., for
finite-state automata recognising languages of infinite words or trees, where the
concept of history-determinism has also been called "good-for-games" [10, 13, 6,
3]. Recently, the notion has been extended to richer automata models, such as
pushdown automata [14, 7] and quantitative automata [4, 5], where deterministic
and nondeterministic models have different expressivity.

2 S. Bose, et al.

In [9], history-determinism was first studied in the context of timed autom-
ata(TA) with ω-regular acceptance conditions [1]. It is shown that for history-
deterministic TA with arbitrary parity acceptance, timed universality, inclusion,
and synthesis are ExpTime-complete, contrary to their undecidability for non-
deterministic Büchi TA [1]. History-deterministic TA with safety acceptance
are effectively determinisable; checking if a given timed automaton is history-
deterministic is decidable in ExpTime for safety or reachability acceptance, and
open for more general acceptance conditions such as Büchi, coBüchi and Parity.

In terms of expressivity, it was conjectured that history-deterministic timed
automata recognise a class of ω-languages strictly between those defined by
deterministic and non-deterministic TAs. The following language is proposed as
a candidate to separate deterministic and HD timed languages.

Let L be the language of all timed words along which eventually events appear
at unit distances: from some time t onwards, for every nonnegative integer i, there
is an event at time t+ i.

It is not difficult to see that this language is recognised by a HD coBüchi
automaton. One can commit to the fractional time at which the longest chain
of events has been observed so far, and can afford to be wrong a finite number
of times. It is intuitively clear that L is not deterministic, considering that any
DTA has only finitely many clocks and thus “cannot remember unboundedly
many past timestamps” for comparisons. It is however notoriously technical to
provide formal arguments for showing that timed languages are not determinis-
tic. Herrmann [11] suggests some high-level lemmas based on reset points, but
these only apply to the Büchi setting.

The main contribution of this paper is a formal argument that the
language L is indeed not recognised by any deterministic timed automaton, even
with general Parity acceptance. We present a scheme to recursively produce, for
a given DTA, a suitable pair of words so that their runs are region-equivalent
(and so either both are accepting or both rejecting) but where only one of them
is in L. The main idea is to produce events and observe the resulting run until
it closes a loop in the region graph, then force that same loop again twice more.
Any resets that occurred in the intermediate loop are lost and overwritten in
the final iteration, which allows to move the timing of the intermediate loop
arbitrarily.

We also provide an example that separates history-deterministic from non-
deterministic timed automata, concluding that indeed, this class of timed lan-
guages sits strictly in between deterministic and non-deterministic ones.

2 Notations

Let N and R≥0 denote the nonnegative integers and reals, respectively. For c ∈
R≥0 we write ⌊c⌋ for its integer and fract(c)

def
= c− ⌊c⌋ for its fractional part.

Timed Alphabets and words. A timed word is a finite or infinite word
w = (a0, t0)(a1, t1), . . . over the alphabet (Σ ×R≥0) where the first components

History-deterministic Timed Automata are Not Determinizable 3

are letters from some finite alphabet Σ and the second components are non-
decreasing and progressing, that is, for all n ∈ N, there is some i and a such that
w[i] = (a, t) and t > n. We sometimes call the (ai, ti) an ai-event with times-
tamp ti. For convenience, we will confuse timed words as above with words over
(Σ∪R≥0), interpreting each letter either as discrete event or a delay. The duration
of a (finite or infinite) timed word is the combined sum of all its delays. More pre-
cisely, a timed word w as above gives rise to the word d0a0d1a1 . . . over (Σ∪R≥0),
where t0 = d0 and ti+1 = ti+di+1. Conversely, the duration and the timed word
of a word over (Σ ∪ R≥0) is given inductively as follows. For any d ∈ R≥0,
a ∈ Σ, α ∈ (Σ ∪ R)∗, and β ∈ (Σ ∪ R)∞ let duration(τ)

def
= 0; duration(d) def

=

d; duration(αβ) = duration(α) + duration(β); tword(ε) = tword(d)
def
= ε;

tword(αd)
def
= tword(α); and tword(ατ)

def
= tword(α)(τ, duration(α)).

