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Abstract
One-counter nets (OCN) are Petri nets with exactly one unbounded place. They are equivalent
to a subclass of one-counter automata with just a weak test for zero. Unlike many other semantic
equivalences, strong and weak simulation preorder are decidable for OCN, but the computational
complexity was an open problem. We show that both strong and weak simulation preorder on
OCN are PSPACE-complete.
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1 Introduction

The model. One-counter automata (OCA) are Minsky counter automata with only one
counter, and they can also be seen as a subclass of pushdown automata with just one stack
symbol (plus a bottom symbol). One-counter nets (OCN) are Petri nets with exactly one
unbounded place, and they correspond to a subclass of OCA where the counter cannot be
fully tested for zero, because transitions enabled at counter value zero are also enabled at
nonzero values. OCN are arguably the simplest model of discrete infinite-state systems,
except for those that do not have a global finite control.

Previous results on semantic equivalence checking. Notions of behavioral semantic
equivalences have been classified in Van Glabbeek’s linear time - branching time spectrum
[3]. The most common ones are, in order from finer to coarser, bisimulation, simulation and
trace equivalence. Each of these have their standard (called strong) variant, and a weak
variant that abstracts from arbitrarily long sequences of internal actions.

For OCA/OCN, strong bisimulation is PSPACE-complete [2], while weak bisimulation is
undecidable [9]. Strong trace inclusion is undecidable for OCA [11], and even for OCN [5],
and this trivially carries over to weak trace inclusion.

The picture is more complicated for simulation preorders. While strong and weak
simulation are undecidable for OCA [8], they are decidable for OCN. Decidability of strong
simulation on OCN was first proven in [1], by establishing that the simulation relation follows
a certain regular pattern. This idea was made more graphically explicit in later proofs [7, 6],
which established the so-called Belt Theorem, that states that the simulation preorder relation
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on OCN can be described by finitely many partitionings of the grid N × N, each induced
by two parallel lines. In particular, this implies that the simulation relation is semilinear.
However, the proofs in [1, 7, 6] did not yield any upper complexity bounds, since the first
was based on two semi-decision procedures and the later proof of the Belt Theorem was
non-constructive. A PSPACE lower bound for strong simulation on OCN follows from [10].

Decidability of weak simulation on OCN was shown in [5], using a converging series of
semilinear approximants. This proof used the decidability of strong simulation on OCN as
an oracle, and thus did not immediately yield any upper complexity bound.

Our contribution. We provide a new constructive proof of the Belt Theorem and derive
a PSPACE algorithm for checking strong simulation preorder on OCN. Together with the
lower bound from [10], this shows PSPACE-completeness of the problem.

Via a technical adaption of the algorithm for weak simulation in [5], and the new PSPACE
algorithm for strong simulation, we also obtain a PSPACE algorithm for weak simulation
preorder on OCN. Thus even weak simulation preorder on OCN is PSPACE-complete.

simulation bisimulation weak sim. weak bis. trace inclusion
OCN PSPACE PSPACE [2] PSPACE undecidable [9] undecidable [11]
OCA undecidable [8] PSPACE [2] undecidable [8] undecidable [9] undecidable [5]

2 Problem Statement

A labelled transition system (LTS) over a finite alphabet A of actions consists of a set of
configurations and, for every action a ∈ A, a binary relation a−→ between configurations.

Given two LTS S and S′, a relation R between the configurations of S and S′ is a
simulation if for every pair of configurations (c, c′) ∈ R and every step c a−→d there exists
a step c′ a−→d′ such that (d, d′) ∈ R. Simulations are closed under union, so there exists a
unique maximal simulation. If S = S′ then this maximal simulation is a preorder, called
simulation preorder, and denoted by 4. If c 4 c′ then one says that c′ simulates c.

Simulation preorder can also be characterized by a Simulation Game as follows. The
positions are all pairs (c, c′) of configurations of S and S′ respectively. The game is played by
two players called Spoiler and Duplicator and proceeds in rounds. In every round, starting
in a position (c, c′), Spoiler chooses some a ∈ A and some configuration d with c

a−→d.
Then Duplicator responds by choosing a configuration d′ with c′ a−→d′, and the next round
continues from position (d, d′). If one of the players cannot move then the other player
wins, and Duplicator wins every infinite play. It is well known that the Simulation Game is
determined: for every initial position (c, c′), exactly one of players has a winning strategy.
Configuration c′ simulates c iff Duplicator has a strategy to win the Simulation Game from
position (c, c′).

