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Vector Addition Systems

Definition
A d-dimensional VAS is a finite set of vectors A C Z¢.
For v,v' : N? it has a step v — v/ if v = v +a.

Let's lift this to words and languages over A:

€ def aw_ def w a L def
— = ldye — = — 0 — — = U

where ¢ is the empty word, a € A, w € A* and L C A*.

The (VASS) Reachability Problem
Input: a regular language L C A* over A C Z9

Question: does 0 —L—> 0 hold?
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Abstract—Known to be decidable since 1981, there still remains
a huge gap between the best known lower and upper bounds for
the reachability problem for vector addition systems with states
(VASS). Here the problem is shown PSPACE-complete in the
two-dimensional case, vastly improving on the doubly ial
time bound established in 1986 by Howell, Rosier, Huynh and
Yen. C ility and for imensional VASS
are also shown PSPACE-complete, and reachability in two-
dimensional VASS and in integer VASS under unary encoding
are considered.

1. INTRODUCTION

Petri nets have a long history. Since their introduction [19]
by Petri in 1962, thousands of papers on Petri nets have been
published. Nowadays, Petri nets find a variety of applications,
ranging, for instance, from modeling of biological, chemical
and business processes to the formal verification of concurrent
programs, see e.g. [1], [4], [8], [21], [27]. For the analysis of
their algorithmic properties, Petri nets are often equivalently
viewed as vector addition systems with states (VASS), and
we will adopt this view throughout this paper. A VASS
comprises a finite-state controller with a finite number of
counters ranging over the natural numbers. The number of
counters is usually referred to as the dimension of the VASS,
and we write d-VASS to denote VASS in dimension d. When
taking a transition, a VASS can add or subtract an integer from
a counter, provided that the resulting counter values are greater
than or equal to zero; otherwise the transition is blocked. A
configuration of a VASS is a tuple consisting of a control state
and an assignment of natural numbers to the counters. The
central decision problem for VASS is reachability: given two
configurations, is there a path connecting them in the infinite

then polished and simplified by Kosaraju [11] in 1982, and
Kosaraju's argument was in turn simplified ten years later by
Lambert [12]. More recently, beginning in 2009, Leroux began
developing a fundamentally different approach to deciding the
VASS reachability problem [15], [16]. Finally, at the time of
writing of this paper, Leroux and Schmitz could establish the
first explicit upper bound for VASS reachability and show that
it can be decided in F,s [13].

Milestones in the work on the complexity of the VASS
reachability problem include Lipton’s 1976 proof that the
problem, regardless of the choice of encoding for numbers
but without fixed dimension, is EXPSPACE-hard [17]. Yet
our knowledge of the situation for any fixed dimension d
is vastly lacking. For 1-VASS, reachability under unary en-
coding is easily seen to be NL-complete: the hardness is
inherited from graph reachability and the upper bound follows
from a simple pumping argument. Under binary encoding, 1-
VASS reachability is known to be NP-complete [5]. As a
substantial contribution towards showing decidability of the
general problem, Hopcroft and Pansiot in 1979 showed the
two-dimensional case decidable [9]. At the core of their proof
lies an intricate algorithm that implicitly exploits
the reachability set of a 2-VASS is semi-linear. Exhibiting
a 3-VASS with a reachability set that is not semi-linear,
Hopcroft and Pansiot could show that their method breaks
down for d-VASS for any d greater than 2. Further complexity
aspects were left unanswered in [9]. In 1986, Howell, Rosier,
Huynh and Yen [10] observed that Hopcroft and Pansiot’s
algorithm runs in nondeterministic doubly-exponential time,
under both unary and binary encoding. They then managed
o improve this bound from nondeterministic to deterministic
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Our Contribution

Theorem ,
For regular L C (Z x Z)*, shortest paths witnessing 0 — 0 are

bounded by B dzef(|L| + ”LH)O(l)'

» on-the-fly guessing a witness uses log(B) space.
» implies the PSPACE upper bound of Blondin et al.'15

» closes the gap to NL completeness for unary case.
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for a finite union S of LPSs.
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Every regular L C (Z x Z)* is flattable.

18



2-dim. VASS are flattable

Q PO

/q_)v

N e




The Reachability Problem — Milestones

1962 - -- Petri: "Kommunikation mit Automaten”.