Timed Automata are finite-state automata equipped with finitely many real-
valued variables called clocks, whose transitions are guarded by constraints on
clocks. Constraints on clocks C = {x, y, . . .} are (in)equalities x◁n where x ∈ C,
n ∈ N and ◁ ∈ {≤, <}. Let B(C) denote the set of Boolean combinations of clock
constraints, called guards. A clock valuation ν ∈ RC

≥0 assigns a value ν(x) to each
clock x ∈ C. We write ν |= g if ν satisfies the guard g. A timed automaton (TA)
T = (Q, ι, C,∆,Σ,Acc) is given by

– Q a finite set of states including an initial state ι;
– Σ an input alphabet;
– C a finite set of clocks;
– ∆ ⊆ Q × B(C) × Σ × 2C × Q a finite set of transitions; each transition is

associated with a guard, a letter, and a set of clocks to reset.
– Acc ⊆ ∆ω an acceptance condition.

We assume that for all (s, ν, a) ∈ Q×RC
≥0×Σ there is at least one transition

(s, g, a,R, s′) ∈ ∆ so that ν satisfies g. T is deterministic if there is at most one
such enabled transition. I.e., for every state s and for every letter a ∈ Σ, all
transitions from s on a have mutually exclusive guards.

A configuration is a pair consisting of a control state and a clock valuation.
For every configuration (s, ν) ∈ Q× RC

≥0,

1. there is a delay step (s, ν)
d−→ (s, ν + d) for every d ≥ 0, which increments

all clocks by d.
2. there is a discrete step (s, ν)

τ−→ (s′, ν′) if τ = (s, g, a,R, s′) ∈ ∆ is a transi-
tion so that ν satisfies g and ν′ = ν[R → 0], that is, it maps all clocks in R
to 0 and agrees with ν on all other values.

A path ρ = (s0, ν0)
l1−→ (s1, ν1)

l2−→ (s2, ν2) . . . is called a run on timed word w ∈
(Σ ×R≥0)

∞ if tword(l1l2 . . .) = w, where tword(τ) = a, for τ = (s, g, a,R, s′) ∈
∆. It is accepting if ρ ∈ Acc. The language L(s, ν) ⊆ (Σ × R≥0)

ω of a configu-
ration (s, ν) consists of all timed words for which there exists an accepting run
from (s, ν). The language of T is L(T)

def
= L((ι, 0)), the language of the initial

4 S. Bose, et al.

configuration with state ι and the valuation 0 where all clocks set to zero. We
assume that Acc is determined by a parity condition: Q → D maps states to a
integer priority domain D = [i..p] with minimal priority i ∈ {0, 1} and maximal
priority p ∈ N. A run is accepting if the highest priority seen infinitely often
along the run is even. Büchi acceptance corresponds to D = {1, 2} and co-Büchi
acceptance corresponds to D = {0, 1}.

Regions. The following is the standard definition of regions (cf. [1], def. 4.3).
Let T = (Q, ι, C,∆,Σ,Acc) be a timed automaton and for any clock x ∈ C let cx
denote the largest constant in any clock constraint involving x. Two valuations
ν, ν′ ∈ RC

≥0 are (region) equivalent (write ν ∼ ν′) if all of the following hold.

1. For all x ∈ C either ⌊ν(x)⌋ = ⌊ν′(x)⌋ or both ν(x) and ν′(x) are greater
than cx.

2. For all x, y ∈ C with ν(x) ≤ cx and ν(y) ≤ cy, fract(ν(x)) ≤ fract(ν(y)) iff
fract(ν′(x)) ≤ fract(ν′(y)).

3. For all x ∈ C with ν(x) ≤ cx, fract(ν(x)) = 0 iff fract(ν′(x)) = 0.

It follows that there are only finitely many equivalence classes w.r.t. ∼, called
regions, for any given TA. Two configurations (s, ν) and (s′, ν′) are (region)
equivalent, write (s, ν) ∼ (s′, ν′), if s = s′ and ν ∼ ν′. Two runs are (region)
equivalent if they have the same length and stepwise visit region equivalent
configurations. Let maxfrac(ν) = max{fract(ν(x)) | x ∈ C} denote the maximal
fractional value of any clock in configuration ν. We will make use of the following
two properties.

