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Abstract
Markov decision processes (MDPs) are a standard model for dynamic systems that exhibit both
stochastic and nondeterministic behavior. For MDPs with finite state space it is known that for a
wide range of objectives there exist optimal strategies that are memoryless and deterministic. In
contrast, if the state space is infinite, optimal strategies may not exist, and optimal or ε-optimal
strategies may require (possibly infinite) memory. In this paper we consider qualitative objectives:
reachability, safety, (co-)Büchi, and other parity objectives. We aim at giving an introduction to
a collection of techniques that allow for the construction of strategies with little or no memory in
countably infinite MDPs.
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1 Introduction

Markov decision processes (MDPs) are a standard model for dynamic systems that exhibit
both stochastic and controlled behavior [13]. MDPs play a prominent role in numerous
domains, including artificial intelligence and machine learning [16, 15], control theory [3, 1],
operations research and finance [4, 14], and formal verification [8, 2]. In an MDP, the system
starts in the initial state and makes a sequence of transitions between states. Depending
on the type of the current state, either the controller gets to choose an enabled transition
(or a distribution over transitions), or the next transition is chosen randomly according to a
defined distribution. By fixing a strategy for the controller, one obtains a probability space
of runs of the MDP. The goal of the controller is to maximize the probability of a given
objective (some set of desired runs), or, more generally, to optimize the expected value of a
random variable (some real-valued function on runs).

The type of strategy needed to satisfy an objective optimally (or ε-optimally) is called
the strategy complexity of the objective. There are different types of strategies, depending on
whether one can take the whole history of the run into account (history-dependent; (H)),
or whether one is limited to a finite amount of memory (finite memory; (F)) or whether
decisions are based only on the current state (memoryless; (M)). Moreover, the strategy
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3:2 How to Play in Infinite MDPs

type depends on whether the controller can randomize (R) or is limited to deterministic
choices (D). The simplest type MD refers to memoryless deterministic strategies. Markov
strategies are strategies that base their decisions only on the current state and the number of
steps in the history or the run. Thus they use infinite memory, but only in a very restricted
form by maintaining an unbounded step counter.

For finite MDPs, there exist optimal MD-strategies for many (but not all) objectives
[5, 6, 7, 13], but the picture is more complex for countably infinite MDPs [11, 12, 13]. For
example, given some objective, consider the set of all states for which there exists a strategy
that achieves the objective with positive probability. If the MDP is finite then this set is
finite and thus there exists some minimal nonzero value, which can often be exploited for the
construction of an optimal strategy. These methods do not carry over to infinite MDPs. Here
it is possible, even for reachability objectives, that every state has a strategy that achieves
the objective with positive probability, but no state, except the target itself, can achieve
it almost surely. Such phenomena appear already in infinite-state Markov chains like the
classic gambler’s ruin problem with unfair coin tosses in the player’s favor (0.6 win, 0.4 lose):

0 1 2 3 4 · · ·1
0.6 0.6 0.6 0.6

0.40.40.40.40.4

The probability of ruin is always positive, but less than 1 in every state except the ruin
state itself; cf. [9, Chapter 14]. Another difference to finite MDPs is that optimal strategies
need not exist, even for qualitative objectives like reachability or parity. Even if there is
a sequence of strategies whose success probabilities converge to 1, there may not exist a
strategy with success probability equal to 1. This motivates the investigation of ε-optimal
strategies, which are those strategies such that no other strategy has a success probability
that is more than ε higher.

In this paper we restrict ourselves to MDPs with countable state space. Certain theorems
such as Theorem 3 are known to be false for MDPs with uncountably many states, see [12].
Uncountable MDPs in general have been studied less, and the underlying measure theory is
more complicated.

We aim at providing an introduction to a toolkit for the construction of memoryless
or “low-memory” optimal and ε-optimal strategies for certain qualitative objectives like
reachability and safety. We will illustrate that these techniques can be combined to construct
strategies for more general objectives.

2 Preliminaries

A probability distribution over a countable set S is a function f : S → [0, 1] with
∑
s∈S f(s) = 1.

We write D(S) for the set of all probability distributions over S.

Markov decision processes. In this paper we study Markov decision processes (MDPs)
over countably infinite state spaces. Formally, an MDPM = (S, S2, S#,−→, P ) consists of a
countable set S of states, which is partitioned into a set S2 of controlled states and a set S# of
random states, a transition relation −→ ⊆ S × S, and a probability function P : S# → D(S).
If (s, s′) ∈ −→, we call s′ a successor of s. We assume that every state has at least one
successor. The probability function P assigns to each random state s ∈ S# a probability
distribution P (s) over its set of successor states. A sink is a subset T ⊆ S closed under
the −→ relation. An MDP is acyclic if the underlying directed graph (S,−→) is acyclic.
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It is finitely branching if every state has finitely many successors and infinitely branching
otherwise. An MDP without controlled states (S2 = ∅) is a Markov chain.

Strategies and Probability Measures. A run ρ is an infinite sequence s0s1 · · · of states
such that (si, si+1) ∈ −→ for all i ∈ N. A partial run is a finite prefix of a run. A strategy is
a function σ : S∗S2 → D(S) that assigns to partial runs ρs ∈ S∗S2 a distribution over the
successors of s.

A strategy σ and an initial state s0 ∈ S induce a standard probability measure on sets
of infinite runs, see, e.g., [10]. Such measurable sets of infinite runs are called events or
objectives. We write PσM,s0

(E) for the probability of an event E ⊆ s0S
ω of runs starting

from s0. We may drop the subscriptM when it is understood.

