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Abstract—Data vectors generalise finite multisets: they are
finitely supported functions into a commutative monoid. We study
the question whether a given data vector can be expressed as
a finite sum of others, only assuming that 1) the domain is
countable and 2) the given set of base vectors is finite up to
permutations of the domain.

Based on a succinct representation of the involved permu-
tations as integer linear constraints, we derive that positive
instances can be witnessed in a bounded subset of the domain.

For data vectors over a group we moreover study when a data
vector is reversible, that is, if its inverse is expressible using only
nonnegative coefficients. We show that if all base vectors are
reversible then the expressibility problem reduces to checking
membership in finitely generated subgroups. Moreover, checking
reversibility also reduces to such membership tests.

These questions naturally appear in the analysis of counter
machines extended with unordered data: namely, for data vectors
over (Zd,+) expressibility directly corresponds to checking state
equations for Coloured Petri nets where tokens can only be tested
for equality. We derive that in this case, expressibility is in NP,
and in P for reversible instances. These upper bounds are tight:
they match the lower bounds for standard integer vectors (over
singleton domains).

I. INTRODUCTION

Finite collections of named values are basic structures
used in many areas of theoretical computer science. We can
formalize these as functions v : D→ X from some countable
domain D of names or data, into some value space X , and
call such functions (X-valued) data vectors. Often the actual
names used are not relevant and instead one is interested in
data vectors up to renaming, i.e., one wants to consider vectors
v and w equivalent if v = w ◦ θ for some permutation
θ : D→ D of the domain.

We consider the case where the value space X has ad-
ditional algebraic structure. Namely, we focus on data vec-
tors where the values are from some commutative monoid
(M,+, 0) and where all but finitely many names are mapped
to the neutral element. A natural question then asks if a given
data vector is expressible as a sum of vectors from a given set,
where the monoid operation is lifted to data vectors pointwise.

If the spanning set is finite only up to permutations, this
problem does not immediately boil down to solving finite
system of linear equations. Also, one cannot simply lift
operations on data vectors to equivalence classes of data
vectors because the result of pointwise applying the operation
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depends on the chosen representants. For example, if we have
data vectors mapping colours to integers, then the vector
(red 7→ −1, blue 7→ 1) is equivalent to . Yet still,

+ = 6= = + .

We thus choose to keep permutations explicit and consider the
Expressibility problem:

Input: A finite set V of data vectors and a target vector x.
Question: does x equal

∑n
i=1 vi ◦ θi for some vi ∈ V and

permutations θi : D→ D?

If the domain D is finite then this just asks if some finite
system of linear equations is satisfiable. Over infinite domains
this corresponds to finding a solution of an infinite but regular
set of linear equations. For brevity, we will call a vector x
a permutation sum of V if it is expressible as a sum of
permutations of vectors in V as above.

Contributions and Outline.: We provide two reductions
from the Expressibility problem to problems of finding solu-
tions for finite linear systems over (M,+).

The more general approach, a small witness property, is
presented in Sections III and IV and ultimately works by
bounding the number of different data values necessary to
express a permutation sum. This is based on an analysis of
objects we call histograms, see Section III, which sufficiently
characterize vectors expressible as permutation sums of single
vectors. For any monoid (M,+) the Expressibility problem
then reduces to finding a non-negative integer solution of a
finite system of linear inequations over (M,+). In particular,
for (Zd,+), the monoid of integer vectors of length d, this
provides an NP algorithm, matching the lower bound from
the feasibility of integer linear programs.

The second approach (Section V) reduces Expressibility
to the problem of finding an (not necessarily non-negative)
integer solution to a finite linear system. This assumes that
(M,+) is a group and that all data vectors in V are reversible,
i.e., their inverses are expressible as permutation sums of
V. We show that this reversibility condition can be verified
by checking the existence of a solution of a simple system
over (M,+). For example, if we work over (Zd,+) then
checking reversibility of V can be done in polynomial time.
If V happens to be reversible then solving the Expressibility
problem is also in polynomial time.

In Section VI we show how to use these results for the
reachability analysis of counter programs extended with data.



The first application involves finding state invariants for un-
ordered data Petri nets [1], [2], [3]; the second application
is the reachability problem for blind counter automata [4]
extended with data.

Related Research and Motivation.: Our main motivation
for studying the Expressibility problem comes from the anal-
ysis of Petri nets extended with data [1], [2], [5], [6], [3].
For unordered data Petri Nets (UDPN), data vectors of the
form v : D → Zd occur naturally. UDPNs are the only data
extension of Petri nets, among those proposed in [1], for which
reachability problem may be decidable (for all other models
discussed there, undecidability follows by reduction from the
boundedness problem for reset nets [7]). The first indicator that
reachability may be decidable for UDPN is the decidability of
place-boundedeness via a characterization of the coverability
sets [3].

The Expressibility problem studied in this paper allows to
generalize so-called state equations (also marking equations in
the Petri net literature) [8] to UDPN. State equations are a fun-
damental invariant of the reachability relation for Petri nets and
one of the important ingredients in the proof of decidability of
the reachability problem [9], [10], [11]. They provide cheaply
computable overapproximations for reachability that can be
used to prune the seach space of the backwards coverability
algorithm [12], [13], [14], [15]. This approach is especially
efficient if combined with SMT-solver as done in [16], [17],
[18].

UDPN can also be seen as a restriction of more general
Colored Petri nets (CPN), see for instance [19]. There is a long
history of research in the area of restricted CPNs. Here, we
point to results about invariants and identification of certain
syntactic substructures: in [20], [21] the authors investigate
flows in subclasses of CPN. Another important branch of
research concerns structural properties of Algebraic Nets [22]
like detecting siphons [23] or other place invariants [24].

Finally, it is worth mentioning that UDPN can be interpreted
as ordinary Petri nets for sets with equality atoms. We refer
the reader to [25], [26] for work on sets with atoms/nominal
sets. Very similar in spirit to our study of data vectors is the
work in [27] that considers constraint satisfaction problems on
infinite structures.

A broader overview of algebraic methods for Petri nets can
be found in [28]. Algebraic methods are also used in restricted
classes of Petri nets like conflict-free and free-choice Petri
nets [29]. A beautiful application of algebraic techniques are
results on reachability in continuous Petri nets [30], [31]. One
can also find variants of state equations for Petri nets with
resetting transitions [32] or with inhibitor arcs [33].

