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Abstract
We study countably infinite Markov decision processes with Büchi objectives, which ask to visit a
given subset F of states infinitely often. A question left open by T.P. Hill in 1979 [10] is whether
there always exist ε-optimal Markov strategies, i.e., strategies that base decisions only on the current
state and the number of steps taken so far. We provide a negative answer to this question by
constructing a non-trivial counterexample. On the other hand, we show that Markov strategies with
only 1 bit of extra memory are sufficient.
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1 Introduction

Background. Markov decision processes (MDPs) are a standard model for dynamic systems
that exhibit both stochastic and controlled behavior [15]. MDPs play a prominent role in
numerous domains, including artificial intelligence and machine learning [18, 17], control
theory [4, 1], operations research and finance [5, 16], and formal verification [9, 2]. In an
MDP, the system starts in the initial state and makes a sequence of transitions between
states. Depending on the type of the current state, either the controller gets to choose
an enabled transition (or a distribution over transitions), or the next transition is chosen
randomly according to a defined distribution. By fixing a strategy for the controller, one
obtains a probability space of runs of the MDP. The goal of the controller is to optimize the
expected value of some objective function on the runs.

The type of strategy needed for an optimal (resp. ε-optimal) strategy for some objective
is also called the strategy complexity of the objective. There are different types of strategies,
depending on whether one can take the whole history of the run into account (history-
dependent; (H)), or whether one is limited to a finite amount of memory (finite memory;
(F)) or whether decisions are based only on the current state (memoryless; (M)). Moreover,
the strategy type depends on whether the controller can randomize (R) or is limited to
deterministic choices (D). The simplest type MD refers to memoryless deterministic strategies.
Markov strategies are strategies that base their decisions only on the current state and the
number of steps in the history or the run. Thus they do use infinite memory, but only in
a very restricted form by maintaining an unbounded step-counter. For finite MDPs, there
exist optimal MD-strategies for many (but not all) objectives [6, 7, 8, 15], but the picture is
more complex for countably infinite MDPs [12, 14, 15].

We study here so-called Goal objectives defined via a subset of goal states F : In the basic
Goal objective (also called the Reachability objective) one simply wants to reach the set F .
In the Büchi objective one wants to visit the set F infinitely often. For finite MDPs there
exist optimal MD-strategies for both these objectives [7, 15]. For countably infinite MDPs,
optimal strategies (where they exist) and ε-optimal strategies for Reachability can be chosen
MD [14, 15]. Similarly, optimal strategies for Büchi (where they exist) can be chosen MD
[12]. However, ε-optimal strategies for Büchi require infinite memory (cannot be chosen FR);
cf. [12, 13].
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Figure 1 Two MDPs where ε-optimal strategies for Büchi require infinite memory. Let F = {s0}
be the set of goal states. Here and throughout the paper we indicate goal states by double borders,
and controlled states as rectangles.
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I Example 1. Consider the MDPs in Figure 1. Every finite memory (FR) strategy will only
attain probability 0 for Büchi in these examples [12]. However, there exists an ε-optimal
Markov strategy for every ε > 0: At the i-th time that state s0 is visited, pick the successor
state ri+k where k is some sufficiently large number depending on ε, e.g., k = dlog2(1/ε)e.
For example (b) this can easily be done with a step-counter since s0 is visited for the i-th
time in step 2(i− 1) unless the system has reached the state ⊥. For example (a), under this
strategy, state s0 is visited for the i-th time in step

∑i−1
j=1(k + j + 1) unless the system has

reached the state ⊥. J

s0

r1 r2 · · · ri · · ·

g1 g2 gi⊥ ⊥ ⊥

2−1 2−2 2−i3−1 3−2 3−i

1 1 1

p1 p2 pi

Figure 2 An MDP where ε-optimal strategies for Büchi require infinite memory. The transition
probability pi stands for 1− 2−i − 3−i. The state s0 is the only controlled state.

I Example 2. Consider the MDP from Figure 2, taken from [11, Example 4.2]. Every
FR-strategy attains only probability 0 of Büchi. Moreover, the strategy that, in state s0,
subsequently picks r1, r2, . . . also attains probability 0, unlike in Example 1. But a different
infinite-memory strategy achieves a positive probability. Indeed, let σ be the strategy that,
in s0, picks 21 times r1 and then 22 times r2 and . . . 2i times ri etc. This strategy σ achieves
a positive probability of Büchi. (In more detail, σ achieves a positive probability of not falling
in a losing sink ⊥, and in almost all of the remaining runs it visits a goal state infinitely
often.) Note that σ is a Markov strategy. J

The open problem. While the MDPs in Examples 1 and 2 require infinite memory, Markov
strategies suffice for them. Such examples led to the question whether there always exists a
family of ε-optimal Markov strategies for Büchi in all countably infinite MDPs.

A partial answer was given by Hill [10] (Proposition 5.1), who showed that ε-optimal
Markov strategies for Büchi exist in the special case where the MDP contains only a finite
number of controlled states. This result applies to the MDPs from Example 2 and Figure 1b),
but not directly to the one in Figure 1a).

The question for general MDPs was stated as an open problem in [10] (p.158, l.4) and
mentioned again in [11] (Q1 in Section 5).

Our contributions. We provide a negative answer to the open problem. We construct a
non-trivial example of a countable acyclic and finitely branching MDP and prove that no
ε-optimal Markov strategies for Büchi exist for it (for any ε < 1). In combination with the
example from Figure 1, this shows that for general MDPs neither finite memory (FR) nor
Markov strategies are sufficient.
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Secondly, we provide an upper bound on the strategy complexity of Büchi. We show that
for acyclic countable MDPs there always exist ε-optimal strategies that are deterministic
and use only one bit of memory. Since every MDP can be transformed into an acyclic one
by encoding a step-counter into the states, it follows that general countable MDPs have
ε-optimal strategies for Büchi that are deterministic and use only a step-counter plus one
extra bit of memory. Thus Markov strategies are almost, but not quite, sufficient. Table 1
summarizes these results.

ε-optimal strategy for Büchi MD 1-bit D FR Markov Markov+1 bit D
Finite MDP X X X X X

MDP w. finitely many controlled states × × × X X

Acyclic MDP × X X × X

General MDP × × × × X

Table 1 Existence of various types of ε-optimal strategies for the Büchi objective, for several
classes of MDPs. New results are in boldface.

2 Preliminaries

A probability distribution over a countable set S is a function f : S → [0, 1] with
∑
s∈S f(s) = 1.

We write D(S) for the set of all probability distributions over S.
For a set S we write S∗ (resp. Sω) for the set of all finite (resp. infinite) sequences of

elements in S. We use slightly generalized regular expressions for sets of sequences, e.g., if
s0 ∈ S we may write s0S

ω for the set of infinite sequences starting with s0.

Markov decision processes. A Markov decision process (MDP)M = (S, S2, S#,−→, P )
consists of a countable set S of states, which is partitioned into a set S2 of controlled
states and a set S# of random states, a transition relation −→ ⊆ S × S, and a probability
function P : S# → D(S). We write s−→s′ if (s, s′) ∈ −→, and refer to s′ as a successor
of s. We assume that every state has at least one successor. The probability function P
assigns to each random state s ∈ S# a probability distribution P (s) over its (non-empty) set
of successor states. A sink in M is a subset T ⊆ S closed under the −→ relation, that is,
s ∈ T and s−→s′ implies that s′ ∈ T .

An MDP is acyclic if the underlying directed graph (S,−→) is acyclic, i.e., there is no
directed cycle. It is finitely branching if every state has finitely many successors and infinitely
branching otherwise. An MDP without controlled states (S2 = ∅) is called a Markov chain.

Strategies and Probability Measures. A run ρ is an infinite sequence s0s1 · · · of states
such that si−→si+1 for all i ∈ N; write ρ(i) def= si for the i-th state along ρ. A partial run is
a finite prefix of a run. We say that (partial) run ρ visits s if s = ρ(i) for some i, and that ρ
starts in s if s = ρ(0).

A strategy is a function σ : S∗S2 → D(S) that assigns to partial runs ρs ∈ S∗S2 a
distribution over the successors {s′ ∈ S | s−→s′}. The set of all strategies inM is denoted
by ΣM (we omit the subscript and write Σ if M is clear from the context). A (partial)
run s0s1 · · · is induced by strategy σ if for all i either si ∈ S2 and σ(s0s1 · · · si)(si+1) > 0,
or si ∈ S# and P (si)(si+1) > 0.

An MDP M = (S, S2, S#,−→, P ), an initial state s0 ∈ S, and a strategy σ induce a
probability space in which the outcomes are runs starting in s0 and with measure PM,s0,σ

defined as follows. It is first defined on cylinders s0s1 . . . snS
ω, where s1, . . . , sn ∈ S: if
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s0s1 . . . sn is not a partial run induced by σ then PM,s0,σ(s0s1 . . . snS
ω) def= 0. Otherwise,

PM,s0,σ(s0s1 . . . snS
ω) def=

∏n−1
i=0 σ̄(s0s1 . . . si)(si+1), where σ̄ is the map that extends σ by

σ̄(ws) = P (s) for all ws ∈ S∗S#. By Carathéodory’s theorem [3], this extends uniquely to a
probability measure PM,s0,σ on the Borel σ-algebra F of subsets of s0S

ω. Elements of F ,
i.e., measurable sets of runs, are called events or objectives here. For X ∈ F we will write
X

def= s0S
ω \X ∈ F for its complement and EM,s0,σ for the expectation w.r.t. PM,s0,σ. We

drop the indices wherever possible without introducing ambiguity.