Proposition 1.

1. For any valuation ν and d ≤ 1−maxfrac(ν) we have ν ∼ ν + d.
2. Suppose that (p, ν) ∼ (p′, ν′) and let ρ ∈ (∆ ∪ R≥0)

∗ satisfy duration(ρ) <

1−maxfrac(ν), duration(ρ) < 1−maxfrac(ν′) and (p, ν)
ρ−→ (q, µ).

Then (p′, ν′)
ρ−→ (q′, µ′) for some (q′, µ′) ∼ (q, µ).

Proof (sketch). Part 1 is immediate from the definition of regions.
Part 2 can be shown by induction on the length of ρ using the facts that

region-equivalent configurations enable the same discrete transitions and that
any delay decreases the duration of the remaining path by the same amount it
increases clocks. ⊓⊔

History-deterministic TA. A timed automaton is history-deterministic if one
can resolve non-deterministic choices on-the-fly.

More formally, consider a function r : (∆ ∪ R≥0)
∗ × Σ → ∆ that, given a

finite run ρi = (s0, ν0)
a0−→ (s1, ν1)

a1−→ (s2, ν2) . . . (si, νi) and a next letter ai ∈ Σ,
returns a transition r(ρi, ai) = (si, gi, ai, si+1) ∈ ∆ such that νi |= g. This yields,
for every word w = a0a1 . . . ∈ (Σ ∪ R≥0)

ω and initial configuration (s0, ν0), a
unique run in which the ith step (si, νi)

ai−→ (si+1, νi+1) either results from a

History-deterministic Timed Automata are Not Determinizable 5

q q′

a, x ↓

a, x > 1

a a, x < 1

a, x = 1, x ↓

Fig. 1. A history-deterministic timed co-Büchi automaton for L. The state q′ has
priority 0, i.e. is accepting, while the state q has priority 1.

delay (if ai ∈ R≥0 and (si+1, νi+1) = (si, νi + ai)) or a discrete step chosen by r
(if ai ∈ Σ and r(ρi, ai) = (si, gi, ai, si+1)).

Such a function is called resolver if for any input word w ∈ L(T) the con-
structed run ρ from initial configuration (s0, ν0) = (ι, 0) is accepting. A timed
automaton is history-deterministic if such a resolver exists.

3 D<HD

The interesting aspect of our claim is to show that HD timed automata are
strictly more expressive than deterministic ones. We show that the following
language L over the singleton alphabet Σ = {a} is recognised by a one-clock
history-deterministic co-Büchi automaton yet not by any deterministic Parity
timed automaton. In words, L asks to eventually see events a at unit distance.
Formally,

L
def
= {(a, t0)(a, t1)... | ∃i ∈ N. ∀n ∈ N. ∃j > i. tj − ti = n} .

L is HD recognisable.

We show that L is recognised by the history-deterministic timed ω-automaton,
in Fig. 1. This automaton has an initial rejecting state q, from where there
is a nondeterministic choice to either remain in this state or transition to an
accepting state q′, which resets the unique clock. There are two transitions to
stay in the accepting state: one enabled when the clock value is smaller than 1,
and one enabled at clock value 1, which also resets the clock. If the clock value
grows larger than 1, the only enabled transition goes back to the initial state.
Since this is a co-Büchi automaton, an accepting run must eventually remain in
the accepting state.