Objectives. Given a set T ⊆ S of states, the reachability objective Reach(T ) is the set of
runs that visit T at least once; and the safety objective Safety(T ) is the set of runs that
never visit T . Parity objectives are defined via a color function Col : S → N with finite
range. The corresponding parity objective is the set of runs such that the largest color that
occurs infinitely often along the run is even. We call a parity objective a C-parity objective
if Col(S) ⊆ C, i.e., the set of colors is restricted to C. Büchi and co-Büchi objectives are
common names for {1, 2}- and {0, 1}-parity objectives, respectively.

Optimal and ε-optimal Strategies. Given an objective E, the value of state s in
an MDP M, denoted by valM,s(E), is the supremum probability of achieving E, i.e.,
valM,s(E) def= supσ∈Σ PσM,s(E) where Σ is the set of all strategies. We may drop the
subscriptM when it is understood. For ε > 0 and a state s ∈ S, we say that a strategy is
ε-optimal if PσM,s(E) ≥ valM,s(E)− ε. A 0-optimal strategy is called optimal. An optimal
strategy is almost surely winning if valM,s(E) = 1.

Strategy Classes. Strategies σ : S∗S2 → D(S) are in general randomized (R) in the
sense that they take values in D(S). A strategy σ is deterministic (D) if σ(ρ) is a Dirac
distribution for all partial runs ρ ∈ S∗S2. A strategy is called memoryless (M) or positional
if it only depends on the current state; i.e., a memoryless strategy can be given by a function
σ : S2 → D(S). Thus, the simplest strategies are MD strategies, which are both memoryless
and deterministic (and thus can be given by a function σ : S2 → S).

We also consider strategies with memory, but we do not formalize this here. After each
transition such a strategy updates its memory mode depending on the taken transition and
the previous memory mode. To choose a successor of a controlled state, the strategy can use
its memory and the current state but not the partial run that led to the current state. Every
strategy can be viewed as a strategy with memory (by using partial runs as memory modes).

For example, k-bit strategies use (at most) k bits of memory; they have (at most) 2k
memory modes. Markov strategies use infinite memory but only as a step counter; such
strategies depend only on the current state and the number of steps taken so far. A k-bit
Markov strategy can use both k bits and an (unbounded) step counter.

3 Constructing MD Strategies

In this section we illustrate some techniques to construct MD strategies. We mostly focus on
reachability objectives, which we use as a running example. But many ideas apply also to
other objectives.
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Figure 1 Optimal strategy for reachability may not exist. Here, as in all pictures, we depict
controlled states as squares, and random states as circles.

3.1 Reduction to a Finite Case
Suppose we have a (countable) MDPM = (S, S2, S#,−→, P ), and we are interested in the
reachability objective Reach(T ), i.e., we would like to reach a target set T ⊆ S.

If S is finite, the situation is as good as it could be:

I Lemma 1 (optimal MD strategies in finite MDPs). Let M = (S, S2, S#,−→, P ) be an
MDP, and consider the reachability objective Reach(T ) for some T ⊆ S. If S is finite then
there exists a single MD strategy σ that is optimal for every start state s at the same time;
formally, Pσs (Reach(T )) = vals(Reach(T )) for all s ∈ S.

Spelled out, Lemma 1 says that, if the state space is finite, we can fix for each controlled state
an outgoing transition in a way that maximizes the probability of reaching the target for every
state. The assumption of a finite state space is so powerful that Lemma 1 generalizes from
reachability to parity objectives. In fact, even in finite parity games, where some controlled
states are controlled by a player who wants to maximize the probability of achieving the
parity objective, and the remaining controlled states are controlled by a player who wants to
minimize the probability of achieving the parity objective, both players have optimal MD
strategies for all states [17, Theorem 1].

Lemma 1 does not hold without the assumption of S being finite, as optimal strategies
may not exist, let alone optimal MD strategies. Indeed, consider the MDP in Figure 1. The
controlled states are those in the leftmost column. Suppose you start in the bottom-left
state and you would like to reach the target T consisting only of the bottom-right state.
The higher you climb the ladder of states in the left column, the bigger you can make the
probability to reach T , but eventually you have to turn right and hope for the best. We have
vals(Reach(T )) = 1 for all controlled states s, i.e., we can get the probability of reaching T
arbitrarily close to 1. But we cannot make that probability equal to 1: there is no strategy
that reaches T with probability 1.

Recall that a strategy σ is called ε-optimal for s if Pσs (Reach(T )) ≥ vals(Reach(T ))− ε.
The following lemma says that every state has ε-optimal MD strategies:

I Lemma 2 (non-uniform ε-optimal MD strategies). LetM = (S, S2, S#,−→, P ) be an MDP,
and consider the reachability objective Reach(T ) for some T ⊆ S. For every ε > 0 and
every s ∈ S there exists an MD strategy σ that is ε-optimal for s; formally, Pσs (Reach(T )) ≥
vals(Reach(T ))− ε.
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s

S S′
n

Figure 2 The set S′ consists of those states that are reachable from s within at most n steps.
Due to finite branching, S′ is finite. For n large enough, S′ probably suffices to reach the target.

Proof. First assume that M is finitely branching. Fix s ∈ S and ε > 0, and let τ be
an arbitrary (i.e., not necessarily MD) strategy with Pτs (Reach(T )) ≥ vals(Reach(T ))− ε

2 .
Define a modified reachability objective Reachi(T ) which means reaching T in exactly i steps.
Then we have:

∞∑
i=0

Pτs (Reachi(T )) = Pτs (Reach(T )) ≥ vals(Reach(T ))− ε

2

It follows that we can pick a number n large enough so that
∑n
i=0 Pτs (Reachi(T )) ≥

vals(Reach(T )) − ε. From state s, in at most n steps, strategy τ can only use a finite
subset S′ ⊆ S, asM is finitely branching; see Figure 2. That means, τ manages to reach T
with probability at least vals(Reach(T ))− ε even when it is restricted to the sub-MDP with
state space S′ (think of leaving S′ as losing). But by Lemma 1 this finite sub-MDP has an
optimal MD strategy σ. We may extend the definition of σ outside of S′ in an arbitrary way.
Then, inM, we have Pσs (Reach(T )) ≥ vals(Reach(T ))− ε, as desired.

