Approximating Weak Bisimilarity of Basic Parallel Processes

Piotr Hofman Patrick Totzke

This paper explores the well known approximation approactiecide weak bisimilarity oBasic
Parallel Processes We look into how different refinement functions can be usegrove weak
bisimilarity decidable for certain subclasses. We alsoastteeir limitations for the general case.
In particular, we show a lower bound afx w for the approximants which allow weak steps and a
lower bound ofw+ w for the approximants that allow sequences of actions. Timdolower bound
negatively answers the open question oftdarand Hirshfeld.

1 Introduction

Basic Parallel Processd®PP) were introduced by Christenseh [1] as derivationeofraoutative context-
free grammars and are equi-expressible with communicétteanPetri nets or process algebra using ac-
tion prefixing, choice and full merge only. We are interestedeciding the problem ofreak bisimilarity
for BPP, which remains unresolved even for normed systems.

Christensen, Hirshfeld and Moller first prove the decidgbibf strong bisimulation between BPP
[2], Srba and Jatar [16,[14] show the PSPACE completeness of the problem. tHeosubclass of
normed systems — where every process has a finite distareertimation — a polynomial time algorithm
for bisimulation exists[[11]. On the negative side, Hirstiff9] proves trace equivalence undecidable
for BPP and Huttel [1Z, 13] shows that indeed all equivalsribat lie between strong bisimulation and
trace equivalence in the linear/branching time specttyranig undecidable.

The main obstacle for deciding weak bisimulation is that abstracts from silent moves and there-
fore allows for infinite branching. Weak bisimilarity is kwa to be PSPACE-hard for the whole class
[16] and still NP-hard[19] for the subclass of totally nowmirsystems, which forbids variables of zero and
infinite norm. Stirling [18] showed that it is decidable fonan-trivial subclass that still allows infinite
branching albeit in a restricted form. Branching bisimiglatfor normed BPP is shown to be decidable
in [3]. However, the technique used there cannot be easihsterred to work also for weak bisimu-
lation. The problem is that in weak bisimulation games Dagitir can go through many equivalence
classes when making a move. This makes it hard to find a cdondmttween the sizes of Duplicators
configurations before and after move.

Milner originally defines (weak) bisimulation by refinemeat the limit of a decreasing sequence
of approximants. This definition is known to coincide witlke timore customary co-inductive definition
due to Park but the sequence of approximants does not natyessaverge at a finite level for infinitely
branching systems.

We explore theapproximation approachwhich is outlined as follows. Weak bisimilarity is a con-
gruence over a commutative monoid and therefore semirlii#awhich means we can enumerate all
candidate relations. The fact that the weak bisimulatiord@@n is expressible in Presburger Arithmetic
means that we can determine for each such candidate if it isak Wisimulation that contains a given
pair. Hence, a semi-decision procedure for inequivalenmoeadiately implies decidability. The approx-
imation method discussed here yields such a semi-decismregure under two assumptions: At)is
finitely approximable: The sequence of approximants stasilat leveko, the first limit ordinal. 2) Each
approximanty, for o < wis decidable. If both hold true, one can simply iterate tigioall approximants
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and for each one check if the given pair of processes is naaiceed. The first condition guarantees that
this procedure terminates after finitely many rounds for ey of inequivalent processes.

Because finite approximation fails for most interestingckakses we focus on more rigorous refine-
ment functions than the ones typically considered. We sisfally apply the approximation method to
restricted classes of BPP: We derive a decision procedurehiecking weak bisimulation for a class
defined by Stribrnd in [19] that allows only a single visib&ti@n and no variables of 0 norm. Moreover,
we provide a new proof for the decidability of weak bisimidatfor the class defined by Stirling [18].

We show a lower bound ad * w for the convergence index of the approximants considered pr
viously, falsifying a conjecture that is attributed to Hiifsld and Jagafl that approximants stabilise at
level w+ w. Moreover we show that the most powerful notion of approxiomaunder consideration,
for which the individual approximants do not even need to éadhble themselves are not guaranteed
to converge below levab + w.

2 Preliminaries

We writeV ® for the set of all multisets over the finite domaina 3 for the multiset union ofr, B € V®
ande for the empty multiset. We use for multiset (pointwise) inclusion ané? : V* — V© is theParikh
mapping that assigns a word over a finite alphabet the muttis¢ agrees on all multiplicities. Write
Ord for the class of ordinal numbers.

Definition 2.1 (Basic Parallel Processesp process descriptiois given by a finite set V= {Xy,..., X}
of variables, a finite set Act of actions and a finite set T afidition rules of the form X a where
X eV, aecActanda e V®.

A processis a multiset in V¥ and may be understood as the parallel compositiéh XX of Iy
copies of X, ..., and }, copies of X. The behavior of a process is determined by the followingrestbn
rule:

if X 25 o € T then X8 —25 a for anyB € VZ.