II. DATA VECTORS

In the sequel D is a countable set of elements called data
values and (M,+) is a commutative monoid with neutral
element 0. A data vector (also vector for short) is a total
function v : D→M such that the support, the set supp(v) def

=
{α ∈ D | v(α) 6= 0} is finite. The monoid operation + is lifted
to vectors poinwise, so that (v +w)(α)

def
= v(α) +w(α).

Writing ◦ for function composition, we see that v ◦ θ is a
data vector for any data vector v and permutation θ : D→ D.
A vector x is said to be a permutation sum of a set V of vectors
if there are v1, . . . ,vn in V and permutations θ1, . . . , θn of
D such that

x =

n∑
i=1

vi ◦ θi.

Here, we have to emphasize that it is possible that vi = vj

for some i and j.

When working with vectors of the form v ◦ θ for permu-
tations θ, it will be instrumental to specify θ indirectly using
some injection of supp(v) into D. In the remainder of this
section we show that one can always do this.

Take any finite subset S of D and π : S → D injective.
Since π−1 is only a partial function, define the data vector
v ◦ π−1 so that any β not in the range of π maps to 0: More
precisely, let (v ◦π−1) : D→M be defined, for every β ∈ D
as follows.

v ◦ π−1(β) =

{
v(α) if π(α) = β

0 if π(α) 6= β for all α ∈ S.

Lemma 1. Let v be a data vector. For any permutation θ :
D → D there exists an injection π : supp(v) → D, such that
v ◦ π−1 = v ◦ θ, and vice versa.

Proof: Let us introduce S = supp(v) and first consider a
permutation θ. We show that the injection π : S→ D, defined
by π(α) = θ−1(α) for every α ∈ S, satisfies v ◦ θ = v ◦ π−1.

Pick any β ∈ D and let us write α def
= θ(β). If α ∈ S then

π(α) = β so, we have that (v◦π−1)(β) = v(α) = (v◦θ)(β).
If α 6∈ S then (v ◦ π−1)(β) = 0 and v ◦ θ(β) = v(α) = 0, by
definition of v ◦ π−1 and because S is the support of v.

Conversely, let us consider a data injection π over S and
let us prove that there exists a data permutation θ such that
v ◦π−1 = v ◦ θ. We introduce T = π(S). Since the restriction
of π on S is a bijection onto T, there exists a bijection π′ :
T→ S denoting its inverse. We introduce the sets X = S\T,
and Y = T\S. Since T and S have the same cardinal, it follows
that X and Y are two finite sets with the same cardinal. Hence,
there exists a bijection πX,Y : X → Y and its inverse πY,X :
Y → X . We introduce the function θ defined for every β ∈ D
as follows:

θ(β) =


π′(β) if β ∈ T
πX,Y (β) if β ∈ X
β otherwise.

Observe that θ is a bijection since the function θ′ defined for
every α ∈ D as follows is its inverse:

θ′(α) =


π(α) if α ∈ S
πY,X(α) if α ∈ Y
α otherwise.

We show that v ◦ π−1 = v ◦ θ. Fix some β ∈ D and assume
first that β ∈ T. There exists α ∈ S such that π(α) = β. It



follows that π′(β) = α = θ(β). Hence, (v ◦ θ)(β) = v(α) =
(v ◦ π−1)(β).

Now, assume that β 6∈ T. In that case, notice that θ(β) is not
in S no matter if β ∈ X or not. Thus v ◦ θ(β) = 0. Observe
that if π−1({β}) is empty, we deduce that (v ◦ π−1)(β) = 0.
If π−1(β) = {α} then (v◦π−1)(β) = v(α). But since β 6∈ T,
we deduce that α 6∈ S. Therefore v(α) = 0 and we derive that
(v ◦ π−1)(β) = 0. We have proved that v ◦ π−1 = v ◦ θ.

III. HISTOGRAMS

In this section we develop the notion of histograms. These
are combinatorical objects that will be used in the next
section to characterize permutation sums over singleton sets
V . We elaborate more on the usefulness of histograms in the
beginning of the next section.

Definition 2. A histogram over a finite set S ⊆ D is a total
function H : S×D→ N such that for some n ∈ N, called the
degree of H , the following two conditions hold:

1)
∑
β∈DH(α, β) = n for any α ∈ S,

2)
∑
α∈SH(α, β) ≤ n for any β ∈ D.

A histogram of degree n = 1 is called simple. Histograms
with the same signature, i.e. the same sets S and D, can be
partially ordered and summed pointwise and the degree of
the sum is the sum of degrees. The support of H is the set
supp(H)

def
= {β |

∑
α∈SH(α, β) > 0}.

The following theorem states the main combinatorial prop-
erty we are interested in, namely that simple histograms over
S generate as finite sums the class of all histograms over S.
In particular, any histogram can be decomposed into finitely
many simple histograms over the same signature (see Figure 1
for an illustration).

Theorem 3. A function H : S × D → N is a histogram
of degree n ∈ N if, and only if, H is the sum of n simple
histograms over S.

For the proof of Theorem 3 we need a lemma from graph
theory. We refer the reader to [34] for relevant definitions and
recall here only that in a graph (V,E), a matching of a set
S ⊆ V of nodes is a set M ⊆ E of pairwise non-adjacent
edges that covers all nodes in S.

Lemma 4. Let G = (L∪R,E) be a bipartite graph. If there
is a matching of L′ ⊆ L and a matching of R′ ⊆ R then there
is a matching of L′ ∪R′.

Proof: Suppose, ML and MR are matchings that matches
L′ and R′, respectively. Let G′ def

= (L ∪ R,ML ∪MR) be a
subgraph of G. We construct a matching M of L′ ∪ R′ as a
matching in G′. Observe that G′ is a union of single nodes,
paths and cycles and M can be constructed in every strongly
connected component independently.

We claim that for any strongly connected component C we
can find a matching witch matches all elements in C ∩L′ and
C ∩R′. This, if proved, ends the proof of Lemma 4.

First of all, every node in L′ ∪ R′ has a degree at least 1
so the claim holds for single nodes immediately.
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Fig. 1. The grey center depicts a histogram H : S × D → N of degree 4,
where S = {α1, α2} and supp(H) = {β1, β2, β3, β5}. Below (in red) and
to above (in blue) are decompositions into four simple histograms each.

Next we consider cycles, and paths of even and odd lengths,
were the length denotes the number of vertices in the path.

If the strongly connected component is a cycle (in bipartite
graph) or a path of an even length then there is a perfect
matching in it so the claim holds as well.

The case of paths of odd length is the most complicated
one. Let C be an odd length path. Without loss of generality,
suppose that the first node x on the path C is in L′ ∪ R′.
Indeed, if it is not, then we do not need to match x, so we
match all nodes on the path except x; this case is done.