Strategy Classes. Strategies are in general randomized (R) in the sense that they take
values in D(S). A strategy σ is deterministic (D) if σ(ρ) is a Dirac distribution for all
runs ρ ∈ S∗S2.

We formalize the amount of memory needed to implement strategies. Let M be a countable
set of memory modes, and let τ : M× S → D(M× S) be a function that meets the following
two conditions: for all modes m ∈ M,

for all controlled states s ∈ S2, the distribution τ(m, s) is over M× {s′ | s−→s′}.
for all random states s ∈ S#, we have

∑
m′∈M τ(m, s)(m′, s′) = P (s)(s′).

The function τ together with an initial memory mode m0 induce a strategy στ : S∗S2 →
D(S) as follows. Consider the Markov chain with the set M× S of states and the probability
function τ . A sequence ρ = s0 · · · si corresponds to a set H(ρ) = {(m0, s0) · · · (mi, si) |
m0, . . . ,mi ∈ M} of runs in this Markov chain. Each ρs ∈ s0S

∗S2 induces a probability distri-
bution µρs ∈ D(M), the probability of being in state (m, s) conditioned on having taken some
partial run from H(ρs). We define στ such that στ (ρs)(s′) =

∑
m,m′∈M µρs(m)τ(m, s)(m′, s′)

for all ρs ∈ S∗S2 and all s′ ∈ S.
We say that a strategy σ can be implemented with memory M if there exist m0 ∈ M and

τ such that στ = σ. We define certain classes of strategies:

A strategy σ is finite memory (F) if there exists a finite memory M implementing σ.
A strategy σ is memoryless (M) (also called positional) if it can be implemented with a
memory of size 1. We may view M-strategies as functions σ : S2 → D(S).
A strategy σ is 1-bit if it can be implemented with a memory of size 2. Such a strategy is
then determined by a function τ : {0, 1} × S → D({0, 1} × S). Intuitively τ uses one bit
of memory to capture two different modes.
A strategy σ is Markov if it can be implemented with the natural numbers N as the
memory, and a function τ such that the distribution τ(m, s) is over {m + 1} × S for all
m ∈ M and s ∈ S. Intuitively, such a strategy depends only on the the current state and
the number of steps taken so far, i.e., it has access to a step-counter. We view Markov
strategies as functions σ : N × S2 → D(S). Note that such a strategy is generally not
finite memory.
A strategy σ is 1-bit Markov if it can be implemented with N×{0, 1} as the memory, and a
function τ such that the distribution τ(n, b, s) is over {n+1}×{0, 1}×S for all (n, b) ∈ M
and s ∈ S. We view such strategies as functions σ : N× {0, 1} × S2 → D({0, 1} × S).

Payoffs, Values, Optimality. We are interested in strategies to maximize the expectation
of a given measurable payoff function f : Sω → R, a random variable that assigns a real
value to every run. The value of state s (w.r.t. f) is the supremum of expected values of f
over all strategies:

valM,f (s) def= sup
σ∈Σ
EM,s,σ(f),
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For ε ≥ 0 and s ∈ S, we say that a strategy σ is ε-optimal iff EM,s,σ(f) ≥ valM,f (s) − ε
and uniformly ε-optimal iff this holds for every s ∈ S. A (uniformly) 0-optimal strategy is
simply called (uniformly) optimal.

In this paper, we will need two types of payoff functions. The first is the total reward,
a random variable given as f(ρ) def=

∑∞
t=0 r(ρ(t)), where r : S → R is some given reward

function. A useful fact [15, Theorem 7.1.9] is that if S is finite and the range of r is bounded
then there exist optimal strategies (for total reward) which are memoryless and deterministic.

The second type of payoff functions we consider are those with range {0, 1}. Each
such payoff function f uniquely identifies an objective (set of runs) ϕ by viewing f as the
characteristic function of ϕ, i.e., f(ρ) = 1 if ρ ∈ ϕ and 0 otherwise. Then EM,s,σ(f) =
PM,s,σ(ϕ). We call this the probability of achieving ϕ (using strategy σ starting from the
state s) and simply write valM,ϕ(s) = valM,f (s) = supσ∈Σ PM,s,σ(ϕ).

Our main focus are reachability (sometimes also called goal) and Büchi objectives, which
are determined by a set of states F ⊆ S and defined as follows. Let us slightly abuse notation
and identify F with its characteristic function, i.e., F (s) = 1 if s ∈ F .

The reachability objective is to visit F at least once during a run. The corresponding
payoff is f(ρ) def= maxt∈N ρ(t), and we define Goal(F ) def= {ρ ∈ Sω | maxt∈N F (ρ(t)) = 1};
The Büchi objective is to visit F infinitely often. The corresponding payoff function is
f(ρ) def= lim supt→∞ F (ρ(t)), and we let Büchi(F ) def= {ρ ∈ Sω | lim supt→∞ F (ρ(t)) = 1}.

3 The Lower Bound

In this section we solve Hill’s problem ([10] and [11, Q1]) by exhibiting an MDP where the
initial state has value 1 w.r.t. the Büchi objective, but every Markov strategy achieves this
objective with probability 0. As explained in the introduction, it follows that in acyclic
MDPs, ε-optimal MR-strategies are not guaranteed to exist. In fact, in the following theorem
we prove the latter fact first, and subsequently generalize it to solve Hill’s problem.

I Theorem 3. There exists an acyclic MDPM, a state s0 and a set of states F such that

1. for every Markov strategy σ, we have PM,s0,σ(Büchi(F )) = 0, and
2. valBüchi(F )(s0) = 1 and for every ε > 0 there exists a deterministic 1-bit strategy σε s.t.
PM,s0,σε(Büchi(F )) ≥ 1− ε.

In the remainder of this section we provide a proof sketch. The full proof is in Appendix A.

Proof sketch for Theorem 3. Our construction is based on an infinite MDPM that consists
of a chain of height-n trees, Tn, for n ∈ N = {1, 2, . . .}. Figure 3 depicts its initial segment
T 1, T 2, T 3. Each such tree is “rooted” at a brown state on the top level, with a transition
incoming from a blue state. We make use of some conventions that simplify the presentation
and the analysis. In Figure 3, the different colors of the states highlight the structure of the
MDP; the colors are also indicated by letters in the states: blue (L), brown (B), yellow (Y),
red (R), green (G), white (W). The start state, s0, is the blue state in the top-left corner.
The controlled states are exactly the yellow states. The goal set F consists of the green
states at the bottom. Two transitions emanate from each red state: a black (right) transition
and a red (left) transition, both leading to the same (brown or green) state.

We consider the strengthened Büchi objective that asks to see F infinitely often and
moreover that no red transition is taken. This corresponds exactly to the normal Büchi
objective if we redirect every red transition to an infinite (losing) chain of non-green states
(not depicted in Figure 3).
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We first argue that no MR-strategy achieves a positive probability of that objective. Then
we show that the MDPM can be modified so that no Markov strategy achieves a positive
probability.

Intuition behind the construction of M. The objective, say ϕ, of visiting infinitely
many green states and no red transition creates tension between trying to visit green states
and avoiding too many red states (the latter states incur a risk of taking a red transition). In
the proof we need to show that no memoryless strategy strikes a good balance between these
competing goals. On the one end of the spectrum, an MR-strategy might always choose
the upward transition in the yellow states (which are the only controlled states). But such
a strategy never visits any green state, thus clearly violates ϕ. On the other end of the
spectrum lies the “greedy” MR-strategy, which always chooses the downward transition in the
yellow states, in order to visit as many green states as possible. Indeed, under this strategy,
let un denote the probability that, starting in the top-left brown state of Tn, no green state
is visited in Tn. By induction (given in the appendix as part of the general proof) one can
show that there is u < 1 such that un ≤ u holds for all n. Considering the probability of
the transitions emanating from the blue states (at the top), the expected overall number
of visited green states is at least

∑∞
n=1

1
n (1− un) ≥ (1− u)

∑∞
n=1

1
n =∞. It is not hard to

strengthen this statement so that the greedy strategy almost surely visits infinitely many
green states. So the greedy strategy satisfies one part of ϕ, but it does so at the expense
of visiting many red states. Red states though are associated with a risk of taking a red
transition, and it follows from the proof in the appendix that the greedy strategy almost
surely ends up taking at least one (and indeed infinitely many) red transition(s).

Good 1-bit strategies. The two competing goals discussed in the previous paragraph
can be balanced using a deterministic 1-bit strategy, which we describe in the following.
This strategy, σ1, sets its bit to 0 whenever a blue state (at the top) is entered. While the
bit is 0, in each tree Tn it maximizes the probability of visiting a green state by choosing
the downward transition in the yellow states, thus accepting a certain risk of taking a red
transition. However, if and when a green state in Tn is visited, the bit is set to 1, and for the
remaining sojourn in Tn the strategy σ1 chooses the upward transitions in the yellow states,
thus avoiding any risk of a red transition in the remainder of Tn. Although σ1 appears
to visit fewer green states than the aforementioned “greedy” MR-strategy, σ1 still visits
infinitely many green states almost surely. This is because for each tree Tn, the two strategies
have the same probability of visiting at least one green state in Tn. The strategy σ1 can be
improved, for each ε > 0, to achieve ϕ with probability at least 1− ε, by fixing the bit to 1
in the first k trees T 1, . . . , T k, for a k that depends on ε. Thus the first k trees are virtually
skipped, eliminating the risk of taking any red transition there. In this way one can make
the risk of taking a red transition arbitrarily small, while still visiting infinitely many green
states with probability 1.

