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Vector Addition Systems

Definition
A d-dimensional VAS is a finite set of vectors A ⊆ Zd .
For v, v′ : Nd it has a step v

a−−→ v′ if v′ = v + a.

Let’s lift this to words over A:

ε−−→ def
= IdNd

aw−−→ def
=

w−−→ ◦ a−−→

L−−→ def
=

⋃
w∈L

w−−→

where ε is the empty word, a ∈ A, w ∈ A∗ .

The (VASS) Reachability Problem
Input: a regular language L ⊆ A∗ over A ⊆ Zd

Question: does 0
L−−→ 0 hold?
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bf

if numbers are binary encoded

and between NL and NP if numbers are given in unary
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Our Contribution

Theorem
For regular L ⊆ (Z× Z)∗, shortest paths witnessing 0

L−−→ 0 are

bounded by B
def
= (|L|+ ‖L‖)O(1).

I on-the-fly guessing a witness uses log(B) space.

I implies the PSpace upper bound of Blondin et al.’15

I closes the gap to NL completeness for unary case.
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Hopcroft and Pansiot ’79
“On the Reachability Problem for 5-Dimensional VAS”

Theorem
If L ⊆ (Z× Z)∗ is regular then

L−−→ is effectively semilinear.

I 2D-Reachability is decidable

I This is not true for dimensions d ≥ 3

(0, 0, 0)

(1, 0, 0)

(0, 1,−1) (0,−1, 2)
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Linear Path Schemes

A language Λ = α0β
∗
1α1β

∗
2 . . . β

∗
kαk , is called a linear path scheme.

A VAS L ⊆ (Zd)∗ is called flattable if

L−−→ =
S−−→

for a finite union S of LPSs.

Leroux and Sutre ’04
Every regular L ⊆ (Z× Z)∗ is flattable.
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2-dim. VASS are flattable

A language Λ = α0β
∗
1α1β

∗
2 . . . β

∗
kαk , is called a linear path scheme.

A VAS L ⊆ (Zd)∗ is called flattable if

L−−→ =
S−−→

for a finite union S of LPSs.

Leroux and Sutre ’04
Every regular L ⊆ (Z× Z)∗ is flattable.
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2-dim. VASS are polynomially flattable
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Blondin et al. ’15
“Reachability in 2-VASS Is PSPACE-Complete”

Polynomial Flattability Lemma

For any regular L ⊆ (Z× Z)∗, there exist finitely many LPSs
Λ1,Λ2, . . . ,Λk ⊆ L such that

1.
L−−→ =

⋃k
i=1

Λi−−→
2. |Λi | ≤ (‖L‖ + |L|)O(1) for all 1 ≤ i ≤ k .

witnesses have the form

α0β
n1
1 α1β

n2
2 . . . βnmm αm

for small m.

I Small solutions lemmas from linear programming lead to a

2|L|
O(1)
· ‖L‖ bound on on the ni and thus shortest witnesses.

I PSPACE upper bound for 2-VASS Reachability (binary)
I NP upper bound for 2-VASS Reachability (unary)
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I NP upper bound for 2-VASS Reachability (unary)
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Our Construction

Given a linear path scheme

Λ = α0β
∗
1α1β

∗
2 . . . β

∗
KαK

we say π
def
= v1v2 . . . vk ∈ Λ visits p ∈ Z2 if p = v1 + v2 + · · ·+ vj

for some j ≤ k .

A witness is a word π ∈ Λ such that

1. it visits only points in N2

2.
∑
π = 0.

Theorem
All points visited by shortest witnesses have norm ≤ (|Λ| · ‖Λ‖)O(1)
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Rational Cones

Definition
The cone spanned by A ⊆ Z2 is the smallest set satisfying

I Cone(A) ⊇ A

I Cone(A) = Cone(A) + Cone(A)

I Cone(A) = Cone(A) ·Q>0.

Property 1

If a cone is not contained in a half-plane then it contains 0.

Property 2

If 0 ∈ Cone(A) then 0 is a nonempty linear combination of at most
three vectors from A and with coefficients in {1, . . . , 2‖A‖2}.

Property 3

If v ∈ Cone(A) and w ∈ Z2 is such that ‖w‖ ≤ ‖A‖ and v ·w is
maximal, then w ∈ Cone(A).
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Cones and Paths

For π = α0β
n1
1 α1β

n2
2 . . . βnKK αK ∈ Λ write

CyclesB(π)
def
= {βi | ni ≥ B} ⊆ S

for those cycles βi occurring ni ≥ B times and let

ConeB(π)
def
= Cone(CyclesB(π)).

15 / 18



A Cut Lemma

Observation
If sπ visits only points in N≥B × N≥B and π′ is a subword of π
such that B ≥ (|π| − |π′|) · ‖S‖ then sπ′ visits only points in N2.

Cut Lemma
If σ is part of a shortest witness and visits only points in N2

≥B ,
then 0 /∈ ConeB(σ).
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Existence of small witnesses

Theorem
All points visited by shortest witnesses have norm ≤ (|Λ| · ‖Λ‖)O(1)

Magic Lemma

Shortest witnesses do not visit points outside N2
≤c ∪ N2

≥b for some
bounds b, c ∈ N polynomial in |Λ| and ‖S‖.
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Conclusion

2-VASS have (|L| · ‖L‖)O(1) long reachability witnesses.

I The reachability problem is NL-complete (unary) and
PSPACE -complete (binary).

I Our proof uses effective (polynomial) flattability and small
solutions lemmas for linear equations.

Outlook

I Does this generalise to (d > 2)-dimensional flattable VASS?

I regular separability of 1-VASS languages

I 1-dim. pushdown VASS, or 2-dim. branching VASS?
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