Further, without loss of generality, we can assume that x ∈
L′, as x ∈ R′ is symmetric. We prove that the path ends in a
vertex from the set L \ L′, in other words, it is not possible
that the both ends of the path C belong to L′ ∪ R′. Indeed
the path has to end in L as it’s length is odd. Furthermore,
consider a walk along the path starting from x. Every vertex in
L′ on the path C we leave via an edge from ML and to every
vertex of C in L′ \ {x} we enter via an edge from MR. From
the above if the last vertex belonged to L′ then there would
be a contradiction because we would be able to leave it via an
edge from ML as from any vertex in L′ there is an outgoing



edge in ML. Thus, the path cannot end in the element from
L′ and thus the last vertex has to belong to L \ L′. Now we
match all vertices except of the last one.

Proof of Theorem 3: If H =
∑n
j=1Hj , where the Hj

are simple histograms over S, then from
∑
β∈DH(α, β) =∑n

j=1

∑
β∈DHj(α, β) and because

∑
β∈DHj(α, β) = 1 we

derive that
∑
β∈DH(α, β) = n for every α ∈ D. In the same

way the second histogram condition for H follows from those
of the Hj . So H is a histogram over S.

For the converse direction, the proof proceeds by induction
on n, the degree of the histogram H . If n = 1 then H is simple
and the claim trivially holds. Suppose now that the claim holds
for histograms of degree n and consider a histogram H : S×
D → N of degree n + 1. We show how that there exists a
simple histogram X : S× D→ N such that

1) X(α, β) ≤ H(α, β) for every α ∈ S, and every β ∈ D,
and

2) for every β ∈ D if
∑
α∈SH(α, β) = n + 1 then∑

α∈SX(α, β) = 1.
The first condition guarantees that Y = H − X is well

defined and satisfies, for all α ∈ S, that

∑
β∈D

Y (α, β) =

∑
β∈D

H(α, β)

−
∑
β∈D

X(α, β)


= (n+ 1)− 1 = n.

The second condition implies that
∑
α∈S Y (α, β) ≤ n for all

β ∈ D. Hence, Y is a histogram of degree n and the claim
follows by induction hypothesis.

To show the existence of a suitable simple histogram X ,
we consider now the bipartite graph G where the sets of
nodes are S and B def

= supp(H) and where there is an edge
between α and β whenever H(α, β) > 0 (We assume here
w.l.o.g. that S and supp(H) are disjoint; otherwise take B as
some suitable duplication). Moreover, let T denotes the set of
those “maximal” data values β where

∑
α∈DH(α, β) = n+1.

Note that T ⊆ B.
We claim that the required simple histogram X exists iff

there is a matching in the graph G that matches both S and
T. Indeed, any such histogram X provides a matching M def

=
{(α, β) | X(α, β) = 1}. By the first histogram condition, M
matches all nodes in S; and all nodes β ∈ T are matched since
X must satisfy

∑
α∈SX(α, β) = 1. Conversely, for a given

matching M we define X(α, β) = 1 if (α, β) ∈ M and 0
otherwise. It is easy to check that X is a simple histogram
that satisfies required properties.

To finish the proof we show that a matching M of S ∪ T
exists. By Lemma 4, it suffices to find two matchings, one of
S and one of T. In both cases, we will make use of Hall’s
marriage Theorem [34].

We write Nb(S) for the neighbourhood (formally open
neighbourhood) of a set S of nodes (the set of nodes v /∈ S
adjacent to some node in S).

Hall’s marriage Theorem states that in a finite bipartite
graph there is a matching of a set S of nodes if, and only
if every subset S′ ⊆ S has at least as many neighbours as
elements:

|S′| ≤ |Nb(S′)|. (1)

We start by proving the existence of a matching of S. If
we label the edges (α, β) in our graph by the respective
values H(α, β), then we observe that the total weight of edges
connecting any subset S′ ⊆ S is at most the total weight
of edges connecting its neighbours:

∑
α∈S′

∑
β∈DH(α, β) ≤∑

α∈S
∑
β∈Nb(S′)H(α, β). Consequently,

|S′| · (n+ 1) =
∑
α∈S′
β∈D

H(α, β) ≤
∑
α∈S

β∈Nb(S′)

H(α, β)

≤
∑

β∈Nb(S′)

(n+ 1) = |Nb(S′)| · (n+ 1).

The first equality is due to the first histogram condition and
the second inequality is by the second histogram condition.
So all subsets S′ ⊆ S satisfy Equation (1), so Hall’s theorem
applies and there exists a matching of S.

The proof that a matching of T exists follows the same
pattern. For any subset T′ ⊆ T we get

|T′| · (n+ 1) =
∑
β∈T′

∑
α∈S

H(α, β) ≤
∑

α∈Nb(T′)

∑
β∈D

H(α, β)

= |Nb(T′)| · (n+ 1),

where the first equality holds by the definition of T. So T
satisfies the assumption of Hall’s theorem and we conclude
that some matching of T exists, as required.

IV. EXPRESSIBILITY

In this section, we show that histograms provide a natural
tool for deciding if a data vector is a permutation sum.

Histograms should be seen as a compressed representation
of a permutation sum. In Lemmas 5 and 6, we show how to
produce a histogram from a sum of permuted data vectors, and
that this encoding preserves the outcome of the sum. The idea
is that even if we could bound the number of data appearing
in the sum by some polynomial then still we would need to
deal with the exponential number of possible permutations
of data vectors i.e. possibly exponential length of the sum;
this would need another trick to obtain NP upper-bound.
Histograms are exactly the objects that allow forgetting about
actual permutations and focusing on the effect of some existing
sum, that we do not know explicitly.

We first establish the connection between histograms and
permutation sums, and then (in Theorem 7) that permutation
sums can be represented by histograms with bounded support
sets. Finally, we derive an NP complexity upper bound for the
Expressibility problem for vectors over monoids (Zd,+).

Given a data vector v and a histogram H over S def
= supp(v)

we define the vector eval(v, H) by

eval(v, H)(β)
def
=
∑
α∈S

v(α) ·H(α, β).



Observe that eval is a homomorphism in the sense that for
any vector v and histograms H1, H2 over S it holds that

eval(v, H1 +H2) = eval(v, H1) + eval(v, H2). (2)

Recall that by Lemma 1, permutation sums are of the form
x =

∑n
i=1 vi ◦ π

−1
i where πi : supp(vi)→ D are injections.

We now associate each injective function π : S→ D with the
simple histogram Hπ over S defined as

Hπ(α, β)
def
=

{
1 if β = π(α)

0 otherwise.

