
History-deterministic Vector Addition Systems1

Sougata Bose #2

University of Liverpool, UK3

David Purser #4

University of Liverpool, UK5

Patrick Totzke #6

University of Liverpool, UK7

Abstract8

We consider history-determinism, a restricted form of non-determinism, for Vector Addition Systems9

with States (VASS) when used as acceptors to recognise languages of finite words, both with10

coverability and reachability acceptance. History-determinism requires that the non-deterministic11

choices can be resolved on-the-fly; based on the past and without jeopardising acceptance of any12

possible continuation of the input word.13

Our results show that the history-deterministic (HD) VASS sit strictly between deterministic and14

non-deterministic VASS regardless of the number of counters. We compare the relative expressiveness15

of HD systems, and closure-properties of the induced language classes, with coverability and16

reachability semantics, with and without ε-labelled transitions.17

Whereas in dimension 1, inclusion and regularity remain decidable, from dimension two onwards,18

HD-VASS with suitable resolver strategies, are essentially able to simulate 2-counter Minsky machines,19

leading to several undecidability results: It is undecidable whether an VASS is history-deterministic,20

or if a language equivalent history-deterministic VASS exists. Checking language inclusion between21

history-deterministic 2-VASS is also undecidable.22

2012 ACM Subject Classification Theory of computation → Formal languages and automata theory23

Keywords and phrases Vector Addition Systems, History-determinism, Good-for Games24

1 Introduction25

Vector addition systems with states (VASSs) are an established model of concurrency with26

extensive applications in modelling and analysis of hardware, software, chemical, biological27

and business processes. They are non-deterministic finite automata equipped with a fixed28

number of integer counters that may be incremented or decremented when changing control29

state, as long as they remain non-negative.30

We explore the notion of history-determinism for VASSs when used as acceptors to define31

languages of finite words. History-determinism is a restricted form of non-determinism. In32

a nutshell, a non-deterministic automaton is history-deterministic (HD) if there exists a33

resolver, a strategy to stepwise produce a run for any input word given one letter at a time,34

in such a way that if the given word is in the language of the automaton (some accepting35

run exists) then the run produced by the resolver is also accepting.36

The original motivation for HDness comes from formal verification: most modelling37

formalisms incorporate some form of non-determinism, e.g., to over-approximate determ-38

inistic algorithms, to state specifications concisely, or to model system behaviour due to39

uncontrollable external environments. However, for non-deterministic models, many formal40

analysis techniques require costly determinization steps that are often the main barrier to41

efficient procedures. History-deterministic automata provide a middle ground: they are42

typically more succinct, or even more expressive, than their deterministic counterparts while43

preserving some of their good algorithmic properties, They were also called “good-for-games”44

as they preserve the winner of games under composition and thus allow solving games without45

determinization.46

mailto:sougata.bose@liverpool.ac.uk
mailto:d.purser@liverpool.ac.uk
https://orcid.org/0000-0003-0394-1634
mailto:totzke@liverpool.ac.uk
https://orcid.org/0000-0001-5274-8190

2 History-deterministic Vector Addition Systems

Any resolver must always chose language-maximal successors. When considering languages47

of finite words, being able to continue making language-maximal choices is even a sufficient48

condition for being a resolver. In this case therefore, resolvers can be assumed to be positional49

(base decision only on the current configuration, not the full history leading to it). Perhaps50

surprisingly, resolvers for VASSs are not necessarily monotone, and may require more than51

just comparing counter values to integer thresholds (see Appendix A).52

Related Work. VASSs, also known as Petri nets or partially blind counter automata, have53

been studied intensively since their inception in the 1960s. Early works focussed on modelling54

capabilities, relative expressiveness and closure properties of their recognised languages55

[14, 12, 36, 21] but the bulk of research on VASSs concerns decidability and complexity56

of decision problems [23, 28, 32, 24, 20, 22, 2, 27, 9]. In order to define languages with57

VASSs, different definitions distinguish between coverability and reachability acceptance58

conditions, and whether or not silent (ε) transitions are permitted. Checking language59

emptiness amounts to testing coverability or reachability, which are EXPSPACE [32, 28] and60

Ackerman-complete [9] respectively. Many other decision problems are undecidable, such as61

checking language inclusion, bisimulation and related equivalences [19] as well as checking62

(language) regularity [22]. Universality is undecidable for reachability acceptance [36] and63

decidable for coverability acceptance, via a well-quasi-order argument but with extremely64

high complexity (Hyper-Ackermannian in general [20] and still Ackermannian in dimension 165

[18]). These negative results by and large rely on the presence of non-deterministic choice,66

which motivates restricted forms of non-determinism such as bounded ambiguity (that allows67

for decidable inclusion [8]) or the notion of history-determinism studied here.68

VASS recognisable languages over infinite words are significantly more complex than their69

finite-word cousins, both topologically and in terms of decision problems: already 1-VASS70

with (cover) Büchi acceptance can recognise Σ1
1-complete languages [34, 11] and have an71

undecidable universality problem [1]. Again, the added complexity is due to non-determinism72

(languages of deterministic models are Borel, lower in the analytical hierarchy).73

History-determinism was introduced independently, with slightly different definitions, by74

Henzinger and Piterman [16] for solving games without determinization, by Colcombet [7]75

for cost-functions, and by Kupferman, Safra, and Vardi [25] for recognising derived tree76

languages of word automata. These different definitions all coincide for finite automata [3]77

but not necessarily for more general quantitative automata [4].78

Until now, history-determinism has mainly been studied for finite-state systems. In this79

paper we continue a recent line of work [13, 26, 10, 15, 6, 31] that studies the notion for80

infinite-state models capable of recognising languages beyond (ω-)regular ones. For infinite-81

state systems, deterministic models are in general less expressive, not just less succinct,82

than their non-deterministic counterparts. In some cases they can be determinised, such83

is the case for quantitative automata [4] and timed automata with safety and reachability84

acceptance [15]. In contrast, for pushdown automata [13] and Parikh automata (VASS85

with Z-valued counters; [10]), and timed automata with co-Büchi acceptance, allowing86

history-determinism strictly increases expressiveness (and adds more closure properties)87

compared to the deterministic variant. Whenever HD automata are strictly less expressive88

than fully non-deterministic ones, one can reasonably ask if there exists an equivalent HD89

automaton for a given non-deterministic one. This language HDness question is undecidable90

for pushdown and Parikh-automata [13, 10]. In fact, even checking if a given (pushdown or91

Parikh) automaton is itself HD is undecidable (for Parikh automata this follows for example92

by the undecidability of 2-dim. robot games [30]). On the other hand, checking HDness for93

timed automata is decidable [15] and various models of quantitative automata [5].94

S. Bose, D. Purser and P. Totzke 3

Most closely related to our work is that of Prakash and Thejaswini [31] who study history-95

deterministic one counter automata (OCA; PDA with unary stack alphabet) and nets (OCN;96

1-dimensional VASSs) with state-based (coverability) acceptance. They show that checking97

automata HDness and inclusion are undecidable for OCA but remain decidable for OCNs. A98

useful consequence of their construction is that for any OCN one can construct a language99

equivalent deterministic OCA (with zero-test), albeit with a doubly exponential blow-up.100

They do not consider closure properties and leave open whether history-deterministic OCNs101

can be determinised, are equally expressive as fully non-deterministic OCNs, or fall strictly in102

between in expressiveness. Our work extends and generalises this paper in several directions.103

Our Contributions. We study history-deterministic VASSs on finite words and without104

restricting the dimension. We consider coverability and reachability acceptance conditions,105

with and without silent (ε) transitions, and in all cases study the relative expressiveness,106

closure properties, and related decision problems.107

We show that HD VASSs are more expressive than deterministic, but less expressive108

than non-deterministic ones. The same is true for languages recognised by VASSs of any109

fixed dimensions k, which answers the open question in [31] for k = 1. In particular, we110

provide examples of 1-dim. HD VASSs for which no equivalent deterministic ones exist in111

any dimension k, and also demonstrate that HD VASSs are strictly more expressive than112

finitely sequential ones (another restricted form of non-determinism).113

We show that HD VASS languages are closed under inverse homomorphisms and inter-114

sections for both coverability and reachability semantics, although sometimes necessarily115

increasing the dimension. Coverability languages are closed under unions, whereas reach-116

ability languages are not. Neither are closed under other standard operations, including117

complementation, concatenation, homomorphisms, iteration and commutative closures.118

We report that HDness is not sufficient for decidability of inclusion checking, even for119

2-dimensional VASSs. A direct consequence is the undecidability of checking HDness of a120

given 2-VASS, contrasting decidability in dimension 1. Further, it is undecidable to check if a121

given VASS has a HD equivalent, and also if a given HD VASS recognises a regular language.122

2 Definitions123

Vector-Addition Systems and their recognised languages. A k-dimensional vector-addition124

system (k-VASS) is a non-deterministic finite automaton whose transitions manipulate k125

non-negative integer counters. It is given by A = (Σ, Q, δ, s0, F) consisting of a finite alphabet126

Σ; a finite set of control states Q; a transition relation δ ⊆ Q × Σ ∪ {ε} × Zk × Q; an initial127

state s0, and a subset F ⊆ Q of final states. For a transition t = (s, a, e, s′) ∈ δ we sometimes128

write label(t) def= a for the letter from Σ ∪ {ε} it reads and effect(t) def= e for its effect on the129

counters. ∥δ∥ denotes the largest absolute effect among all transitions on any counter.130

A VASS naturally induces an infinite-state labelled transition system in which each131

configuration is a pair (s, v) ∈ Q × Nk comprising a control state and a non-negative integer132

vector. Every transition t = (s, a, e, s′) ∈ δ gives rise to steps (s, v) t−→ (s′, v′) for all v, v′ ∈ N133

with v′ = v + e. We will call a path ρ = (s0, v0) t1−→ (s1, v1) t1−→ . . .
tk−→ (sk, vk) a run of the134

VASS and say it is cycle if s0 = sk. Its effect is the sum of all transition effects effect(ρ) def=135 ∑k
i=1 effect(ti). A run ρ as above reads the word label(ρ) = label(t1)label(t2) . . . label(tk) ∈ Σ∗.136