No good MR-strategies. We need to show that not only the extreme MR-strategies
described above are inadequate but that every MR-strategy achieves ϕ with probability 0.
To this end, for each tree Tn, define two probabilities:

tn (for “total success”): the probability that, starting in the top-left brown state of Tn,
at least one green state but no red transition is visited in Tn;
dn (for “death”): the probability that, starting in the top-left brown state of Tn, a red
transition is visited in Tn.

A very technical proof shows that dn ≥ 0.008 · tn holds for all n, and this key inequality
captures the inability of any MR-strategy to strike an adequate balance between the mentioned
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competing goals. Indeed, one can show that for an MR-strategy to have a positive probability
of not visiting any red transition, the series

∑∞
n=1

1
n · dn needs to converge; but to have a

positive probability of visiting infinitely many green states, the series
∑∞
n=1

1
n · tn needs to

diverge (in both cases, the factor 1
n is the probability of visiting the top-left brown node

of Tn). By the inequality above, this is impossible.

No good Markov strategies. For the proof of Theorem 3, we also need to show that all
Markov strategies achieve probability 0. To this end, we modify the MDPM so that for
each state, all paths from the initial state s0 to s have the same length. This can be achieved
by replacing some transitions inM by longer chains consisting of non-green states. This
modification does not change the fact that MR-strategies achieve probability 0. But since in
the new MDP each state can only be visited at a certain time, which is known a priori, a
step-counter does not help. Hence all Markov strategies, like MR-strategies, achieve ϕ with
probability 0. J

Theorem 3 answers Hill’s question negatively. By combining the MDP from Theorem 3
with one of the MDPs from Figure 1 (by adding a new initial random state that branches
to the MDPs with probability 1

2 each), one can even construct a single MDP whose value
w.r.t. Büchi(F ) is 1, but every FR- and every Markov strategy achieves probability 0.

A slight modification of the example above yields a lower bound on the memory require-
ments for the almost-sure parity objective. Recall that the parity objective is defined on
systems whose states are labeled by a finite set of colors C def= {1, 2, . . . ,max} ⊆ N, where a
run is in Parity(C) iff the highest color that is seen infinitely often in the run is even.

I Corollary 4. There exist an acyclic MDPM′ with colors {1, 2, 3} and a state s0 such that

1. for every Markov strategy σ, we have PM′,s0,σ(Parity({1, 2, 3})) = 0, and
2. there exists a deterministic 1-bit strategy σ′ such that PM′,s0,σ′(Parity({1, 2, 3})) = 1.

Proof. We obtainM′ by modifying the MDPM from Theorem 3 as follows. Label all green
states in F by color 2 and the rest by color 1. Then modify each red transition to go to its
target via a fresh state labeled by color 3. ClearlyM′ is still acyclic and labeled by colors
{1, 2, 3}.

From the proof of Theorem 3 (1), under every Markov strategy inM a.s. seeing infinitely
many green states (in F ) implies seeing infinitely many red transitions. So in M′ every
Markov strategy σ a.s. either sees color 2 only finitely often or color 3 infinitely often, thus
PM′,s0,σ(Parity({1, 2, 3})) = 0.

From the proof of Theorem 3 (2), there is a deterministic 1-bit strategy σ in M that
attains probability ≥ 1/2 for Büchi(F ) without taking any red transition and otherwise
a.s. takes a red transition. This property of σ holds not only when starting from s0 but
from every other state as well. We obtain σ′ inM′ by continuing to play σ even after red
transitions have been taken. Under σ′ the probability of going through infinitely many red
transitions (and seeing color 3) is ≤ (1/2)∞ = 0, and the probability of seeing infinitely many
states in F (with color 2) is 1. Thus PM′,s0,σ′(Parity({1, 2, 3})) = 1. J

4 The Upper Bound

We show that acyclic MDPs admit ε-optimal deterministic 1-bit strategies for Büchi.
We start by giving some intuition why 1 bit of memory is needed and how it is used. A

step s′−→s′′ from some controlled state s′ is value-decreasing iff val(s′′) < val(s′). While
an optimal strategy can never tolerate any value-decreasing step, an ε-optimal strategy
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might have to take value-decreasing steps infinitely often. The trick is to keep the collective
value-loss sufficiently small (≤ ε), while satisfying the other requirements of the objective. So
the strategy needs to play ‘ever better’ (i.e., tolerate only smaller and smaller value decreases)
along a run. In general this requires infinite memory, since one might re-visit the same state
infinitely often and needs to choose a different transition from it every time; cf. Figure 1.
However, in an acyclic MDP, with high probability, the distance to the initial state increases
with the number of steps taken. Thus one can partition the state space into separate regions,
depending on the distance from the initial state, and fix an acceptable rate of value-decrease
for each region. Just limiting the collective value-loss is not sufficient for Büchi, one also
needs to make progress and visit the set of goal states F at least once in each region. The
problem is that some runs might linger in some region too long, and visit F many times, but
see too many value-decreasing steps at the rate of this region. Therefore, as soon as one has
visited F in some region, one should try to get to the next outer region (further away from
the initial state) where the rate of value-loss is smaller. Thus one needs 1 bit of memory
to record whether one has already seen F in this region. (Remember that the same state
can be reached by different runs with different histories.) Just 1 bit suffices, because the
probability of returning to a previous inner region (and misinterpreting the bit) can be made
arbitrarily small, since the MDP is acyclic.

I Theorem 5. For every acyclic countable MDP M, finite set of initial states I, set of
states F and ε > 0, there exists a deterministic 1-bit strategy for Büchi(F ) that is ε-optimal
from every s ∈ I.

Proof. LetM = (S, S2, S#,−→, P ) be an acyclic MDP, I ⊆ S a finite set of initial states
and F ⊆ S a set of goal states and ϕ def= Büchi(F ) denote the Büchi objective w.r.t. F . We
prove the claim for finitely branchingM first and transfer the result to general MDPs at the
end. For every ε > 0 and every s ∈ I there exists an ε-optimal strategy σs such that

PM,s,σs
(ϕ) ≥ valM,ϕ(s)− ε. (1)

However, the strategies σs might differ from each other and might use randomization and a
large (or even infinite) amount of memory. We will construct a single deterministic strategy
σ′ that uses only 1 bit of memory such that ∀s∈I PM,s,σ′(ϕ) ≥ valM,ϕ(s)− 2ε. This proves
the claim as ε can be chosen arbitrarily small.

In order to construct σ′, we first observe the behavior of the finitely many σs for s ∈ I
on an infinite, increasing sequence of finite subsets of S. Based on this, we define a second
stronger objective ϕ′ with

ϕ′ ⊆ ϕ, (2)

and show that all σs attain at least valM,ϕ(s)− 2ε w.r.t. ϕ′, i.e.,

∀s∈I PM,s,σs(ϕ′) ≥ valM,ϕ(s)− 2ε. (3)

We construct σ′ as a deterministic 1-bit optimal strategy w.r.t. ϕ′ from all s ∈ I and obtain

PM,s,σ′(ϕ) ≥ PM,s,σ′(ϕ′) by (2)
≥ PM,s,σs(ϕ′) by optimality of σ′ for ϕ′

≥ valM,ϕ(s)− 2ε by (3).

Informal outline: Behavior of σs, objective ϕ′ and properties (2) and (3). For the
formal proof see Appendix B.
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Let bubblek(I) be the set of states that can be reached from some initial state in I within
at most k steps. Since I is finite andM is finitely branching, bubblek(I) is finite for every k.

We define a sequence of sufficiently large and increasing numbers ki and li with ki <
li < ki+1 for i ∈ N and finite sets Ki

def= bubbleki(I) and Li
def= bubbleli(I). Every run from a

s ∈ I according to σs must eventually leave each of these finite sets, becauseM is acyclic.
Moreover, we choose these numbers so that once a run has left Li it is very unlikely to return
to Ki. Let Fi

def= F ∩Ki \ Li−1. Runs according to σs are very likely to follow a particular
pattern. Let R1

def= (K1 \F1)∗F1, R2
def= (K2 \F2)∗F2 and Ri+1

def= (Ki+1 \(Fi+1∪Ki−1))∗Fi+1
for i ≥ 2. We show that

∀s∈I PM,s,σs
(ϕ ∩R1R2 . . . Ri+1(S \Ki)ω) ≤ ε (4)

We now define the Borel objectives R≤i
def= R1R2 . . . RiS

ω and ϕ′
def=
⋂
i∈NR≤i. Since

Fi ∩ Fk = ∅ for i 6= k and ϕ′ implies a visit to the set Fi for all i ∈ N, we have ϕ′ ⊆ ϕ and
obtain (2). Using (4), we show that ∀s∈I PM,s,σs

(ϕ′) ≥ valM,ϕ(s)− 2ε and thus obtain (3).

Definition of the 1-bit strategy σ′. We now define a deterministic 1-bit strategy σ′ that
is optimal for objective ϕ′ from every s ∈ I. First we define certain “suffix” objectives of ϕ′.
Recall that Ri = (Ki \ (Fi ∪Ki−2))∗Fi. Let Ri,j

def= RiRi+1 . . . RjS
ω and R≥i

def=
⋂
j≥iRi,j .