Notice that conversely, each simple histogram H : S × D →
D provides a unique injection πH : S → D satisfying
H(α, πH(α)) = 1 for every α ∈ S. So, HπH

= H . The
next lemma makes the connection between histograms and
permutation sums.

Lemma 5. Let v be a vector and π : supp(v)→ D injective.
Then v ◦ π−1 = eval(v, Hπ).

Proof: If π(α) = β then v ◦ π−1(β) = v(α) =∑
α′∈S v(α

′)Hπ(α
′, β) = eval(v, Hπ)(β) where the second

equation holds because Hπ is simple. If π(α) 6= β for all α
then v ◦ π−1(β) = 0 =

∑
α∈S v(α) · 0 = eval(v, Hπ)(β).

Lemma 6. Let v be a vector. A vector x is a permutation
sum of {v} if, and only if, there exists a histogram H over
supp(v) such that x = eval(v, H).

Proof: Assume first that x is a permutation sum of
{v}. Then there are permutations θ1, . . . , θn such that x =∑n
j=1 v ◦ θj . By Lemma 1, x =

∑n
j=1 v ◦ π

−1
j for in-

jections πj : supp(v) → D. From Lemma 5 we derive
x =

∑n
j=1 eval(v, Hπj

) and by Equation (2) the histogram
H

def
=
∑n
j=1Hπj

satisfies x = eval(v, H).

Conversely, let us assume that there exists a histogram H
over supp(v) such that x = eval(v, H). Theorem 3 shows that
H can be decomposed as H =

∑n
j=1Hj where Hj are simple

histograms over supp(v). From Equation (2) it follows that
x =

∑n
j=1 eval(v, Hj), and since all Hj are simple, there are

injections π1, . . . , πn with Hj = Hπj
. The claim thus follows

by Lemma 5 and Lemma 1.
We now show how to bound the supports of histograms Hv

such that x =
∑

v∈V eval(v, Hv) with respect to x and V .

Theorem 7. A data vector x is a permutation sum of V if and
only if x =

∑
v∈V eval(v, Hv) where for each vector v ∈ V ,

Hv is a histogram over supp(v), and |
⋃

v∈V supp(Hv)| is
bounded by |supp(x)|+ 1 +

∑
v∈V (2|supp(v)| − 1).

Proof: Any permutation sum of V is a sum x =∑
v∈V xv, where each xv is a permutation sum of {v}. So,

from Lemma 6 we conclude that v is a permutation sum of
V iff there is a set of histograms Hv with xv = eval(v, Hv).
Now, we only need to prove that existence of any solution
implies existence of a solution with a ’small’ support.

For each histogram Hv we write nv for its degree and define
the set of big data values as

Bv
def
=

β ∈ D |
∑

α∈supp(v)

Hv(α, β) >
nv
2

 .

The cardinality of Bv is bounded by 2|supp(v)| − 1. In-
deed, if Bv is empty, the property is immediate. Oth-
erwise, we have

∑
β∈Bv

∑
α∈supp(v)Hv(α, β) > |Bv|nv

2 .
It moreover holds that

∑
β∈Bv

∑
α∈supp(v)Hv(α, β) ≤∑

α∈supp(v)
∑
β∈DHv(α, β) = |supp(v)| · nv. Therefore,

|Bv| ≤ 2|supp(v)| − 1 holds.

To provide the bound claimed in the theorem, suppose that
the histograms Hv are chosen such that their combined support
T def

=
⋃

v∈V supp(Hv) is minimal. We show that this set
cannot have more than |supp(x)|+1+

∑
v∈V (2|supp(v)|−1)

elements, which implies the claim.
Suppose towards a contradiction that |T| exceeds this bound.

Then it must contain two distinct elements β1 and β2 that
are both neither in

⋃
v∈V Bv nor in supp(x). Notice that the

first condition, that β1, β2 are not big in any histogram Hv

guarantees that for all v ∈ V ,∑
α∈supp(v)

Hv(α, β1) +
∑

α∈supp(v)

Hv(α, β2) ≤ nv. (3)

Based on β1 and β2 we introduce, for each v ∈ V , the function
Fv : supp(v)× D→ N as

Fv(α, β) =


Hv(α, β1) +Hv(α, β2) if β = β1

0 if β = β2

Hv(α, β) otherwise.

Then for any α ∈ supp(v) we have
∑
β∈D Fv(α, β) = nv and

by Equation (3) we have
∑
α∈supp(v) Fv(α, β1) ≤ nv. So Fv

is a histogram over supp(v) of degree nv. We claim that∑
v∈V

eval(v, Fv) =
∑
v∈V

eval(v, Hv).

Indeed, Fv trivially satisfies eval(v, Hv) = eval(v, Fv) for
all data except of β1 and β2. Thus

x(β) =

(∑
v∈V

xv

)
(β) =

(∑
v∈V

eval(v, Fv)

)
(β)

for all β 6∈ {β1, β2}. Moreover, β2 6∈ supp(x) so x(β2) = 0.
On the other hand

(∑
v∈V eval(v, Fv)

)
(β2) = 0 as for every

v it holds that eval(v, Fv)(β2) = 0. Finally, β1 6∈ supp(x) so
x(β1) = 0. On the other hand(∑

v∈V
eval(v, Hv)

)
(β1) +

(∑
v∈V

eval(v, Hv)

)
(β2)

=

(∑
v∈V

xv

)
(β1) +

(∑
v∈V

xv

)
(β2)

= x(β1) + x(β2) = 0 + 0 = 0.



We conclude that x =
∑

v∈V eval(v, Fv). But this contradicts
the minimality of |T| as

⋃
v∈V supp(Fv) = T\{β2} is a strict

subset of T.

Corollary 8. The Expressibility problem for data vectors with
values in (Zd,+) is NP-complete.

Proof: We show the upper bound only, as a matching
lower bound holds already for singleton domains D, where
the problem is equivalent to the feasibility of integer linear
programs.

Suppose, we ask if x is a permutation sum of a set V . By
Theorem 7, positive instances imply the existence of a set of
histograms Hv∈V . Each Hv∈V is over supp(v) and the size
of the sum of their supports is bounded by |supp(x)| + 1 +∑

v∈V (2|supp(v)|−1). More precise, the sum of supports has
to contain supp(x) and at most 1+

∑
v∈V (2|supp(v)|−1) of

other data values (as they are auxiliary data, we don’t need to
specify them precisely). Further, x =

∑
v∈V eval(v, Hv). By

Theorem 7, the existence of such histograms is also a sufficient
condition for x to be a permutation sum of V .