I Definition 1 (One-Counter Nets). A one-counter net (OCN) is a triple N = (Q,A, δ) given
by finite sets of control-states Q, action labels A and transitions δ ⊆ Q×A× {−1, 0, 1} ×Q.
It induces an infinite-state labelled transition system over the state set Q×N, whose elements
will be written as pm, where pm a−→qn iff (p, a, d, q) ∈ δ and n = m+ d ≥ 0.

We study the computational complexity of the following decision problem.

Simulation Checking for OCN
Input: Two OCN N and N ′ together with configurations qn and q′n′

of N and N ′ respectively, where n and n′ are given in binary.
Question: qn 4 q′n′ ?
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I Theorem 2. The Simulation Checking Problem for OCN is in PSPACE.

Combined with the PSPACE-hardness result of [10], this yields PSPACE-completeness of
the problem.
I Remark. Our construction can also be used to compute the simulation relation as a
semilinear set, but its description requires exponential space. However, checking a point
instance qn 4 q′n′ of the simulation problem can be done in polynomial space by stepwise
guessing and verifying only a polynomialy bounded part of the relation; cf. Section 5.

Without restriction (see [1] for a justification) we assume that both OCN are normalised:
1. In Spoiler’s net N , every control-state has some outgoing transition with a non-negative

change of counter value.
2. Duplicator’s net N ′ is complete, i.e., every control-state has an outgoing transition for

every action (though the change in counter value may be negative).
Thus Spoiler cannot get stuck and only loses the game if it is infinite. Moreover, Duplicator
can only be stuck (and lose the game) when his counter equals zero.

Outline of the proof. One easily observes that the Simulation Game is monotone for both
players. If Duplicator wins the Simulation Game from a position (qn, q′n′) then he also
wins from (qn, q′m) for m > n′. Similarly, if Spoiler wins from (qn, q′n′) then she also wins
from (qm, q′n′) for m > n. For a fixed pair (q, q′) of control-states, both players winning
regions therefore split the grid N× N into two connected subsets. It is known [7, 6] that the
frontier between these subsets is contained in a belt, i.e., it lays between two parallel lines
with rational slope.

For the proof of our main result we analyse a symbolic Slope Game. This new game is
similar to the Simulation Game but necessarily ends after a small number of rounds. We show
that given sufficiently high excess of counter-values, both players can re-use winning strategies
for the Slope Game also in the Simulation Game. As a by-product of this characterization,
we obtain polynomial bounds on widths and slopes of the belts. Once the belt-coefficients
are known, one can compute the frontiers exactly because every frontier necessarily adheres
to a regular pattern.

3 Polynomially Bounded Belts

Let us fix two OCN N and N ′, with sets of control-states Q and Q′, respectively. Following
[6], we interpret 4 as 2-colouring of K = |Q×Q′| Euclidean planes, one for each pair of
control-states (q, q′) ∈ Q×Q′.

The main combinatorial insight of [6] (this was also present in [1], albeit less explicitly) is
the so-called Belt Theorem, that states that each such plane can be cut into segments by
two parallel lines such that the colouring of 4 in the outer two segments is constant; see
Figure 1. We provide a new constructive proof of this theorem, stated as Theorem 4 below,
that allows us to derive polynomial bounds on the coefficients of all belts.

I Definition 3 (Positive vectors, direction, c-above, c-below). A vector (ρ, ρ′) ∈ Z × Z of
integers is called positive if (ρ, ρ′) ∈ N × N and (ρ, ρ′) 6= (0, 0). Its direction is the half-
line R+ · (ρ, ρ′). For a positive vector (ρ, ρ′) and a number c ∈ N we say that the point
(n, n′) ∈ Z×Z is c-above (ρ, ρ′) iff there exists some point (r, r′) ∈ R+ · (ρ, ρ′) in the direction
of (ρ, ρ′) such that

n < r − c and n′ > r′ + c. (1)
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Figure 1 A belt with slope ρ
ρ′ . The dashed half-line is the direction of (ρ, ρ′).