1969 - -- Karp and Miller: “Parallel program schemata” .

1974 ... van Leeuwen: “A Partial Solution to the Reachability-Problem for VAS".

1976 - -- Lipton: The reachability problem requires exponential space.

1977 - -. Sacerdote and Tenney: “The Decidability of the Reachability Problem for VAS".
1979 - .. Hopcroft and Pansiot: “On the Reachability Problem for 5-Dimensional VAS" .
1981 - -- Mayr: “An algorithm for the general Petri net reachability problem”.

1982 - - - @ Kosaraju: “Decidability of reachability in VAS” .

1986 - - - Rosier and Yen:“A Multiparameter Analysis of the Boundedness Problem for VAS”.

Howell, Rosier, Huynh, and Yen: “Some complexity bounds for problems concerning

finite and two-dimensional VASS” .
1992 ... Lambert: “A Structure to Decide Reachability in Petri Nets”.
2004 - - - Leroux and Sutre: “On Flatness for 2-VASS" .

10/18



The Reachability Problem — Milestones

1962 - -- Petri: "Kommunikation mit Automaten”.

1969 - -- Karp and Miller: “Parallel program schemata” .

1974 ... van Leeuwen: “A Partial Solution to the Reachability-Problem for VAS".

1976 - -- Lipton: The reachability problem requires exponential space.

1977 - -. Sacerdote and Tenney: “The Decidability of the Reachability Problem for VAS".
1979 - .. Hopcroft and Pansiot: “On the Reachability Problem for 5-Dimensional VAS" .
1981 - -- Mayr: “An algorithm for the general Petri net reachability problem”.

1982 - - - @ Kosaraju: “Decidability of reachability in VAS” .

1986 - - - Rosier and Yen:“A Multiparameter Analysis of the Boundedness Problem for VAS”.

Howell, Rosier, Huynh, and Yen: “Some complexity bounds for problems concerning

finite and two-dimensional VASS” .

1992 ... Lambert: “A Structure to Decide Reachability in Petri Nets”.
2004 --- Leroux and Sutre: “On Flatness for 2-VASS”.
2010 --- Leroux: “The General VAS Reachability Problem by Presburger Inductive Invariants”.

10/18



The Reachability Problem — Milestones

1962 - -- Petri: "Kommunikation mit Automaten”.

1969 - -- Karp and Miller: “Parallel program schemata” .

1974 ... van Leeuwen: “A Partial Solution to the Reachability-Problem for VAS".

1976 - -- Lipton: The reachability problem requires exponential space.

1977 - -. Sacerdote and Tenney: “The Decidability of the Reachability Problem for VAS".
1979 - .. Hopcroft and Pansiot: “On the Reachability Problem for 5-Dimensional VAS" .
1981 - -- Mayr: “An algorithm for the general Petri net reachability problem”.

1982 - - - @ Kosaraju: “Decidability of reachability in VAS” .

1986 - - - Rosier and Yen:“A Multiparameter Analysis of the Boundedness Problem for VAS”.

Howell, Rosier, Huynh, and Yen: “Some complexity bounds for problems concerning

finite and two-dimensional VASS” .

1992 ... Lambert: “A Structure to Decide Reachability in Petri Nets”.

2004 - - - Leroux and Sutre: “On Flatness for 2-VASS”.

2010 --- Leroux: “The General VAS Reachability Problem by Presburger Inductive Invariants”.
2013 --- Leroux: “Presburger VAS” .

10/18



The Reachability Problem — Milestones

1962 - -- Petri: "Kommunikation mit Automaten”.

1969 - -- Karp and Miller: “Parallel program schemata” .

1974 ... van Leeuwen: “A Partial Solution to the Reachability-Problem for VAS".

1976 - -- Lipton: The reachability problem requires exponential space.

1977 - -. Sacerdote and Tenney: “The Decidability of the Reachability Problem for VAS".
1979 - .. Hopcroft and Pansiot: “On the Reachability Problem for 5-Dimensional VAS" .
1981 - -- Mayr: “An algorithm for the general Petri net reachability problem”.

1982 - - - @ Kosaraju: “Decidability of reachability in VAS” .