Now we explain that existence of such set of histograms
Hv∈V can be reduced to finding a non-negative integer so-
lution of a system of linear equations of polynomial size.
So the claim follows from standard results for integer linear
programming, see e.g. [35].

From above, each histogram Hv can be specified by
|supp(v)| · (|supp(x)| + 1 +

∑
v∈V (2|supp(v)| − 1)) non-

negative integer numbers. Thus for each Hv we create a unique
set of variables V arv, one variable for every possible non-
negative integer number. So in total the number of variables
is polynomial. Next we to write equations which enforce that
any correct valuation of variables will form histograms Hv.
Precisely, as liner equations we encode, the histogram condi-
tions (Definition 2) and the equation x =

∑
v∈V eval(v, Hv).

Histogram conditions are simple as we only need to check (i) if
sums of variables forming rows of a histogram are equal each
other and (ii) that they are not smaller than sums of variables
that form columns. The eval() condition is also simple to
encode, as for a fixed size histogram the eval() function is
linear.

It is worth emphasizing that the system of equations can be
written immediately from the problem definition so it can be
easily encoded in any SMT solver supporting integers.

V. REVERSIBILITY

In this section we consider data vectors v : D → G where
(G,+) is a commutative group. In this case the set of all
vectors is itself a commutative group with identity 0. We write
−v for the inverse of vector v and v −w

def
= v + (−w).

Definition 9. A vector x : D → G is reversible in V if both
x and −x are permutation sums of V . A set of vectors V is
reversible if every vector v ∈ V is reversible in V .

We will provide in this section a way to reduce the Ex-
pressibility problem to the membership problems in finitely
generated subgroups of (G,+), assuming the given set of data

vectors is reversible. This result is stated as Theorem 15. We
also show (as Theorem 11), that checking the reversibility
condition boils down to solving a finite linear system over
(G,+).

Our constructions are based on the homomorphism weight,
which projects data vectors into the underlying group: the
weight of a data vector v : D → G is the element of G
defined as

weight(v)
def
=
∑
α∈D

v(α).

For a set V of data vectors define weight(V )
def
= {weight(v) |

v ∈ V }.
In addition we introduce some useful notation. Fix any

total order on D. The rotation of a finite set S ⊆ D is the
permutation rotateS : D→ D defined as

rotateS(α)
def
=


min{S} if α = max{S}
min{β ∈ S | β > α} if max{S} 6= α ∈ S
α if α /∈ S.

This allows us to express for instance the vector v ◦
rotate{α,β}, which results from the vector v by exchanging
the values of α and β. Clearly, for any finite set S ⊆ D, the
|S|-fold composition of rotateS with itself is the identity on
D.

Finally, we introduce vectors rotS(v) : D→ Zd as

rotS(v)
def
=

|S|−1∑
i=0

v ◦ rotateiS

where v is a data vector, supp(v) ⊆ S ⊆ D is finite, and the
superscripts denote i-fold iteration. It is the result of summing
up all different S-rotations of v. This vector is useful because
it is a permutation sum of v that “equalizes” all values for
α ∈ S to weight(v), as stated in the proposition below.

Proposition 10. Let v : D→ G be a data vector and S ⊆ D
finite such that supp(v) ⊆ S.

1) rotS(v) is a permutation sum of {v}.
2) rotS(v)(α) = weight(v) if α ∈ S and rotS(v)(α) = 0

if α /∈ S.

Proof: The first property is immediate by definition of
rotS(v). Concerning the second one, observe that if α 6∈ S
then v ◦ rotateiS(α) = v(α) = 0 for every i. Hence
rotS(v)(α) = 0. If α ∈ S. If α ∈ S, notice that {rotateiS(α) |
0 ≤ i < |S|} = S. It follows that rotS(v)(α) =

∑
β∈S v(β).

From supp(v) ⊆ S we derive
∑
β∈S v(β) = weight(v). We

have proved the second property.

Identifying Reversible Sets of Vectors:

Theorem 11. Let V be a set of data vectors and x ∈ V . Then
x is reversible in V if, and only if, weight(x) is reversible
in weight(V ), i.e., there exist v1,v2, . . . ,vn ∈ V such that
−weight(x) =

∑n
i=1 weight(vi).



Proof: For the only if direction we need to show that
if −x =

∑n
i=1 vi ◦ θi for vectors vi ∈ V and permu-

tations θi : D → D, then −weight(x) may be expressed
as a sum of vectors weight(v1),weight(v2), . . . ,weight(vn).
Since weight is a homomorphism we observe that −weight(x)
is expressible as the sum

∑n
i=1 weight(vi ◦ θi). The claim

follows from the fact that weight(vi ◦ θi) = weight(vi) for
all vi : D→ G.

For the opposite direction assume vectors v1,v2, . . . ,vn ∈
V such that −weight(x) =

∑n
j=1 weight(vj) and let S def

=⋃n
i=1 supp(vi). First, we aim to show that

−rotS(x) =
n∑
j=1

rotS(vj), (4)

that is, −rotS(x)(α) =
∑n
j=1 rotS(vj)(α) for all α ∈ D. As

x ∈ V , by definition of rotS(x), this trivially holds for α /∈ S.
For the remaining α ∈ S, note that by point 2 of Proposition 10
we have rotS(v)(α) = weight(v) for any v ∈ V . In particular
this holds for x and all vj. So,

−rotS(x)(α) = −weight(x) =
n∑
j=1

rotS(vj)(α) (5)

which proves Equation (4). Unfolding the definition of
rotS(x) we therefore see that

− rotS(x) = −

x+

|S|−1∑
i=1

x ◦ rotateiS

 =

n∑
j=1

rotS(vj)

and consequently that −x = (
∑|S|−1
i=1 x ◦ rotateiS) +∑n

j=1 rotS(vj). Now, (
∑|S|−1
i=1 x ◦ rotateiS) is clearly a per-

mutation sum of {x} and thus also of V . By point 1 of
Proposition 10,

∑n
j=1 rotS(vj) is also a permutation sum of

V . We conclude that −x is a permutation sum of V and
therefore that x is reversible in V .

Corollary 12. Let d ∈ N and V a finite set of data vectors
v : D→ Zd. There is a polynomial time procedure that checks
if V is reversible.

Proof: By Theorem 11, it suffices to verify for all v ∈ V
that −weight(v) is the sum of elements in weight(V ). In
other words, we need to check for an element h of a finite
set H = {h1, . . . , hk} ⊆ Zd, that there exist n1, . . . , nk ∈ N
with −h = n1h1 + · · ·+ nkhk.