First, this automaton recognises L: if w ∈ L then there is an accepting run
that moves to state q′ at time t, where it then remains since the clock x is reset
at the occurrence of each event (a, t + n) for n ∈ N, so the clock value never
grows larger than 1. Conversely, a word accepted by this automaton has a run
that eventually moves to q′ at a time t, and then remains in q′. For the run to

6 S. Bose, et al.

b1,1 b2,1 b3,1 . . .
bi,1

. . .

b1,2 b2,2 b3,2 . . .
bi,2

.

bi,3
. . . b3,3

b2,3
b1,3

0 1/3 2/3 1

si,1 ei,1

fi,j,3

. . .

Fig. 2. Blocks within an interval and ticks within a block

stay in q′, it must reset x at every time-unit after t, so (a, t+ n) must occur in
the word for all n ∈ N, that is, the word is in L.

We now argue that this automaton is also history-deterministic. Given a
finite word read so far and a new letter a at time tnew, the resolver identifies
the earliest time tearly such that a has so far occurred at time tearly + n for all
integers n such that tearly + n ≤ tnew. Let r be the function that maps a run ρ
ending in q to q′ if tnew = tearly +m for some integer m, and otherwise to the
only other available transition.

We claim that this is indeed a resolver. If w ∈ L then there is an earliest time
t such that (a, t+n) occurs in w for all integers n. Since t is minimal, eventually
the resolver r will make its choice whether to move to q′ over a letter (a, tnew)
based on whether tnew = t + m for some integer m. Since time progresses and
(a, t+n) occurs in w for all integers n, the run will eventually transition to q′ at
a time t+m for some m. From there, since (a, t+n) occurs in w for all integers
n, the run over w remains in q′ and is therefore accepting.

It remains to be shown that L is not recognised by a deterministic timed
automaton.

L is not Deterministic Parity recognisable

Suppose towards a contradiction that L is recognisable by some deterministic
Timed Automaton D with Parity acceptance. Let r be the number of its regions.

We will construct two words, one belonging to L and one that does not, so
that the run of D on w is region equivalent to the one on w′. The two words can
only differ in the timing of events since there is only one letter in the alphabet.

Both words will be constructed on the fly, according to the following schema.
Consider the intervals and fractional values in Fig. 2; There are infinitely

many disjoint intervals, bi,j = [si,j , ei,j] so that all bi,1 have start and endpoint
strictly between 0 and 1

3 and are increasing, i.e., si+1,1 < ei,1 for all i. Similarly,
bi,2 ⊆ [13 ,

2
3], and si+1,2 < ei,2 for all i. The third sequence of intervals bi,3 ⊆ [23 , 1]

History-deterministic Timed Automata are Not Determinizable 7

have start and endpoint strictly between 1
3 and 1 and are decreasing : ei+1,3 <

si,3 for all i. Each interval bi,j contains equi-distant values fi,j,0, fi,j,1, . . . , fi,j,r
starting at fi,j,0 = si,0.

We step-wise construct w (and w′) together with the run of D on it. In every
integral interval from i− 1 to i we place events as follows.

– start with a delay of fi,1,1, followed by a discrete event a, then delay of
fi,1,2 − fi,1,1 followed by a, and so on. This induces a run of D on the
prefix constructed and we continue constructing the prefix until the induced
run closes a cycle in the region graph. This implies existence of times fi,1,k
and fi,1,k+ℓ such that the automaton is in configurations (si,1,k, νi,1,k) and
(si,1,k+ℓ, νi,1,k+ℓ) and (si,1,k+ℓ, νi,1,k+ℓ) ∼ (si,1,k, νi,1,k). We denote by Li the
run between fi,1,k and fi,1,k+ℓ.

– Now we force the automaton to close the same cycle, but with all events
occurring at times in the interval bi,2 (respectively b1,2) in w (respectively
w′). This can be done by adding a time delay by si,2 − fi,1,k+ℓ in w followed
by an event a at times fi,2,ℓ′ for all ℓ′ ≤ ℓ. We prove this formally in Lemma
1.