Symmetrically, (n, n′) is c-below (ρ, ρ′) if is a point (r, r′) ∈ R+ · (ρ, ρ′) with

n > r + c and n′ < r′ − c. (2)

I Theorem 4 (Belt Theorem). For every two one-counter nets N and N ′ with sets of control-
states Q and Q′ respectively, there is a bound c ∈ N such that for every pair (q, q′) ∈ Q×Q′
of control-states there is a positive vector (ρ, ρ′) such that
1. if (n, n′) is c-above (ρ, ρ′) then qn 4 q′n′, and
2. if (n, n′) is c-below (ρ, ρ′) then qn 64 q′n′.
Moreover, c and all ρ, ρ′ are bounded polynomially w.r.t. the sizes of N and N ′.

4 Proof of the Belt Theorem

We consider OCN N and N ′ with sets of control-states Q and Q′, resp., and define the
constant K = |Q × Q′|. Abdulla and Cerans [1] showed that, above a certain level, the
simulation relation has a regular structure. An important parameter for this structure is
the ratio n/n′ of the respective counter values n in Spoiler’s configuration qn of N and n′ in
Duplicator’s configuration q′n′ of N ′.

We further develop this intuition by defining a new finitary game (called the Slope Game;
cf. Section 4.1) that is played directly on the control graphs of the nets, and in which the
objective of the players is to minimize (resp. maximize) the ratio of the effects of recently
observed minimal cycles. Then we show how to transform winning strategies in the Slope
Game into winning strategies in the original simulation game. First we need to define some
properties of vectors.

I Definition 5 (Behind, Steeper). Let (ρ, ρ′) be a positive and (α, α′) ∈ Z2 an arbitrary
vector. We place the two on the plane with a common starting point and consider the
clockwise oriented angle from (ρ, ρ′) to (α, α′). We say that (α, α′) is behind (ρ, ρ′) if the
oriented angle is strictly between 0◦ and 180◦. See Figure 2 for an illustration.

Positive vectors may be naturally ordered: We will call (ρ, ρ′) steeper than (α, α′), written
(α, α′) ≺ (ρ, ρ′), if (α, α′) is behind (ρ, ρ′).

Note that the property of one vector being behind another only depends on their directions.
The following simple lemma will be useful in the sequel.

I Lemma 6. Let (ρ, ρ′) be a positive vector and c, n, n′ ∈ N.
1. If (n, n′) is c-below (ρ, ρ′) then (n, n′) + (α, α′) is c-below (ρ, ρ′) for any vector (α, α′)

which is behind (ρ, ρ′).
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2. If (n, n′) is c-above (ρ, ρ′) then (n, n′) + (α, α′) is c-above (ρ, ρ′) for any vector (α, α′)
which is not behind (ρ, ρ′).

(ρ, ρ′)

(α, α′)

(β, β′)

(δ, δ′)

Figure 2 Vectors (α, α′) and (β, β′) are be-
hind (ρ, ρ′), but (δ, δ′) is not. Also, (α, α′) ≺
(ρ, ρ′).

Duplicator
wins Game

continues

Spoiler wins

(ρ, ρ′)

Figure 3 Evaluating the winning condition
in position (π, (ρ, ρ′)) after a phase of the
Slope Game.

4.1 Slope Game
I Definition 7 (Product Control Graph, Lasso, Effect of a path). Given two OCN N = (Q,A, δ)
and N ′ = (Q′, A, δ′), their product control graph is the finite, edge-labelled graph with nodes
Q×Q′ and (A× N× N)-labelled edges E given by

(p, p′) a,d,d
′

−→ (q, q′) ∈ E iff p a,d−→q ∈ δ and p′ a,d
′

−→q′ ∈ δ′. (3)

A path

π = (q0, q
′
0) a0,d0,d

′
0−→ (q1, q

′
1) a1,d1,d

′
1−→ . . .

ak−1,dk−1,d
′
k−1−→ (qk, q′k) (4)

from (q0, q
′
0) to (qk, q′k) in this graph is called lasso if it contains a cycle while none of its strict

prefixes does. That is, if there exist i < k such that (qk, q′k) = (qi, q′i) and for all 0 ≤ i < j < k,

(qi, q′i) 6= (qj , q′j). The lasso π splits into prefix(π) = (q0, q
′
0) a0,d0,d

′
0−→ . . .

ai−1,di−1,d
′
i−1−→ (qi, q′i)

and cycle(π) = (qi, q′i)
ai,di,d

′
i−→ . . .

ak−1,dk−1,d
′
k−1−→ (qk, q′k). The effect of a path is the cumulative

sum of the effects of its transitions:

∆(π) =
k−1∑
i=0

(di, d′i) ∈ Z× Z. (5)

The effects of cycles will play a central role in our further construction. The intuition is that
if a play of a Simulation Game describes a lasso then the players “agree” on the chosen cycle.
Repeating this cycle will change the ratio of the counter values towards its effect.