Consider the objectives R≥i+1 for runs that start in states s′ ∈ Fi. For every state s′ ∈ Fi
we consider its value w.r.t. the objective R≥i+1, i.e., valM,R≥i+1(s′) def= supσ̂ PM,s′,σ̂(R≥i+1).
For every i ≥ 1 we consider the finite subspace Ki \ Ki−2. In particular, it contains the
sets Fi−1 and Fi. We define a bounded total reward objective Bi for runs starting in Fi−1
as follows. Runs that exit the subspace (either by leaving Ki or by visiting Ki−2) before
visiting Fi get reward 0. All other runs must visit Fi eventually (sinceM is acyclic and the
subspace is finite). When some run reaches the set Fi for the first time in some state s′ then
this run gets the reward of valM,R≥i+1(s′). Using [15, Theorem 7.1.9], we show that there
exists a uniform optimal MD-strategy σi for Bi on Ki \Ki−2 inM.

We now define σ′ by combining different MD-strategies σi, depending on the current
state and on the value of the 1-bit memory. The intuition is that the strategy σ′ has two
modes: normal-mode and next-mode. In a state s′ ∈ Ki \Ki−1, if the memory is i (mod 2)
then the strategy is in normal-mode and plays towards reaching Fi. Otherwise, the strategy
is in next-mode and plays towards reaching Fi+1.

Initially σ′ starts in a state s ∈ I with the 1-bit memory set to 1. We define the behavior
of σ′ in a state s′ ∈ Ki \Ki−1 for every i ≥ 1. If the 1-bit memory is i (mod 2) and s′ /∈ Fi
then σ′ plays like σi. (Intuitively, one plays towards Fi, since one has not yet visited it.) If
the 1-bit memory is i (mod 2) and s′ ∈ Fi then the 1-bit memory is set to (i+ 1) (mod 2),
and σ′ plays like σi+1. (Intuitively, one records the fact that one has already seen Fi and
then targets the next set Fi+1.) If the 1-bit memory is (i + 1) (mod 2) then σ′ plays like
σi+1. (Intuitively, one plays towards Fi+1, since one has already visited Fi.)

Observe that if a run according to σ′ exits some set Ki (and thus enters Ki+1 \Ki) with
the bit still set to i (mod 2) (normal-mode) then this run has not visited Fi and thus does
not satisfy the objective ϕ′. (Or the same has happened earlier for some j < i, in which
case also the objective ϕ′ is violated.) An example is the run π1 in Figure 4. However, if a
run according to σ′ exits some set Ki (and thus enters Ki+1 \Ki) with the bit set to (i+ 1)
(mod 2) (thus σi+1 in next-mode) then in the new set Ki′ \Ki′−1 with i′ = i + 1 the bit
is set to i′ (mod 2) and σ′ continues to play like σi+1 in normal-mode. Even if this run
returns (temporarily) to Ki (but not to Ki−1) the strategy σ′ continues to play like σi+1 in
next-mode. An example is the run π2 in Figure 4. Finally, if a run returns to Ki−1 after
having visited Fi then it fails the objective ϕ′, e.g., run π3 in Figure 4.
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· · ·
K1 L1 K2 L2 K3

π3

π2

π1

I

Figure 4 Memory updates along runs π1, π2, π3, drawn in blue while the memory-bit is one and
in red while the bit is zero. The green region in K1 is F1, and for all i ≥ 2, the green region in
Ki \ Li−1 is Fi. Both π1 and π3 violate ϕ′ and are drawn as dotted lines once they do.

The 1-bit strategy σ′ is optimal for ϕ′ from every s ∈ I. Let s ∈ I be arbitrary. For
a given run from s, let firstin(Fi) be the first state s′ in Fi that is visited (if any). We define
a bounded reward objective B′i for runs starting at s as follows. Every run that does not
satisfy the objective R≤i gets assigned reward 0. Otherwise, consider a run from s that
satisfies R≤i. When this run reaches the set Fi for the first time in some state s′ then this
run gets a reward of valM,R≥i+1(s′). Note that this reward is ≤ 1.

We show that for all i ∈ N

valM,ϕ′(s) = valM,B′
i
(s) (5)

Towards the ≥ inequality, let σ̂ be an ε̂-optimal strategy for B′i from s. We define the strategy
σ̂′ to play like σ̂ until a state s′ ∈ Fi is reached and then to switch to some ε̂-optimal strategy
for objective R≥i+1 from s′. Every run from s that satisfies ϕ′ can be split into parts, before
and after the first visit to the set Fi, i.e., ϕ′ = {w1s

′w2 | w1s
′ ∈ R≤i, s′ ∈ Fi, s′w2 ∈ R≥i+1}.

Therefore we obtain that PM,s,σ̂′(ϕ′) ≥ EM,s,σ̂(B′i)− ε̂ ≥ valM,B′
i
(s)− 2ε̂. Since this holds

for every ε̂ > 0, we obtain valM,ϕ′(s) ≥ valM,B′
i
(s).

Towards the ≤ inequality, let σ̂ be any strategy for ϕ′ from s. We have PM,s,σ̂(ϕ′) ≤∑
s′∈Fi

PM,s,σ̂(R≤i ∩ firstin(Fi) = s′) · valM,R≥i+1(s′) = EM,s,σ̂(B′i). Thus valM,ϕ′(s) ≤
valM,B′

i
(s). Together we obtain (5).

For all i ∈ N and every state s′ ∈ Fi we show that

valM,R≥i+1(s′) = valM,Bi+1(s′) (6)

Towards the ≥ inequality, let σ̂ be an ε̂-optimal strategy for Bi+1 from s′ ∈ Fi. We define
the strategy σ̂′ to play like σ̂ until a state s′′ ∈ Fi+1 is reached and then to switch to
some ε̂-optimal strategy for objective R≥i+2 from s′′. We have that PM,s′,σ̂′(R≥i+1) ≥
EM,s′,σ̂(Bi+1) − ε̂ ≥ valM,Bi+1(s) − 2ε̂. Since this holds for every ε̂ > 0, we obtain
valM,R≥i+1(s′) ≥ valM,Bi+1(s′).

Towards the ≤ inequality, let σ̂ be any strategy for R≥i+1 from s′ ∈ Fi. We have

PM,s′,σ̂(R≥i+1) ≤
∑

s′′∈Fi+1

PM,s′,σ̂(Ri+1S
ω ∩ firstin(Fi+1) = s′′) · valM,R≥i+2(s′′)

= EM,s′,σ̂(Bi+1).
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Thus valM,R≥i+1(s′) ≤ valM,Bi+1(s′). Together we obtain (6).
We show, by induction on i, that σ′ is optimal for B′i for all i ∈ N from start state s, i.e.,

EM,s,σ′(B′i) = valM,B′
i
(s) (7)

In the base case of i = 1 we have that B′1 = B1. The strategy σ′ plays σ1 until reaching F1,
which is optimal for objective B1 and thus optimal for B′1. For the induction step we assume
(IH) that σ′ is optimal for B′i.

valM,B′
i+1

(s) = valM,B′
i
(s) by (5)

= EM,s,σ′(B′i) by (IH)

=
∑
s′∈Fi

PM,s,σ′(R≤i ∩ firstin(Fi) = s′) · valM,R≥i+1(s′) by def. of B′i

=
∑
s′∈Fi

PM,s,σ′(R≤i ∩ firstin(Fi) = s′) · valM,Bi+1(s′) by (6)

=
∑
s′∈Fi

PM,s,σ′(R≤i ∩ firstin(Fi) = s′) · EM,s′,σi+1(Bi+1) opt. of σi+1 for Bi+1

= EM,s,σ′(B′i+1) by def. of σ′ and B′i+1

So σ′ attains the value valM,B′
i+1

(s) of the objective B′i+1 from s and is optimal. Thus (7).
Now we show that σ′ performs well on the objectives R≤i for all i ∈ N.

PM,s,σ′(R≤i) ≥ valM,ϕ′(s) (8)

We have

PM,s,σ′(R≤i) ≥ EM,s,σ′(B′i) since B′i gives rewards 0 for runs /∈ R≤i and ≤ 1 otherwise
= valM,B′

i
(s) by (7)

= valM,ϕ′(s) by (5)

So we get (8). Now we are ready to prove the optimality of σ′ for ϕ′ from s.

PM,s,σ′(ϕ′) = PM,s,σ′(∩i∈NR≤i) by def. of ϕ′

= lim
i→∞

PM,s,σ′(R≤i) by continuity of measures from above

≥ lim
i→∞

valM,ϕ′(s) by (8)

= valM,ϕ′(s)

From finitely to infinitely branching MDPs. Encode infinite branching into finite
branching like in Figure 1, apply the above result to obtain a 1-bit strategy for the finitely
branching version, and then transform this strategy back into a 1-bit strategy for the original
MDP. J

Now we show our upper bound on the strategy complexity of Büchi for general MDPs.

I Theorem 6. For every countable MDP M, finite set of initial states I, set of states F
and ε > 0, there exists a deterministic 1-bit Markov strategy for Büchi(F ) that is ε-optimal
from every s ∈ I.