– Finally we force the automaton to close the same cycle once more, with all
times in interval bi,3. This can be done by adding a time delay si,3 − fi,2,ℓ
followed by events at times fi,3,1, fi,3,2, . . . fi,3,ℓ. We prove the correctness of
the construction in Lemma 1.

Consider the cycle Li in the region graph obtained in step 1 above in the
interval [i − 1, i], between fi,1,k and fi,1,k+l. Note that the k and ℓ depends on
i. However, we write k and ℓ without as we only reason about loops within an
integral interval. The duration of the loop, denoted by duration(Li) is fi,1,k+ℓ−
fi,1,k. An important observation is that duration(Li) ≤ ei,j − si,j as the loop
occurs within the interval between si,1 and ei,1.

Lemma 1. Let νi and ν′i be the configurations reached by the run of D at times
i − 1 + fi,1,k and i − 1 + fi,1,k+ℓ. Then 1 − maxfrac(νi + dij) ≥ duration(Li),
where dij = si,j − fi,1,k for j ∈ {2, 3}.

Furthermore, let νij be the configuration reached by the run of D at time
i− 1 + fi,j,1, where j = {2, 3}. The cycle Li is executable from νij.

Proof. We prove this lemma by induction on i. The case i = 1 is easy to see
since maxfrac(ν1 + d1j) ≤ s1,j and therefore 1−maxfrac(ν1 + d1j) ≥ 1− s1,j ≥
e1,j − s1,j ≥ duration(L1).

Furthermore, ν12 = ν′1 + d, where d = s1,2 − f1,1,k+ℓ ≤ 1 − f1,1,k+ℓ ≤
1 − maxfrac(ν′1). Therefore, by Proposition 1.1, ν12 ∼ ν′1 ∼ ν1. For ν = ν1
and ν = ν12, 1 − maxfrac(ν) > e1,3 − s1,3 > duration(L1) as 1 > e1,3 and
maxfrac(ν) < s1,3. By applying Proposition 1.2, L1 is executable from ν12 and
ends in a configuration ν′12 ∼ ν12.

The configuration ν13 equals ν′12+d′, where d′ = s1,3−f1,2,ℓ < 1−maxfrac(ν′12)
as maxfrac(ν′12) ≤ f1,2,ℓ. Proposition 1.1 gives ν13 ∼ ν12, and 1−maxfrac(ν13) ≥

8 S. Bose, et al.

e1,3 − s1,3 ≥ duration(L1). By Proposition1.2, we can conclude that L1 is exe-
cutable from ν13.

To prove the inductive case, we bound the value of maxfrac(νi + dij) for j ∈
{2, 3}. Consider a clock x ∈ C and the last time when it was reset. Either it was
never reset or the reset occurred at time fi′,j′,k′ . For a clock that is never reset,
the fractional part of its value at νi will be fi,1,k. If the clock was last reset within
some blue block, i.e, at time i′ − 1 + fi′,1,k′ , then either i′ < i (corresponds to
previous blue blocks), or k′ < k (corresponds to previous ticks within the current
blue block). In both cases, the fract(x) = fract(fi,1,k − (i′− 1+ fi′,1,k′)) ≤ fi,1,k.

Note that any reset to clock x in a previous red block must also be reset again
in the corresponding green block as the runs in the red and green block are the
same by construction. For a clock x last reset in some previous green block, i.e,
at time i′ − 1 + fi′,3,k′ , fract(x) = fract((i − 1 + fi,1,k) − (i′ − 1 + fi′,3,k′)) =
fi,1,k+(1−fi′,3,k′). Furthermore, fi′,3,k′ > si−1,3 as i′ ≤ i. Therefore, fract(x) ≤
1 + fi,1,k − si−1,3 + 1 which bounds 1− fract(x) ≥ si−1,3 − fi,1,k. Combining all
the posibilities for clock resets, we obtain 1−maxfrac(νi) ≥ si−1,3 − fi,1,k.