We assume a dedicated symhiok Act that is used to modedilent steps— and defineveak stepdy

T T a T , a_ T 4 i
—=—" and==—"*——" for ac Act\ {1}. Weak steps are extended to sequences of actions
inductively: for the empty word let====-=-"3* for non-empty sequences defifé-==25=" for
a € Act,w € Act*. A deadlockis a process that cannot make any non-silent steps.n®hma |a| of a
processa is length of the shortest wond € Act* such thata =% 5 for a deadlockd ande if no such
sequence exists. We call a systanrmedif all its variables have finite norm.

Definition 2.2 (Weak Bisimilarity) A symmetric binary relation B over processes iweak bisimula-
tion iff every pairaBg and ac Act* satisfies: ifa —» a’ thenf8 == 8’ such thatar’Bf’. Two processes
a and 3 are weakly bisimilar, denoted = (3, if there exists a weak bisimulation B such thd@p.

Following [15] we characterize weak bisimilarity inductly by refinement:

Definition 2.3 (Approximants) For a given monotone refinement functih: 2¥°<V® — 2VxV® e
define a decreasing sequenceapfproximantssubsets of ¥ x V® by transfinite induction:

o =V xV®

o =~ 1= W(=;) for successor ordinals+ 1 and

1To our knowledge this conjecture appears in print only ifit®ié’'s PhD thesi$ [19]
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o ~)=|)i-x ~i for limit ordinals A
Weak Bisimulation approximantare those based on the refinement functi#nthat maps any RC
V& x V® to the largest symmetric relation that satisfies for alt &ct anda’ € V©:

(a,B) e Z(R) < a -2 a’ implies 3B’ == B'A(a’,B') eR

Every post-fixpoirﬁ of % is a weak bisimulation and by a straightforward applicatib fixpoint
theorem due to Knaster and Tarski we see that the sequenpprofkamants defined by converges to
weak bisimilarity: ~= (ocorq ~o- Thus, if we have a pair of inequivalent procesaeg$, then there is
a least ordinat such thato #. 3. Seel[[15], sec 4.6 for a more detailed account. Letthnavergence
indexfor a class of processes be the least ordirmlch thatv=~ for any system of that class.

Weak bisimilarity can be characterized in terms of intevaagames between two players, sometimes
called Spoiler and Duplicator [17]. For a given pair of presesa andf3, the game consists of a series of
rounds. In each round Spoiler chooses left or right procedgarforms a step from it, next Duplicator
must match this with an equally labeled weak step in the giheeess. If one of the players is not able
to perform his next move then his opponent wins, infinite glage won by Duplicator.

Proposition 2.4 Two processes are weakly bisimilar iff Duplicator has a &gy to win the bisimulation
game regardless of his opponents choices.

In the same spirit we can defirmproximants gamet® characterize weak bisimulation approxi-
mants. A configuration of the game consist of a numierOrd and a pair of processes andf. In
each round Spoiler chooses a new nuner Ord such that 0< o’ < o and performs a step @' from
one of the processes. Then Duplicator responds by an edab#ied weak step from the other process
to some procesf’. The game continues to the next round which starts from corgtopno’,a’,3’.

If one of the players is not able to perform his next move thisnopponent wins. This game cannot
continue indefinitely becaus@rd is well-founded.

Proposition 2.5 For any o€ Ord a =, 3 iff Duplicator has a strategy to win the approximant game
from (o, a, B) regardless of his opponents choices.

The intuition is that whenever Spoiler makes his move ta’ he asserts that he can win the bisimulation
game in fewer tha’ rounds from the next round onwards, for any possible respoh&is opponent.
Duplicator wins the approximants game at some limit ordiee!| only if for all smaller ordinal®’ he
has some response that allows him to win at l@lelf in the following we write Spoiler cadlistinguish
processes andf3 in o rounds we mean that Spoiler wins the approximant game fm, 3).

Example 2.6 Consider the process description given below, where thehdefd side is a graphical

depiction of the rules listed to the right. The left showsaaplﬁ(iY whenever there is a rule ¥ YA
in the process definition on the right-hand side.

X Y OT1A c b
X —=Y, X —Z,
b b ) Y 2ey va
T PR r r
IAC 7 8\_/A Z—e,Z—ZA
a A-Se A2

2an elemenR C V® x V@ that satisfieR C .7 (R).
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The two processeX andY are inequivalent, Spoiler wins the bisimulation game byipig (X LI Z);
any proper response is &' for somen. Now Spoiler continues to plagZ yaz-2, Z) ntimes and
wins in the next round. Still, Duplicator wins the approximh@ame from(w, X,Y) becaus& A A Al
for any two naturals, j and any Spoiler attack to someZA' in the fist round can be replied to by a weak
stepY == YA 25 Al Hence~#ry.