Proof. Encode a step-counter into the states to obtain an acyclic MDP, apply Theorem 5 to
obtain an ε-optimal deterministic 1-bit strategy for it, and then transform this strategy back
into an ε-optimal deterministic 1-bit Markov strategy in the original MDP. J
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A The Lower Bound: Full Details

I Theorem 3. There exists an acyclic MDPM, a state s0 and a set of states F such that

1. for every Markov strategy σ, we have PM,s0,σ(Büchi(F )) = 0, and
2. valBüchi(F )(s0) = 1 and for every ε > 0 there exists a deterministic 1-bit strategy σε s.t.
PM,s0,σε(Büchi(F )) ≥ 1− ε.
We follow the proof sketch from the main body and first argue that, in the MDP M

from Figure 3, no MR-strategy achieves a positive probability for the objective of visiting F
infinitely often and taking no red transition. Indeed, given an MR-strategy and a tree, we
define two probabilities:

s (for “survival”): the probability that, starting in the top-left brown state, no red
transition in the tree is visited;
t (for “total success”): the probability that, starting in the top-left brown state, at least
one green state but no red transition in the tree is visited.

Trivially, t ≤ s. A key lemma is the following.

I Lemma 7. Write p def= 0.7. For every MR-strategy σ and every n ∈ N, the tree Tn satisfies:

s ≤ aqtn
2
,

where a = 1− 1
n2+1 and q = 1

9 (1− p).

Proof. Fix any MR-strategy σ and any n ∈ N. For each k ∈ {0, . . . , n}, the tree Tn has 2n−k
height-k subtrees, for which we can define s, t analogously. We claim: for all k ∈ {0, . . . , n}
the probabilities s, t in every height-k subtree of Tn satisfy

s ≤ a(qt+ 1
2 qt

2)k2
, (9)

where a = 1− 1
n2+1 and q = 1

9 (1− p). Note that the claim (for k = n) implies the lemma.
We prove the claim by induction on k. For the base case, k = 0, note that each height-0

subtree of Tn consists of only a single green state. Hence s = t = 1, so the claim holds for
k = 0. For the inductive step, let k ∈ {1, . . . , n} and consider a height-k subtree, say T ,
of Tn. Let T0, T1 be the left and the right subtree of T , respectively; they have height k − 1.
In the two (yellow) topmost controlled states in T , the MR-strategy σ chooses probabilities
to visit T0, T1, respectively. Taking into account the two brown random states at the top,
the probabilities to visit T0, T1 are p0, p1 ≤ p, respectively. In T0, T1, the strategy σ employs
MR-strategies that achieve probabilities s0, t0 and s1, t1, respectively, where si, ti are defined
in the obvious way for Ti. By the induction hypothesis we have

si ≤ aqti(1+ 1
2 ti)(k−1)2

for i ∈ {0, 1}. (10)

By the structure of the MDPM we have:

s = (1− p0 + p0as0)(1− p1 + p1as1) (11)
t = p0at0(1− p1 + p1as1) + p1at1(1− p0 + p0as0)− p0at0p1at1

≤ p0at0 + p1at1 − p0at0p1at1 (12)

By combining (10) and (11) we obtain:

s ≤
1∏
i=0

(
1− pi + pia

1+qti(1+ 1
2 ti)(k

2−2k)
)

(13)
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On the other hand, from (12) we obtain:

qt+ 1
2qt

2 ≤ q (p0t0 + p1t1 − p0at0p1at1) + 1
2q (p0at0 + p1at1)2

≤ p0qt0

(
1 + 1

2p0t0

)
+ p1qt1

(
1 + 1

2p1t1

) (14)

Further we have:

ln 1
a
≤ 1

a
− 1 = n2 + 1

n2 − 1 = 1
n2 ≤

1
k2 (15)

Let i ∈ {0, 1}. By (15) we have:(
ln 1
a

)
piqti

(
1 + 1

2piti
)
k2 ≤ q

(
1 + 1

2

)
≤ 1

9 ·
3
2 <

1
2

Hence, using a bound on the exponential function (Lemma 8 below), we obtain:

apiqti(1+ 1
2piti)k2

= e−pi(ln 1
a )qti(1+ 1

2piti)k2

≥ 1− pi + pie
−(ln 1

a )qti(1+ 1
2piti)k2−(ln 1

a )2q2t2i (1+ 1
2piti)2

k4

(15)
≥ 1− pi + pie

−(ln 1
a )qti(1+ 1

2piti)k2−(ln 1
a ) 9

4 q
2t2ik

2

= 1− pi + pia
qtik

2+q( 1
2pi+ 9

4 q)t2ik2

By combining this inequality with (14) we obtain:

a(qt+ 1
2 qt

2)k2
≥

1∏
i=0

(
1− pi + pia

qtik
2+q( 1

2pi+ 9
4 q)t2ik2

)
Considering (13), we see that, in order to prove (9), it suffices to prove

1 + qti

(
1 + 1

2 ti
)

(k2 − 2k) ≥ qtik
2 + q

(
1
2pi + 9

4q
)
t2i k

2 for i ∈ {0, 1}.

This inequality is equivalent to:

1 + qtik

((
1
2 −

1
2pi −

9
4q
)
tik − 2

(
1 + 1

2 ti
))

≥ 0

⇐= 1 + qtik

((
1
2(1− p)− 9

4q
)
tik − 3

)
≥ 0

⇐⇒ 1 + 1
9(1− p)tik

(
1
4(1− p)tik − 3

)
≥ 0

⇐⇒
(

1
6(1− p)tik − 1

)2
≥ 0

The left-hand side is a square, hence nonnegative. This completes the induction proof. J

The following elementary lemma from calculus was used in the proof of Lemma 7.

I Lemma 8. For every r ≥ 0 and x ∈ [0, 1
2 ] we have e−rx ≥ 1− r + re−x−x

2 .
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Proof. Let r ≥ 0 and x ∈ [0, 1
2 ]. As 1 + y ≤ ey holds for all y, we have:

1− r + re−x−x
2

= 1− r
(

1− e−x−x
2
)
≤ e

−r
(

1−e−x−x2)
Hence it suffices to prove that x ≤ 1− e−x−x2 , which is equivalent to ln(1− x) + x+ x2 ≥ 0.
To prove the latter inequality, define f(y) def= ln(1− y) + y + y2. Then we have f(0) = 0 and

f ′(y) = − 1
1− y + 1 + 2y = −1 + 1− y + 2y − 2y2

1− y = y(1− 2y)
1− y ≥ 0 for y ∈

[
0, 1

2

]
.

By the fundamental theorem of calculus, it follows f(x) = f(0) +
∫ x

0 f
′(y) dy ≥ 0. J

I Lemma 9. Consider the acyclic MDP M shown in Figure 3. Let ϕ be the objective of
visiting infinitely many green states and no red transition.

1. For every MR-strategy σ, we have PM,s0,σ(ϕ) = 0.
2. valϕ(s0) = 1 and for every ε > 0 there exists a deterministic 1-bit strategy σε s.t.
PM,s0,σε(ϕ) ≥ 1− ε.

Proof. First we prove item 1. Fix any MR-strategy σ. For each n ∈ N, let sn, tn denote the
probabilities s, t for the tree Tn under σ. Define also dn

def= 1− sn (for “death”), which is the
probability of taking at least one red transition starting in the top-left brown state of Tn.
For the following estimate, observe that we have(

1− 1
x+ 1

)x
= ex ln(1− 1

x+1 ) ≤ e−
x

x+1 ≤ e−
1
2 for x ≥ 1. (16)

By Lemma 7 we have for every n:

dn = 1− sn ≥ 1−
(

1− 1
n2 + 1

)qtnn2
(16)
≥ 1− e− 1

2 qtn ≥ 1
4qtn , (17)

where the last inequality follows from the fact that e−x ≤ 1− 1
2x holds for x ∈ [0, 1].

Denote by Gn the indicator random variable such that

Gn = 1 if the top-left brown state of Tn is visited (coming from the previous blue state)
and at least one green state in Tn but no red transition in Tn is visited;
Gn = 0 otherwise.

Considering that the probability of visiting the top-left brown state of Tn is 1
n , we have

EGn = 1
n · tn, where E denotes expectation.

If σ visits at least one red transition inM almost surely then the probability of ϕ is 0.
Therefore, suppose σ achieves a positive probability, r̄ > 0, of visiting no red transition.
Since 0 < r̄ =

∏∞
n=1

(
1− 1

n · dn
)
, the series

∑∞
n=1

1
n · dn converges. Thus:

E
∞∑
n=1

Gn =
∞∑
n=1
EGn =

∞∑
n=1

1
n
· tn

(17)
≤ 4

q
·
∞∑
n=1

1
n
· dn < ∞

It follows that the probability that
∑∞
n=1Gn diverges is 0. But on ϕ the series

∑∞
n=1Gn

diverges. Hence the probability of ϕ is 0. This completes the proof of item 1.
Towards item 2, we first define a suitable strategy, σ, that achieves a positive value (i.e.,

PM,s0,σ(ϕ) > 0) and then improve it to obtain ε-optimal strategies σε.
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The strategy σ acts independently in each tree Tn. In each tree Tn the strategy σ

maximizes the probability of visiting exactly one green state. To this end, as long as σ has
not yet visited a green state in Tn, it chooses the downward transition emanating from the
yellow controlled states; as soon as a green state in Tn has been visited, σ chooses the upward
transition emanating from the yellow controlled states, thus avoiding any further visit of a
green state or a red transition in Tn. This is a 1-bit strategy, as σ remembers only whether
a green state has already been visited in the current tree Tn. The bit is reset whenever a
new tree is entered.