It is accepting if it ends in a final configuration.137

We consider two different definitions for what constitutes a final (also accepting) con-138

figurations: In the coverability semantics, the set of final configurations is F × N. In the139

reachability semantics, only configurations from F × 0 are final. We define the language140

4 History-deterministic Vector Addition Systems

LA(s, v) ⊆ Σ∗ of a configuration (s, v) to contain exactly all words read by some accepting141

run starting in (s, v) (we omit the subscript A if the VASS is clear from context). For142

notational convenience, we will lift this to sets S ⊆ Q × Nk of configurations in the natural143

way: LA(S) def=
⋃

(s,v)∈S LA(s, v) and define the language of A as that of its initial state with144

all counters zero: L(A) def= LA(s0, 0).145

We will sometimes denote languages using short-hand “counting expressions”. For instance,146

we write anb≤n for the language {anbm | n ≥ m} over Σ = {a, b}.147

Deterministic and finitely-sequential VASSs. A VASS A = (Σ, Q, δ, s0, F) is called ε-free if148

no transition is labelled by ε. It is deterministic if it is ε-free and for every pair (s, a) ∈ Q ×Σ149

there is at most one transition t = (s, a, e, s′) ∈ δ. A VASS is finitely sequential if it is150

the finite union of deterministic VASSs. That is, all transitions from its initial state s0 are151

labelled by ε and lead to an initial state of one of finitely many deterministic VASSs.152

History-deterministic VASSs. A VASS is history-deterministic if one can resolve non-153

deterministic choices on-the-fly. More formally, consider a function r : (Q × Nk × δ)∗(Q ×154

N)×Σ → δ that, given a finite run ρi = (s0, v0) t1−→ (s1, v1) t2−→ . . .
ti−→ (si, vi) and a next letter155

ai+1 ∈ Σ, returns a transition r(ρi, ai) = ti+1 = (si, ei, si+1) ∈ δ with label(ti+1) = ai+1156

and vi + effect(ti+1) ∈ Nk. This yields, for every word w = a0a1 . . . ∈ Σ∗ and initial157

configuration (s0, v0), a unique run in which the ith step (si−1, vi−1) ti−→ (si+1, vi+1) results158

from a transition chosen by r. Such a function is called resolver if for any input word159

w ∈ LA(s0, v0) the constructed run ρ from initial configuration (s0, v0) is accepting. A160

k-VASS is history-deterministic if such a resolver exists.161

Language Classes. We denote by k-D, k-H,and k-N the classes of languages recognised by162

k-dimensional ε-free deterministic, history-deterministic, and fully non-deterministic VASSs,163

in the coverability semantics. Similarly, let k-D0, k-H0, and k-N 0 denote the classes of164

languages recognised by k-dimensional ε-free deterministic, history-deterministic, and fully165

non-deterministic VASSs, in the reachability semantics. Finally, define k-Hε,k-Nε k-H0
ε, and166

k-N 0
ε , as above but without the restriction to ε-free systems. When dropping the parameter167

k we refer to the union over all dimensions k. For instance, H def=
⋃

k∈N k-H.168

3 Expressiveness169

We consider the hierarchy of language classes recognised by vector addition systems, varying170

definitions in three directions: the degree of non-determinism, reachability vs coverability171

acceptance, and with/without ε-transitions.172

The situation is depicted in Figure 1. We start by looking at the classes defined by ε-free173

systems (in Section 3.1) before discussing the effect of ε-transitions (in Section 3.2) and174

following this up with a comparison with finitely-sequential VASS (in Section 3.3).175

3.1 Separating determinism, history-determinism and non-determinism176

In terms of the classes of languages they define, history-deterministic VASSs are strictly more177

expressive than deterministic ones, and in turn strictly subsumed by fully non-deterministic178

ones. The following theorem states this formally. Its proof is split into Lemmas 2–5.179

▶ Theorem 1. For all k ≥ 1, we have k-D ⊊ k-H ⊊ k-N and k-D0 ⊊ k-H0 ⊊ k-N 0.180

▶ Lemma 2. L1
def= anb≤n + a∗b∗c ∈ 1-H \ D.181

S. Bose, D. Purser and P. Totzke 5

k-D

k-H

k-Nk-Hε

k-Nε

k-D0

k-H0

k-H0
ε k-N 0

k-N 0
ε

k = 1 eqiv
k ≥ 2 : L6

L3
L7 L4

L2L1

L3

L3k = 1 eqiv
k ≥ 2 : L6

L6

∋ L4 ̸∈

∋ L6 ̸∈ ̸∋ L3 ∈

∋ L6 ̸∈ ̸∋ L3 ∈

∋ L4 ̸∈

̸∋ L5 ∈Coverability Semantics Reachability Semantics

Language Definition Alphabet Page
L1 anb≤n + a∗b∗c {a, b, c} 4
L2 anb≥n# {a, b, #} 5
L3 (a + b)∗anb≤n {a, b} 6
L4 anb≤n {a, b} 7
L5 anbn {a, b} 7
L6 bin(n)#0≤n#, where bin(n) is n in binary. {0, 1, #} 7
L7 anb≤n# {a, b, #} 7

Figure 1 Comparison of expressive power of VASS and H-VASS language classes, with and
without silent transitions, in reachability and coverability semantics. A solid arrow A −→ B indicates
strict inclusion A ⊊ B, with a separating language denoted on the edge. A red/dashed line indicates
pair-wise incomparability, with the separating languages denoted. Dotted arrows indicate a special
case.

Proof. L1 can be recognised by the 1-H-VASS depicted in Figure 2a. Note that the VASS182

is HD: the only non-deterministic choice is whether to go to q2 or q3 on b, for which the183

resolver must always chose q2 if available (if the counter is non-zero). The choice of resolver184

is unique as going to q3 unnecessarily is not language maximal.185

For a contradiction, suppose L1 accepted by a k-D-VASS with n states. Since wn+1 =186

an+1bn+1 ∈ L1 the run is accepted. Since there exists i < j such that an+1bi is in state187

q with counter vector v ∈ Nk and an+1bj is in state q with counter vector v′ ∈ Nk. Since188

an+1bi ∈ L1, state q is accepting.189

Suppose v′−v ≥ 0, then an+1bi+(j−i)n ̸∈ L is accepted. Therefore there exists a dimension190

such that v′ − v is negative. Hence for some ℓ we have an+1bi+(j−i)ℓ is a dead run. Hence it191

cannot accept an+1bi+(j−i)ℓc ∈ L1. ◀192

▶ Lemma 3. L2
def= anb≥n ∈ 1-H0 \ D0

193

Proof. L2 is recognised by the H-VASS0 depicted in Figure 2b. On b the resolver can choose194

between decrementing the counter and no effect, the resolver will always chose to decrement195

whenever the counter is non-zero.196

We have L2 ̸∈ D0. Suppose a D-VASS0 with n states exists, consider the run on the word197

wn+1 = an+1bn+1 ∈ L2. There exists two prefixes of the run in which an+1bi and an+1bj
198

revisit a state, and so the system is cyclic on states on extension of an+1bi with b∗. Thus, in199

6 History-deterministic Vector Addition Systems

q1 q2 q3 q4

a,+

b,−

b

b,−

b

b

c
c

c

(a) A 1-H-VASS recognising L1.

q1 q2

a,+
b,−

b

b,−

b

(b) A 1-H-VASS0 recognising L2.

Figure 2 Transitions labelled with + increment the counter by 1, and those labelled by −
decrement the counter by 1 and otherwise have no effect on the counter.

order to accept wn+1bi for all i the automaton must visit only accepting states throughout200

the cycle. Since an+1bi ̸∈ L2 the counter must be non-zero, but zero at u = an+1bi+(j−i)n
201

since u ∈ L, thus the effect of the cycle is decreasing on some counter, there must exist k > n202

such that the run is dead on an+1bi+(j−i)k. This is a contradiction as an+1bi+(j−i)k ∈ L2. ◀203

▶ Lemma 4. L3
def= {a, b}∗anb≤n ∈ 1-N \ H.204

Proof. L3 can be accepted a 1-N-VASS, which non-deterministically guesses the start of the205

last a∗b∗ block and accepts if there are fewer b’s than a’s.206

We show that L3 ̸∈ H. Suppose for contradiction there is a k-H-VASS with |Q| states,207

∥δ∥ the largest effect on a counter in any transition and a resolver r.208

Consider a sequence of accepted words wℓ = wℓ−1amℓbmℓ , with w0 the empty word,209

where mℓ is large enough so that there exist rℓ,1 < rℓ,2 ≤ mℓ, such that the run given by210

the resolver r on wℓ−1arℓ,1 has configuration (qℓ, vℓ) and wℓ−1arℓ,2 has (qℓ, uℓ), with uℓ ≥ vℓ.211

In other words, whilst reading amℓ , the run encounters a cycle on state qℓ which does not212

strictly decrease any counter value. This occurs due to Dickson’s lemma and depends on213

|Q|, ∥δ∥, k and m1, . . . , mℓ−1. This gives an inductive way to build words wℓ consisting of ℓ214

blocks of as and bs such that each a-block visits a non-decreasing cycle. We consider the215

word wn for n = 2k + 1 and the run ρ on wn given by the resolver.216

Given a vector v ∈ Nk, we define support(v) = {i | vi ≠ 0}. Since there are n blocks of a in217

wn, each of which has a non-decreasing cycle (qℓ, uℓ) and (qℓ, vℓ), for ℓ ∈ {1, . . . , n}. However,218

there are 2k + 1 possible choices for support(uℓ − vℓ). Therefore, there exists ℓ < ℓ′ such that219

support(uℓ − vℓ) = support(uℓ′ − vℓ′). In other words, there are two a-blocks which have a220

non-decreasing cycle such that the effect of the cycles have the same support. Let R ∈ N221

be such that R(uℓ − vℓ) ≥ uℓ′ − vℓ′ , which exists since support(uℓ − vℓ) = support(uℓ′ − vℓ′)222

and uℓ − vℓ > 0 and uℓ′ − vℓ′ > 0.223

Let u be the word such that wℓ′−1 = wℓu, i.e, the part of between the ℓth b-block and ℓ′th224

a-block. Consider the word w′ = wℓ−1amℓ+R(rℓ,2−rℓ,1)bmℓuamℓ′ −(rℓ′,2−rℓ′,1)bmℓ′ . The word225

w′ is therefore obtained by adding R(rℓ,2 − rℓ,1) many a’s in the ℓth a-block and removing226