We show that the condition above is satisfied if, and only if,
there exists λ1, . . . , λk ∈ Q≥0 such that −h = λ1h1 + · · · +
λkhk. The “only if” direction is immediate. For the converse,
assume factors λ1, . . . , λk ∈ Q≥0 such that −h = λ1h1+· · ·+
λkhk. There exists a positive integer p such that pλj ∈ N for
every j and thus −h = (pλ1)h1 + · · ·+ (pλk)hk + (p− 1)h.
We have proved the claim.

Now, checking if −h = λ1h1+ · · ·+λkhk has a solution in
the non-negative rationals is doable in polynomial time using
linear programming [36].

Solving Expressibility in Reversible Sets of Vectors: In
the remainder of this subsection we prove Theorem 15. We
start with a lemma. All constructions in this section assume
maxv∈V |supp(v)| < |D|, that there exists at least one fresh
datum in the domain.

We first prove that some special data vectors are permutation
sums of V . Those vectors are defined by introducing for every
element g ∈ G and every data value α ∈ D, the data vector
Jα 7→ gK defined for every β ∈ D by:

Jα 7→ gK(β) def
=

{
g if β = α

0 otherwise.

Lemma 13. Let V be a finite, reversible set of data vectors
such that

⋃
v∈V supp(v) ( D. Then, Jβ 7→ gK is a permuta-

tion sum of V for every g in the subgroup of (G,+) generated
by weight(V ), and for every β ∈ D.

Proof: Since g is in the subgroup generated by
weight(V ), there exist a sequence v1, . . . ,vn of elements in
V such that:

g =

n∑
j=1

weight(vj).

Consider now the vector x
def
=
∑n
j=1 vj. It has three relevant

properties:
1) it is a permutation sum of V ,
2) its support is contained in

⋃
v∈V supp(v), and

3) it satisfies g = weight(x).
By point 2 and the assumption that the combined support⋃

v∈V supp(v) is strictly included in D, we can pick some
α 6∈ supp(x). Let S,T ⊆ D be defined as

S def
= supp(x) and T def

= supp(x) ∪ {α}.

Then by Proposition 10 point 1, both rotS(x) and rotT(x)
are permutation sums of V . Since V is reversible, so is the
inverse −rotS(x). It remains to observe that

Jα 7→ gK = rotT(x)− rotS(x).

Indeed, for all δ /∈ T we have Jα 7→ gK(δ) = rotS(x)(δ) =
rotT(x)(δ) = 0. For all δ ∈ S, by Proposition 10 point 2,
it holds that rotS(x)(δ) = rotT(x)(δ) = weight(x) = g
and therefore that Jα 7→ gK(δ) = rotS(x)(δ)− rotT(x)(δ) =
g − g = 0. For the last case that δ = α ∈ T \ S, again by
Proposition 10 point 2, we have Jα 7→ gK(δ) = rotS(x)(δ)−
rotT(x)(δ) = g − 0 = g. Now, the data vector Jβ 7→ gK =
Jα 7→ gK ◦ rotate{α,β} completes the proof.

Lemma 14. Let V be a finite, reversible set of data vectors
such that

⋃
v∈V supp(v) ( D. The data vector Jα 7→ gK −

Jβ 7→ gK is a permutation sum of V for every g in the subgroup
of (G,+) generated by {v(δ) | δ ∈ D, v ∈ V }, and for every
α, β ∈ D.

Proof: Let T def
=
⋃

v∈V supp(v) and assume w.l.o.g. that
α 6= β since otherwise the claim is trivial. It suffices to show
the claim for α ∈ T and β 6∈ T.



We first show that there exists a data vector x that is a
permutation sum of V such that x(α) = g and such that
supp(x) ⊆ T. Since g is in the subgroup generated by
{v(δ) | δ ∈ D, v ∈ V }, there exist vectors v1, . . . ,vn ∈ V
and data values δ1, . . . , δn ∈ D such that:

g =

n∑
j=1

vj(δj).

We can assume without loss of generality that vj(δj) are not
equal to zero and hence δj ∈ T.

Let θj
def
= rotate{α,δj} : D → D be the permutation that

exchanges α and δj and consider the vector x, defined as
follows.

x =

n∑
j=1

vj ◦ θj .

Observe that x is a permutation sum of V and x(α) = g
as it was required. Moreover, since δj , α ∈ T, we deduce that
supp(vj◦θj) is included in T and therefore that supp(x) ⊆ T.

To show the claim, let θ def
= rotate{α,β} be the permutation

that swaps α and β and consider the vector

y
def
= x− x ◦ θ.

For all δ ∈ D\{α, β} we get y(δ) = x(δ)−x(θ(δ)) = x(δ)−
x(δ) = 0. Moreover, y(α) = x(α)−x(θ(α)) = g−x(β) = g,
similarly y(β) = −g. We conclude that y is a permutation sum
of V and y = Jα 7→ gK− Jβ 7→ gK.

We can now prove our main theorem. It allows reducing
question about the reversibility of data vector to questions
about expressibility in the given group, for example, in Zd

with addition. The conditions (below) may look technical, but
they are natural constraints; for example the first one says
that the weight of the sum has to be expressible as a sum
of weights (which is obvious considering that weight is a
homomorphism). The not trivial part of the theorem is that
the conditions imply expressibility, as stated below.

Theorem 15. Let V be a finite, reversible set of data vectors
with

⋃
v∈V supp(v) ( D. A data vector x is a permutation

sum of V if, and only if, the following two conditions hold.
• weight(x) is in the subgroup of (G,+) generated by
{weight(v) | v ∈ V }, and

• x(α) is in the subgroup of (G,+) generated by {v(δ) |
δ ∈ D, v ∈ V } for every α ∈ D.

Proof: If x is a permutation sum of V there exists a
sequence v1, . . . ,vn of data vectors in V and a sequence
θ1, . . . , θn of data permutations such that x =

∑n
j=1 vj ◦ θj .

We derive that weight(x) =
∑n
j=1 weight(vj ◦ θj). Since

weight(vj ◦ θj) = weight(vj), it follows that weight(x) is
in the group generated by weight(V ). Moreover, for every
α ∈ D, we have x(α) =

∑n
j=1 vj(θj(α)). Thus x(α) is in the

group generated by {v(δ) | δ ∈ D, v ∈ V }.
For the converse direction, assume that x is a data

vector satisfying the two conditions. We pick δ ∈ D.
From condition 2 and Lemma 14 we derive that for every

α ∈ supp(x), the data vector Jα 7→ x(α)K − Jδ 7→ x(α)K
is a permutation sum of V . It follows that the y

def
=∑

α∈supp(x) (Jα 7→ x(α)K− Jδ 7→ x(α)K) is a permutation
sum of V . Notice that this vector is equal to x −
Jδ 7→ weight(x)K. By condition 1, Lemma 13 applies and
implies that Jδ 7→ weight(x)K is a permutation sum of V . So,
x must be a permutation sum of V .