The assumption thatM is finitely branching can be satisfied using a simple construction:
replace every infinitely branching controlled state

· · ·
· · ·

by

· · ·
· · ·

A similar construction works for random states. Then, construct an MD strategy, as above,
from an arbitrary ε-optimal strategy in the new finitely branching MDP. Any MD strategy
can be transferred back to the original infinitely branching MDP. J

3.2 Ornstein’s Plastering Technique
Ornstein [12] proved in 1969 a uniform version of Lemma 2. That is, for every ε > 0 there
exists a single MD strategy that is ε-optimal for all states:
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3:6 How to Play in Infinite MDPs

I Theorem 3 ([12], uniform ε-optimal MD strategies). Let M = (S, S2, S#,−→, P ) be an
MDP, and consider the reachability objective Reach(T ) for some T ⊆ S. For every ε > 0
there exists a single MD strategy σ that is ε-optimal for every start state s at the same time;
formally, Pσs (Reach(T )) ≥ vals(Reach(T ))− ε for all s ∈ S.

Ornstein actually proved a stronger statement with multiplicative instead of additive error;
i.e., Theorem 3 also holds with vals(Reach(T ))− ε replaced by vals(Reach(T )) · (1− ε).

Proof of Theorem 3. We follow Ornstein’s proof [12]. Without loss of generality, we assume
that T is a sink. Recall that an MD strategy σ can be viewed as a function σ : S2 → S

such that for all s ∈ S2, the state σ(s) is a successor state of s. Starting from the original
MDPM we successively fix more and more controlled states, by which we mean select an
outgoing transition and remove all others. While this is in general an infinite (but countable)
process, it defines an MD strategy in the limit. Visually, we “plaster” the whole state space
by the fixings.

Put the states in some order, i.e., s1, s2, . . . with S = {s1, s2, . . .}. The plastering proceeds
in rounds, one round for every state. LetMi be the MDP obtained fromM after the fixings
of the first i− 1 rounds (withM1 =M). In round i we fix controlled states in such a way
that

(A) the probability, starting from si, of reaching the target T using only random and fixed
controlled states is not much less than the value valMi,si(Reach(T )); and

(B) for all states s, the value valMi+1,s(Reach(T )) is almost as high as valMi,s(Reach(T )).
The purpose of goal (A) is to guarantee good progress towards the target when starting
from si. The purpose of goal (B) is to avoid fixings that would cause damage to the values
of other states.

Now we describe round i. Consider the MDPMi after the fixings from the first i−1 rounds,
and let εi > 0. Recall that we wish to fix a part of the state space so that si has a high
probability of reaching T using only random and fixed controlled states. By Lemma 2 there
is an MD strategy σ such that PσMi,si

(Reach(T )) ≥ valMi,si(Reach(T )) − ε2
i . Fixing σ

everywhere would accomplish goal (A), but potentially compromise goal (B). So instead we
are going to fix σ only for states where σ does well: define

G
def= {s ∈ S | PσMi,s(Reach(T )) ≥ valMi,s(Reach(T ))− εi}

and obtain Mi+1 from Mi by fixing σ on G. (Note that σ does not “contradict” earlier
fixings, because in the MDPMi the previously fixed states have only one outgoing transition
left.) See Figure 3 for an illustration.

We have to check that with this fixing we accomplish the two goals above. Indeed, we
accomplish goal (A): by its definition strategy σ is ε2

i -optimal from si, so the probability of
ever entering S \G (where σ is less than εi-optimal) cannot be large:

PσMi,si
(Reach(S \G)) ≤ εi (1)

In slightly more detail, this inequality holds because the probability that the ε2
i -optimal

strategy σ enters a state whose value is underachieved by σ by at least εi can be at most εi.
We give a detailed proof of (1) in Appendix A.1. It follows from the ε2

i -optimality of σ and
from (1) that we have PσMi,si

(Reach(T ) ∧ ¬Reach(S \G)) ≥ valMi,si
(Reach(T ))− εi − ε2

i .
So inMi+1 we obtain for all strategies σ′:

Pσ
′

Mi+1,si
(Reach(T )) ≥ valMi,si

(Reach(T ))− εi − ε2
i (2)
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fixed
T 1

si

G

Figure 3 The blue area has been fixed in the first i − 1 iterations. The smaller ellipse is the
set G, where strategy σ does well. The red area will be fixed using σ. Under σ, a run that starts
from si is likely to lead to the target T without ever leaving G.

We also accomplish goal (B): the difference between Mi and Mi+1 is that σ is fixed
on G, but σ performs well from G on. So we obtain for all states s:

valMi+1,s(Reach(T )) ≥ valMi,s(Reach(T ))− εi (3)

In slightly more detail, this inequality holds because any strategy inMi can be transformed
into a strategy inMi+1, with the difference that once the newly fixed part G is entered, the
strategy switches to the strategy σ, which (by the definition ofMi+1) is consistent with the
fixing and (by the definition of G) is εi-optimal from there. We give a detailed proof of (3)
in Appendix A.2. This completes the description of round i.

Let ε ∈ (0, 1), and for all i ≥ 1, choose εi
def= ε

2 · 2
−i. Let σ be an arbitrary MD strategy

that is compatible with all fixings. (This strategy σ is actually unique.) It follows that σ is
playable in allMi. Consider an arbitrary state si. Then it follows from (3) that the value
valMi,si

(Reach(T )) is not much lower than valM,si
(Reach(T )), and from (2) that σ realizes

most of this value, implying for all i ≥ 1:

PσM,si
(Reach(T )) ≥ valM,si(Reach(T ))− ε (4)

We give a detailed proof of (4) in Appendix A.3. Thus, the MD strategy σ is ε-optimal for
all states. J

I Remark 4. Instead of Reach(T ) the proof above also works for many other objectives,
including so-called tail events. See Section 3.3 for more discussion about tail events.