(rℓ′,2 − rℓ′,1) many a’s from the ℓ′th a-block. Note that w′ ̸∈ L3, since the last block has more227

b’s than a’s. We will show that there is a accepting run on w′, by modifying the resolver run228

on w′
ℓ.229

Let ρℓ′ be the run on wℓ′ given by the resolver r. We consider the run ρ′ where we take230

the cycle between (qℓ, vℓ) and (qℓ, uℓ) an additional R times in the ℓ-th a-block, but removes231

the cycle between (qℓ′ , vℓ′) and (qℓ′ , uℓ′). We show that ρ′ is a run on w′. To see this, we232

must verify that no counter drops below zero in ρ′. Note that the runs ρℓ′ and ρ′ are the233

same till the prefix wℓ−1arℓ,2 after which it reaches the configuration (qℓ, uℓ). Then it does R234

additional cycles which results in the configuration (qℓ, uℓ + R(uℓ − vℓ)). From this point ρ′
235

S. Bose, D. Purser and P. Totzke 7

an1 bn1 an2

r1

bn2 w ank

r2

bnk
accepting

an1 bn1 an2+R·r1 bn2 w ank−r2 bnk

R times
s.t. R · u ≥ v

u ≥ 0
v ≥ 0 accepting

(but shouldn’t)

Figure 3 Proof that L3 ̸∈ H (Lemma 4). For two cycles of lengths r1, r2 chosen in different
a∗-blocks with effects u, v ≥ 0 and support(u) = support(v), repeating the first cycle and removing
the second one constructs an accepting run on a word /∈ L3.

follows the same sequence of transitions as ρℓ′ till it reads the prefix up to wℓ′−1arℓ′,1 ending236

up in the configuration (qℓ′ , vℓ′ + R(uℓ − vℓ)). Since vℓ′ + R(uℓ − vℓ) ≥ vℓ′ + (uℓ′ − vℓ′) = uℓ′ ,237

ρ′ can follow the suffix of the run ρℓ′ from (qℓ′ , uℓ′) on amℓ′ −rℓ′,2bmℓ′ , which ends in the same238

state as ρℓ′ with a non-zero counter value. This is a contradiction as we get a accepting run239

on w′ /∈ L3. We conclude that there is no k−H-VASS that recognises the language L3. ◀240

▶ Lemma 5. L4
def= anb≤n ∈ 1-N 0 \ H0

241

Proof. In the non-deterministic case reachability semantics can recognise L4 ∈ 1-N 0: On a242

a non-deterministic machine non-determinsitically chooses to increment by 1 or to have no243

effect, guessing ahead of time how many b’s will be seen. On b the machine moves to a new244

state and counts down, preventing more b’s than the guessed number.245

However L4 cannot be recognised with history-determinism. To see this, observe that246

since an ∈ L4 all the counters must be zero after reading an, then for n larger than the247

number of state the machine cannot distinguish anbn ∈ L4 and anbn+1 ̸∈ L4. ◀248

3.2 Silent transitions249

First observe that L5
def= anbn can be recognised with reachability semantics (even D0), but250

cannot be recognised under coverability semantics (even Nε). On the other hand L4 = anb≤n
251

can be recognised by coverability semantics (even D), but cannot be recognised by H0
ε, thus252

together L4 and L5 show pairwise incomparability between reachability and coverability253

semantics for deterministic and history-deterministic systems. However, if the languages have254

an end marker then coverability acceptance can be turned into reachability acceptance (with255

ε-transitions) as ε-transitions can be used to take the counters to zero at the end marker.256

The separation between N and Nε is due to [12] for which L6
def= bin(x)#0≤x# ∈ Nε \N ,257

where bin(n) is the binary representation of n ∈ N in 1{0, 1}∗. This language cannot258

be recognised without ε transitions (see Appendix B.1 for details). We observe that the259

same language separates H and Hε, as the 2-VASS of [12] recognising L6 is in fact history-260

deterministic. However, in dimension 1, the two classes collapse:261

▶ Lemma 6. 1-H = 1-Hε.262

While in coverability semantics, the presence of ε-transitions separates languages recog-263

nised by k-H-VASS and k-H-VASSε only for dimensions k ≥ 2, in reachability semantics the264

separation occurs already in dimension 1: L7
def= anb≤n# is in H0

ε but not in H0.265

8 History-deterministic Vector Addition Systems

q1 q2qs

a,+

a,+

b,−
a,−

b,−

Σ

Figure 4 A 1-H-VASS automaton with language L8 = L(q1, 0) that is not finitely sequential.
The automaton reads blocks of a’s followed by blocks of b’s. If some block of a’s is followed by fewer
b’s then the automaton can read anything after the next a. If every block is followed by the same
number of a’s and b’s then it must read another block of the form anbn or anb<n. The language is
thus L8 =

⋃∞
k=0 an0 bn0 . . . ank−1 bnk−1 ank b≤nk aΣ∗.

3.3 Comparison with Finitely Sequential VASS266

Recall that finitely sequential VASS are the is a union of finitely many D-VASS. In Lemma 8267

we show that language of a finite union of history-deterministic VASS is also history-268

deterministic. In particular, the deterministic VASSs comprising the finitely sequential269

VASS are themselves history-deterministic, so any finitely sequential VASS has an equivalent270

history-deterministic VASS recognising the same language. On the other hand, we show that271

history-deterministic VASS are strictly more powerful:272

▶ Lemma 7. There exists a language in 1-H that is not finitely sequential.273

Proof. Consider the language L8
def= L(q1, 0) of the VASS depicted in Figure 4. Observe that274

it is history-deterministic: when reading a at state q1, the resolver goes to qs if possible.275

This choice is language-maximal and there is no other non-determinism to resolve.276

We show the language is not finitely sequential. Suppose for contradiction the language277

is accepted by a finitely sequential VASS that is the union of k many D-VASS s, each with278

at most m states. We consider the word am+1bm+1 ∈ L8. Reading this word, every D-VASS279

goes through a cycle in the run while reading am+1 and similarly also whilst reading bm+1.280

Let c1, . . . , ck be the lengths of these cycles while reading a’s in each D-VASS respectively,281

d1, . . . , dk be the lengths of the cycles reading b’s, and fix C =
∏

i≤k ci and D =
∏

i≤k d.282

Observe that, for every x, the state of each D-VASS the same state is reached after reading283

am+1+xC . Similarly, for any y, the same state is reached after reading am+1+xCbm+1+yD. In284

particular, fix words w = am+1+CDbm+1+CD and the words u = am+1+CDbm+1+(C−1)D.285

Observe that after reading ua, the system in Figure 4 can be in state qs and therefore,286

any extension of ua is accepted. However, the automaton of Figure 4 can only reach state q2287

on wa and so, for any z ∈ N, i ≥ 1, wazbz+i ̸∈ L8. Consider this word for z = m + 1. Since288

there is a cycle somewhere while reading bz, then when reading more b’s the automaton289

visits only states on that cycle. Since wazbz+i ̸∈ L8 for i ≥ 1 either every state on the cycle290

is non-accepting, or the cycle has a negative effect on at least one counter and therefore291

becomes unavailable for large enough i.292

Recall, in M both wa and ua are in the same control location in each constituent D-VASS,293

and thus for any v ∈ Σ∗ are either wav and uav are in the same control locations (or possibly294

the run is dead). However, for every z, i, there is some D-VASS in which the word uazbz+i
295

is accepting. However, we have argued that for every D-VASS, for sufficiently large i, the296

run on wazbz+i is stuck in a rejecting cycle, or a cycle in which the counter is decreasing.297

Thus for sufficiently large i, in every D-VASS, either the run on uazbz+i is also dead or in a298

rejecting cycle, which contradicts uazbz+i ∈ L8. ◀299

S. Bose, D. Purser and P. Totzke 9

4 Closure Properties300

We take a look at closure properties of the classes H and H0 recognised by history-301

deterministic VASSs in coverability and reachability semantics, respectively.302

First off, union closure (of H and H0) and closure under intersection (for H) can be303

shown using a straightforward product construction at the cost of increasing the dimension.304

▶ Lemma 8. Let L ∈ k-H and L′ ∈ k′-H. Then L∪L′ ∈ (k +k′)-H and L∩L′ ∈ (k +k′)-H.305

Let L ∈ k-H0 and L′ ∈ k′-H0. Then L ∩ L′ ∈ (k + k′)-H0.306

A naïve product of the two systems recognising L and L′ does not work for showing307

the union closure of H0 because here, acceptance requires all counters to be zero even for308

inputs that are only in one of the two languages (note the absence of ε-transitions). Indeed,309

H0 are not closed under union, as witnessed by L9
def= anbn ∪ anb2n not being in H0 (See310

Appendix C).311

Taking a direct product yields a H-VASS that may not be optimal in terms of the number312

of counters and in general, increasing the dimension is not avoidable. For instance, the313

languages L10
def= anb≤nc∗ ∪ anb∗c≤n and L11

def= anb≤nc∗ ∩ anb∗c≤n are not in 1-H, while the314

individual languages are. Similarly, the language L12
def= anbnc∗ ∩ anb∗cn = anbncn witnesses315

non-closure of 1-H0 under intersection.316

The theorems below summarise our findings regarding closure properties of history-317

deterministic classes. Full proofs are in Appendix C.318

▶ Theorem 9. H is closed under union, intersection and inverse homomorphisms.319

It is not closed under complementation, concatenation, homomorphisms, iteration, nor320

commutative closure.321

▶ Theorem 10. H0 is closed under intersection and inverse homomorphisms.322

It is not closed under union, complementation, concatenation, homomorphisms, iteration,323

nor commutative closure.324

5 Decision Problems325

In this section we consider decision problems related to history-determinism: checking if a326

given N-VASS is history-deterministic, HD definability (as well s regularity) of its recognised327

language, and language inclusion between HD VASSs.328

Prakash and Thejaswini [31] showed that in dimension 1 (and for coverability semantics),329

checking HDness and inclusion is decidable in PSPACE by reduction to simulation preorder330

[17]. This can be generalised slightly as follows.331

▶ Theorem 11. Language inclusion L(B) ⊆ L(A) is decidable for any 1-H-VASS A and for332

any N-VASS B.333

Proof. For that for any 1-H-VASS, one can effectively construct a language equivalent334

deterministic one-counter automaton (DOCA; a 1-VASS with zero-testing transitions). This335

is Theorem 19 in [31]. DOCA can be complemented [35] and so the inclusion question is336

equivalent to the emptiness (reachability) of A × B, a VASS with one zero-testable counter,337

which is decidable [33]. ◀338

We continue to show that in higher dimensions, these questions are undecidable. Our339

constructions proving this are similar, yet require subtle differences, and are all based on340

weakly simulating two-counter machines [29]. Let us recall these in a suitable syntax first.341

10 History-deterministic Vector Addition Systems

M

uAΣ \ {b}

ztest
i

ztest i
, Xi−−

b

hA

h

sA

M

uB Σ

ztest
i

ztesti , X
i−−

sB
b

hB

h

⊆
?