Example 1 shows that for the usual notion of approximanis,cthnvergence index is aboug so
the approximation method fails. We will continue to invgatie different refinement functions that yield
faster converging weak bisimulation approximants.

3 Approximants

Proposition 2.6 motivates the definition of alternative mefiient functions and thus approximants by
changing the rules of the approximants game. That is, wealséiguences of faster converging approx-
imants by describing the abilities of the two players to miovene round of the game.

Definition 3.1 We define different approximants by describing the way baieps are allowed to move
during the approximants game. In all cases Spoiler chodsesiext lower ordinal and moves to some
configuration, then Duplicator moves from the other process

Define ordinaryshort-longapproximantsz; by the game in which Spoiler moves along a strong step
—2,, then Duplicator responds using a weak stép-.

For long-long approximants=-, Spoiler makes a weak steé‘?, then Duplicator responds with a
weak step==s.

For word approximants~"V, Spoiler moves according tos&equence¥> of weak steps where &
Act*, then Duplicator responds by a mow€s over the same word.

Parikhapproximants~" are due the game where Spoiler makes a sequence of wea%ewse

Act*, then Duplicator responds by a sequerté"/e in which the letters of w are arbitrarily shuffled:
P(w) = 2 (W).

Note that the short-long approximants defined here are lgxthet ones given in Definition 2.3 and alll

others should converge faster as they give more power tdeBpdle continue to show that all four

types of approximants are indeed correct notions of appration for weak bisimilarity and do not

converge towards something even smaller in the limit. Afgeds, we look at how suitable they are for
the approximation method we have in mind.

Lemma 3.2 For any ordinal i,~ C ~V C ~F C &} C &;.

proof For the first inclusion assume th@t, ) is in ~, so there is a weak bisimulatid® containing
this pair. This means for any mowm = a; 2% ... = ay,a; € Act there is a sequencly —=

B1 =2 2 B« with a;Bp; for j <k, soB prescribes a winning strategy for Duplicator in the word-
approximant game.

For the second inclusion observe that if Duplicator has poese8 == 8’ for some attackr = a’
clearly the same response is allowed in the game where he noignggly shuffle the letters ofv.

For the third inclusion assum@, ) ¢ ~F, then Spoiler can distinguish the two processes in
rounds where he only uses weak stefs labelled by single actions and his opponent may also respond
using equally labelled weak steps. But the same stratedypvilvinning for Spoiler if he is allowed to
make steps= due to sequences of actions and his opponent may arbitgdilffle the actions in his
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response: If an attack is due to a single action the responsebe due to a single action. Thus Spoiler
can distinguish(a, B) in at mosti rounds of this Parikh-gamén, 3) ¢ ~F. The last inclusion follows
similarly: If Spoiler can distinguish two processes imunds if he is only allowed to make strong steps
—2, and his opponent can do weak steps as response, then musé @bte to distinguish the processes
in at mosti rounds of a game in which he can also make weak attacks. |

~— ~W__ ~P__ ~L__ ~.
Theorem 3.3 ~= ﬂieOrd ~i— mieOrd ~i = ﬂieOrd ~i— mieOrd ~I

proof The chain of inclusions: holds by transfinite induction using Leminal3.2. Milrer|[16pws that
sequence of short-long approximants converges to weakilasity: ~= Nicorq ~i- |

Lemma 3.4 For any BPP description and ordinal i we have
1. ~F,~P,~WV are equivalences and
2. for ~ € {~j,~}F,~P ~WV} it holds thata ~ B impliesay ~ By.

proof 1. LetO € {L,P,W}. We show transitivity by induction={=V® x V¥ is trivially transitive.
Assume%iO is transitive for € Ord and 1)a mioﬂ B and 2)3 %ioﬂ y. We show that Duplicator wins the
O-approximants game that starts(et- 1, a, y). Without loss of generality one can assume that Spoiler
movesa = a’. By 1) we know that in the game vs. 3 there is a valid responsﬁé:v> B’ such that

a’ ~P B'. Equally well if in the gam¢8 vs. y, Spoiler move =, B’ then by 2) there is a valid response
y ==y with B’ ~° y. By induction hypotheses we haaexL y, so by definition of0 ; alsoa ~2, y.

For limit ordinalsl this goes analogously: for Spoilers attack fronthere is a response frofhfor
all smaller ordinals; for any such move there is a response frpto some process equivalent at level
By assumptiora %io y and hencex ,%IO y by definition. Symmetry and reflexivity follow trivially fnm
the definition.

The second claim is a result of Duplicator using a strategy thmembers which parts of the con-
figurationsay, By come froma, 3 andy. Every move of Spoiler fronmy (or By) can be split into two
parts, one which originates from (or ) and the one which was performed from variables that come
from y. Duplicators response will be the combined responses &firtst and the second part of Spoilers
attack in the gamesg vs. B andy vs. y. In the second part Duplicator simply copies Spoilers mawt a
can therefore even preserve equality on the parts of theepses that derive frop This means Spoiler
cannot distinguistry and By in fewer rounds than he can distinguighand 3. |

The first claim of the lemma does not hold for the short-longragimants~; because Spoiler and
Duplicator have different abilities to move. For a courggample to their transitivity consider example
below.

