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Simulation Games

... are played in rounds between Spoiler and Duplicator. If a player
cannot move the other wins. Infinite plays are won by Duplicator.

In each round
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Simulation Approximant Games

... are played in rounds between Spoiler and Duplicator. If a player
cannot move the other wins.

In round from o, B, i

N ve: p Spoiler moves from «; picks ordinal j < i

a 3 Duplicator responds from 3
game continues from o/, 3,/

O[, VS. IBI

Def: Simulation Approximant ( =<; )

a =; (3 iff Duplicator has a strategy to win from « vs. (3.
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Weak Notions

Weak Steps (a # 7 € Act)
T % a T  x a T  x
= = — == —*

Def: Weak Simulation < and Approximants =

I

by 2-player games as before where Duplicator makes weak steps. . .
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Our Main Contribution

We show decidability of the

OCN Weak Simulation Problem

Input: A net N = (Q, Act,d) and configurations pm, gn.

Question:  pm = gn?

Theorem

For a given net, the relation < is effectively semilinear.



Why should you care?

In practice, modelling might use both co-states and branching:
m network protocols/queues keeping track of their workload

m random guesses

Theoretically, surprising:

m rare positive result for behavioral preorder that is not finitely
approximable < #< .

m goes against the usual ‘finer is easier’ trend
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Monotonicity in Nets

If pm —25qn Then p(m 4 1) >q(n+1).
If mM" < m Then pm’ < pm.

If M <m, pm < gnand n<n’ Then pm" < gn'.
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Belt Theorem [JKMO00, AC98]

2

“Every frontier lies in a belt with rational slope”.
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Monotonicity

Strong Simulation for OCN

Theorem [JKMO00, AC98]

For any given OCN, = is an effectively semilinear set.



Proof Technique

Proof of the main result

Symbolic infinite branching 1

Reduce (OCN = OCN) ~» (OCN = w-Net)



Proof Technique

Proof of the main result

Symbolic infinite branching 1

Reduce (OCN = OCN) ~» (OCN = w-Net)

Approximants for the new game 2

3 finite sequence <0 D <! D <2 D ...D <k = <



Proof Technique

Proof of the main result

Symbolic infinite branching 1

Reduce (OCN = OCN) ~» (OCN = w-Net)

Approximants for the new game

3 finite sequence <® D <! D D ...

Compute approximants for finite k

Recursively compute <X by reduction to (OCN < OCN)



Proof Technique

Proof of the main result

Symbolic infinite branching

Reduce (OCN = OCN) ~» (OCN = w-Net)

Approximants for the new game

3 finite sequence <® D <! D D ...

Compute approximants for finite k

Recursively compute <X by reduction to (OCN < OCN)



Symbolic Infinite Branching

w-Net N = (Q, Act, d) with transitions
0C QX Actx{-1,0,1,w} x Q

...induces LTS over @ x N like OCN. A transition

a,w

oglRC

introduces strong steps pm —qn for any n > m.



Proof Technique

Reduction to Strong Simulation (OCN vs. w-Net)

For a OCN N one can construct a OCN M D N and an w-net
M’ 2> N where for all configurations pm, qn holds that

pm < gnw.rt. N <= pm =< gn w.r.t. M, M'.
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Proof Technique

Approximants illustrated
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Proof Technique

Example

(w - 2)—Countdown game
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m S0 <,, DO
m SO £3,,, DO m SO A3 DO
n <==3

Lemma

For any OCN N and w-Net M, there is k € N such that

< ==k
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Computing <*1

If a response via —, leads to (game) position pm %% gn then
pm 2k qn’ for all n’ € N.

For any pair p, g of states there is a minimal sufficient value m with

pm ﬁk gn for all n
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m Build gadget nets that test if Spoiler’'s counter is sufficient.

m Use Defenders Forcing to substitute w-transitions by the
ability to move into testing gadgets.

~» Strong simulation game OCN vs. OCN.



Proof Technique

Proof of the main result
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Conclusion

m Weak Simulation is decidable for One-Counter Nets
m Our proof crucially depends on monotonicity! We

m symbolically capture oo branching,
m derive finite sequence of approximants and
m use semilinearity of OCN =< OCN to compute approximants

and check convergence.

m We also consider (weak) trace inclusion for OCN and (weak)
Simulation between OCN and NFA.
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