Corollary 16. Let D be infinite, d ∈ N, and V a finite,
reversible set of data vectors v : D → Zd. There is a
polynomial time procedure that determines if a given target
data vector x : D→ Zd is a permutation sum of V .

Remark 17. To motivate the freshness assumption,⋃
v∈V supp(v) ( D consider the following example,

which shows that the two conditions in the claim of
Theorem 15 are not necessarily sufficient on its own.
D is the finite set {α1, . . . , αk} where α1, . . . , αk are

distinct and k ≥ 2. Assume that there exists m ∈ G
such that k · m 6= 0. We introduce V = {v,−v} where
v = Jα1 7→ mK + · · · + Jαk 7→ mK and x = Jα1 7→ (k ·m)K.
Observe that x satisfies the two conditions of Theorem 15.
Assume by contradiction that x is a permutation sum of V .
Since v ◦ θ = v for every data permutation θ it follows that
x = z ·v for some z ∈ Z. Thus 0 = x(α2) = z ·v(α2) = z ·m,
and k ·m = x(α1) = z · v(α1) = z ·m. Hence k ·m = 0 and
we get a contradiction. Hence x is not a permutation sum of
V .

VI. APPLICATIONS

A. Unordered data Petri nets

Unordered data nets [2], [5], [6] extend the classical model
of Petri nets [37], [38], [39] such that each token carries a da-
tum from a countable set D. In this basic algebraic extension,
transition firing can only depend on equality constraints over
the involved tokens. We recall an equivalent definition from
[40] which has more of a vector addition system [41] flavour.

Definition 18 (UDPN). Fix an integer d ∈ N and a countable
domain D. A d-dimensional unordered data Petri net (UDPN)
is a finite set T of data vectors over Zd.

A transition is a data vector t def
= f ◦ σ, where f ∈ T and σ

is a permutation of D. A configuration is a data vector over
Nd, i.e., a finitely supported function conf : D→ Nd.

We say that there is a step conf0
t−→ conf1 between

configurations conf0, conf1 if conf1 = conf0 + t for some
transition t. Note that this enforces that conf0(α)+ t(α) ≥ 0
for all α in D since conf1 is non-negative. We simply write
conf0 −→ conf1 if conf0

t−→ conf1 for some transition t and
let ∗−→ denote the transitive and reflexive closure of −→.

As usual, the reachability problem asks, if conf0
∗−→ conf1

holds for given configurations conf0 and conf1.

Observe that UDPNs over any domain with cardinality
|D| = 1 are classical vector addition systems [41]. Notice
also that, the set of transitions in an UDPN is finite up to
permutations of D and that the step relation is closed under



permutations: conf0 −→ conf1 implies that conf0 ◦ σ −→
conf1 ◦ σ.

The decidability status of the reachability problem for
UDPN is currently open. We will discuss here a necessary
condition for positive instances, an invariant sometimes called
state equations in the Petri net literature [33]. This can be
formulated as follows.

Proposition 19 (State-Equation). If conf0
∗−→ conf1, then

(conf1 − conf0) is a permutation sum of T .

We say configurations conf0 and conf1 satisfy the state-
equation, if (conf1 − conf0) is indeed a permutation sum
of T . That is, if there exists data vectors t1, t2, . . . , tk ∈ T
and permutations σ1, σ2, . . . , σk such that (conf1−conf0) =∑k
i=1 ti ◦ σi. Observe that (conf1 − conf0) ∈ D −→ Zd so

the above is exactly the expressibility problem for data vectors
with values in (Zd,+).

A direct consequence of Corollaries 8 and 16 is that one can
check this condition in (nondeterministic) polynomial time.

Theorem 20. There is an NP algorithm that checks if two
configurations of a UPDN satisfy the state equation.

For reversible UDPN, checking state equations is in P .

The complexity of checking state equations for UDPN thus
matches that of the same problem for ordinary Petri nets (via
linear programming).

Finally, we remark that the decision problem whether a
given UDPN is reversible is in P , by Corollary 12. Notice that
reversibility (cf. Definition 9) is a fairly natural condition and
compatible with the usual definition of reversibility in Petri
nets: that the reachability relation ∗−→ is symmetric. Indeed, if
∗−→ is symmetric then T is reversible as otherwise there must

be some t ∈ T where −t is not a permutation sum of T . So
there are configurations conf1, conf0 and permutation σ with
conf1 = conf0 + (t ◦ σ) and conf0 6

∗−→ conf1.

B. Blind Counter Automata
Blind counter automata [4] are finite automata equipped

with a number of registers that store integer values and which
can be independently incremented or decremented in each
step. These systems correspond to vector addition systems
with states (VASS) over the integers [32], where transitions
are always enabled. The model can be equipped with data in
a natural way.

Definition 21. A (d-dimensional) unordered data blind
counter automaton is given by a finite labelled transition
system A def

= (Q,E,L) where edges in E are labelled by the
function L with data vectors in D→ Zd.

A configuration of the automaton is a pair (q,v) where
q ∈ Q is a state and v ∈ D → Zd. There is a step
(q, c0)

e−→ (q′, c1) between two configurations (q, c0), (q
′, c1)

if e = (q, q′) ∈ E and c1 = c0 + L(e) ◦ θ for a
permutation θ : D → D. The reachability relation is a
transitive closure of the step relation and we denote it by ∗−→.
Finally, a sequence of configurations and transitions of a form
(q0,x0)

e1−→ (q1,x1)
e2−→ . . .

en−→ (qn,xn) we call a path.

Theorem 22. The reachability problem for unordered data
blind counter automata is in NP.

Proof: We can provide a proof by decomposing paths
into skeleton paths and multisets of simple cycles connected
to it (like in [42], [43]). We prefer to provide a direct proof
based on extract dimensions that count the number of times
transitions are used by a path as follows.