Example 3.5 The following rules describe a system witheXY =~ Z %1 X:
Y XY Sz, y LY Y ey Pie x x 2z 2z

We will continue to show that for finite ordinals< c, the approximantsyj, ~- and~f are decidable.
For this we recallPresburger Arithmeticthe first order logic of natural numbers with addition and
equality. Syntactically, a Presburger Arithmetic formidal rue False a statement; = t, where the
termsty,t, are sums of natural numbers or variables, any boolean catiyinof smaller formulae or a
universally or existentially quantified formula. We wridxy, X ... %) for the formulaF in which the
variablesx; ...xx occur freely, i.e. not in the scope of a quantifier and inrpormulae over natural
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numbers and equality. A s&C N of k-tuples of natural numbers is said to Beesburger-definablé
there is a Presburger Arithmetic formudg(x1x2 . . . X) that satisfies

Pr(X1X2...Xk) = True <= (X1%2...X%) € R

An important property of Presburger Arithmetic is that itliscidable if a given a Presburger Arith-
metic formula® without free variables is True. This implies that Presbugfinable sets are decidable.
Moreover, the class of Presburger-definable sets coingidtbsthe class okemi-linearsets [6] which
for our purposes means it is effectively closed under ptipand intersection. We refer tal [6] for the
details on Presburger Arithmetic.

Any relationR over BP processes withvariables is a subset 6. We now show that for finite,
the approximantsz,, ~5 and~F, are effectively Presburger-definable and therefore dbted=lations.
We recall an important result from|[5], Thm 3.3:

Lemma 3.6 For any BPP description, the set Reachv® x Act® x V® of triples (a, u, 8) such that
a 2 an X \nsh ; ;

o — a3 — az... — (B for some sequencea...a, € Act* with Z(ayay...an) = U is effectively

Presburger-definable.

From this we can conclude that the step and weak step redatidn == are effectively Presburger-
definable: The setS; = {a}, andS; = {a}{1}® (in other words the Parikh images af*) are easily
seen to be Presburger-definable afid and=2> are expressible as the projections into the first and third
component oReach (V¥ x § x V%) andReachn (V¥ x S x V¥) respectively.

Theorem 3.7 For a given BP process description B with k variables the ajtproximants~,, ~% and
~F over B are decidable for all finite n.

proof It suffices to to show thatz,,~5 and~F are effectively Presburger-definable. By Lemimd 3.6
we can assume a Presburger Arithmetic formRila NV x NA% x NV that expresses the seeachand
formulaeSte, W Step C NV x NA% x NV expressing the strong and weaktep relations for all actions
a € Act. Now we can easily encode the refinement functions used iagheximants and for any finite
n construct the Presburger Arithmetic formulae that exprggs=; and~F by induction:

Forn = 0 we havexy=~f=~F= N trivially definable as¥o(a,B) = True

ForxiqletWii(a,B) <= Aacact (

(va' e NV Step(a,a’) = 3B’ e NV WStep(B,8' ) AWi(a’,B))
AVB e NY Step(B,B') = Ja’ e N WStep(a,a’) AWi(a’,B)))
Similarly, forzhl let Wi,1(a,B) as above but replacgtep by W Step. Forwip+1 letWi 1(a,B) —
vu c NAct (
(Va' e NV R(a,p,a') = 3B e NV R(B,u,B') AWi(a', B))
AVB e NV R(B,u,B') = Ja' e NY R(a,u,a’) AWi(a’,8)))

It is worth mentioning that word approximantg) are not decidable at finite levels: for systems without
silent actions the very first approximaﬂt_{" coincides withtrace equivalencewhich has been shown to
be undecidable for BPP by Hirshfeld [9].
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4 Applications

We now use the approximation approach to show that two ssdesaof BPP previously known in the
literature have decidable weak bisimilarity. In partieulae show this result in Sectidn 4.1 for the class
introduced in[[18] by proving weak bisimilarity finitely apgpximable for the long-long approximants
~ and for the subclass introduced in [19] we show finite appnakiility for Parikh approximants-"

in Sectiori 4.2. In both cases we know by Theotenm 3.7 that & fievels the approximants are decidable
equivalences and hence showing their convergence atdesaffices to get a decision procedure.