Figure 5 The 2-VASSs A (in red) and B (in green) both include a copy of, and weakly simulate,
a given 2CM M . For any zero-testing operation ztesti in M both can go to a sink state if counter i

is in fact non-zero, reading the letter ztesti and decreasing the VASS counter i, as indicated by the
effect vector Xi−−. The extra letter b ensures that B ̸⊆ A; Only A can accept words that consist of
valid sequences of 2CM operations and that end in the letter h.

▶ Definition 12. A two-counter Minsky machine (2CM) M = (Q, q0, qh, δ) consists of is a342

finite set Q, including a distinguished starting and final state q0, qh, respectively, as well as a343

finite set of transitions δ ⊆ Q × Γ × Q, where Γ = {inc1, inc2, dec1, dec2, ztest1, ztest2} are344

the operations on the counters1.345

A configuration of M is an element of Q ×N2, comprising the current state and the value346

of the two counters. For every state q either: 1. There is only one transition of the form347

(q, inci, q′). This allows to move from state q to q′, increment counter i by one and leaves348

the other counter untouched; or 2. There are exactly two transitions from q, of the form349

(q, ztesti, q′) and (q, deci, q′′). The former allows to move to q′ without changing the counters,350

but only if counter i has value 0. The latter allows to move from q to q′′ and decrease counter351

i, and leaves the other counter unchanged.352

Notice that from any configuration there is exactly one possible successor configuration.353

We can therefore speak of the run of M , and its sequence of counter operations, from the354

initial configuration (s0, 0, 0). We say that M terminates if its run visits the final state qh.355

W.l.o.g., we can assume that whenever M terminates then with both counters at value 0.356

Deciding whether a given 2CM terminates is undecidable [29]. An easy consequence, and357

the bases for our construction for regularity, is the undecidability of checking finiteness of358

the reachability set for a given 2CM.359

▶ Lemma 13. It is undecidable to check, for given 2CM M , if its run visits infinitely many360

different configurations.361

5.1 Checking HDness and Inclusion362

We focus on the questions whether a given VASS is history-deterministic, and whether363

language inclusion holds for two languages given by H-VASS. For languages of finite words364

these two decision problems are intrinsically linked (see Appendix A).365

1 Readers may be more familiar with an instruction of the form if Ci = 0 goto qℓ else goto qk, this can be
simulated by a ztesti to qℓ and a decrement followed by an increment to qk.

S. Bose, D. Purser and P. Totzke 11

▶ Lemma 14. For a given 2CM M one can construct two history-deterministic 2-VASSs366

with initial states sA and sB, respectively, so that L(sA, 0) ⊆ L(sB, 0) if, and only if, the367

unique valid run of M never reaches a halting state.368

Proof. Suppose we are given 2CM M with designated initial and halting states s and h,369

respectively, and let Γ denote the set of counter operations. W.l.o.g., there is exactly one370

valid sequence of counter operations that is either infinite or finite. We define two 2-VASS A371

and B over the alphabet Σ = Γ ⊎ {b, h}. These are just copies of, and just weakly simulate372

the machine M : For every state q of M , there are states qA and qB; For every transition373

q
γ−→ q′ of M , there are corresponding edges qA

γ−→ q′
A and qB

γ−→ q′
B that read the letter γ374

and manipulates the counter accordingly: if γ = inci (or deci) then counter i is incremented375

(or decremented,respectively). If γ = ztesti then counter i remains as is. The only accepting376

states so far are hA and hB , corresponding to the designated halting state of M .377

Additionally, for every zero-testing transition q
ztesti−−−→ q′ in M , both A and B have a378

transition from state q that decreases counter i and goes to a new, accepting, sink state u379

with language ⊇ (Γ ∪ {h})∗. This way, both systems will accept any word that prescribes a380

run of M that contains a “counter cheat”, meaning that the word contains operation ztesti381

but the run of M so far ends in a configuration where counter i is not zero.382

We now modify the systems A and B so that they differ in two ways:383

1. the halting state hA of A admits a h-labelled step (to itself) but sB does not.384

2. All states in B have b-labelled steps (to the accepting sink uB) but none of As states do.385

See Figure 5 for a depiction of the constructed 2-VASS.386

Notice that L(B) ̸⊆ L(A) by design, because no word containing the letter b can be387

accepted by A. Notice that both A and B are indeed history-deterministic: they only choices388

to be resolved are upon reading a zero-testing latter ztesti from a configuration where the389

corresponding counter i is not zero. In any such case, moving to the sink is language maximal.390

It remains to argue that L(sA) ̸⊆ L(sB) if, and only if, M has a finite run from initial391

configuration to its final state. Indeed, if M terminates via a sequence ρ = e0e1, . . . ek, then392

L(A) contains the word ρ · h. Since this run does not contain “cheats” nor letters b, the393

system B cannot possibly reach the winning sink uB and therefore not accept. Conversely, if394

M does not terminate, then any word ρ ∈ Γ∗ · h accepted by A must prescribe a run of M395

that contains a cheat. Say ρ = ρ1 · ztesti · ρ1 · h. But then, B will be able to reach the sink396

uB after reading he prefix ρ1 · ztesti and thus accept. ◀397

The construction in the previous lemma works both in coverability and reachability semantics398

(note that we assume that a 2CM terminates with counters 0). The next two theorems are399

direct consequences and again hold for coverability and reachability semantics.400

▶ Theorem 15. Checking language inclusion is undecidable for 2-HD VASSs.401

▶ Theorem 16. It is undecidable to check if a given 2-VASS is history-deterministic.402

Proof. By reduction from 2CM termination: Construct the two systems A and B as given403

by Lemma 14 and add one new initial state s that, upon reading some letter b can move to404

the initial state sA of A or sB of B. By Proposition 21, the so-constructed system is HD iff405

L(sA) ⊆ L(sB), which is true iff M does not terminate. ◀406

12 History-deterministic Vector Addition Systems

5.2 Checking HDness of VASS Languages407

We turn to showing undecidability of language history-determinism, i.e., the question if for a408

given VASS there exists an equivalent history-deterministic VASS. We start with the more409

interesting and involved case, for the coverability semantics (Theorem 17) and present an410

easier construction for reachability (Theorem 18) afterwards.411

We give a proof by reduction from the 2CM halting problem, combining the constructions412

to show the non-HDness of L3 = (a, b)∗anb≤n, (Lemma 4) and the proof of [22] that checking413

regularity for N-VASS languages is undecidable.414

▶ Theorem 17. It is undecidable to check if L(A) ∈ H holds for a given N-VASS A.415

Proof. By reduction from the 2CM halting problem. For a given 2CM M with states416

QM and counter operations Γ = {inc1, inc2, dec1, dec2, ztest1, ztest2} we construct a 3-VASS417

A = (Σ, Q, δ, s0, F) so that L(A) is history-deterministic iff the faithful run of M is finite.418

We refer to the three counters as X1, X2, X3 and write Xi−− and Xi++ for the effects419

of (VASS) transitions that decrement/increment counter i only.420

The construction. A uses the alphabet Σ = Γ ∪ {a, b}, consisting of counter operations421

of M and two fresh symbols. The control states of A mimic those of M , except that in422

between any simulated step of M , A can read a word in a+b+: For every state q ∈ QM we423

introduce states qin, qout and qstep. In addition, we add three other states sink, r1, r2. We424

make sink universal by adding self-loops (s, a, 0, s) for every letter a ∈ Σ. First we consider425

the simulation of M .426

For every step q
γ−→ p of M , A has a transition t = (qout, γ, e, pin) from qout to pin that427

reads the letter label(t) = γ and manipulates the counter accordingly: if γ = inci then428

e = Xi++; if γ = deci then e = Xi−−; if γ = ztesti then e = 0. In addition, for zero-testing429

steps q
ztest−−−→i p, A in M , A contains a decreasing transition t = (qout, ztesti, Xi−−, sink) to430

the universal sink state. From a state qin. There are two possible continuations:431

1. Reading a word in a+b+ and moving to qout, via transitions qin
a,0−−→ qstep, qstep

a,0−−→ qstep,432

qstep
b,0−−→ qout and qout

b,0−−→ qout.433

2. Reading a word in anb≤n and stopping. For this, there are transitions qin
a,X3++−−−−−→ r1,434

r1
a,X3++−−−−−→ r1, r1

b,X3−−−−−−−→ r2 and r2
b,X3−−−−−−−→ r2.435

The accepting states of A are F = {r2, sink}. Its initial state is s0 = qout, where q ∈ QM is436

the initial state of M .437

The recognised language of the constructed 3-VASS A contains sequences of instruc-438

tions of M interspersed with blocks of the form a+b+. Let’s call a sequence γ1γ2 . . . γk ∈ Γ∗ of439

operations in M faithful if for all i ≤ k, γi is the ith instruction in the run of M from its initial440

configuration (q, 0, 0). Clearly, for any k less or equal to the length of the run of M , there is a441

unique faithful sequence ρk of length k. Define Correctk
def= γ1(a+b+)γ2(a+b+)γ3 . . . (a+b+)γk442

where γ1γ2 . . . γk = ρk. Let Incorrectk ⊆ Σ∗ contain exactly all words wγ ∈ Σ∗ \ Correctk443

where w ∈ Correctk−1 and γ ∈ {ztest1, ztest2}. That is, words whose projection into the444

operations of M is faithful up to step k − 1 but that contain an incorrect zero-test at step k.445