It is easy to see that for j ∈ {2, 3}, maxfrac(νi + dij) ≤ maxfrac(νi) + dij .
Therefore, 1−maxfrac(νi + dij) ≥ 1−maxfrac(νi)− dij ≥ 1− (fi,1,k − si−1,3 +
1)− (si,j − fi,1,k) ≥ si−1,3 − si,j ≥ ei,j − si,2. The last step follows from the fact
that ei,j ≤ si−1,3 for j ∈ {2, 3}. Note that the duration of the loop Li is less
than ei,j − si,j and thus completes the proof for fist part of the lemma.

We now show that Li is executable from νi2 and νi3. First, νi2 ∼ νi and
νi3 ∼ νi2 by repeated application of Proposition 1.1. This is similar to the
argument in the base case. We just showed that 1 − maxfrac(νi2) > si−1,3 −
si,2 > ei,2 − si,2 = duration(Li). The same argument holds for νi3 as well.
Also, maxfrac(νi) ≤ 1 − si−1,3 + fi,1,k and hence 1 −max νi ≥ si−1,3 − fi,1,k <
ei,3 − si,3 < duration(Li). Therefore, by Proposition 1.2, Li is executable from
both νi2 and νi3.

Notice that the so-constructed word w is not in L because all bi,j are disjoint.
The word w′ will be constructed almost the same way, with the only exception
that the first repetition of the cycle is move not to bi,2 but always the same
interval, b1,2. Its easy to see that Lemma 1 can be modified where bi,2 is replaced
everywhere by b1,2. In particular this means that w contains an event at time
n + s1,2 for any n ∈ N, and thus must be contained in L. Therefore, D has an
accepting run on w′ but the run on w′ is visits the same sequence of states as
the run of D on w. Therefore, D must accept w as well, which is a contradiction
proving that L is not accepted by any deterministic Timed Automaton with
Parity acceptance.

4 HD<ND

We now show that non-deterministic TA are more expressive than history-
deterministic TA. In particular, we show that the following language L′ over
the singleton alphabet Σ = {a} is recognised by a one-clock non-deterministic

History-deterministic Timed Automata are Not Determinizable 9

q q′ qf
a, x ↓

aa

a, x = 1

a

Fig. 3. A non-deterministic timed reachability automaton for L′.

TA with reachability acceptance but not by any history-deterministic Parity TA.
In words, L′ asks to see two events a at unit distance. Formally,

L′ def
= {(σ0, t0)(σ1, t1)... | ∃i, j ∈ N. tj − ti = 1 and σi = a and σj = a} .

The non-deterministic TA shown in Figure 3 accepts the language L′ by
guessing positions i by reading an a, resetting a clock x and checking that it sees
an a at distance 1.

Assume towards a contradiction that there exists a HD TA H with k clocks
and maximum constant in guards cx, that recognises L′. For all i ≤ k consider
the finite word

wi =

(
a,

1

k + 1

)
· · ·

(
a,

k + 1

k + 1

)(
a, 1 +

i

k + 1

)
that sees k + 1 equi-distant events in the interval [0, 1] and then repeats the ith
fractional value in the next integral interval. All these wi are in L′ and so the
resolver gives a run on all such words. Note that the prefix up to time 1 is the
same on all wi and therefore the resolver gives the same run, on all of them until
then. Consider the configuration ν reached by the resolver after reading the prefix
up until and including the event (a, 1) (see Figure ??). Since H has k clocks and
k+1 events a, there exists an j ≤ k such that ν(x) ̸= 1− j

k+1 holds for all clocks
x. That is, either no clock is reset while reading the jth event, or any clock reset
at that time is again reset later. It follows that ν + j

k+1 ∼ ν + j
k+1 +

(
1

2(k+1)

)
.