1986 - - - Rosier and Yen:“A Multiparameter Analysis of the Boundedness Problem for VAS”.

Howell, Rosier, Huynh, and Yen: “Some complexity bounds for problems concerning

finite and two-dimensional VASS” .

1992 ... Lambert: “A Structure to Decide Reachability in Petri Nets”.

2004 --- Leroux and Sutre: “On Flatness for 2-VASS”.

2010 --- Leroux: “The General VAS Reachability Problem by Presburger Inductive Invariants”.
2013 --- Leroux: “Presburger VAS” .

2015 --- Leroux and Schmitz: “Demystifying Reachability in VAS” .

10/18



The Reachability Problem — Milestones

1962 - -- Petri: "Kommunikation mit Automaten”.

1969 - -- Karp and Miller: “Parallel program schemata” .

1974 ... van Leeuwen: “A Partial Solution to the Reachability-Problem for VAS".

1976 - -- Lipton: The reachability problem requires exponential space.

1977 - -. Sacerdote and Tenney: “The Decidability of the Reachability Problem for VAS".
1979 - .. Hopcroft and Pansiot: “On the Reachability Problem for 5-Dimensional VAS" .
1981 - -- Mayr: “An algorithm for the general Petri net reachability problem”.

1982 - - - @ Kosaraju: “Decidability of reachability in VAS” .

1986 - - - Rosier and Yen:“A Multiparameter Analysis of the Boundedness Problem for VAS”.

Howell, Rosier, Huynh, and Yen: “Some complexity bounds for problems concerning

finite and two-dimensional VASS” .

1992 ... Lambert: “A Structure to Decide Reachability in Petri Nets”.

2004 --- Leroux and Sutre: “On Flatness for 2-VASS”.

2010 --- Leroux: “The General VAS Reachability Problem by Presburger Inductive Invariants”.
2013 --- Leroux: “Presburger VAS” .

2015 --- Leroux and Schmitz: “Demystifying Reachability in VAS” .

Blondin et al.: "Reachability in 2-VASS Is PSPACE-Complete” .

10/18



2-dim. VASS are flattable

Q PO

/q_)v

N e




2-dim. VASS are flattable




2-dim. VASS are polynomially flattable




Blondin et al. '15

“Reachability in 2-VASS Is PSPACE-Complete”

12/18



Blondin et al. '15

“Reachability in 2-VASS Is PSPACE-Complete”

Polynomial Flattability Lemma
For any regular L C (Z x Z)*, there exist finitely many LPSs
A1, Mo, ..., Ax C L such that

L # = Uf(:l L

2. N < (L) + |L)CD for all 1 < i < k.

12/18



Blondin et al. '15

“Reachability in 2-VASS Is PSPACE-Complete”

Polynomial Flattability Lemma

For any regular L C (Z x Z)*, there exist finitely many LPSs
A1, Ao, ..., Ag C L such that

Py N
2. N < (L) + |L)PD for all 1 < i < k.

12/18



Blondin et al. '15

“Reachability in 2-VASS Is PSPACE-Complete”

Polynomial Flattability Lemma
For any regular L C (Z x Z)*, there exist finitely many LPSs
A1, Ao, ..., Ag C L such that

L # - Uf(:l L

2. N < (L) + |L)PD for all 1 < i < k.

» Small solutions lemmas from linear programming lead to a

|°m

2l IL|| bound on on the n; and thus shortest witnesses.

12/18



Blondin et al. '15

“Reachability in 2-VASS Is PSPACE-Complete”

Polynomial Flattability Lemma
For any regular L C (Z x Z)*, there exist finitely many LPSs
A1, Ag, ..., A C L such that

1= Uf(:l L

2. N < (L) + |L)PD for all 1 < i < k.

» Small solutions lemmas from linear programming lead to a

o1 .
oIt IL|| bound on on the n; and thus shortest witnesses.

» PSPACE upper bound for 2-VASS Reachability (binary)

12/18



Blondin et al. '15

“Reachability in 2-VASS Is PSPACE-Complete”

Polynomial Flattability Lemma

For any regular L C (Z x Z)*, there exist finitely many LPSs
N1, Mo, A C L such that

Py N
2. N < (L) + |L)PD for all 1 < i < k.