To formalize this intuition, we define a finitary Slope Game which proceeds in phases.
In each phase, the players alternatingly move on the control graphs of their original nets,
ignoring the counter, and thereby determine the next lasso that occurs. After such a phase,
a winning condition is evaluated that compares the effect of the chosen lasso’s cycle with
that of previous phases. Now either one player immediately wins or the next phase starts,
but then the steepness of the observed effect must have strictly decreased. The number of
different effects of simple cycles thus bounds the maximal length of a game.
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I Definition 8 (Slope Game). A Slope Game is a strictly alternating two player game played
on a pair N ,N ′ of one-counter nets. The game positions are pairs (π, (ρ, ρ′)), where π is an
acyclic path in the product control graph of N and N ′, and (ρ, ρ′) is a positive vector which
we call slope.

The game is divided into phases, each starting with a path π = (q0, q
′
0) of length 0. Until

a phase ends, the game proceeds in rounds like a Simulation Game, but the players pick
transition rules instead of transitions: in a position (π, (ρ, ρ′)) where π ends in states (q, q′),
Spoiler chooses a transition rule q a,d−→p, then Duplicator responds with a transition rule
q′

a,d−→p′. If the extended path π′ = π
a,d,d′−→ (p, p′) is still not a lasso, the next round continues

from the updated position (π′, (ρ, ρ′)); otherwise the phase ends with outcome (π′, (ρ, ρ′)).
The slope (ρ, ρ′) does not restrict the possible moves of either player, nor changes during a
phase. We thus speak of the slope of a phase.

If a round ends in position (π, (ρ, ρ′)) where π is a lasso, then the winning condition
is evaluated. We distinguish three non-intersecting cases depending on how the effect
∆(cycle(π)) = (α, α′) of the lasso’s cycle relates to (ρ, ρ′):

1. If (α, α′) is not behind (ρ, ρ′), Duplicator wins immediately.
2. If (α, α′) is behind (ρ, ρ′) but not positive, Spoiler wins immediately.
3. If (α, α′) is behind (ρ, ρ′) and positive, the game continues with a new phase from position

(π′, (α, α′)), where π′ is the path of length 0 consisting of the pair of ending states of π.

Figure 3 illustrates the winning condition. Note that if there is no immediate winner it is
guaranteed that (α, α′) is a positive vector.

The fundamental intuition for the connection between the Slope Game and the Simulation
Game is as follows. The Slope Game from initial position ((q, q′), (ρ, ρ′)) determines how
the initial slope (ρ, ρ′) relates to the belt in the plane for (q, q′) in the simulation relation.
Roughly speaking, if (ρ, ρ′) is less steep than the belt then Spoiler wins; if (ρ, ρ′) is steeper
then Duplicator wins. Finally, when the initial slope (ρ, ρ′) is exactly as steep as the belt,
any player may win the Slope Game.

Consider a Simulation Game in which the ratio n/n′ of the counter values of Spoiler and
Duplicator is the same as the ratio ρ/ρ′, i.e. suppose (n, n′) is contained in the direction
of (ρ, ρ′). Suppose also that the values (n, n′) are sufficiently large. By monotonicity, we
know that the steeper the slope (ρ, ρ′), the better for Duplicator. Hence if the effect (α, α′)
of some cycle is behind (ρ, ρ′) and positive, then it is beneficial for Spoiler to repeat this
cycle. With more and more repetitions, the ratio of the counter values will get arbitrarily
close to (α, α′). On the other hand, if (α, α′) is behind (ρ, ρ′) but not positive then Spoiler
wins by repeating the cycle until the Duplicator’s counter decreases to 0. Finally, if the effect
of the cycle is not behind (ρ, ρ′) then repeating this cycle leads to Duplicator’s win.