Finally, let’s take the word

w′ =

(
a,

1

k + 1

)(
a,

2

k + 1

)
· · ·

(
a,

k + 1

k + 1

)(
a, 1 +

j

k + 1
+

1

2(k + 1)

)
Clearly w′ is not in L′. However, H must have a run on w′ which follows the
accepting run of H on wj . The final step in this run can be executed because
the two runs end up in equivalent configurations. A contradiction. ⊓⊔

We thus conclude that the classes of languages accepted by deterministic,
history-deterministic and non-deterministic TAs are all different.

References

1. Alur, R., Dill, D.L.: A theory of timed automata. Theoretical Computer Science
126(2), 183 – 235 (1994). https://doi.org/10.1016/0304-3975(94)90010-8

10 S. Bose, et al.

2. Bagnol, M., Kuperberg, D.: Büchi Good-for-Games Automata Are Efficiently Rec-
ognizable. In: IARCS Annual Conference on Foundations of Software Technol-
ogy and Theoretical Computer Science (FSTTCS). Leibniz International Proceed-
ings in Informatics (LIPIcs), vol. 122, pp. 16:1–16:14. Schloss Dagstuhl–Leibniz-
Zentrum fuer Informatik (2018). https://doi.org/10.4230/LIPIcs.FSTTCS.2018.16

3. Boker, U., Lehtinen, K.: Good for games automata: From nondeterminism to alter-
nation. In: International Conference on Concurrency Theory (CONCUR). LIPIcs,
vol. 140, pp. 19:1–19:16 (2019)

4. Boker, U., Lehtinen, K.: History Determinism vs. Good for Gameness in Quantita-
tive Automata. In: IARCS Annual Conference on Foundations of Software Technol-
ogy and Theoretical Computer Science (FSTTCS). Leibniz International Proceed-
ings in Informatics (LIPIcs), vol. 213, pp. 38:1–38:20. Schloss Dagstuhl – Leibniz-
Zentrum für Informatik (2021). https://doi.org/10.4230/LIPIcs.FSTTCS.2021.38

5. Boker, U., Lehtinen, K.: Token games and history-deterministic quantitative au-
tomata. In: IARCS Annual Conference on Foundations of Software Technology
and Theoretical Computer Science (FSTTCS). pp. 120–139. Springer International
Publishing (2022)

6. Colcombet, T.: The theory of stabilisation monoids and regular cost functions. In:
International Colloquium on Automata, Languages and Programming (ICALP).
pp. 139–150 (2009)

7. Guha, S., Jecker, I., Lehtinen, K., Zimmermann, M.: A Bit of Nonde-
terminism Makes Pushdown Automata Expressive and Succinct. In: In-
ternational Symposium on Mathematical Foundations of Computer Science
(MFCS). Leibniz International Proceedings in Informatics (LIPIcs), vol. 202,
pp. 53:1–53:20. Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021).
https://doi.org/10.4230/LIPIcs.MFCS.2021.53

8. Henzinger, T.A., Kupferman, O., Rajamani, S.K.: Fair simulation. Information and
Computation 173(1), 64–81 (2002)

9. Henzinger, T.A., Lehtinen, K., Totzke, P.: History-deterministic timed automata.
In: International Conference on Concurrency Theory (CONCUR) (2022)

10. Henzinger, T.A., Piterman, N.: Solving games without determinization. In: Com-
puter Science Logic (CSL). pp. 395–410. Springer Berlin Heidelberg (2006)

11. Herrmann, P.: Timed automata and recognizability. Information Processing Letters
65(6), 313–318 (1998). https://doi.org/10.1016/S0020-0190(97)00217-2

12. Kuperberg, D., Skrzypczak, M.: On determinisation of good-for-games autom-
ata. In: International Colloquium on Automata, Languages and Programming
(ICALP). pp. 299–310 (2015)

13. Kupferman, O., Safra, S., Vardi, M.Y.: Relating word and tree automata. Ann.
Pure Appl. Logic 138(1-3), 126–146 (2006)

14. Lehtinen, K., Zimmermann, M.: Good-for-games ω-pushdown automata. Logical
Methods in Computer Science 18 (2022)