Observe that if the faithful sequence of length k takes M to (q, C1, C2) then A can read446

any word in Correctk and every run on such a word leads to the configuration (qin, C1, C2, 0).447

Such a run of A can be extended in two ways to reach an accepting state. Either by reading448

a word in anb≤n to reach r2, or by continuing on the run of M and eventually erroneously449

S. Bose, D. Purser and P. Totzke 13

reading a ztesti to reach sink. We can therefore write the language of A as450

L(A) =
⋃
k≥0

Correctk · (anb≤n) ∪
⋃
k≥0

Incorrectk · Σ∗
451

HDness. We show that if M terminates, meaning its run has some length k ∈ N, then452

L(A) is history-deterministic. Observe that for every 0 ≤ i ≤ k, both languages Correcti and453

Incorrecti are regular. We can concatenate a DFA recognising the former with a 1-H-VASS454

for anb≤n to construct an 1-H-VASS recognising Correcti · (anb≤n). Now, L(A) is the finite455

union of k many 1-H-VASS languages and therefore recognisable by a k-dimensional H-VASS.456

It remains to show that if the run of M is infinite, then L(A) is not in k-H, for any k.457

Our proof mirrors the proof of Lemma 4, except that we interleave {a, b}-blocks with the458

faithful operations of M . Suppose towards a contradiction that there exists a k-H-VASS459

B with states QB and let ρ = γ1γ2, · · · ∈ Γω denote the infinite run of M . That is, every460

length-i prefix ρi is faithful. Consider a sequence (wn)n≥0 of words in LB() such that w0 = ε461

and otherwise wℓ = wℓ−1γℓa
mℓbmℓ with mℓ large enough so that the resolved run on wℓ462

contains a non-decreasing cycle while reading the last a-block. Say,463

(s0, 0) wℓ−1γℓarℓ,1
−−−−−−−−→ (qℓ, uℓ)

arℓ,2
−−−→ (qℓ, vℓ)464

with uℓ ≤ vℓ. This is well-defined by Dickson’s Lemma.465

Setting n = |QB|2k + 1 is sufficiently high so that there must be ℓ < ℓ′ with qℓ = qℓ′ and466

support(uℓ − vℓ) = support(uℓ′ − vℓ′). Take R be such that R(uℓ − vℓ) ≥ (uℓ′ − vℓ′) and let467

u be the word such that wℓ′−1 = wℓu. Now consider the word468

w′ = wℓ−1γℓa
mℓ+R(r2,ℓ)bmℓuγℓ′amℓ′ −r2,ℓ′ bmℓ′

469

that results from wn by removing one iteration of the loop in block ℓ′ and making up for470

it by inserting R iterations of the loop in block ℓ. Notice that w′ is accepted by the run471

that follows the resolved run on wn and repeats the designated loops on the extra letters.472

However, w′ /∈ L(A) because its last {a, b}-block contains more b’s than a’s. ◀473

Notice that if the given 2CM terminates then our construction produces a history-474

deterministic VASS where the number of counters corresponds to the length of the terminating475

run. Therefore it remains open whether the language k-HDness problem is decidable, which476

ask whether there is an equivalent k-HDVASS for the given language.477

The analogous statement for reachability is simpler to prove, by reduction from the478

universality problem, which is undecidable in reachability semantics [36, Theorem 10].479

▶ Theorem 18. It is undecidable to check if L(A) ∈ H0 holds for a given N-VASS A.480

5.3 Regularity481

We turn to the decision problem whether a given VASS recognises a regular language. This482

regularity question is undecidable for general N-VASS [22]. It again turns out that for483

history-deterministic VASSs, the decidability status of regularity depends on the dimension.484

For 1-H-VASS, one can effectively construct a language equivalent DOCA [31], for which485

checking regularity remains decidable [2, 35].486

▶ Theorem 19. Given a 1-H-VASS A, checking if L(A) is regular is decidable in EXPSPACE.487

Although checking regularity of DOCA is NL-complete, the added complexity here is488

due to the doubly exponentially large DOCA produced in the reduction. We now show489

undecidability already for dimension 2.490

14 History-deterministic Vector Addition Systems

▶ Theorem 20. Given a 2-H-VASS A, it is undecidable if L(A) is regular.491

Proof. By reduction from the finiteness problem for 2CM (Lemma 13). For a given 2CM492

M we construct a 2-H-VASS whose language will be regular iff M ’s run visits only finitely493

many configurations. We make the argument for coverability semantics first.494

Let ρ = γ1γ2 . . . be the faithful run of M and |ρ| ∈ N ∪ {∞} for its length. Write495

correctk for its length-k prefixes and let xk be 1 plus the sum of both counter-values in the496

configuration M reaches after reading correctk. Further, wherever correctk = correctk−1deci,497

define incorrectk as correctk−1ztesti.498

Consider the language L = G ⊎ B over the alphabet Σ = Γ ⊎ {a},499

G
def=

⋃
k≥0

(
ρk · a≤xk

)
and B

def=
⋃
k≥0

(incorrectk · Σ∗)500

G consists of words that describe some length-k prefix of M ’s run followed by xk or fewer501

symbols a; B contains all words describing the run of M up to length-k, followed by an502

incorrect zero-test, and then anything.503

We claim that this language L is recognised by a 2-H-VASS. To see this, again build504

a VASS that weakly simulates M as done before, for example in the proof of Theorem 17.505

This will simulate increment and decrement operations faithfully, reading letters inci or deci,506

respectively. For any step q
ztesti−−−→ q′ in M , the VASS A will have a transition (q, ztesti, 0, q′)507

as well as one that reads ztesti, decreases counter i and leads to a universal state. This508

allows to accept exactly all words in B. In addition, from any state q of M , A can move509

to a new countdown phase: there is a transition q
a,0−−→ c to a new, final, control state that510

can continue to read a′s while at least one of the counters remains non-zero. This allows to511

accept exactly all words in G. Note that the only non-determinism is for letters ztesti when512

M ’s ith counter after reading ρi is not zero. In this case, the only language-maximal choice513

is to move to the universal state. The constructed system is therefore history-deterministic.514

To conclude the proof, we argue that L is regular iff ρ visits only finitely many config-515

urations. Indeed, if so, then G is finite because all xi, i ≤ k are bounded, and B is regular516

because at most k many words incorrectk exist. So L is the finite union of regular languages517

and thus regular.518

Conversely, suppose that M ’s run ρ visits infinitely many different configurations. Then in519

particular, there are infinitely many faithful prefixes ρk. Let us assume towards contradiction520

that L is regular and recognised by a DFA with d many states. We pick a prefix ρk so that521

xk > d and consider the word ρkaxk ∈ L. While reading the suffix am, our DFA must repeat522

some cycle of length c ≤ d. But then it must also accept ρkaxk+c /∈ L by going through that523

cycle twice.524

The same proof goes through for the reachability semantics if we set G
def=

⋃
k≥0 (ρk · a=xk)525

and B
def=

⋃
k≥0

(
incorrectk · Σ≥xk−1)

. Then again, if the run of M visits finitely many526

configurations then both G and B are regular. Otherwise G is not regular. The extra527

symbols at the end (of words in G and B) allow a run of the VASS A to decrease the counters528

to 0 and accept (and therefore to conclude that language L = G ⊎ B is in 2-H0). ◀529

S. Bose, D. Purser and P. Totzke 15

References530

1 Stanislav Böhm, Stefan Göller, Simon Halfon, and Piotr Hofman. On büchi one-counter531

automata. In International Symposium on Theoretical Aspects of Computer Science, volume 66532

of LIPIcs, pages 14:1–14:13. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2017. doi:533

10.4230/LIPIcs.STACS.2017.14.534

2 Stanislav Böhm, Stefan Göller, and Petr Jancar. Bisimulation equivalence and regularity for535

real-time one-counter automata. Journal of Computer and System Sciences, 80(4):720–743,536

2014. doi:10.1016/j.jcss.2013.11.003.537

3 Udi Boker and Karoliina Lehtinen. Good for games automata: From nondeterminism to538

alternation. In International Conference on Concurrency Theory, volume 140 of LIPIcs, pages539

19:1–19:16, 2019.540

4 Udi Boker and Karoliina Lehtinen. History Determinism vs. Good for Gameness in Quantit-541

ative Automata. In IARCS Annual Conference on Foundations of Software Technology and542

Theoretical Computer Science, volume 213 of Leibniz International Proceedings in Inform-543

atics (LIPIcs), pages 38:1–38:20. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2021.544

doi:10.4230/LIPIcs.FSTTCS.2021.38.545

5 Udi Boker and Karoliina Lehtinen. Token games and history-deterministic quantitative auto-546

mata. In IARCS Annual Conference on Foundations of Software Technology and Theoretical547

Computer Science, pages 120–139. Springer International Publishing, 2022.548

6 Sougata Bose, Thomas A. Henzinger, Karoliina Lehtinen, Sven Schewe, and Patrick Totzke.549

History-deterministic timed automata are not determinizable. In International Workshop on550

Reachability Problems, 2022.551

7 Thomas Colcombet. The theory of stabilisation monoids and regular cost functions. In552

International Colloquium on Automata, Languages and Programming, pages 139–150, 2009.553

8 Wojciech Czerwinski and Piotr Hofman. Language inclusion for boundedly-ambiguous vector554

addition systems is decidable. In International Conference on Concurrency Theory, volume555

243 of LIPIcs, pages 16:1–16:22. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2022.556

doi:10.4230/LIPIcs.CONCUR.2022.16.557

9 Wojciech Czerwinski and Lukasz Orlikowski. Reachability in vector addition systems is558

ackermann-complete. In Annual Symposium on Foundations of Computer Science, pages559