» Small solutions lemmas from linear programming lead to a

o1 .
oIt IL|| bound on on the n; and thus shortest witnesses.

» PSPACE upper bound for 2-VASS Reachability (binary)
» NP upper bound for 2-VASS Reachability (unary)

12/18



Blondin et al. '15

“Reachability in 2-VASS Is PSPACE-Complete”

Polynomial Flattability Lemma
For any regular L C (Z x Z)*, there exist finitely many LPSs
A1, Ag, ..., A C L such that

1= Uf(:l L

2. N < (L) + |L)PD for all 1 < i < k.

> tions lemmas from linear programming lead to a
217 |IL[[Jpound on on the n; and thus shortest witnesses.
> upper bound for 2-VASS Reachability (binary)

» NP upper bound for 2-VASS Reachability (unary)

12/18



Our Construction

Given a linear path scheme
A= apBia1f; ... Brak

wesayw(jéfvlvz...vke/\visitsp6Z2 ifp=vi+va+---+v;
for some j < k.

13/18



Our Construction

Given a linear path scheme

A= apBia1f; ... Brak

wesay7rd:dv1v2...vkE/\visitspGZ2 fp=vi+vy+---

for some j < k. A witness is a word m € A such that

1. it visits only points in N2

2. > m=0.

+ v;j

13/18



Our Construction

Given a linear path scheme
A= apBia1f; ... Brak

wesay7rd:dv1v2...vk6/\ visits p € Z? ifp=vi+va+---+v;
for some j < k. A witness is a word m € A such that

1. it visits only points in N2

2. > m=0.

Theorem
All points visited by shortest witnesses have norm < (|A| - ||A]|)©™)
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Rational Cones

Definition

The cone spanned by A C Z? is the smallest set satisfying
» Cone(A) D A
» Cone(A) = Cone(A) + Cone(A)
» Cone(A) = Cone(A) - Qxo.
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Rational Cones

Definition
The cone spanned by A C Z? is

/
Cone(A) o {Z aivi | ai € Qso, vi €A, | > 0}

i=1

Property 1

If a cone is not contained in a half-plane then it contains 0.
Property 2

If 0 € Cone(A) then 0 is a nonempty linear combination of at most
three vectors from A and with coefficients in {1,...,2||A[|?}.
Property 3

If v € Cone(A) and w € Z2 is such that ||w|| < ||A|| and v - w is
maximal, then w € Cone(A). s



Cones and Paths
For m = apf{* 1352 ... Bfak € N\ write
Cyclesg(m) £ {B;j | ni > B} C S
for those cycles 3; occurring n; > B times and let

Coneg(m) £ Cone(Cyclesg(r)).
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A Cut Lemma

Observation
If s7 visits only points in N>g x N>pg and 7’ is a subword of 7
such that B > (|m| — |7’|) - ||S|| then s7’ visits only points in N2,
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A Cut Lemma

Observation
If s7 visits only points in N>g x N>pg and 7’ is a subword of 7
such that B > (|m| — |7|) - ||S|| then sz’ visits only points in N2.

Cut Lemma
If o is part of a shortest witness and visits only points in N2>B,

then 0 ¢ Coneg(o).
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Existence of small witnesses
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Existence of small witnesses assuming the Magic Lemma™

Theorem
All points visited by shortest witnesses have norm < (|A| - [|A] )9

Magic Lemma

Shortest witnesses do not visit points outside N2 UN2 , for some
bounds b, ¢ € N polynomial in |A| and ||S]|.
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Conclusion

2-VASS have (|L| - [|L]|)°® long reachability witnesses.

» The reachability problem is NL-complete (unary) and
PSPACE-complete (binary).

» Our proof uses effective (polynomial) flattability and small
solutions lemmas for linear equations.
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Conclusion

2-VASS have (|L| - [|L]|)°® long reachability witnesses.

» The reachability problem is NL-complete (unary) and
PSPACE-complete (binary).

» Our proof uses effective (polynomial) flattability and small
solutions lemmas for linear equations.

Outlook

» Does this generalise to (d > 2)-dimensional flattable VASS?

> regular separability of 1-VASS languages
» 1-dim. pushdown VASS, or 2-dim. branching VASS?
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