The next lemma follows from the observation that in Slope Games, the slope of a phase
must be strictly less steep than those of all previous phases.

I Lemma 9. For a fixed pair N ,N ′ of OCN,
1. any Slope Game ends after at most (K + 1)2 phases, and
2. Slope Games are effectively solvable in PSPACE.

Proof. After every phase, the slope (ρ, ρ′) is equal to the effect of a simple cycle, which
must be a positive vector. Thus the absolute values of both numbers ρ and ρ′ are bounded
by K = |Q × Q′|. It follows that the total number of different possible values for (ρ, ρ′),
and therefore the maximal number of phases played, is at most (K + 1)2. This proves the
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first part of the claim. Point 2 is a direct consequence as one can find and verify winning
strategies by an exhaustive search. J

Strategies in Slope Games. Consider one phase of a Slope Game, starting from a position
(π, (ρ, ρ′)). The phase ends with a lasso whose cycle effect (α, α′) satisfies exactly one of
three conditions, as examined by the evaluating function. Accordingly, depending on its
initial position, every phase falls into exactly one of three disjoint cases:

1. Spoiler has a strategy to win the Slope Game immediately,
2. Duplicator has a strategy to win the Slope Game immediately or
3. neither Spoiler nor Duplicator have a strategy to win immediately.

In case 1. or 2. we call the phase final, and in case 3. we call it non-final. The non-final
phases are the most interesting ones because in those, both players have a strategy that at
least prevents an immediate loss.

Strategy Trees. Both in final and non-final phases, a strategy for Spoiler or Duplicator
is a tree as described below. For the definition of strategy trees we need to consider, not
only Spoiler’s positions (π, (ρ, ρ′)) but also Duplicator’s positions, the intermediate positions
within a single round. These intermediate positions may be modelled as triples (π, (ρ, ρ′), t)
where t is a transition rule in N from the last state of π. Observe that the bipartite directed
graph, with positions of a phase as vertices and edges determined by the single-move relation,
is actually a tree, call it T . Thus a Spoiler-strategy, i.e. a subgraph of T containing exactly
one successor of every Spoiler’s position and all successors of every Duplicator’s position, is a
tree as well; and so is any strategy for Duplicator.

Such a strategy (tree) in the Slope Game naturally splits into segments, each segment
being a strategy (tree) in one phase. The segments themselves are also arranged into a tree,
which we call segment tree. Irrespectively which player wins a Slope Game, according to the
above observations, this player’s winning strategy contains segments of two kinds:

non-leaf segments are strategies to either win immediately or continue the Slope Game
(these are strategies for non-final phases);
leaf segments are strategies to win the Slope Game immediately (these are strategies in
final phases).

By the segment depth of a strategy we mean the depth of its segment tree. By Lemma 9,
Point 1, we know that a Slope Game ends after at most dmax = (K+1)2 phases. Consequently,
the segment depths of strategies are at most dmax as well.

A value of c = K · dmax is sufficient for the claim of Theorem 4. The intuition behind this
value is that for a winning player in the Slope Game, an excess of K per phase is sufficient
to be able to safely “replay” a winning strategy in the Simulation Game. Formally, this is
stated by the following two crucial lemmas, proofs of which can be found in [4], Appendix A.

I Lemma 10. Suppose Spoiler has a winning strategy of segment depth d in the Slope Game
from a position ((q, q′), (ρ, ρ′)). Then Spoiler wins the Simulation Game from every position
(qn, q′n′) which is (K · d)-below (ρ, ρ′).

I Lemma 11. Suppose Duplicator has a winning strategy of segment depth d in the Slope
Game from a position ((q, q′), (ρ, ρ′)). Then Duplicator wins the Simulation Game from every
position (qn, q′n′) which is (K · d)-above (ρ, ρ′).
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4.2 Proof of Theorem 4
Let c = K · dmax. For any two states q ∈ Q and q′ ∈ Q′ of the nets N and N ′ we will
determine the ratio (ρ, ρ′) that, together with c, characterises the belt of the plane (q, q′).
First observe the following monotonicity property of the Slope Game.

I Lemma 12. If Spoiler wins the Slope Game from a position ((q, q′), (ρ, ρ′)) and (σ, σ′) is
less steep than (ρ, ρ′) then Spoiler also wins the Slope Game from ((q, q′), (σ, σ′)).