Proposition 4.1 The following states some useful facts that are easily edrifi
1. a =~ B implies|a| = |B]
2. Ifa= B = a’anda ~ a’ thena ~ f3.
3. Ifa = af and 3 has norm0 thena ~ a3

Definition 4.2 Let Oc {L,PW} anda, 8 € V® such thata ~& . For a given Spoiler move from to
a’ there is a sequence B 31, 5, B5. .. of Duplicator responses such that for aksiN holdsa’ ~° f/.
We call B afamily of responses

Observe that the sequence is not unique, for example if ybstisute 3; by B; for any j > i then you
obtain another family of responses. By Dickson’s Lemma weassume that a family of responses is
non-decreasing with respect to multiset inclusiBn_ i1 for everyi € N.

4.1 Normed Processes with Pure Generators

Write a — 8 for silent and norm-preserving steps between processes V®: a —sq B iff a — 3
and|a| = |B]. Let = be the transitive and reflexive closure ef+¢. For variablesX,Y such that

X =Y = X we haveX ~ Y by Claim 2) Proposition 4]1. We sa¥ is redundantbecause o¥ or

vice versa. One can easily detect redundant variables aneftine we can assume that they have already
been unified. That is, we can assume wlog. that our processiglesn does not contain redundant
variables. This allows us to linearly order the ¥atf variables such that K = Ya thenX >Y. Let's

fix the notationX; > Xo > ... > Xq.

A generatoris a variableX that allows a sequencé = Xa for somea € V¥, in which case we
sayX generatesy. Call a generatoX pureif X = a implies thata = a’X: Pure generators cannot
vanish silently.

Stirling shows decidability of weak bisimilarity for norm@rocesses with only pure generators using
a tableaux approach [18]. One motivation for this subclagisdt it still allows for infinite branching and
that ordinary £;) approximants do not converge at level In this section we show that long-long¥)
approximants in fact stabilize at level and thus provide the missing negative semidecision praodecu
to conclude decidability.

Lemma 4.3 Leta be a normed process of a BPP description without redundanieilvies in which every
generator is pure. Suce {a’|a =>¢ a’} can be partitioned into finitely many equivalence classéls wi
respect to weak bisimilarity.

proof The third claim of Propositioh 4.1 allows us to restrict @lves to the subse&duc¢ of Succof
configurations which are obtained without use of generatiayes because it has the same number
equivalence classes as generators cannot vanish atengmoves. Our goal is to show th&uc¢ is
finite which immediately implies the claim of the lemma.
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Every derivation ofx is a sum of derivations from variables belongingxtolf we prove that in silent
norm preserving steps without generating moves, we candatye finitely many configurations from
each variable, then we will also prove tiucé is finite. We will show that this is indeed the case for
all variables by induction over the assumed oreer From the smallest variabl& using silent norm
preserving stepwithout generatingve can derive only two configurations, namedyor €.

Assumec > 0 bounds the number of possible silent norm preserving agoivs from any variable in
X; ... X and consider the variabd_;. In caseX;_; is a deadlock variable, i.&;_; — X;_1 is the only
applicable rule, we can trivially bound the number of itsieldions by 1< c. Otherwise, because we
forbid generating moves we must have that any ilg Toa produces a multiset € {X;... X}*.
The fact that there are only finitely many rules that rewr#eiableX; _; implies that we can bound the
number of its silent norm preserving derivations by

d-cd+1,

whered is the number of rules foxX;_; andl is the maximal size of any right hand side of a rule rewriting

Xi-1. |
Theorem 4.4 ~ = =L for normed BPP where each generator is pure.

proof Assume towards a contradiction that we havel, g #- w1 0. Wlog. assume an optm&inltlal

movea == a for Spoiler in the gamer vs. 8 and a familyB = 3}, B;, ... of responses which is strictly
increasing wrt. multiset inclusion.

By Lemma[4.3, the seucc= {a”|a’ = a”} of configurations reachable from' in silent and
norm-preserving steps contains finitely many bisimilaciggsses. Let the s&uc¢ be a finite set of rep-
resentants of those classesSncc This allows us to define a functioh: B — Suc¢ that mapg3’ € B to
an element irBuc¢ that maximises their approximation inde: ~ f(3/) andvy € Sucé¢ B/ ~f y =
k > |. This function is well defined because $aic¢ is finite. Now consider an infinite subsequence
B(y) of B that contains all elements whidhmaps to the configuratiop € Suc¢. By the pigeon hole
principle such a subsequence exists.

Take two different elementg/ C Bj’ of B(y) for arbitrary largei,j. We have 1)’ ~; y~L BJ
becausen’ € Suc¢ and 2) 3 and ] have the same norm. To see why the second obervatlon is true
note that|a| # |B| implies a 5éhﬁin{|al7lﬁl} B as Spoiler only needs to decrease the smaller process to a
deadlock which cannot be mimiked by Duplicator on the othrecess because the norms differ. We
know B/ ~ a’ =% B/, so|B/ | = |a’| = |B{| as otherwisé and j would be bounded bja’|.