3.3 Lévy’s Zero-One Law
Consider a Markov chain M = (S, ∅, S#,−→, P ), i.e., an MDP without controlled states.
Recall that an event is a set of runs s0s1 · · · . For example, in the Markov chain

0 1 2 3 4 · · ·1 2/3 2/3 2/3 2/3

1/31/31/31/31/3

we may define an event E as the set of all runs that start in state 0 and revisit state 0 exactly
once. Starting in state 1, the probability of ever visiting state 0 can be calculated to be 1

2 . It
follows that, starting in state 0, the probability of E is 1

2 · (1−
1
2 ) = 1

4 ; formally, P0(E) = 1
4 .

There are two ways of failing to satisfy E: one is to never revisit state 0, the other is to revisit

ICALP 2020
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4 · · ·

1

0 1 2 · · ·
2

1
2

3 4 3 4 · · ·
Figure 4 For the event E (exactly one revisit to state 0), three sample runs starting from state 0

are depicted, along with their values XE
1 , . . . , X

E
9 . The partially covered “green” run revisits state 0

for a second time, causing 0 = XE
7 = XE

8 = . . . Lévy’s zero-one law asserts that XE
i almost surely

converges to 0 or 1.

it more than once. It is because of the latter that for any given finite prefix of a run, we can
never be sure that E will hold. For example, if the run starts with 010123, then we have
already revisited state 0 and it is unlikely that we will ever do so again: the probability is
only 1

2 ·
1
2 ·

1
2 = 1

8 . So, given this prefix 010123, the probability of satisfying E is 7
8 . However,

in this example, no matter what prefix is given, the probability of satisfying E cannot be 1.
Let us define a sequence of random variables, XE

1 , X
E
2 , . . ., so that each XE

i maps a run ρ
to the probability that event E will be satisfied, given the prefix of ρ of length i. For example,
if ρ = 010123234 · · · , then we previously discussed that XE

1 (ρ) = 1
4 and that XE

6 (ρ) = 7
8 . It

is (a consequence of) Lévy’s zero-one law that the sequence XE
1 , X

E
2 , . . .

1 converges to 0 or 1
almost surely (see also Figure 4):

I Theorem 5 (Lévy’s zero-one law for Markov chains). LetM = (S, ∅, S#,−→, P ) be a Markov
chain, s0 ∈ S, and E an event of runs starting in s0. We have limi→∞XE

i ∈ {0, 1} (and
hence this limit exists) almost surely; more formally:

Ps0

({
ρ
∣∣∣ lim
i→∞

XE
i (ρ) ∈ {0, 1}

})
= 1 .

Moreover, up to a null set of runs, the limit is 1 for those runs satisfying E, and 0 for those
runs not satisfying E.

As a consequence, the probability of E is equal to the probability that the limit is 1.
For tail objectives E, Lévy’s zero-one law becomes simpler and clearer. A tail objective is

an objective whose occurrence is independent of any finite prefix. The objective E from the
example above is not a tail objective because the number of revisits to state 0 may change if
we cut off or add a finite prefix. For an example of a tail objective, suppose that the states
of an arbitrary Markov chain are classified as accepting and non-accepting states. The Büchi
objective consists of those runs that visit accepting states infinitely often. Büchi is a tail
objective: for any run we can cut off or add any finite prefix without changing whether the
run satisfies Büchi. We can also view reachability objectives as tail objectives, provided that
the target is a sink, which is often a harmless assumption.

1 It is conventional to write XE
i for XE

i (ρ) if the run (such as a random run produced byM) is understood.
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For tail objectives E, the random variable XE
i depends only on the ith visited state (and

not also on the first i− 1 states as in the general case), and for any run s1s2s3 · · · we have
XE
i = Psi

(E). For a tail objective E and any state s, a picture analogous to Figure 4 would
show each occurrence of state s on the same height, independently of the partial run leading
up to the occurrence. As a consequence of Lévy’s zero-one law, for any tail objective E, the
events

E and
{
s1s2 · · ·

∣∣∣ lim
i→∞

Psi
(E) = 1

}
are equal up to a null set. (5)

This can be used, in conjunction with Ornstein’s Theorem 3 about uniform ε-optimal MD
strategies, to construct almost surely winning MD strategies:

I Theorem 6 ([12], uniform almost surely winning MD strategies). LetM = (S, S2, S#,−→, P )
be an MDP, and consider the reachability objective Reach(T ) for some T ⊆ S. Let S0 ⊆ S
be the set of states from which there exists an almost surely winning strategy. Then there
exists a single MD strategy σ that is almost surely winning for all s ∈ S0 at the same time;
formally, Pσs (Reach(T )) = 1 for all s ∈ S0.

Proof. Obtain fromM an MDPM0 by restricting the state space to S0 and eliminating
all transitions that leave S0. InM0 all states have an almost surely winning strategy, as
an almost surely winning strategy may never enter a state that does not have an almost
surely winning strategy. By Theorem 3 there exists, for M0, a uniform 1

2 -optimal MD
strategy σ. Then PσM0,s

(Reach(T )) ≥ 1
2 holds for all states. For any run s0s1 · · · inM0 we

have PσM0,si
(¬Reach(T )) ≤ 1

2 for all i; in particular, the sequence
(
PσM0,si

(¬Reach(T ))
)
i
does

not converge to 1. Using (5) for E = ¬Reach(T ), we obtain for all s ∈ S0 that Pσs (E) = 0,
hence, Pσs (Reach(T )) = 1. J

3.4 The Flag Construction

We now move from reachability to co-Büchi objectives: here, a subset of states are marked as
“bad”, and the goal is to visit bad states only finitely often. Co-Büchi is more general than
both reachability and safety objectives: for reachability, make the target a sink and mark all
other states as bad; for safety, make the states to be avoided a sink and mark them as bad.