Proof. Assume that Spoiler wins the Slope Game from ((q, q′), (ρ, ρ′)) while Duplicator
wins from ((q, q′), (σ, σ′)), for some (σ, σ′) ≺ (ρ, ρ′). Observe that in both cases, winning
strategies of segment depth ≤ dmax exist. As (σ, σ′) is less steep than (ρ, ρ′), there is a point
(n, n′) ∈ N× N which is both c-above (σ, σ′) and c-below (ρ, ρ′). Applying both Lemma 10
and 11 immediately yields a contradiction. J

Equivalently, if Duplicator wins the Slope Game from ((q, q′), (ρ, ρ′)) and (σ, σ′) is steeper
than (ρ, ρ′) then Duplicator also wins the Slope Game from ((q, q′), (σ, σ′)). We conclude
that for every pair (q, q′) of states, there is a boundary slope (β, β′) such that

1. Spoiler wins the Slope Game from ((q, q′), (σ, σ′)) for every (σ, σ′) less steep than (β, β′);
2. Duplicator wins the Slope Game from ((q, q′), (σ, σ′)) for every (σ, σ′) steeper than (β, β′).

Note that we claim nothing about the winner from the position ((q, q′), (β, β′)) itself.
Applying Lemmas 10 and 11 we see that this boundary slope (β, β′) satisfies the claims 1
and 2 of Theorem 4. Indeed, consider a pair (n, n′) ∈ N× N of counter values. If (n, n′) is
c-below (β, β′), then there is certainly a line (β̄, β̄′) less steep than (β, β′) such that (n, n′) is
c-below (β̄, β̄′). By point 1 above, Spoiler wins the Slope Game from ((q, q′), (β̄, β̄′)). By
Lemma 10, Spoiler wins the Simulation Game from (qn, q′n′). Analogously, one can use
point 2 above together with Lemma 11 to show Point 2 of Theorem 4.

It remains to show that the boundary slope (β, β′) is polynomial in the sizes of N and
N ′. We show that (β, β′) must in fact be the effect of a simple cycle. Because such cycles
are no longer than K = |Q×Q′| and because along a path of length K the counter values
cannot change by more than K, we conclude that −K ≤ β, β′ ≤ K.

I Definition 13 (Equivalent vectors). Consider all the non-zero effects (α, α′) of all cycles
together with their opposite vectors (−α,−α′) and denote the set of all these vectors by V .
Call two positive vectors (ρ, ρ′) and (σ, σ′) equivalent if for all (α, α′) ∈ V ,

(α, α′) is behind (ρ, ρ′) ⇐⇒ (α, α′) is behind (σ, σ′). (6)

In other words, equivalent vectors lie in the same angle determined by a pair of vectors from
V that are neighbours angle-wise. We claim that equivalent slopes have the same winner in
the Slope Game:

I Lemma 14. If (ρ, ρ′) and (σ, σ′) are equivalent then the same player wins the Slope Game
from ((q, q′), (ρ, ρ′)) and ((q, q′), (σ, σ′)).

Proof. A winning strategy in the Slope Game from ((q, q′), (ρ, ρ′)) may be literally used in
the Slope Game from ((q, q′), (σ, σ′)). This holds because the assumption that (ρ, ρ′) and
(σ, σ′) are equivalent implies that all possible outcomes of the initial phase of the Slope Game
are evaluated equally. J

Lemma 14 implies that the boundary slope is in V . This concludes the proof of Theorem 4. J
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4.3 A Sharper Estimation
Theorem 4 provides a polynomial bound on the constant c and the slopes of all belts, with
respect to the sizes of N and N ′. However, the proof of Theorem 4 reveals that a slightly
stronger result actually holds, which will be useful in proving the complexity bound for
weak simulation in Section 6. We can estimate a bound on c in terms of the following two
parameters of the product control graph N ×N ′:

scc, the size of the largest strongly connected component, and
acyc, the length of the longest acyclic path.

In particular, we claim that Theorem 4 still holds with the constant c bounded by

c ≤ poly(scc) + acyc. (7)

Intuitively, c is the excess of counter value needed to replay a Slope Game strategy in the
Simulation Game. This directly corresponds to the maximal number of alternations in a play
of the Slope Game. Every phase ends in a cycle, which must be contained in some strongly
connected component and is thus no longer than scc. So the segment depth of Slope Game
strategies is bounded by (scc + 1)2.