Suppose Q = {q1, . . . , q|Q|}, E = {e1, e2, . . . , e|E|}, and
we ask if from (q1, c0) it is possible to reach (q|Q|, c1).
We show how to encode the problem as the expressibility
problem. Let α ∈ D be a fresh data value i.e. α 6∈ supp(c0)∪
supp(c1) ∪ supp(L(e)) for any e ∈ E. First we introduce a
new labelling function L′ with an image in D → Zd+|Q|+|E|
defined as follows for any β ∈ D \ {α} and ek = (qi, qj) ∈ E
L′(ek)(β) = L(ek)(β); L′(α)(d+ i) = −1, L′(α)(d+j) = 1,
L′(α)(d + |Q| + k) = 1, and L′(α)(d + h) = 0 for
h 6∈ {i, j, |Q|+ k}.

Our encoding involves a guess, namely we guess a set of
edges explored by the path, let us denote this set by E′. We
assume that the guessed E′ induces a connected graph, that
contains q0 and q|Q|.

We claim that there is a path from (q1, c0) to (q|Q|, c1) if
and only if there is a permutation sum of elements of L′(E′)
such that its effect x satisfies the following conditions:

1) projection of x on to the d first coordinates is equal
c1 − c0,

2) weight(x) projected to the coordinates from d + 1 to
d+ |Q| equals (1, 0, 0, . . . , 0, 1),

3) weight(x) is positive on all coordinates d+ |Q|+ i for
ei ∈ E′ and 0 on all coordinates d+ |Q|+j for ej 6∈ E′.

The first condition corresponds to the effect of the path,
third condition guaranties that every edge in E′ is visited along
the path, and second is the encoding of Kirchhoff’s condition
guaranteeing existence of an Eulerian path (when combined
with the connectivity due to the third condition).

To encode existence of a permutation sum satisfying the
three conditions as the expressibility problem, we extend the
set of data vectors {L′(e) : e ∈ E} by data vectors which
allow us to modify second and third condition.

First, we define vβ,i as a data vector equal 0 for all data and
coordinates except of a pair (β, i) for which vβ,i(β)(i) = 1.

Now we define V as L′(E) extended in a following way; for
every 0 < i ≤ |Q|+ |E| we add a data vector vα,d+i−vβ,d+i

for some β ∈ D\{α}; and for every 0 < j ≤ |E| we add a data
vector −vα,d+|Q|+j. The first type of data vector allows us to
freely manipulate with coordinates from d+1 to d+ |Q|+ |E|
without changing weight of a data vector. The second type
of data vectors allows us to decrement weight on coordinates
from d+ |Q|+ 1 to d+ |Q|+ |E|.

Thus we may reformulate the claim with the three condi-
tions as follows.

There is a path from (q1, c0) to (q|Q|, c1) if and only if there
is a permutation sum of elements of V such that its effect x
satisfies the following conditions

1) projection of x on to d first coordinates is equal c1−c0,



2) x(α) projected to the coordinates from d+1 to d+ |Q|
equals (1, 0, 0, . . . , 0, 1), and is equal to 0 for all data
not equal α,

3) x(α) is equal 1 on all coordinates d+|Q|+i for ei ∈ E′
and 0 on all coordinates d+ |Q|+ j for ej 6∈ E′ and is
equal to 0 for all data not equal to α.

Now the three conditions defines precisely a data vector x,
so the existence of the path is equivalent to the expressibility
of the data vector x in V .

Concluding the NP time algorithm is as follows:
• guess the set of edges E′,
• check if the graph induced by E′ is connected, and if it

contains q1 and q|Q|,
• check in NP if for a chosen E′ there is a solution of the

expressibility problem for a set of data vectors V and
data vector x (x depends on the choice of E′).

VII. CONCLUSIONS

The main contribution of this paper is a technique to use
histograms to finitely summarize permutations used in per-
mutation sums. This allows solving the expressibility problem
by deriving bounds on the number of different data values
necessary to express a given vector.

For data vectors over (Zd,+), this shows that the Express-
ibility is in NP (see Corollary 8). It follows that the unordered
data extension does not make linear integer programming
problems more difficult.

We think that our result will be central for analysing data
extensions of many classical computational models like the
UDPN or the blind counter automata presented respectively
in Sections VI-A and VI-B.

Our results can be extended in several directions. For in-
stance, one can ask similar questions for ordered data domains
or for data matrices, i.e. functions from D × D to M . In
the case of ordered data domain, it is not hard to prove
that the complexity of the expressibility problem is at least
EXPSPACE. As future work, the decidability of expressibility
problems for ordered data vectors, and ordered/unordered data
matrices seem to be difficult but interesting problems.
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[3] P. Hofman, S. Lasota, R. Lazić, J. Leroux, S. Schmitz, and P. Totzke,
“Coverability Trees for Petri Nets with Unordered Data,” in FoSSaCS,
2016.

[4] S. Greibach, “Remarks on blind and partially blind one-way multi-
counter machines,” Theoretical Computer Science, vol. 7, no. 3, pp.
311 – 324, 1978.

[5] F. Rosa-Velardo and D. de Frutos-Escrig, “Decidability and complexity
of Petri nets with unordered data,” Theor. Comput. Sci., vol. 412, no. 34,
pp. 4439–4451, 2011.

[6] F. Rosa-Velardo, “Ordinal recursive complexity of unordered data
nets,” Information and Computation, pp. –, 2017. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0890540117300160

[7] C. Dufourd, A. Finkel, and P. Schnoebelen, “Reset nets between decid-
ability and undecidability,” in ICALP, 1998, pp. 103–115.

[8] T. Murata, “State equation, controllability, and maximal matchings of
Petri nets,” IEEE Transactions on Automatic Control, vol. 22, no. 3, pp.
412–416, Jun 1977.

[9] E. W. Mayr, “An algorithm for the general Petri net reachability
problem,” in STOC, 1981, pp. 238–246.

[10] S. R. Kosaraju, “Decidability of reachability in vector addition systems,”
in STOC, 1982, pp. 267–281.

[11] J. Leroux and S. Schmitz, “Demystifying reachability in vector addition
systems,” in Annual IEEE Symposium on Logic in Computer Science,
2015, pp. 56–67.

[12] A. Finkel and Ph. Schnoebelen, “Well-structured transition systems
everywhere!” Theor. Comput. Sci., vol. 256, no. 1–2, pp. 63–92, 2001.
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[42] M. Blondin, A. Finkel, S. Göller, C. Haase, and P. McKenzie, “Reach-
ability in Two-Dimensional Vector Addition Systems with States Is
PSPACE-Complete,” in LICS, 2015, pp. 32–43.

[43] A. Lechner, R. Mayr, J. Ouaknine, A. Pouly, and J. Worrell, “Model
checking flat freeze LTL on one-counter automata,” in 27th International
Conference on Concurrency Theory, CONCUR 2016, August 23-26,
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