Next we show that σ visits infinitely many green states with probability 1. Let un denote
the probability that, starting in the top-left brown state of Tn, no green state is visited
in Tn. Define u0 = 0. Since red or non-red transitions are unimportant for the current
considerations, all height-n trees inM have the same structure, even when they are subtrees
of different Tm. Therefore we have:

un = (pun−1 + 1− p)2

Since the function f(x) def= (px + 1 − p)2 is monotone on [0, 1], the sequence (un)n is
nondecreasing and thus converges to the smaller fixed point, u, of f . Hence,

0 ≤ un ≤ u = f(u) =
(

1− p
p

)2
< 1 for all n ∈ N ∪ {0}. (18)

It follows that we have
∞∑
n=k

1
n

(1− un) ≥ (1− u)
∞∑
n=k

1
n

= ∞ for all k ∈ N. (19)

For every k ∈ N, the probability that, starting in the blue state directly before T k, no green
state in T k, T k+1, . . . is visited is

∞∏
n=k

(
1
n
· un +

(
1− 1

n

))
=

∞∏
n=k

(
1− 1

n
(1− un)

)
by (19)= 0 .

It follows that σ visits infinitely many green states with probability 1.
It now suffices to show that, with positive probability, σ visits no red transition. Let

vn denote the expectation, starting in the top-left brown state of Tn, of the number of red
states (not red transitions) that are visited in Tn. Define v0

def= 0. Since red or non-red
transitions are unimportant for the current considerations, all height-n trees inM have the
same structure, even when they are subtrees of different Tm. Therefore we have:

vn = p (1 + vn−1 + un−1p(1 + vn−1)) + (1− p)p(1 + vn−1) (20)

We prove by induction that vn ≤ n holds for all n ∈ N ∪ {0}. The base case, n = 0, holds by
the definition of v0. For the inductive step, let n ≥ 1. We have:

vn ≤ p(n+ un−1pn) + (1− p)pn by (20) and the induction hypothesis

≤ p

(
n+ (1− p)2

p
n

)
+ (1− p)pn by (18)

= pn+ (1− p)2n+ pn− p2n = n

Hence we have proved vn ≤ n. It follows that the expectation, starting in the top-left
brown state of Tn, of the number of red transitions visited in Tn is at most n · 1

n2+1 .
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Thus the expected number of visited red transitions in the whole MDP M is at most∑∞
n=1

1
n · n ·

1
n2+1 ≤

π2

6 . Hence there is k ∈ N such that the expected number of red
transitions visited in T k, T k+1, . . . is less than 1. It follows from the Markov inequality that
the probability to visit at least one red transition in T k, T k+1, . . . is less than 1. Hence the
probability to visit at least one red transition inM is less than 1.

The strategy σ from above can be improved to obtain an ε-optimal strategy σε for Büchi
from s0, i.e., PM,s0,σε

(ϕ) ≥ 1 − ε. We obtain σε by modifying the described strategy σ
such that, in the first k trees for some k ∈ N, the upward transitions emanating from the
yellow states are taken. By choosing a large but finite k, the risk of taking a red transition
can be made arbitrarily small, while the probability of visiting infinitely many green states
remains 1. J

Finally, we are ready to prove our main claim, Theorem 3.

Proof of Theorem 3. We describe how to modify the MDP M from Lemma 9 to obtain
an MDP M2 with the claimed properties. First eliminate the red transitions in M and
change the objective to the normal Büchi objective. This can be done by redirecting all red
transitions to an infinite (losing) chain of non-green states. Denote the resulting MDP by
M1. For a state s, define its depth d(s) as the length of the longest path from the start state
s0 to s. In M1 each state has finite depth (this property does not follow from acyclicity
alone). Now obtainM2 fromM1 by replacing every transition that leads from a state s1 to
a state s2 with d(s1) + 1 < d(s2) by a chain (of non-green states) of length d(s2)− d(s1). In
this way, inM2, for every state s, all paths from s0 to s have the same length d(s). Thus,
instrumentingM2 with a step-counter would lead to an MDP isomorphic toM2. It follows
that every Markov strategy for M2 could be replaced by an MR-strategy that achieves
Büchi(F ) with the same probability. Observe that a MR-strategy for M2 directly translates
to an MR-strategy for M that achieves the same probability. Hence, item 1 follows, as the
existence of a Markov-, and hence MR-strategy that achieves positive probability would
contradict Lemma 9.

Item 2 is shown by modifying the strategies σε from item 2 of Lemma 9 in the natural
way. J

A slight modification of the example above yields a lower bound on the memory require-
ments for the almost-sure parity objective. Recall that the parity objective is defined on
systems whose states are labeled by a finite set of colors C def= {1, 2, . . . ,max} ⊆ N, where a
run is in Parity(C) iff the highest color that is seen infinitely often in the run is even.

I Corollary 4. There exist an acyclic MDPM′ with colors {1, 2, 3} and a state s0 such that

1. for every Markov strategy σ, we have PM′,s0,σ(Parity({1, 2, 3})) = 0, and
2. there exists a deterministic 1-bit strategy σ′ such that PM′,s0,σ′(Parity({1, 2, 3})) = 1.

Proof. We obtainM′ by modifying the MDPM from Theorem 3 as follows. Label all green
states in F by color 2 and the rest by color 1. Then modify each red transition to go to its
target via a fresh state labeled by color 3. ClearlyM′ is still acyclic and labeled by colors
{1, 2, 3}.

From the proof of Theorem 3 (1), under every Markov strategy inM a.s. seeing infinitely
many green states (in F ) implies seeing infinitely many red transitions. So in M′ every
Markov strategy σ a.s. either sees color 2 only finitely often or color 3 infinitely often, thus
PM′,s0,σ(Parity({1, 2, 3})) = 0.
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From the proof of Theorem 3 (2), there is a deterministic 1-bit strategy σ in M that
attains probability ≥ 1/2 for Büchi(F ) without taking any red transition and otherwise
a.s. takes a red transition. This property of σ holds not only when starting from s0 but
from every other state as well. We obtain σ′ inM′ by continuing to play σ even after red
transitions have been taken. Under σ′ the probability of going through infinitely many red
transitions (and seeing color 3) is ≤ (1/2)∞ = 0, and the probability of seeing infinitely many
states in F (with color 2) is 1. Thus PM′,s0,σ′(Parity({1, 2, 3})) = 1. J

B The Upper Bound: Full Details

I Theorem 5. For every acyclic countable MDP M, finite set of initial states I, set of
states F and ε > 0, there exists a deterministic 1-bit strategy for Büchi(F ) that is ε-optimal
from every s ∈ I.

Proof. LetM = (S, S2, S#,−→, P ) be an acyclic MDP, I ⊆ S a finite set of initial states
and F ⊆ S a set of goal states and ϕ def= Büchi(F ) denote the Büchi objective w.r.t. F . We
prove the claim for finitely branchingM first and transfer the result to general MDPs at the
end.

For every ε > 0 and every s ∈ I there exists an ε-optimal strategy σs such that

PM,s,σs(ϕ) ≥ valM,ϕ(s)− ε. (21)

However, the strategies σs might differ from each other and might use randomization and a
large (or even infinite) amount of memory. We will construct a single deterministic strategy
σ′ that uses only 1 bit of memory such that ∀s∈I PM,s,σ′(ϕ) ≥ valM,ϕ(s)− 2ε. This proves
the claim as ε can be chosen arbitrarily small.

In order to construct σ′, we first observe the behavior of the finitely many σs for s ∈ I
on an infinite, increasing sequence of finite subsets of S. Based on this, we define a second
stronger objective ϕ′ with

ϕ′ ⊆ ϕ, (22)

and show that all σs attain at least valM,ϕ(s)− 2ε w.r.t. ϕ′, i.e.,

∀s∈I PM,s,σs(ϕ′) ≥ valM,ϕ(s)− 2ε. (23)

We construct σ′ as a deterministic 1-bit optimal strategy w.r.t. ϕ′ from all s ∈ I and obtain

PM,s,σ′(ϕ) ≥ PM,s,σ′(ϕ′) by (22)
≥ PM,s,σs

(ϕ′) by optimality of σ′ for ϕ′

≥ valM,ϕ(s)− 2ε by (23).

Behavior of σ, objective ϕ′ and properties (22) and (23). We start with some
notation. Let bubblek(X) be the set of states that can be reached from some state in the
set X within at most k steps. Since M is finitely branching, bubblek(X) is finite if X is
finite. Let Goal≤k(X) def= {ρ ∈ Sω | ∃t ≤ k.X(ρ(t)) = 1} and Goal≥k(X) def= {ρ ∈ Sω | ∃t ≥
k.X(ρ(t)) = 1} denote the property of visiting the set X (at least once) within at most (resp.
at least) k steps. Moreover, let εi

def= ε · 2−(i+1).
The following lemma depends on the assumption thatM is acyclic.

I Lemma 10. Let X ⊆ S be a finite set of states and ε′ > 0.
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I · · · · · ·
K1 L1 K2 L2 K3 Li−1 Ki Li

Figure 5 To show the bubble construction. The green region in K1 is F1, and for all i ≥ 2, the
green region in Ki \ Li−1 is Fi.