1229–1240. IEEE, 2021. doi:10.1109/FOCS52979.2021.00120.560

10 Enzo Erlich, Shibashis Guha, Ismaël Jecker, Karoliina Lehtinen, and Martin Zimmermann.561

History-deterministic parikh automata, 2022. arXiv:2209.07745.562

11 Olivier Finkel and Michal Skrzypczak. On the topological complexity of ω-languages of563

non-deterministic petri nets. Information Processing Letters, 114(5):229–233, 2014. doi:564

10.1016/j.ipl.2013.12.007.565

12 Sheila A. Greibach. Remarks on blind and partially blind one-way multicounter machines.566

Theoretical Computer Science, 7:311–324, 1978. doi:10.1016/0304-3975(78)90020-8.567

13 Shibashis Guha, Ismaël Jecker, Karoliina Lehtinen, and Martin Zimmermann. A Bit of568

Nondeterminism Makes Pushdown Automata Expressive and Succinct. In International Sym-569

posium on Mathematical Foundations of Computer Science, volume 202 of Leibniz International570

Proceedings in Informatics (LIPIcs), pages 53:1–53:20. Schloss Dagstuhl – Leibniz-Zentrum571

für Informatik, 2021. doi:10.4230/LIPIcs.MFCS.2021.53.572

14 Michel Henri Theódore Hack. Petri net language. 1976.573

15 Thomas A. Henzinger, Karoliina Lehtinen, and Patrick Totzke. History-deterministic timed574

automata. In International Conference on Concurrency Theory, 2022.575

16 Thomas A. Henzinger and Nir Piterman. Solving games without determinization. In EACSL576

Annual Conference on Computer Science Logic, pages 395–410. Springer Berlin Heidelberg,577

2006.578

17 Piotr Hofman, Slawomir Lasota, Richard Mayr, and Patrick Totzke. Simulation problems over579

one-counter nets. Logical Methods in Computer Science, 12(1), 2016. doi:10.2168/LMCS-12(1:580

6)2016.581

https://doi.org/10.4230/LIPIcs.STACS.2017.14
https://doi.org/10.4230/LIPIcs.STACS.2017.14
https://doi.org/10.4230/LIPIcs.STACS.2017.14
https://doi.org/10.1016/j.jcss.2013.11.003
https://doi.org/10.4230/LIPIcs.FSTTCS.2021.38
https://doi.org/10.4230/LIPIcs.CONCUR.2022.16
https://doi.org/10.1109/FOCS52979.2021.00120
https://arxiv.org/abs/2209.07745
https://doi.org/10.1016/j.ipl.2013.12.007
https://doi.org/10.1016/j.ipl.2013.12.007
https://doi.org/10.1016/j.ipl.2013.12.007
https://doi.org/10.1016/0304-3975(78)90020-8
https://doi.org/10.4230/LIPIcs.MFCS.2021.53
https://doi.org/10.2168/LMCS-12(1:6)2016
https://doi.org/10.2168/LMCS-12(1:6)2016
https://doi.org/10.2168/LMCS-12(1:6)2016

16 History-deterministic Vector Addition Systems

18 Piotr Hofman and Patrick Totzke. Trace inclusion for one-counter nets revisited. Theoretical582

Computer Science, 11174, 2017. doi:10.1016/j.tcs.2017.05.009.583

19 Petr Jancar. Nonprimitive recursive complexity and undecidability for petri net equivalences.584

Theoretical Computer Science, 256(1-2):23–30, 2001. doi:10.1016/S0304-3975(00)00100-6.585

20 Petr Jancar, Javier Esparza, and Faron Moller. Petri nets and regular processes. Journal of586

Computer and System Sciences, 59(3):476–503, 1999. doi:10.1006/jcss.1999.1643.587

21 Matthias Jantzen. Language theory of petri nets. In Petri Nets: Central Models and Their588

Properties, Advances in Petri Nets 1986, Part I, Proceedings of an Advanced Course, Bad589

Honnef, Germany, 8-19 September 1986, volume 254 of LNCS, pages 397–412. Springer, 1986.590

doi:10.1007/BFb0046847.591

22 Petr Jančar and Faron Moller. Checking regular properties of petri nets. In International592

Conference on Concurrency Theory, pages 348–362, 1995.593

23 Richard M. Karp and Raymond E. Miller. Parallel program schemata. Journal of Computer594

and System Sciences, 3(2):147–195, 1969. doi:10.1016/S0022-0000(69)80011-5.595

24 S. Rao Kosaraju. Decidability of reachability in vector addition systems. In STOC’82, pages596

267–281, 1982. doi:10.1145/800070.802201.597

25 Orna Kupferman, Shmuel Safra, and Moshe Y Vardi. Relating word and tree automata.598

Annals of Pure and Applied Logic, 138(1-3):126–146, 2006.599

26 Karoliina Lehtinen and Martin Zimmermann. Good-for-games ω-pushdown automata. Logical600

Methods in Computer Science, 18, 2022.601

27 Jérôme Leroux. The reachability problem for petri nets is not primitive recursive. In602

Annual Symposium on Foundations of Computer Science, pages 1241–1252. IEEE, 2021.603

doi:10.1109/FOCS52979.2021.00121.604

28 Richard J. Lipton. The reachability problem requires exponential space. Technical Report 62,605

Yale University, 1976.606

29 Marvin L. Minsky. Computation: finite and infinite machines. Prentice-Hall, Inc., 1967.607

30 Reino Niskanen, Igor Potapov, and Julien Reichert. Undecidability of two-dimensional robot608

games. 58:73:1–73:13, 2016. doi:10.4230/LIPIcs.MFCS.2016.73.609

31 Aditya Prakash and K. S. Thejaswini. On history-deterministic one-counter nets. In Interna-610

tional Conference on Foundations of Software Science and Computational Structures. Springer,611

2023. doi:10.1007/978-3-031-30829-1_11.612

32 Charles Rackoff. The covering and boundedness problems for vector addition systems. Theor-613

etical Computer Science, pages 223–231, 1978. doi:10.1016/0304-3975(78)90036-1.614

33 Klaus Reinhardt. Reachability in petri nets with inhibitor arcs. Electronic Notes in Theoretical615

Computer Science, 223:239–264, 2008. doi:https://doi.org/10.1016/j.entcs.2008.12.616

042.617

34 Michal Skrzypczak. Büchi VASS recognise w-languages that are sigmaˆ1_1 - complete. CoRR,618

abs/1708.09658, 2017. arXiv:1708.09658.619

35 Leslie G. Valiant and Mike Paterson. Deterministic one-counter automata. Journal of Computer620

and System Sciences, 10(3):340–350, 1975. doi:10.1016/S0022-0000(75)80005-5.621

36 Rüdiger Valk and Guy Vidal-Naquet. Petri nets and regular languages. Journal of Computer622

and System Sciences, 23(3):299–325, 1981. doi:https://doi.org/10.1016/0022-0000(81)623

90067-2.624

A The Structure of Resolvers625

We observe that any resolver r must always make language-maximal choices. To formalise,626

let us write Posta(s, v) def= {(s′, v′) | (s, v) a−→ (s′, v′)} for the finite set of possible a-successor627

configurations of (s, v). Suppose a run produced by r leads up to configuration (si, vi) and628

for the next letter ai, it selects a continuation (si, vi)
ai−→ (si+1, vi+1). Then L(si+1, vi+1) ⊇629 ⋃

L(Postai
(si, vi)). When considering languages of finite words a useful observation is that630

https://doi.org/10.1016/j.tcs.2017.05.009
https://doi.org/10.1016/S0304-3975(00)00100-6
https://doi.org/10.1006/jcss.1999.1643
https://doi.org/10.1007/BFb0046847
https://doi.org/10.1016/S0022-0000(69)80011-5
https://doi.org/10.1145/800070.802201
https://doi.org/10.1109/FOCS52979.2021.00121
https://doi.org/10.4230/LIPIcs.MFCS.2016.73
https://doi.org/10.1007/978-3-031-30829-1_11
https://doi.org/10.1016/0304-3975(78)90036-1
https://doi.org/https://doi.org/10.1016/j.entcs.2008.12.042
https://doi.org/https://doi.org/10.1016/j.entcs.2008.12.042
https://doi.org/https://doi.org/10.1016/j.entcs.2008.12.042
https://arxiv.org/abs/1708.09658
https://doi.org/10.1016/S0022-0000(75)80005-5
https://doi.org/https://doi.org/10.1016/0022-0000(81)90067-2
https://doi.org/https://doi.org/10.1016/0022-0000(81)90067-2
https://doi.org/https://doi.org/10.1016/0022-0000(81)90067-2

S. Bose, D. Purser and P. Totzke 17

q1

q2

q3

a,+1 #

#

b,−2

b

b,−1
b,−2

b

Figure 6 A 1-H-VASS with a resolver that requires a resolver that depends on more than threshold
comparisons.

making only language maximal choices is not only necessary, but also a sufficient condition631

for r to be a resolver.632

▶ Proposition 21. A function r as above is a resolver iff all it’s choices are language maximal.633

This does not depend on the finiteness of the state space. A direct consequence is that634

resolvers can be assumed to be positional: That is, if any resolver r exists then also one635

whose decisions only depend on the current configuration and given letter, not on the whole636

prefix run: r(ρ(s, v), a) = r(ρ′(s, v), a) for any two ρ, ρ′ ∈ (Q × Nk × Σ)∗ and letter a.637

Proof. Suppose a candidate resolver r does not always make language-maximal choices.638

That is, for some word w the corresponding run chosen by r ends in some configuration c639

and for some letter a, it moves to a successor configuration c′ that is not language maximal.640

Then there exist a suffix word w′ so that some run from c on aw′ is accepting but no run641

from c′ on w′ is accepting, including the one chosen by r. So r is not a resolver.642