In this section we focus on almost surely winning strategies, and we will argue that for
co-Büchi objectives almost surely winning strategies can be chosen MD. However, this does
not always hold for infinitely branching MDPs, as the example in Figure 5 shows. Therefore,
we assume in the rest of the section that the MDP is finitely branching. We will show:

I Theorem 7 ([11]). LetM = (S, S2, S#,−→, P ) be a finitely branching MDP, and consider
a co-Büchi objective co-Büchi(B) for some set B ⊆ S of bad states. Let S0 ⊆ S be the
set of states from which there exists an almost surely winning strategy. Then there exists a
single MD strategy σ that is almost surely winning for all s ∈ S0 at the same time; formally,
Pσs (co-Büchi(B)) = 1 for all s ∈ S0.

In order to prove Theorem 7, a safety strategy may appear promising: in each state minimize
the probability of ever visiting a bad state again. The appeal of a safety strategy is twofold:

If a safety strategy succeeds in never visiting a bad state again, then clearly it visits bad
states only finitely often.

ICALP 2020
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Figure 5 In infinitely branching MDPs with co-Büchi objectives, almost surely winning strategies
cannot always be chosen MD. In the MDP above, the bad state is marked red. There exists an
almost surely winning strategy, but it requires memory in order to choose ri for ever higher i.

· · ·1
2

1
2 3

4

1
4 7

8

1
8

1 1 1

Figure 6 In this MDP (with bad states marked red), a safety strategy always chooses the right
outgoing transition, chasing after the ever smaller chance of entering a safe sink state without
re-entering any bad state. Starting from the leftmost state, the probability that this strategy
achieves the co-Büchi objective is less than 0.72. The “opposite” strategy, which always returns to
the leftmost state, succeeds almost surely.

A safety strategy can be chosen uniformly MD (in finitely branching MDPs): in every
controlled state pick the successor with the best value.2

But a safety strategy alone does not suffice for co-Büchi, as the example in Figure 6 shows.
In the following proof we construct an almost surely winning MD strategy for co-Büchi by
combining an MD strategy for safety with an MD strategy for reachability.

Proof sketch of Theorem 7. Similarly as in the proof of Theorem 6, we can assume without
loss of generality that for all states there exists an almost surely winning strategy. We will
show that there exists a single MD strategy that is almost surely winning for all states.

We have mentioned previously that there exists an MD uniformly optimal safety
strategy σsafe, i.e., for each state, σsafe minimizes the probability of ever revisiting a bad
state. For x ∈ [0, 1] define Safe(x) ⊆ S as the set of states with safety level at least x. By
safety level we mean the probability of never visiting another bad state, assuming σsafe
is played. See Figure 7 for an abstract visualization. We fix σsafe in Safe( 1

3 ), i.e., in the
following we will only consider strategies that are compatible with σsafe in Safe( 1

3 ), see the

2 Such an approach for constructing an optimal strategy does not work for reachability or more general
objectives: intuitively, this approach cannot guarantee “progress” towards the goal.



S. Kiefer, R. Mayr, M. Shirmohammadi, P. Totzke, D. Wojtczak 3:11

safety level

0

1

safety level

0

1
3

1

Figure 7 Left: In this diagram the controlled states are arranged according to their safety level.
A safety strategy entails not to pick successor states with smaller safety level, so grey transitions are
not used. Right: The optimal safety strategy σsafe is fixed for the states with safety level at least 1

3 .

right side of Figure 7.
After this fixing, every state still has an almost surely winning strategy. Indeed, consider

any state and its almost surely winning strategy before the fixing. We modify the strategy
as follows. First we play it as before, but if and when we reach Safe( 1

3 ), we switch to σsafe.
Now the probability is at least 1

3 that we never visit a bad state again and thus also achieve
the co-Büchi objective. If we do visit a bad state again, we revert to a strategy that is almost
surely winning from that bad state in the original MDP. We follow that strategy until we
possibly reach Safe( 1

3 ) again. At this point we switch again to σsafe, thus forever avoiding
the bad states with a fresh chance of at least 1

3 . Continuing in this way, we win almost
surely. Note that this strategy is not MD, as we have to remember in which phase we are: at
any point we either follow a winning strategy of the original MDP, or follow σsafe. We have
merely argued here that having fixed σsafe in Safe( 1

3 ) has not done any harm.
Before we define an MD strategy for the rest of the state space, consider a state s ∈ Safe( 2

3 ),
i.e., s has an even higher safety level of at least 2

3 . Since Safe( 2
3 ) ⊆ Safe( 1

3 ), the MD strategy
σsafe has been fixed there. Two things might happen starting at s (see the left side of
Figure 8): either the run remains in Safe( 1

3 ) forever and never visits a bad state; or it
eventually leaves Safe( 1

3 ) (or even visits a bad state). The second case (leaving Safe( 1
3 ) or

visiting a bad state) cannot have a very large probability: after all, we start with safety
level at least 2

3 , so if the safety level is very likely to drop below 1
3 , we were not very safe to

start with. Doing the maths shows that the probability of the second case is at most 1
2 . So

starting from Safe( 2
3 ), the probability of avoiding bad states forever is at least 1

2 , no matter
what strategy is played outside of Safe( 1

3 ).
We still need to define an MD strategy for the part of the state space with safety level

less than 1
3 . Our ambition is to define it so that from every state we reach almost surely

Safe( 2
3 ), see the right side of Figure 8. If we succeed in this goal, then we achieve the co-Büchi

objective almost surely, because every time we reach Safe( 2
3 ) we receive a fresh chance of 1

2
to avoid bad states forever, as just argued.