1. There is k ∈ N such that ∀s∈I PM,s,σs(ϕ ∩ Goal≤k(F \X)) ≤ ε′.

2. There is l ∈ N such that ∀s∈I PM,s,σs
(Goal≥l(X)) ≤ ε′.

Proof. It suffices to show the properties for a single s, σs since one can take the maximal
k, l over the finitely many s ∈ I. By acyclicity of M, it holds that ϕ ⊆ Goal(F \X) =⋃
k∈N Goal≤k(F \X) and therefore that ϕ ∩

⋂
k∈N Goal≤k(F \X) = ∅. It follows from the

continuity of measures that limk→∞ PM,s,σs(ϕ ∩ Goal≤k(F \X)) = 0.
Item 2 follows directly from the fact thatM is acyclic. J

By Lemma 10(1) there is a k1 such that for K1
def= bubblek1(I) and F1

def= F ∩K1 we have
∀s∈I PM,s,σs

(ϕ ∩K∗1F1Sω) ≤ ε1. We define the pattern

R1
def= (K1 \ F1)∗F1

and obtain ∀s∈I PM,s,σs(ϕ ∩ R1Sω) ≤ ε1. By Lemma 10(2) there is an l1 > k1 such that
∀s∈I PM,s,σs(Goal≥l1(K1)) ≤ ε1. Define L1

def= bubblel1(I). By Lemma 10(1) there is a k2 > l1

such that forK2
def= bubblek2(I) and F2

def= F∩K2\L1 we have ∀s∈I PM,s,σs
(ϕ∩K∗2F2Sω) ≤ ε2.

We define the pattern
R2

def= (K2 \ F2)∗F2

and obtain ∀s∈I PM,s,σs
(ϕ∩R2Sω) ≤ ε2 and, via a union bound, ∀s∈I PM,s,σs

(ϕ∩R2(S \K1)ω) ≤
ε1 +ε2. By another union bound it follows that ∀s∈I PM,s,σs(ϕ∩R1R2(S \K1)ω) ≤ 2ε1 +ε2.

Proceed inductively for i = 2, 3, . . . as follows (see Figure 5 for an illustration). By
Lemma 10(2) there is an li > ki such that ∀s∈I PM,s,σs(Goal≥li(Ki)) ≤ εi. Define Li

def=
bubbleli(I). By Lemma 10(1) there is ki+1 > li such that for Ki+1

def= bubbleki+1(I) and
Fi+1

def= F ∩ Ki+1 \ Li we have ∀s∈I PM,s,σs
(ϕ ∩ (Ki+1 \ Fi+1)∗Fi+1Sω) ≤ εi+1. By a

union bound, ∀s∈I PM,s,σs
(ϕ ∩ (Ki+1 \ Fi+1)∗Fi+1(S \Ki)ω) ≤ εi + εi+1. By an induction

hypothesis we have ∀s∈I PM,s,σs
(ϕ ∩R1R2 . . . Ri(S \Ki−1)ω) ≤ 2ε1 + · · ·+ 2εi−1 + εi. We

define the pattern
Ri+1

def= (Ki+1 \ (Fi+1 ∪Ki−1))∗Fi+1.

Using that (Ki+1 \Fi+1)∗Fi+1(S \Ki)ω ∩ R1R2 . . . Ri(S \Ki−1)ω ⊆ R1R2 . . . Ri+1(S \Ki)ω,
we get

∀s∈I PM,s,σs
(ϕ ∩R1R2 . . . Ri+1(S \Ki)ω) ≤ 2ε1 + · · ·+ 2εi + εi+1 ≤ ε. (24)

We now define the Borel objectives R≤i
def= R1R2 . . . RiS

ω and ϕ′
def=
⋂
i∈NR≤i. Since

Fi ∩ Fk = ∅ for i 6= k and ϕ′ implies a visit to the set Fi for all i ∈ N, we have ϕ′ ⊆ ϕ and
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obtain (22). Moreover, R≤1 ⊇ R≤2 ⊇ R≤3 . . . is an infinite decreasing sequence of Borel
objectives. For every s ∈ I we have

PM,s,σs
(ϕ′) = PM,s,σs

(∩∞i=1R≤i) by def. of ϕ′

= lim
i→∞

PM,s,σs(R≤i) by cont. of measures

= lim
i→∞

1− PM,s,σs
(R≤i) by duality

= lim
i→∞

1− (PM,s,σs
(R≤i ∩ ϕ) + PM,s,σs

(R≤i ∩ ϕ)) case split

≥ lim
i→∞

1− (ε+ PM,s,σs
(R≤i ∩ ϕ)) by (24)

≥ lim
i→∞

1− (ε+ PM,s,σs(ϕ′ ∩ ϕ)) since ϕ′ ⊆ R≤i

= 1− (ε+ 1− PM,s,σs
(ϕ′ ∪ ϕ)) by duality

= PM,s,σs
(ϕ)− ε by (22)

≥ valM,ϕ(s)− 2ε by (21)

Thus we obtain property (23).

Definition of the 1-bit strategy σ′. We now define our deterministic 1-bit strategy σ′
that is optimal for objective ϕ′ from every s ∈ I. First we define certain “suffix” objectives of
ϕ′. Recall that Ri = (Ki\(Fi∪Ki−2))∗Fi. Let Ri,j

def= RiRi+1 . . . RjS
ω and R≥i

def=
⋂
j≥iRi,j .

In particular, this means that ϕ′ = R≥1. Every run w from some state s ∈ I that satisfies
ϕ′ can be split into parts before and after the first visit to set Fi, i.e., w = w1s

′w2 where
w1s

′ ∈ R≤i, s′ ∈ Fi and s′w2 ∈ R≥i+1. (Note also that w2 cannot visit any states in
Ki−1.) Thus it will be useful to consider the objectives R≥i+1 for runs that start in states
s′ ∈ Fi. For every state s′ ∈ Fi we consider its value w.r.t. the objective R≥i+1, i.e.,
valM,R≥i+1(s′) def= supσ̂ PM,s′,σ̂(R≥i+1).

For every i ≥ 1 we consider the finite subspace Ki \Ki−2. In particular, it contains the
sets Fi−1 and Fi. (For completeness let K0

def= F0
def= I and K−1

def= ∅.) It is not enough to
maximize the probability of reaching the set Fi in each Ki individually. One also needs to
maximize the potential of visiting further sets Fi+1, Fi+2, . . . in the indefinite future. Thus we
define the bounded total reward objective Bi for runs starting in Fi−1 as follows. Runs that
exit the subspace (either by leaving Ki or by visiting Ki−2) before visiting Fi get reward 0.
All other runs must visit Fi eventually (sinceM is acyclic and the subspace is finite). When
some run reaches the set Fi for the first time in some state s′ then this run gets the reward of
valM,R≥i+1(s′). We can consider an induced finite MDP M̂ with state space Ki \Ki−2, plus
a sink state (with reward 0) that is reached immediately after visiting any state in Fi and
whenever one exits the set Ki \Ki−2. In M̂ one gets a reward of valM,R≥i+1(s′) for visiting
s′ ∈ Fi as above. By [15, Theorem 7.1.9], there exists a uniform optimal MD-strategy σi for
this bounded total reward objective on the induced finite MDP M̂, which can be directly
applied for objective Bi on the subspace Ki \Ki−2 inM. (The strategy σi is not necessarily
unique, but our results hold regardless of which of them is picked.)

We now define σ′ by combining different MD-strategies σi, depending on the current
state and on the value of the 1-bit memory. The intuition is that the strategy σ′ has two
modes: normal-mode and next-mode. In a state s′ ∈ Ki \Ki−1, if the memory is i (mod 2)
then the strategy is in normal-mode and plays towards reaching Fi. Otherwise, the strategy
is in next-mode and plays towards reaching Fi+1 (normally this happens because Fi has
already been seen).

Initially σ′ starts in a state s ∈ I with the 1-bit memory set to 1. We define the behavior
of σ′ in a state s′ ∈ Ki \Ki−1 for every i ≥ 1.
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· · ·
K1 L1 K2 L2 K3

π3

π2

π1

I

Figure 6 Memory updates along runs π1, π2, π3, drawn in blue while the memory-bit is one and
in red while the bit is zero. Both π1 and π3 violate ϕ′ and are drawn as dotted lines once they do.

If the 1-bit memory is i (mod 2) and s′ /∈ Fi then σ′ plays like σi. (Intuitively, one plays
towards Fi, since one has not yet visited it.)
If the 1-bit memory is i (mod 2) and s′ ∈ Fi then the 1-bit memory is set to (i + 1)
(mod 2), and σ′ plays like σi+1. (Intuitively, one records the fact that one has already
seen Fi and then targets the next set Fi+1.)
If the 1-bit memory is (i + 1) (mod 2) then σ′ plays like σi+1. (Intuitively, one plays
towards Fi+1, since one has already visited Fi.)
Observe that if a run according to σ′ exits some set Ki (and thus enters Ki+1 \Ki) with

the bit still set to i (mod 2) (normal-mode) then this run has not visited Fi and thus does
not satisfy the objective ϕ′. (Or the same has happened earlier for some j < i, in which case
also the objective ϕ′ is violated.) An example is the run π1 in Figure 6.

However, if a run according to σ′ exits some set Ki (and thus enters Ki+1 \Ki) with the
bit set to (i + 1) (mod 2) (thus σi+1 in next-mode) then in the new set Ki′ \Ki′−1 with
i′ = i + 1 the bit is set to i′ (mod 2) and σ′ continues to play like σi+1 in normal-mode.
Even if this run returns (temporarily) to Ki (but not to Ki−1) the strategy σ′ continues to
play like σi+1 in next-mode. An example is the run π2 in Figure 6.

Finally, if a run returns to Ki−1 after having visited Fi then it fails the objective ϕ′. An
example is the run π3 in Figure 6.