ConS|der the game oa’ vs. [3’ and a silent, norm-preserving mO)ﬁ? —o 3/ made by Spoiler,
which must be possible due to observation 2) and the fact3hista subset ofj. Now by definition
of the subsequendﬁ(y) we deduce thatr’ = y is an optimal response for Duplicator. Therefore by
1), We know thai3/ ~ J 1Ysof = A 1/31 by transitivity and the fact theﬂ!J J 1 Y. But now we have
B ~ J 1 a’ for arbitrarily high j and thereforg3’ ~L, a’ which contradicts the optimality of Spoiler's
very first move. |

4.2 Unnormed Processes over one visible Action

Consider the subclass of BPP processes that satisfy both

3a move prescribed by an optimal winning strategy: one thatantees a win for Spoiler in the fewest number of rounds
and thus properly decreases the approximation index in mactd.
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1. There is only one visible action labélct = {7,a} and
2. Every variable has positive or infinite norm.

This class has been introduced [in1[19], where it was showinftingorocesses of this kind, Hirshfelds
conjecture holds~ = ~L .. Note that this class is not a subclass of thilly normedsystems[[10]
as it allows for variables with infinite norm. We show thatthlass has decidable weak bisimilarity by
showing that Parikh-approximants converge at level

Theorem 4.5 ~ = ~F for the subclass of BPP processes with a single visible aitd no variables
with normO.

proof First observe that 1) implies that all configurations witfinite norm must be equivalent and due
to norm preservation cannot be equivalent to any configamatf finite norm. The second restriction
guarantees that there are only finitely many different coméiions for any given finite norm. 2) When-
ever two processes have different but finite norms, they arialy not related by-5 as Spoiler may
rewrite the smaller process to a deadlock in one long stepowitallowing his opponent to do the same
on the other process.

Assume towards a contradiction that~F, g %Z,H a. So for an optimal initial movex == o
for Spoiler there is a family of responses frghn This sequence cannot converge as otherwise our
assumptior :,:éZH a would be false. By the pidgin hole principle, there must bkeast one variable
X that grows indefinitely along this sequence. Take two elés@n— [3]-’, 2 < i < j from this sequence
such thatX occurs more often ifj. By observation 2) and the fact that and 3] have different norms
we know thatB/ #5 B{. Becauses ~F a’ %'jj Bj andi < j holds g/ ~Fa' =P B;. From this and the
transitivity of ~” we conclude tha8/ ~" B and because 2 i alsof/ ~5 B} which is a contradiction

5 Limitations of the Approximant Approach

One severe limitation of the approximation method is thataitnot provide complexity bounds even if
successfully applied. In this section we show tisétis not guaranteed to stabilize at levek 2 and that
word approximants<"Y do not necessarily stabilize on lewsl From our counter-examples we derive
lower bounds otv? andwx 2 for the convergence indices of and~" respectively.

Theorem 5.1 Long-Long approximantsx) do not stabilize below leved? for BPP: ~ # *’t)*k for all
finite k.

proof Fork < 2 the claim is trivial, e.g. by Example 2.6. We first show hovetmstruct a system with
~ # ~L . . For this we recycle Example 2.6 and add the pile’s XA and analyze the game of
vs.Y more carefully. The fact thaf can be silently rewritten t forces Spoiler to start fronX. Any
optimal silent move for Spoiler must change the equivalaass, so we can assume his initial move to

beX == ZA™. Duplicator must respond to som&. To prevent a perfect match to an identical process in
the next round, Spoiler must again move fr@dA™ and may not end in a configuratidr". So Spoiler
will either movez =% Z or Z =2 A™ with m > n and thereby force Duplicator to remove oAen
the other side. Observe that any one move fidr A™ can be replied to byA, so Spoiler has to keep
makinga-moves from his process until Duplicator has exhaustedaaibbblesA. By removing only one
Ain each such response, Duplicator can prevent the situzti@m A>°) vs. € for n rounds, whera is
determined by his initial response. We conclutel) Y % X.

To construct a counter-example to convergence at veko we combine two copies of this system
as indicated in Figuriel 1 below.
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Figure 1: Combining two copies of the "Guessing Game" yidds:" , Y1 % X.
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The bottom part of the construction is the gadget as disdugssviously. Observe that variables
Xo, Yo, Zo are not able to produce variables from the top part of therdiagthose variables with an index
1. Thus we preserve thXp ~%, Yo. Our aim is to show that indeexy thle % X;. For this it suffices
to show that the only possibility for Spoiler to win is to ferthe game fromX; vs.Y; to end up in
Xo %b Yo.