We can decompose plays of the Slope Game by separating subpaths that contain at least
one cycle and stay in one strongly connected component, and the remaining subpaths. One
can now show that in fact, a counter value of scc suffices to enable subpaths of the first kind.
The segment depth bounds the number of such subpaths in any play. Secondly, by definition,
the subpaths of the second kind cannot share any points. The sum of their lengths is hence
bounded by acyc. We conclude that a value of c = (scc + 1)2 · scc + acyc is sufficient.

5 Strong Simulation is PSPACE-complete

Using our stronger version of the Belt Theorem from Section 4, we derive an algorithm for
checking simulation preorder, similarly as in [1, 7, 6].

As before we fix two OCN N and N ′, with sets of control-states Q and Q′, respectively.
By Lemma 9, Point 2, we can compute in PSPACE, for every pair (q, q′) ∈ Q × Q′, the
positive vector (ρ, ρ′) satisfying Theorem 4; we denote this vector by slope(q, q′). We
define belt(q, q′) to be the set of points (n, n′) ∈ N2 that are neither c-above nor c-
below slope(q, q′). As all vectors slope(q, q′) and the widths of all belts are polynomially
bounded (by Theorem 4), we observe that every two non-parallel belts are disjoint outside a
polynomially bounded initial rectangle, denoted L0, between corners (0, 0) and (l0, l′0) (see
Figure 4).

Recall that the simulation preorder on the configurations with the pair of control-states
(q, q′) is trivial outside of belt(q, q′): it contains all pairs (qn, q′n′) s.t. (n, n′) is c-above
slope(q, q′), and contains no pairs (qn, q′n′) s.t. (n, n′) is c-below slope(q, q′). We show
that inside a belt, the points corresponding to configurations in simulation are ultimately
periodic in the sense defined below.

By the definition of belts, (n, n′) ∈ belt(q, q′) ⇐⇒ (n, n′) + slope(q, q′) ∈ belt(q, q′),
i.e., translation via the vector slope(q, q′) preserves membership in belt(q, q′). This is why
we restrict our focus to multiples of vectors slope(q, q′). We write rect(q, q′, j) for the
rectangle between corners (0, 0) and (l0, l′0) + j · slope(q, q′).

I Definition 15 (ultimately-periodic). For a fixed pair (q, q′) ∈ Q×Q′ and j, k ∈ N, a subset
R ⊆ belt(q, q′) is called (j, k)-ultimately-periodic if for all (n, n′) ∈ N2 \ rect(q, q′, j),

(n, n′) ∈ R ⇐⇒ (n, n′) + k · slope(q, q′) ∈ R. (8)
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l0

l′0

periodic

aperiodicA

P1

P2

L0

Duplicator n′

Spoiler n

Figure 4 The initial rectangle L0 (blue) and two belts. Outside L0, the colouring of a belt
consists of some exponentially bounded block (red), and another exponentially bounded non-trivial
block (green) which repeats ad infinitum along the rest of the belt.

I Remark. Observe that for fixed q and q′, every (j, k)-ultimately-periodic set R can be
represented by the numbers j and k, and two sets

R ∩ rect(q, q′, j) and (R \ rect(q, q′, j)) ∩ rect(q, q′, j + k).

The following lemma states a property which is crucial for our algorithm. It is actually a
sharpening of the result of [6], with additional effective bounds on periods inside belts.

I Lemma 16. For every pair (q, q′) ∈ Q×Q′, the set

4q,q′ = {(n, n′) ∈ belt(q, q′) : qn 4 q′n′}

is (j, k)-ultimately periodic for some j, k ∈ N exponentially bounded w.r.t. the sizes of N , N ′.

Thus, when searching for a simulation relation inside belts, we may safely restrict ourselves
to (j, k)-ultimately-periodic relations, for exponentially bounded j and k. According to the
remark above, every such simulation admits the EXPSPACE description that consists, for
every pair of states (q, q′), of:

a polynomially bounded vector (ρ, ρ′) = slope(q, q′);
a polynomially bounded relation init(q, q′) ⊆ L0 inside the initial rectangle L0;
exponentially bounded natural numbers jq,q′ , kq,q′ ∈ N; and
two exponentially bounded relations:

aperiodic(q, q′) ⊆ belt(q, q′) ∩ rect(q, q′, jq,q′)
periodic(q, q′) ⊆ (belt(q, q′) \ rect(q, q′, jq,q′)) ∩ rect(q, q′, jq,q′ + kq,q′).