The 1-bit strategy σ′ is optimal for ϕ′ from every s ∈ I. In the following let s ∈ I be
an arbitrary initial state in I. For any run from s, let firstin(Fi) be the first state s′ in Fi
that is visited (if any). We define a bounded reward objective B′i for runs starting at s as
follows. Every run that does not satisfy the objective R≤i gets assigned reward 0. Otherwise,
consider a run from s that satisfies R≤i. When this run reaches the set Fi for the first time
in some state s′ then this run gets a reward of valM,R≥i+1(s′). Note that this reward is ≤ 1.

We show that for all i ∈ N

valM,ϕ′(s) = valM,B′
i
(s) (25)

Towards the ≥ inequality, let σ̂ be an ε̂-optimal strategy for B′i from s. We define the strategy
σ̂′ to play like σ̂ until a state s′ ∈ Fi is reached and then to switch to some ε̂-optimal strategy
for objective R≥i+1 from s′. Every run from s that satisfies ϕ′ can be split into parts, before
and after the first visit to the set Fi, i.e., ϕ′ = {w1s

′w2 | w1s
′ ∈ R≤i, s′ ∈ Fi, s′w2 ∈ R≥i+1}.
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Therefore we obtain that PM,s,σ̂′(ϕ′) ≥ EM,s,σ̂(B′i)− ε̂ ≥ valM,B′
i
(s)− 2ε̂. Since this holds

for every ε̂ > 0, we obtain valM,ϕ′(s) ≥ valM,B′
i
(s).

Towards the ≤ inequality, let σ̂ be any strategy for ϕ′ from s. We have PM,s,σ̂(ϕ′) ≤∑
s′∈Fi

PM,s,σ̂(R≤i ∩ firstin(Fi) = s′) · valM,R≥i+1(s′) = EM,s,σ̂(B′i). Thus valM,ϕ′(s) ≤
valM,B′

i
(s). Together we obtain (25).

For all i ∈ N and every state s′ ∈ Fi we show that

valM,R≥i+1(s′) = valM,Bi+1(s′) (26)

Towards the ≥ inequality, let σ̂ be an ε̂-optimal strategy for Bi+1 from s′ ∈ Fi. We define
the strategy σ̂′ to play like σ̂ until a state s′′ ∈ Fi+1 is reached and then to switch to
some ε̂-optimal strategy for objective R≥i+2 from s′′. We have that PM,s′,σ̂′(R≥i+1) ≥
EM,s′,σ̂(Bi+1) − ε̂ ≥ valM,Bi+1(s) − 2ε̂. Since this holds for every ε̂ > 0, we obtain
valM,R≥i+1(s′) ≥ valM,Bi+1(s′).

Towards the ≤ inequality, let σ̂ be any strategy for R≥i+1 from s′ ∈ Fi. We have

PM,s′,σ̂(R≥i+1) ≤
∑

s′′∈Fi+1

PM,s′,σ̂(Ri+1S
ω ∩ firstin(Fi+1) = s′′) · valM,R≥i+2(s′′)

= EM,s′,σ̂(Bi+1).

Thus valM,R≥i+1(s′) ≤ valM,Bi+1(s′). Together we obtain (26).
We show, by induction on i, that σ′ is optimal for B′i for all i ∈ N from start state s, i.e.,

EM,s,σ′(B′i) = valM,B′
i
(s) (27)

In the base case of i = 1 we have that B′1 = B1. The strategy σ′ plays σ1 until reaching F1,
which is optimal for objective B1 and thus optimal for B′1. For the induction step we assume
(IH) that σ′ is optimal for B′i.

valM,B′
i+1

(s) = valM,B′
i
(s) by (25)

= EM,s,σ′(B′i) by (IH)

=
∑
s′∈Fi

PM,s,σ′(R≤i ∩ firstin(Fi) = s′) · valM,R≥i+1(s′) by def. of B′i

=
∑
s′∈Fi

PM,s,σ′(R≤i ∩ firstin(Fi) = s′) · valM,Bi+1(s′) by (26)

=
∑
s′∈Fi

PM,s,σ′(R≤i ∩ firstin(Fi) = s′) · EM,s′,σi+1(Bi+1) opt. of σi+1 for Bi+1

= EM,s,σ′(B′i+1) by def. of σ′ and B′i+1

So σ′ attains the value valM,B′
i+1

(s) of the objective B′i+1 from s and is optimal. Thus (27).
Now we show that σ′ performs well on the objectives R≤i for all i ∈ N.

PM,s,σ′(R≤i) ≥ valM,ϕ′(s) (28)

We have

PM,s,σ′(R≤i) ≥ EM,s,σ′(B′i) since B′i gives rewards 0 for runs /∈ R≤i and ≤ 1 otherwise
= valM,B′

i
(s) by (27)

= valM,ϕ′(s) by (25)
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So we get (28). Now we are ready to prove the optimality of σ′ for ϕ′ from s.

PM,s,σ′(ϕ′) = PM,s,σ′(∩i∈NR≤i) by def. of ϕ′

= lim
i→∞

PM,s,σ′(R≤i) by continuity of measures from above

≥ lim
i→∞

valM,ϕ′(s) by (28)

= valM,ϕ′(s)

This concludes the proof that σ′ is optimal for ϕ′ and hence 2ε-optimal for ϕ for every initial
state s ∈ I.

From finitely to infinitely branching MDPs. LetM be an infinitely branching acyclic
MDP with a finite set of initial states I and ε > 0. We derive a finitely branching acyclic
MDPM′ with sufficiently similar behavior. Every controlled state x with infinite branching
x → yi for all i ∈ N is replaced by a gadget x → z1, zi → zi+1, zi → yi for all i ∈ N with
fresh controlled states zi (cf. Figure 1). Infinitely branching random states with x pi−→ yi for
all i ∈ N are replaced by a gadget x 1−→ z1, zi

1−p′i−−−→ zi+1, zi
p′i−→ yi for all i ∈ N, with fresh

random states zi and suitably adjusted probabilities p′i to ensure that the gadget is left at
state yi with probability pi, i.e., p′i = pi/(

∏i−1
j=1(1− p′j)).

We apply the above result for finitely branching acyclic MDPs toM′ and obtain a 1-bit
deterministic ε-optimal strategy σ′ for Büchi from all states s ∈ I. We construct a 1-bit
deterministic ε-optimal strategy σ′′ forM as follows. Consider some state x that is infinitely
branching inM and its associated gadget inM′. Whenever a run inM′ according to σ′
reaches x with some memory value α ∈ {0, 1} there exist values pi for the probability that
the gadget is left at state yi. Let p

def= 1−
∑
i∈N pi be the probability that the gadget is never

left. (If x is controlled then only one pi (or p) is nonzero, since σ′ is deterministic. If x is
random then p = 0.) Since σ′ is deterministic, the memory updates are deterministic, and
thus there are values α′i ∈ {0, 1} such that whenever the gadget is left at state yi the memory
will be α′i. We now define the behavior of the 1-bit deterministic strategy σ′′ at state x with
memory α inM.

If x is controlled and p 6= 1 then σ′′ picks the successor state yi where pi = 1 and sets
the memory to α′i. If p = 1 then any run according to σ′ that enters the gadget does not
satisfy the objective. Thus σ′′ performs at least as well inM regardless of its choice, e.g.,
pick successor y1 and α′ = α.

If x is random then p = 0 and the successor is chosen according to the defined distribution
(which is the same in M and M′) and σ′′ can only update its memory. Whenever the
successor yi is chosen, σ′′ updates the memory to α′i.

In states that are not infinitely branching inM, σ′′ does exactly the same inM as σ′ in
M′.

Since the gadgets do not intersect F , σ′′ performs at least as well inM as σ′ inM′ and
is thus ε-optimal from every s ∈ I. J

Now we show our upper bound on the strategy complexity of Büchi for general MDPs.

I Theorem 6. For every countable MDP M, finite set of initial states I, set of states F
and ε > 0, there exists a deterministic 1-bit Markov strategy for Büchi(F ) that is ε-optimal
from every s ∈ I.

Proof. LetM = (S, S2, S#,−→, P ) be a countable MDP with a finite set of initial states
I and F ⊆ S the set of goal states. We derive an acyclic MDPM′ = (S′, S′2, S′#,−→′, P ′)



26 Büchi Objectives in Countable MDPs

by encoding a step-counter into the states. Let S′ = S × N0, S′2 = S2 × N0, S′# = S# × N0,
−→′ = {((x, n), (y, n+ 1)) | (x, y) ∈ −→} and P ′((x, n))((y, n+ 1)) = P (x)(y) for all n ∈ N0.
Let I ′ := {(s, 0) | s ∈ I} be the finite set of initial states ofM′ and F ′ = F × N0 the set of
goal states.

For every ε > 0, by Theorem 5, there exists a 1-bit deterministic strategy σ′ for Büchi(F )
inM′ that is ε-optimal from every state (s, 0) ∈ I ′.

We now define the deterministic 1-bit Markov strategy σ for Büchi(F ) that is ε-optimal
from every s ∈ I inM. It uses a step-counter (initially 0) and 1 extra bit of memory. For
any controlled state s′, step-counter value n and memory α ∈ {0, 1}, consider the behavior of
σ′ at state (s′, n) and memory α. Let (s′′, n+1) be the chosen successor state and α′ ∈ {0, 1}
the new memory content. Then σ chooses the successor s′′, updates the memory to α′ and
increments the step-counter to n+ 1. J
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