First we argue that for each state there is some strategy to reach Safe( 2
3 ) almost surely.

Recall that we have shown above that after the fixing in Safe( 1
3 ) every state s still has a

strategy σs to achieve the co-Büchi objective almost surely. We argue that σs reaches Safe( 2
3 )

almost surely. Indeed, whenever a run is outside of Safe( 2
3 ) there is a risk of more than 1

3 to
visit a bad state. It follows that there is a risk of at least 1

3 to visit a bad state within a
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safety level

0

1
3

2
3

1

safety level

0

1
3

2
3

1

Figure 8 Left: Starting from a state with safety level at least 2
3 the probability of keeping a

safety level of at least 1
3 forever is at least 1

2 . Right: For the states with safety level less than 1
3 we

aim at reaching safety level at least 2
3 .

finite time horizon. Since σs almost surely achieves the co-Büchi objective, it must avoid
that this risk materializes infinitely often. Hence σs almost surely reaches Safe( 2

3 ).
Using Theorem 6 it follows that, in the MDP after having fixed σsafe in Safe( 1

3 ), there is
uniform almost surely winning MD strategy σreach for Reach(Safe( 2

3 )). In summary, here is
our almost surely winning MD strategy for co-Büchi: in Safe( 1

3 ) play σsafe, and elsewhere
play σreach. The key point is that these two MD strategies are not conflicting. J

I Remark 8. Generalizations of Theorem 7 are also considered in [11]:
1. A similar proof shows a version of Theorem 7 for ε-optimal strategies.
2. Theorem 7 generalizes to {0, 1, 2}-parity objectives, which also encompass Büchi objectives.

The theorem further generalizes from almost surely winning to optimal strategies as
follows: The set S0 ⊆ S can be taken as the set of states from which there exists an
optimal strategy (note that an almost surely winning strategy is optimal). Then there
exists a single MD strategy that is optimal for all states in S0.

3. Theorem 7 does not hold for {1, 2, 3}-parity objectives.

4 Markov Strategies and Generalizations

We describe a technique to prove the existence of ε-optimal Markov strategies (resp. Markov
strategies with one extra bit of memory) for certain types of objectives, based on the work
on Büchi objectives in [10].
Obtaining Markov strategies via acyclic MDPs. Markov strategies are strategies that
base their decisions only on the current state and the number of steps in the history of
the run from some initial state s0. Thus they do use infinite memory, but only in a very
restricted form by maintaining an unbounded step counter. Slightly more general are 1-bit
Markov strategies that use one extra bit of extra memory in addition to a step counter.

The existence of ε-optimal (1-bit) Markov strategies for some objective ϕ on countable
MDPs can be proven by first studying the strategy complexity of ϕ on acyclic MDPs, i.e.,
MDPs where the underlying transition graph is a directed acyclic graph (DAG). Note that
a DAG is more general than a tree. If the transition graph is a tree with root s0 then
there always exist ε-optimal positional strategies for any objective, since the entire history is
implicit in the current state. This does not hold for a DAG, since the same state s could be
reached via (possibly infinitely many) different paths from s0.
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However, for every countable MDP M with initial state s0, there is a corresponding
acyclic MDPM′ that encodes the step counter into the states, i.e., the states ofM′ are of
the form (s, i) where s is a state ofM and i ∈ N counts the number of steps. Then for every
ε-optimal positional strategy for ϕ inM′ there is a corresponding ε-optimal Markov strategy
for ϕ in M, and vice-versa [10]. Thus, if ε-optimal positional strategies for ϕ exist in all
acyclic MDPs then ε-optimal Markov strategies for ϕ exist in general countable MDPs. The
reverse implication does not hold, however, since not all acyclic MDPs encode a step counter,
e.g., if some state has infinite in-degree and can be reached from the initial state via paths of
arbitrary length.

Acyclic and finitely branching MDPs have nice properties that make it easier to infer the
existence of simpler ε-optimal strategies. In the following, we first observe the behavior of
a general ε-optimal strategy, and then show how a 1-bit strategy can closely match it (for
certain types of objectives).
Observing the behavior of an ε-optimal strategy. Consider an acyclic and finitely
branching MDP with initial state s0. (One could also have a finite set of initial states as in
[10], but we use a single state to simplify the presentation.) Let σ be an arbitrary ε-optimal
strategy from the initial state s0. We now observe its behavior, i.e., the induced runs. Let
bubblek({s0}) be the set of states that can be reached from the initial state s0 within at
most k steps. This set is finite for every finite k, since our MDP is finitely branching. Note
that, by acyclicity, any given run can visit a given finite set of states X only finitely often
(at most |X| times). However, this does not imply that the probability of re-visiting X
must eventually become zero. E.g., it is possible that in the i-th state of some run the
probability of re-visiting X (in continuations of this run) is 2−i (i.e., re-visiting X remains
always possible, but does not happen almost surely).

Still, a weaker property does hold in acyclic and finitely branching MDPs. It follows from
acyclicity [10, Lemma 10] that, after a sufficiently large number of steps, runs are arbitrarily
unlikely to visit any given finite set of states again. In particular this holds for the finite set
bubblek({s0}).

Formally, for every k and δ > 0 there exists some l such that the probability of visiting
bubblek({s0}) after step l is ≤ δ. By definition, states outside the set bubblel({s0}) are
reachable only after a number of steps that is strictly larger than l. Therefore, it is unlikely
(probability ≤ δ) to visit bubblek({s0}) again after some state s /∈ bubblel({s0}) has been
visited for the first time.