The Game starts from a pafs, Y; and it goes through the upper square pat¥riy;, Z1,W;. By our

previous discussion of this gadget, we know that Spoilertbagart byX; LN Z;A™; Duplicator will
respond t?W,A". Spoiler must continue to play from the left hand side in otdgrevent a perfect match
to identical processes and cannot moveWa A' for i < n. If he makes a movg;A™ 5 XoAl, while the
other process still containsVe, Duplicator is able to match to the same process. So the qtigroleft
for Spoiler is to force Duplicator to remove all variablesne by one by performing-steps. Eventually,
from a positionz; (or W,A>%) vs.W;, Spoiler makes one laatstep and thus forces Duplicator to rewrite
W to S;. Afterwards, Spoiler can force the game to a positi@A” vs. YoA™ by playing ac-step from
either side. This part of the game takes 1 rounds anah was chosen by Duplicator in his first response.
ThereforeX; =~ » Y1 Which completes the proof for= 2.

The construction above can be extended to provide a coaréenple for convergence at lewsk k
for any naturak by stackingk copies of the square gadget on top of each other. This cabalswdified
to a system which contains only variables of the norm zero. |

Next we focus on Word approximants and falsify a conjectdr8tdbrna [19] about their conver-
gence above levab.

Theorem 5.2 For BPP, weak bisimilarity is not finitely approximable wittord approximantsx # ~\.

proof Consider the process description in Figure 2. By Propag#id part 3, we know thatL"Q™M ~ Z
andL"1QM ~ L for any two naturalsn,n. We claim thatX ~W Y 5 X and base our proof on the
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Figure 2: Counter-example for finite approximability-ef’
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following claims that are proven individually after the margument. For, j,n € N, n> 0 we have

Z 24 RU Y LI, 1)
Z %\é\r/H-l Ln7 (2)
Z @5 L. 3)

In the gameX vs.Y Spoiler must start with a mowé == ZL'Q? ~ Z, as otherwise his opponent is able
to match to the same process and thereby win. Possible sspéor Duplicator fronY are:

e To someRL"QM ~ RL", which allows Spoiler to win in 3 further rounds by Claiin 1.

e To someY L"QM ~ Y L" which allows Spoiler to silently replace theby R and afterwards again
win in 3 rounds by Claini]1). Note that no silent response f@itQ% to some configuration that
containsRis possible.

1
e To someQ™ which allows Spoiler to win in one round by pIayingg Z.
e To someL"Q™M = L",n > 0 which allows Spoiler to win but in not fewer tham 2 2 rounds by

Claimg2) andB).
The choice oh is made by Duplicator and therefoxe~Y Y # X. Note that this counter-example uses
only a single visible action and all variables have zero norm |

It remains to proof claims 1.}3. We first prove some auxilieleims on which we base our arguments
for claims 1) and 2). For alh,n € N,

RL" 21 Q™ (4)
L" %3’ R #5' Z (5)
For (4), observe that Duplicator cannot respond to a nﬁ)ge"g; R. For (8), Spoiler moves frorh" (or

Z) silently toQ and Duplicator can respond Bor to €. In the first case he loses in one round by claim
(@), in the latter he cannot respond to m&ye=s ¢ from ¢.
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Claim (I): Z % RL" 2%/ L™

proof For both parts Spoiler moves froRL" silently toR. Duplicator must respond either @ which
is losing for him in one round by Clainil(4), or td QX ~ LI or ZLIQX ~ Z, which is losing for him in
two rounds by Claim[(5). |

Claim @): Z~¥/ , L"for n> 0.

proof By induction om > 1 together with the claim that for amy>n, L™~¥/ ., L". Base case ~¥' L™.
WIlog. assume than minimizesk in L m‘lf’ L™ and that Spoiler only makes optimal moves i.e. wins as
quickly as possible. This means in particular that he nemdsdnge the equivalence class in every move.

Thus, he can move eithef = L™ Q9 ~ L™ or to L™ RQF for somel < m. In both cases Duplicator to
stays inL. In the first case, because we assume optimal moves, we rmﬂstlaa"’ L' for somei < k,
which contradicts the optimality af. Alternatively, the game continues fro!dRQ vs. L. Spoiler
must again move frorh! RQ* and change the class. If he makesaastep toR or ends inQ' Duplicator
can match to the same process, a move to sehfieor L",I’ < | < mis surely non-optimal. The only
remaining option is to move silently ®to which Duplicator will respond bz = L. Now observe that
L %\{V R.

Base cas& z‘é" L: As Z can silently go td.", Spoiler needs to start fro@d. He has three options
to change the class from here: to som@9 ~ L', to RL'Q% ~ RL' or to something equivalent @R In
all cases Duplicator respondsltcand in the first two cases, we can use provious claim%" L™ and
L ~¥ RL™ to conclude that this allows him to survive another 2 rouritithe second round starts In
vs. ZR (or equivalent), Spoiler can again not move frirand has three options to change the class: to
something equivalent td@ which is non-optimal as it repeats the initial configuratigternatively he
can go toRL'Q' ~ RL' or toRQ =~ R. In both cases we complete by the observationfiat) L~ R.