The above characterization leads to the following naive decision procedure, which works
in EXPSPACE: Guess the description of a candidate relation R for the simulation relation,
verify that it is a simulation and check if it contains the input pair of configurations.

Checking whether the input pair is in the (semilinear) relation R is trivial. To verify that
the relation R is a simulation, one needs to check the simulation condition for every pair of
configurations (qn, q′n′) in R, i.e., Duplicator can ensure that after playing one round of the
Simulation Game, the resulting pair of configurations is still in R.

The simulation condition is local in the sense that it refers only to positions with
neighbouring counter values (plus/minus 1). This, together with the fact that belts are
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disjoint outside L0, implies that the complete one-neighbourhoods of points in the periodic
part repeats along the belt. It therefore suffices to examine those elements which are in the
EXPSPACE description to check if the simulation condition holds.

A PSPACE procedure. The naive algorithm outlined above may easily be turned into a
PSPACE algorithm by a standard shifting window trick. Instead of guessing the complete
exponential-size description upfront, we start by guessing the polynomially bounded relation
inside L0 and verifying it locally. Next, the procedure stepwise guesses parts of the relations
aperiodic(q, q′) and later periodic(q, q′), inside a polynomially bounded rectangle window
through the belt and shifts this window along the belt, checking the simulation condition
for all contained points on the way. Since the simulation condition is local, everything
outside this window may be forgotten, save for the first repetitive window that is used as a
certificate for successfully having guessed a consistent periodic set, once it repeats. Because
this repetition needs to occur after an exponentially bounded number of shifts, polynomial
space is sufficient to store a binary counter that counts the number of shifts and allows to
terminate unsuccessfully once the limit is reached. J

6 Application to Weak Simulation Checking

A natural extension of simulation is weak simulation, that abstracts from internal steps.

I Definition 17. For a LTS over actions A ∪ {τ} define weak step relations by τ=⇒ = τ−→∗
and a=⇒ = τ−→∗ a−→ τ−→∗ for a 6= τ . Weak simulation (2 ) is now defined just like 4 , using
Simulation Games, in which Duplicator moves along weak steps.

For systems without τ -labelled transitions, a−→ = a=⇒ and therefore strong and weak
simulation coincide. The PSPACE lower bound from [10] for checking strong simulation thus
also holds for weak simulation checking over OCN.

Weak simulation has recently been shown to be decidable for OCN [5]. The main obstacle
was that Duplicator’s system is infinitely branching w.r.t. the weak a=⇒ steps, which implies
that non-simulation does not necessarily manifest itself locally.

In [5], this problem is resolved by constructing a monotone decreasing sequence of
semilinear approximant relations that converges to weak simulation at a finite index. The
approximant relations are derived from a symbolic characterization of Duplicator’s infinitely-
branching system. They can be computed inductively by characterizing them in terms of
strong simulation over suitably modified OCN. The fact that one can effectively compute
semilinear descriptions of 4 over OCN [6] allows to successively compute the approximant
relations and to detect convergence of the sequence.

Here we show that the polynomial bounds from Theorem 4, together with the technique
from [5], imply a PSPACE upper bound even for checking weak simulation on OCN. In
particular, we claim that the sizes of the “suitably modified OCN” mentioned above, which
characterize the approximants, are in fact polynomial for every index i ∈ N in the sequence.
A more detailed analysis can be found in [4], Appendix B.

I Theorem 18. Checking weak simulation preorder on OCN is PSPACE-complete.

7 Conclusion

We have shown that both strong and weak simulation preorder checking between two given
OCN processes is PSPACE-complete. Moreover, it is possible to compute representations of
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the entire simulation relations as semilinear sets, but these require exponential space. One
cannot expect polynomial-size representations of the relations as semilinear sets, because
otherwise one could first guess the representation and then verify in coNPNP (for strong
simulation) that there are no counterexamples to the local simulation condition. This would
yield an algorithm in Σ3

p in the polynomial hierarchy, which (under standard assumptions in
complexity theory) contradicts the PSPACE-hardness of the problem.
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