Conversely, suppose a candidate resolver r that always makes language maximal choices643

and assume towards a contradiction that it is not a resolver. This means that Player 1, wins644

the letter game from the initial configuration c0: for some word w = a0a1 . . . ak ∈ L(c0) the645

run c0
a0−→ c1

a1−→ . . .
ak−→ ck+1 constructed by r is not accepting. Since some accepting run646

on w exists, there must be a last configuration cj on this run which can still accept the suffix647

w[j] = ajaj+1 . . . ak. This uses the assumption that we consider languages of finite words,648

not infinite ones. We conclude that the step cj
aj−→ cj+1 was not language maximal, since649

w[j] ∈ L(cj) but aj+1 . . . ak /∈ L(cj+1). Contradiction. ◀650

For 1-H-VASS it is sufficient for a resolver to be semi-linear [31], meaning that, for each651

state and proposed letter, the counter configurations for which each available choice should652

be chosen can be expressed as a semi-linear set. However [31] does not show the full power653

of semi-linear resolvers are required, and most natural examples appear to only require654

threshold queries (and often only to distinguish between zero and non-zero counter). We655

show that threshold comparisons with the counters is not sufficient: in the following example656

the system must have access to the parity of the counter.657

▶ Example 22. Consider the 1-H-VASS depicted in Figure 6. Observe that:658

L(q1, 0) = {an#bm | m ≤ n},659

L(q2, n) = {bm | m ≤ n if n even or m ≤ n − 1 if n odd},660

L(q3, n) = {bm | m ≤ n if n odd or m ≤ n − 1 if n even}.661

Hence, upon reading # a resolver must decide decide whether L(q2, n) ⊂ L(q3, n) or662

L(q3, n) ⊂ L(q2, n), which is possible by looking at the parity of the counter value.663

18 History-deterministic Vector Addition Systems

B Additional Material for Expressiveness (Section 3)664

B.1 Comparison of History-deterministic VASS with and without665

ε-transitions666

Given a number x ∈ N let bin(x) be the binary representation of x in 1{0, 1}∗. Consider667

the language L6 = bin(n)#0≤n# , which is, for any number n, the binary representation of668

n followed by #, followed by at most n-many 0’s. A result of [12] says that this language669

cannot be represented by any real-time machine, that is, machines without ε-transitions.670

For completeness, we recall the argument in brief: observe that the value of the maximum671

counter can be at most ∥δ∥ log(n) after reading bin(n), where ∥δ∥ is the maximal counter672

effect of any transition. Therefore there are at most poly(log(n)) configurations reachable673

after reading bin(n), however, there are 2log(n)−1 different numbers of length |bin(n)|. As674

a result, there are two numbers n < m with |bin(n)| = |bin(m)| (with log(n) large enough)675

for which reading either bin(n) or bin(m) has the same configuration; in which case either676

bin(n)#0m is incorrectly accepted or bin(m)#0n is incorrectly rejected.677

▶ Lemma 6. 1-H = 1-Hε.678

Proof. Clearly 1-H ⊆ 1-Hε. We show that ε transitions can be removed from a 1-H-VASSε.679

If there are no cycles then this is done in the standard way, merging them with the prior680

letter-consuming transitions. For cycles there are three cases. There are finitely many681

destinations on zero cycles and can be treated as in the acyclic case. Negative cycles are682

not beneficial, so the resolver should not iterate them. Therefore, we only add transitions683

necessary to access particular states, but keeping the counter maximal. Cycles with positive684

effect, for the purposes of maximal language acceptance, should be repeated infinitely. Thus685

it suffices to go to a copy of the automaton behaving only as a state-machine (without counter686

effects). Our procedure, adds finitely many counter maximal transitions. We observe the687

new system is also HD, when reading a letter the resolver can decided where the resolver for688

the system would go with a and then a sequence of ε transitions and move to a place with689

the same state and at least as high counter, which is language maximal. ◀690

C Additional Material for Closure Properties (Section 4)691

▶ Lemma 8. Let L ∈ k-H and L′ ∈ k′-H. Then L∪L′ ∈ (k +k′)-H and L∩L′ ∈ (k +k′)-H.692

Let L ∈ k-H0 and L′ ∈ k′-H0. Then L ∩ L′ ∈ (k + k′)-H0.693

Proof. Let L and L′ be recognised by by k-H-VASS A and k′-H-VASS B respectively, in694

the coverability semantics. W.l.o.g., assume that both are complete, meaning there exists695

a (not necessarily accepting) run on every word. This can be guaranteed by adding new696

transitions to non-accepting sink states (which any resolver will avoid if possible). The697

language L ∪ L′ is accepted by the (k + k′)-H-VASS obtained by taking product A × B,698

with k + k′ counters, where the first k counters simulate the counters of A and the last k′
699

counters simulate the counters of B. A state in the product (q, q′) is accepting if either q700

or q′ is accepting, or both are accepting. The resolver for the product from a configuration701

((q1, q′
1), v) on a letter a chooses the product of the transitions chosen by the resolver of A702

and B from the configurations (q1, vk) and (q′
1, vk′) respectively on the letter a, where vk and703

v′
k are the projection of v to the first k and last k′ coordinates.704

The construction works similarly for the intersection of H and H0 languages by taking705

accepting states (q, q′) in the product if both q and q′ are accepting. ◀706

S. Bose, D. Purser and P. Totzke 19

We now consider closure of the language classes H and H0 for other operations, defined707

here shortly. The concatenation of two languages L and L′ is the languages L · L′ = {w =708

uv | u ∈ L, v ∈ L′}. Let Σ and Γ be some alphabets and h : Σ∗ → Γ∗ be a homomorphism.709

The homomorphic image of a language L ⊂ Σ∗ is h(L) = {h(w) | w ∈ L} ⊂ Γ∗. Similarly,710

the inverse homomorphic image of a language L ⊂ Γ∗ is h−1(L) = {w ∈ Σ∗ | h(w) ∈ L}.711

Let Σ = {a1, a2, . . . , an} be an alphabet. The Parikh image of a word w ∈ Σ∗ is the712

vector Ψ(w) = (v1, v2, . . . , vn), where vi is the number of occurrences of ai in w. The Parikh713

image of a language L is the set of Parikh images of words in L. For a language L, its714

commutative closure CC(L) is the language {w | ∃u ∈ L.Ψ(w) = Ψ(u)}.715

▶ Theorem 9. H is closed under union, intersection and inverse homomorphisms.716

It is not closed under complementation, concatenation, homomorphisms, iteration, nor717

commutative closure.718

Proof. The proof for closure under union and intersection is by Lemma 8. For inverse719

homomorphisms, let L ⊂ Γ∗ be in H accepted by a k-H-VASS A with a resolver r. Let Q720

be the set of states of A and ∥δ∥ be the largest absolute effect among all transitions. Let721

h : Σ∗ → Γ∗ be a homomorphism and ℓ be such that |h(a)| ≤ ℓ, for all a ∈ Σ. Then h−1(L)722

is accepted by the k-H-VASS A′ with the states as Q × Dk, where D = [0, ℓ∥δ∥]. For every723

a ∈ Σ, a transition in A′ from (q, v) to (q′, v′) on a will correspond to a run in A′ from q to724

q′ on h(a), so that the resolver r′ for A′ will simply choose the transition corresponding to725

the run chosen by resolver r in A on h(a).726

We need to show that A′ does not accept any word w ̸∈ h1(L). To show this, we need727

to ensure that if a run on h(a) gets blocked due to some counter dropping below zero, the728

corresponding transition in A′ is also blocked. To do this, the transition in A′ has effect729

equal to the maximum negative effect in any prefix of the run on h(a). The rest of the effect730

in the run on h(a) is delayed to the next transition. Since the maximum effect is bounded by731

ℓ∥δ∥, this can be stored in the states. The next transition will therefore have the sum of the732

effect delayed from the previous transition and the maximum negative effect in the prefix of733

the current transition. The details of the construction are below.734

Let ρ = t1t2 . . . tk′ be a path in A from q to q′ on h(a) = label(ρ). Let fij =735

effect(t1t2 . . . tj)|i, i.e, the effect in the prefix up to jth transition projected to the ith736

counter. Let fi = minj(fij) and ei = min(fi, 0). Thus ei gives the largest negative effect in737

any prefix of the run. For every path ρ on h(a), we have a transition ((q, v), a, e′, (q′, v′)) in738

A′ if e′ = e + v, where e = (e1, e2, . . . , ek) and v′ + e = effect(ρ). A state (q, v) of A′ is initial739

if q is initial in A and v = 0 and (q, v) in A′ is accepting if q is accepting in A.740

Now, we give counterexamples for the operations under which H is not closed.741

Complementation. Consider the language L4 = {anb≤n} which is in D. The complement742

of L4 is not even in N . Indeed if it were in N , then Lc
4 ∩ a∗b∗ = anb≥n would be in N ,743

which is not the case.744

Concatenation. Consider the language L3 = Σ∗ · anb≤n. By Lemma 4, L3 ̸∈ H.745

Homomorphisms. Consider L = {c, d}∗anb≤n ∈ H which is accepted by even a D-VASS.746

Let h be the homomorphism h(c) = a, h(d) = b, which gives h(L) = L3 ̸∈ H by Lemma 4.747

Kleene star. Consider (anb≤n)∗ which is the Kleene star of L4 ∈ H. The proof of Lemma 4,748

also shows that L∗
4 is not in H.749

Commutative closure. Consider the commutative closure of L4, L = CC(L4) = {w | #a ≥750

#b}. If L is in H, then L ∩ b∗a∗ = bna≥n is also in H as H is closed under intersection.751

However bna≥n is not even in N . ◀752

20 History-deterministic Vector Addition Systems

▶ Theorem 10. H0 is closed under intersection and inverse homomorphisms.753

It is not closed under union, complementation, concatenation, homomorphisms, iteration,754

nor commutative closure.755

Proof. Closure under intersection follows from Lemma 8. For the inverse homomorphic756

image, a construction similar to the H, with states (q, 0) taken to be accepting in A′ for every757

q that is accepting in A. Note that any accepting run on h(w)h(a), for any word w ∈ Σ∗
758

and a ∈ Σ, the effect of the run on h(a) cannot be positive on any counter as it would lead759

to a non-zero counter value in the final configuration contradicting that the run is accepting.760