These observations allow to define a decreasing sequence δi
def= ε · 2−i of small errors and

sufficiently large and increasing numbers ki and li with ki < li < ki+1 for i ≥ 1 such that for
the finite sets Ki

def= bubbleki
({s0}) and Li

def= bubbleli({s0}) it is unlikely (probability ≤ δi)
to visit Ki after leaving Li (for the first time). I.e., runs like π2 in Figure 9 are unlikely.
However, the probability of leaving Ki and later returning to Ki (even multiple times) before
leaving Li may be large.

Note that we still have a lot of freedom to choose the numbers ki and li. For the numbers
ki we just need li < ki+1. The minimal required size of li depends on ki, σ and δi, but li can
be chosen arbitrarily larger than this minimal size.

Let now SEQ be the objective of never visiting a set Ki after leaving Li (for the first
time) for any i ≥ 1. (I.e., SEQ depends on the chosen numbers ki, li.)

The strategy σ is not only ε-optimal for the objective ϕ from state s0, but also 2ε-optimal
for the stronger objective ϕ ∧ SEQ, since

∑
i≥1 δi ≤ ε.

Constructing simpler strategies. For certain types of objectives ϕ (e.g., Büchi objectives),
one can exploit this pattern of SEQ to construct simpler (1-bit) ε-optimal strategies for ϕ in
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· · ·
K1 L1 K2 L2 K3

π2

π1

s0

Figure 9 Updates of the extra mode bit along runs π1, π2, drawn in blue while the memory-bit
is one and in red while the bit is zero. The run π2 violates SEQ and is drawn as a dotted line once
it does. Upon entering the green zone of Ki \Ki−1, the runs attain the local objective ϕi and flip
the mode bit.

acyclic and finitely branching MDPs. This then yields ε-optimal 1-bit Markov strategies in
general finitely branching MDPs.

Suppose that ϕ∧SEQ can be decomposed into an infinite sequence of local sub-objectives
ϕi ∧ SEQ such that, with arbitrarily high probability, satisfying ϕi ∧ SEQ in each finite set
Ki \Ki−1 implies ϕ ∧ SEQ overall, and vice-versa. (E.g., if ϕ is a Büchi objective to visit a
given set of states F infinitely often then ϕi is the objective to visit the subset of F inside
Ki \ Ki−1 (i.e., to visit F ∩ (Ki \ Ki−1)); cf. [10].) Note that the ‘vice-versa’ part often
depends on the fact that the numbers ki can be chosen sufficiently large to get a sufficiently
high probability of satisfying ϕi inside Ki \Ki−1.

Of course, not every objective ϕ can be decomposed in this way, e.g., in parity objectives,
different runs can win by different colors and local conditions ϕi are insufficient.

Now suppose that in the MDP induced by the finite subspace Ki there exist ε-optimal
positional strategies σi that attain a high probability of ϕi in Ki \Ki−1, and additionally
maintain a high value w.r.t. future objectives ϕj in Kj \Kj−1 for all j > i. I.e., σi has a
high attainment for the local sub-objective without compromising future sub-objectives.
One extra bit. The above suggests a scheme to construct an ε-optimal positional strategy
σ′ for ϕ ∧ SEQ by playing each local positional strategy σi inside Ki \Ki−1.

However, this is not always sufficient. The problem is that, when playing in Ki \Ki−1,
a run might temporarily go back into the set Ki−1 (though not into the states that this
particular run has previously visited, due to acyclicity). If this run has never yet left Li−1,
then going back to Ki−1 is allowed by SEQ and can be necessary (or even unavoidable). (In
contrast, once one has left Li−1, it is possible to henceforth avoid Ki−1 and still attain ϕ
with high probability, as witnessed by the strategy σ.) But back in Ki−1 the strategy σ′
would play σi−1 towards objective ϕi−1 (that had already been attained previously) instead
of focusing on the current objective ϕi. Although the run will inevitably (by acyclicity) exit
Ki−1 again, it might re-visit Ki−1 many times, and thus switch the focus back to ϕi−1 many
times. I.e., the strategy σ′ might attempt to re-attain the previous objective ϕi−1 many
times over, instead of permanently switching the focus to ϕi once ϕi−1 has been attained
once. Switching the focus back to the previous objective ϕi−1 too often is wasteful and might
damage the ability to attain future objectives ϕj for the j ≥ i with high probability, e.g., due
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to a trade-off between current and future objectives. So this strategy σ′ might not always
succeed for objective ϕ (e.g., it cannot work for Büchi objectives [10]).

Instead we want the strategy to always focus on the next objective ϕi after it has
completed the previous objective ϕi−1. To this end, we need one extra bit of memory, called
the mode bit, to distinguish two modes of playing: current-mode and next-mode. The mode
bit is used to remember whether one has already attained ϕi in Ki \Ki−1. Upon attaining
ϕi in Ki \Ki−1, one switches from current-mode to next-mode.

One interprets the content of the mode bit (0 or 1) differently for even and odd numbers i,
so that the next-mode for Ki \Ki−1 is the current-mode for Ki+1 \Ki (and vice-versa). This
means that if the strategy plays in next-mode in Ki \Ki−1 then upon entering Ki+1 \Ki

it automatically switches to current-mode. Dually, if it plays in current-mode in Ki+1 \Ki

and temporarily goes back into Ki \Ki−1 then it automatically switches to next-mode; cf.
Figure 9. The strategy pursues different local goals, depending on the mode bit.