For the induction step, assurh® ~¥/ _, L" andZ ~%/ , L". We show that.™ %\é\énﬂ)ﬂ LD Just

as in the base case, the only good move for SpoilEF‘i% LR for somen < m! < m. Duplicator
in his response goes td'R. Next one more time Spoiler has the only one reasonable Kinabwe, to
a process equivalent 10", wherem” > n. However now Duplicator responds k8 and we use the
induction assumption to the paif” ~¥ , L".

Observe that because’), , is a congruence this implies als'R~Y ; L"R for m> n. To show

2n+1
thatZ *\é\énﬂ)ﬂ LD we assume wlog. that Spoiler initially mov&s==> ZR Duplicator responds by

L1 =25 | "R Now to prevent a perfect match in the next round, Spoiler@sdvomZRto eitherZ
or toL™R or L™ In the first case, Duplicator will remove thieand end up irL." and we can use the
induction assumption, in the last two cases Duplicatorssial"R or goes td_". Either way, we can use
the previous claims that"R~%/ ; L"RandL™~¥ , L" form > n. |

Claim B): Z #%, , L" for n> 0.
proof By induction onn > 1 together with the claim that for anyp > n, L™ 36‘4‘{% L". Base case:
Z#W LW L™ Spoiler playd™ == LR (or Z == LR). Possible responses frdmare

1. toLQY or Q4, from which Spoiler wins in 3 rounds by Clainh 1.

2. toR in this case Spoiler performs a mokR& =L Q%! and Duplicator responds to eithRQ
or Q' with i < g. In both cases Spoiler wins in one round by cldiin (4) or plgynadt!-step from

Qq+1_
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For the induction step we assurh®& 2/, L" 2}{ ., Z and show that both™ Y(  ,, , L™ and
Z 7é\£\én+1)+2 L1 hold. Spoiler moves frorh™ (or Z) in ana-step toL™1R. Duplicator can respond

1. toL"Q% or someQY, from which Spoiler wins in 3 rounds by Clainh 1.

2. to L”'R@, n<n. In this case Spoiler performs a maeR == L" and Duplicator responds either
to L' RQ or L"'Q' with n” < n’ < n. In the first case, Spoiler wins in one round by claliith (4). In
the last case the game continues friofvs. L™ <" and we can use the induction assumptionB

Remark 5.3 To construct a counter-example to convergence of word aqpants at leveko + k for
finite k, the previous construction can be complemented fipite'ladder”, where X and Y are renamed
to X and ¥%: For 0 < i < k add variables XY;,Z;,Z/,W,W and rules as indicated below.

a a a
Z Z X1
| e l
T T
i —2 w2 w2 .y,

6 Discussion

In order to decide weak bisimulation for BPP or subclassesffices to provide a semi-decision pro-
cedure for inequivalence. If we have some measure on whiglvadgnt processes must agree, we can
define a new notion of approximants by additionally reqgjtiinat Duplicator must preserve equality on
this measure in every round of an approximation game. Cealygrone can think of properties as being
captured by some notion of approximatie:?: If two processes disagree on the property then they are
distinguished bw? at some levei < w.

As an example take the propertgrm preservatiomf Claim 1) Proposition 4]11: Equivalent processes
must have equal norms. This is captured by Parikh or Wordaaippants because if two processes
disagree on the norm, Spoiler can distinguish them in twadswf the corresponding game by reducing
the smaller one to a deadlock — which cannot be done in anyepregponse from the other side — and
playing an action from the non-deadlocked process aftelsvaknother known invariant are tlstance
to disablingfunctions (dd-functions) used in [114] for strong bisimidat If the shortest path froro to
a’ which disables any actioais shorter than a shortest path frgto a configuration which disables
thena 25 B. So this first level ofdd-functions is captured by Parikh approximants at level 2. cafe
continue this argument and sayth orderdd-functions are capture bt;tﬁ+1 relation.

We have shown that all subclasses of BPP which are currentiyik to have decidable weak bisim-
ulation are indeed finitely approximable for some naturaiamoof approximation. The lower bound of
w+ w for the convergence of Word (and thus Parikh) approximairengdoy the construction in Theorem
leads us to the conclusion that we are in fact looking fdisinguishing property that is orthogonal
to Word approximants: It should still allow for decidablepamximants but at the same time it must be
stronger than (not captured by) Word approximants becath®svaise it cannot be complete.

Our lower bound otw * w for the symmetric short approximants- does not quite match the upper
bound ofw® provided by [8] and we conjecture that indeed, the exact@g®nce ordinal iso* w.

Finally, let us define the subclassadcreasingsystems in the following way.

Definition 6.1 A BPP description islecreasingf there is a linear order on variables such that for every
rule X 25 a we have thatr does not contain variables which are greater than X in chazeler.
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It seems that this subclass provides much structure to widkk Wevertheless, all systems presented in

this paper are in fact decreasing. We believe that solvirydlass will be an important step towards a
solution of the problem.
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