Therefore, the maximal negative effect encoded in the transition in our construction will761

always lead to a state (q, 0) and not delay any positive effect for later. This proves that H0
762

are closed under inverse homomorphic image.763

Now, we give counterexamples for the operations under which H0 is not closed.764

Unions. Consider the language L9 = anbn ∪ anb2n. Both of the languages anbn and anb2n
765

are in 1-H0. Suppose L9 is recognised by a k-H-VASS0 A. Since, anbn is in L, the766

resolver gives an accepting for all n, i.e, in a final state with all counters 0. Let n1 < n2767

be such that the run given by resolver on an1bn1 and an2bn2 end in the same state q.768

Since an1bn1+n1 is also accepted, the resolver extends the run from (q, 0) on the suffix769

bn1 and gives an accepting run. This also gives an accepting run on an2bn1+n2 which is a770

contradiction.771

Complementation. Consider L2 = anb≥n which is in 1-H0. Recall that L4anb≤n = Lc
2 ∩a∗b∗

772

is not in H0 by Lemma 5. If Lc
2 was in H0, then so would L4 due to closure under773

intersection leading to a contradiction.774

Concatenation. Consider the concatenation of a∗ and anbn, both in D0, which gives the775

language L4 = anb≤n, which is not in H0 by Lemma 5.776

Homomorphisms. Consider {c}∗anbn which is in 1-H0 (even 1-D0), and h(c) = a, gives the777

language L4 as above which is not in H0 by Lemma 5.778

Kleene star. Consider L13 = anbna∗, which is 1-H0. Indeed L∗
13 is not in H0. The run779

given by the resolver on anbnam must end with 0, for all m ≥ 0. In particular, there780

exists m1 < m2 such that the configuration reached on anbnami are the same and781

therefore accept the same continuations. Thus anbnam2bm2 cannot be distinguished from782

anbnam1bm2 , which is a contradiction.783

Commutative closure. CC(anb≥n) ∩ b∗a∗ = bna≤n, which is not in H0 by the same proof784

as Lemma 5 for anb≤n not being in H0. ◀785

To show that taking product for union (H) and intersection (H and H0) is not optimal786

in terms of number of counters, we have the following theorem.787

▶ Theorem 23. 1-H is not closed under union and intersection. 1-H0 is not closed under788

intersection.789

Proof. Union. Consider the language L10 = anb≤nc∗ ∪ anb∗c≤n, which is the union of two790

languages in 1-H. Suppose L10 is in 1-H. Let |Q| be the number of states and ∥(∥δ) be791

the maximum counter effect of transitions in the 1-H-VASS accepting anb≤nc∗ ∪ anb∗c≤n.792

Consider the sequence of words wn = anbn‘bcn and the runs given on these words by the793

resolver. Let (qn, vn) be the configuration reached after reading anbn, for every n. Now,794

we consider two cases. Suppose there exists a bound B such that vn < B for all n. Then795

there exists n1 < n2 such that (qn1 , vn1) = (qn2 , vn2). Since bcn2 ∈ L(qn2 , vn2), we get an796

accepting run on an1bn1bcn2 which is a contradiction. Therefore, the counter values vn797

must be unbounded.798

S. Bose, D. Purser and P. Totzke 21

Now, consider the infinite sequence of words wn1 , wn2 , . . . such that the state reached799

after anibni is the same, i.e, qn1 = qn2 = . . . and the last |Q| many transitions leading800

to (qni
, vni

) are also the same. Note that since there are finitely many choices of the801

last state and |Q| length sequence of transitions, such an infinite subsequence must802

exist. Let (qj
ni

, vj
ni

) denote the configuration reached in the run on anibni given by803

resolver after the prefix anibni−j , for j ≤ |Q|. It is easy to see that vn1 < vn2 < . . . ,804

as L(qni
, vni

) ⊊ L(qni′ , vni′) for i < i′ witnessed by bcni′ ∈ L(qni′ , vni′) but not in805

L(qni , vni). Since the last |Q| transitions leading to (qni , vni) are the same, we can also806

conclude that vj
n1

< vj
n2

< . . . , for all j ≤ |Q|. We write qj to denote qj
ni

since the state807

is the same for all choices of i.808

Note that bjc∗ ⊆ L(qj , vj
ni

) ̸⊇ bj+1c∗, for all ni, j ≤ |Q|. The inclusion of bjc∗ is809

immediate because the resolver must make language maximal choices. However, if bj+1c∗
810

is included, then we get an accepting run on anibni+1cni+i, which is a contradiction. This811

shows that bjc∗ ⊆ L(qj , c) ̸⊇ bj+1c∗ for any c > vj
n1

. This is because languages from812

configurations with the same state are monotone in the value of the counter.813

Note that there exists a j < j′ such that qj = qj′ as we look at runs whose last |Q|814

transitions (and therefore |Q| + 1 states) are the same. Now choose ni such that vj
ni

815

and vj′

ni
are both bigger than min(vj

n1
, vj

n1
). Therefore, by the previous observation,816

bjc∗ ⊆ L(qj′ , vj′

ni
) ̸⊇ bj+1c∗. This means bj′

c∗ is not accepted from (qj′ , vj′

ni
) which817

contradicts that the run was chosen by a resolver. This concludes the proof that the818

language L10 is not accepted by any 1-H-VASS.819

Intersection. Consider the language L11 = anb≤nc∗ ∩ anb∗c≤n and suppose it is accepted820

by 1-H-VASS. Consider the runs on anbncn given by the resolver. If the configuration821

reached after anbn has counter value bounded, then by a similar reasoning to the union822

case, we can find n1 < n2 such that the configuration reached by the resolver after reading823

an1bn1 and an2bn2 are the same and we get an accepting run on an1bn1cn2 which is a824

contradiction. If the configuration is unbounded, we get a n such that the configuration825

reached after reading anbn has counter value > (|Q| + 1)∥(∥δ). This allows to repeat a826

cycle in bn block as the maximum decreasing effect is at most (|Q| + 1)∥(∥δ). This gives827

an accepting run on anbm, where m > n, which is a contradiction.828

For the reachability semantics, the proof is even simpler as L12 = anbncn is not even829

context-free and therefore not definable even with zero tests on the counter. ◀830

D Additional Material for Decision Problems (Section 5)831

▶ Lemma 13. It is undecidable to check, for given 2CM M , if its run visits infinitely many832

different configurations.833

Proof. Suppose that one could decide above question. Then one can also decide the halting834

problem: if the set of reachable configurations is infinite then clearly M does not halt.835

Otherwise, we can determine if M halts by simulating it either until it halts, or if it re-visits836

one configuration without halting. ◀837

▶ Theorem 18. It is undecidable to check if L(A) ∈ H0 holds for a given N-VASS A.838

Proof. We reduce from the undecidable universality problem for VASS languages in reachab-839

ility semantics [36, Theorem 10]. The construction is the same as for the regularity problem840

of Parikh-automata, recently presented in [10]. For an alphabet Σ let Σ$ = Σ ⊎ {$} for some841

fresh symbol $ /∈ Σ. For two words u, v let u ⊗ v be the word w = (a1, b1)(a2, b2) . . . (ak, bk)842

so that either u = a1a2 . . . ak and b1b2 . . . bk ∈ v$∗ or v = b1b2 . . . bk and a1a2 . . . ak ∈ u$∗.843

22 History-deterministic Vector Addition Systems

For two languages L, L′ ⊆ Σ∗ define their cross-union L>L ⊆ (Σ2
$)∗ to be the langugae of844

words u ⊗ v such that u ∈ L or v ∈ L′. That is, for any word w ∈ L>L, either the projection845

into the first components is π1(w) ∈ L or that into the second components π2(w) ∈ L′.846

Recall the language L4 = anb≤n ∈ N 0 \ H0, which is not HD recognisable. To show our847

claim, let L be some given N-VASS language and consider the language L14
def= $ · (L > ∅) ∪848

$ · (∅ > L4). This is clearly in N 0. Now, if L = Σ∗ is universal then L > ∅ is universal over849

Σ2
$ and so L14 = $(Σ2

$)∗ ∈ H0 (even, regular). If conversely, suppose L is not universal as850

witnessed by w /∈ L, then L14 cannot be recognised by any H-VASS0 for the same reason851

as anb≥n ̸∈ H0: suppose it is accepted by some k-H-VASS0 run on n states and consider852

run of the resolver on the word u = $(w ⊗ a|w|+n+1) ∈ L14, thus must end with counter 0.853

The extension of u by ($, b)n+1 is also accepting, it must remain at 0 and cycle on accepting854

states. Hence u($, b)|w|+n+1 ∈ L14 cannot be distinguished from u($, b)|w|+n+2 ̸∈ L14. ◀855

E Index of Languages used in this paper856

Name Definition Alphabet Page
L1 anb≤n + a∗b∗c {a, b, c} 4
L2 anb≥n# {a, b, #} 5
L3 (a + b)∗anb≤n {a, b} 6
L4 anb≤n {a, b} 7
L5 anbn {a, b} 7
L6 bin(n)#0≤n#, where bin(n) is n in binary. {0, 1, #} 7
L7 anb≤n# {a, b, #} 7
L8

⋃∞
k=0 an0 bn0 . . . ank−1 bnk−1 ank b≤nk aΣ∗. {a, b} 8

L9 anbn ∪ anb2n {a, b} 9
L10 anb≤nc∗ ∪ anb∗c≤n {a, b, c} 9
L11 anb≤ncn ∩ anb∗c≤n {a, b, c} 9
L12 anbncn {a, b, c} 9
L13 anbna∗ = anbnc∗ ∩ anb∗cn {a, b} 20

857

	1 Introduction
	2 Definitions
	3 Expressiveness
	3.1 Separating determinism, history-determinism and non-determinism
	3.2 Silent transitions
	3.3 Comparison with Finitely Sequential VASS

	4 Closure Properties
	5 Decision Problems
	5.1 Checking HDness and Inclusion
	5.2 Checking HDness of VASS Languages
	5.3 Regularity

	A The Structure of Resolvers
	B Additional Material for Expressiveness (Section 3)
	B.1 Comparison of History-deterministic VASS with and without -transitions

	C Additional Material for Closure Properties (Section 4)
	D Additional Material for Decision Problems (Section 5)
	E Index of Languages used in this paper