In current-mode, it continues to focus on attaining ϕi in Ki. Temporarily going back to
Ki−1 does not change the focus on ϕi, because current-mode for Ki is next-mode for Ki−1.
By suitably choosing ϕi and ki, one can ensure with high probability that ϕi is attained
only in Ki \ Li−1, i.e., after leaving Li−1. So, since one has already left Li−1 before this
success, it is possible with high probability to avoid Ki−1 afterwards. In particular, after
attaining ϕi in Ki \ Li−1 the strategy switches the mode-bit to next-mode. The value of
the mode bit is the same for next-mode in Ki and for current-mode in Ki−1. However,
there is only a small danger of ever confusing these, since the probability of visiting Ki−1
after leaving Li−1 is small.
In next-mode, the focus is on leaving Ki to reach Ki+1 \ Ki and attaining the next
objective ϕi+1. In particular, upon entering Ki+1 \Ki the mode bit is interpreted as
current mode for Ki+1 \Ki. Moreover, it is then not a problem if the run temporarily
goes back from Li \Ki into Ki, because the focus remains on ϕi+1 (since current-mode
in Ki+1 is next-mode in Ki).

By combining the positional strategies for the local objectives ϕi with the extra mode bit,
one obtains ε-optimal 1-bit strategies on all acyclic finitely branching MDPs. This yields
1-bit Markov strategies on general finitely branching MDPs by the argument above.

For Büchi objectives, one can encode infinite branching into finite branching by a gadget
similar to the one used in the proof of Lemma 2. Moreover, the local strategies σi can be
chosen MD. Thus one obtains deterministic 1-bit Markov ε-optimal strategies. There is also
a matching lower bound.

I Theorem 9 ([10], ε-optimal deterministic 1-bit Markov strategies for Büchi objectives). Given
a countable MDP and a Büchi objective, for every ε > 0 and initial state s0, there exists
an ε-optimal deterministic 1-bit Markov strategy. Moreover, neither randomized Markov
strategies nor randomized finite-memory strategies are sufficient.

I Remark 10. The whole argument can, of course, be generalized. If the strategies for the
local objectives ϕi in acyclic MDPs are not positional but use finite memory, say m bits,
then one obtains (m+ 1)-bit Markov strategies in general MDPs.
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A Missing Proof Details

A.1 Proof of Equation (1)

For a state s ∈ S \G, define the event Ls as the set of runs that leave G such that s is the
first visited state in S \G. Then we have:

PσMi,si
(Reach(S \G)) =

∑
s∈S\G

PσMi,si
(Ls) (6)

Since T is a sink and using the Markov property:

PσMi,si
(Reach(T )) = PσMi,si

(¬Reach(S \G) ∧ Reach(T )) +∑
s∈S\G

PσMi,si
(Ls) · PσMi,s(Reach(T )) (7)

http://dl.acm.org/citation.cfm?id=982792.982808
http://dl.acm.org/citation.cfm?id=982792.982808
https://doi.org/10.1007/978-3-319-10575-8
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By the definition of G it follows:

PσMi,si
(Reach(T )) ≤ PσMi,si

(¬Reach(S \G) ∧ Reach(T )) +∑
s∈S\G

PσMi,si
(Ls) · (valMi,s(Reach(T ))− εi) (8)

On the other hand, σ is ε2
i -optimal for si, hence:

PσMi,si
(Reach(T )) ≥ −ε2

i + valMi,s(Reach(T ))
≥ −ε2

i + PσMi,si
(Reach(T ) ∧ ¬Reach(S \G)) +∑

s∈S\G

PσMi,si
(Ls) · valMi,s(Reach(T ))

(9)

By combining (8) and (9) we obtain:

ε2
i ≥ εi ·

∑
s∈S\G

PσMi,si
(Ls) = εi · PσMi,si

(Reach(S \G)) J

A.2 Proof of Equation (3)
For a state s′ ∈ G, define the event Es′ as the set of runs that enter G such that s′ is the
first visited state in G. Fix any state s ∈ S and any strategy σi inMi. We transform σi
into a strategy σi+1 in Mi+1 such that σi+1 behaves like σi until G is entered, at which
point σi+1 switches to the MD strategy σ, which we recall is compatible with Mi+1 and
is εi-optimal from G in Mi. To show (3) it suffices to show that Pσi+1

Mi+1,s
(Reach(T )) ≥

Pσi

Mi,s
(Reach(T ))− εi. We have:

Pσi+1
Mi+1,s

(Reach(T )) = Pσi+1
Mi+1,s

(¬Reach(G) ∧ Reach(T )) + as T is a sink∑
s′∈G

Pσi+1
Mi+1,s

(Es′) · Pσi+1
Mi+1,s′(Reach(T )) Markov property

= Pσi

Mi,s
(¬Reach(G) ∧ Reach(T )) + using def. of σi+1∑

s′∈G
Pσi

Mi,s
(Es′) · PσMi,s′(Reach(T ))

Further we have for all s′ ∈ G:

PσMi,s′(Reach(T )) ≥ valMi,s′(Reach(T ))− εi as s′ ∈ G
≥ Pσi

Mi,s′(Reach(T ))− εi

Plugging this in above, we obtain:

Pσi+1
Mi+1,s

(Reach(T )) ≥ Pσi

Mi,s
(¬Reach(G) ∧ Reach(T )) +∑

s′∈G
Pσi

Mi,s
(Es′) · (Pσi

Mi,s′(Reach(T ))− εi)

≥ Pσi

Mi,s
(¬Reach(G) ∧ Reach(T )) +( ∑

s′∈G
Pσi

Mi,s
(Es′) · Pσi

Mi,s′(Reach(T ))
)
− εi

= Pσi

Mi,s
(Reach(T ))− εi J
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A.3 Proof of Equation (4)
For all i ≥ 1 we have:

PσM,si
(Reach(T )) ≥ valMi,si

(Reach(T ))− εi − ε2
i by (2)

≥ valMi,si
(Reach(T ))− 2εi as εi < 1

≥ valMi,si
(Reach(T ))− ε

2 choice of εi

≥ valM,si
(Reach(T ))−

i−1∑
j=1

εj −
ε

2 by (3)

≥ valM,si
(Reach(T ))− ε choice of εj J
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