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Abstract

We study countably infinite stochastic 2-player games with reachability
objectives. Our results provide a complete picture of the memory
requirements of ε-optimal (resp. optimal) strategies. These results
depend on the size of the players’ action sets and on whether one
requires strategies that are uniform (i.e., independent of the start state).
Our main result is that ε-optimal (resp. optimal) Maximizer strategies
require infinite memory if Minimizer is allowed infinite action sets.
This lower bound holds even under very strong restrictions. Even in
the special case of infinitely branching turn-based reachability games,
even if all states allow an almost surely winning Maximizer strategy,
strategies with a step counter plus finite private memory are still useless.
Regarding uniformity, we show that for Maximizer there need
not exist memoryless (i.e., positional) uniformly ε-optimal strategies
even in the special case of finite action sets or in finitely
branching turn-based games. On the other hand, in games with
finite action sets, there always exists a uniformly ε-optimal
Maximizer strategy that uses just one bit of public memory.
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1 Introduction

We study 2-player zero-sum stochastic games on countably 1 infinite graphs.
This section outlines the background and our contribution. Formal definitions
of games, strategies, memory, etc., are given in Section 2.

Stochastic games were first introduced by Shapley in his seminal
1953 work Shapley (1953), and model dynamic interactions in which the
environment responds randomly to players’ actions. Shapley’s games were
generalized by Gillette (1958) and Kumar and Shiau (1981) to allow infinite
state and action sets and non-termination. They play a central role in
the solution of many problems in economics, see Sorin (1992); Nowak and
Szajowski (2005); Jaskiewicz and Nowak (2011); Solan and Vieille (2015);
Bacharach (2019), evolutionary biology, e.g., Raghavan et al (2012), and
computer science, see de Alfaro and Henzinger (2001); Neyman and Sorin
(2003); Altman et al (2005, 2007); Solan and Vieille (2015); Svoreňová and
Kwiatkowska (2016); Bouyer et al (2016) among others.

In general concurrent games, in each state both Maximizer and Minimizer
independently choose an action and the next state is determined according to a
pre-defined distribution that depends on the chosen pair of actions. Turn-based
games (also called switching-control games) are a subclass where each state
is owned by some player and only this player gets to choose an action. These
games were studied first in the 1980s and 90s in Filar (1980, 1981); Vrieze
et al (1983); Vrieze (1987); Condon (1992) but have recently received much
attention by computer scientists, for instance in Gimbert and Horn (2010);
Chen et al (2013); Bouyer et al (2016); Kiefer et al (2017a); Bertrand et al
(2017). An even more special case of stochastic games are Markov Decision
Processes (MDPs): MDPs are turn-based games where all controlled states
are Maximizer states. Since Minimizer is passive, they are also called games
against nature.

In order to get the strongest results, we will show that our lower bound
results hold even for the special subclass of turn-based games while our upper
bounds hold even for general games.

A strategy for a player is a function that, given a history of a play,
determines the next action of the player. Objectives are defined via functions
that assign numerical rewards to plays, and the Maximizer (resp. Minimizer)
aim to maximize (resp. minimize) the expected reward. A central result in
zero-sum 2-player stochastic games with finite action sets is the existence of a
value for the large class of Borel measurable objectives (Martin, 1998; Maitra
and Sudderth, 1998) (i.e., that supMax infMin = value = infMin supMax over
Maximizer/Minimizer strategies). In particular, this implies the existence of
ε-optimal strategies for every ε > 0 and either player, i.e., strategies that
enforce that the outcome of a game is ε-close to its value, regardless of the
behavior of the other player. Optimal strategies (ε-optimal for ε = 0) need not

1Our proofs of upper bounds do not carry over to uncountable state spaces. E.g., we partition
events into as many (by cardinality) parts as there are states and then rely on sigma-additivity
of measures. Our lower bounds trivially carry over to uncountable state spaces.
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exist in general, but their properties have been studied in those cases where
they do exist, for example in Puterman (1994); Kučera (2011); Kiefer et al
(2017a, 2020a).

The nature of good strategies in stochastic games – that is ε-optimality
vs. optimality, and their memory requirements – is relevant in computer science
(Brázdil et al, 2014; Kiefer et al, 2017a, 2020a), in particular, in the sense
of computability (Kučera, 2011). It is also recognized as a central notion
in branches of mathematics and economics, especially operations research
(Maitra and Sudderth, 2007), probability theory (Flesch et al, 2018), game
theory (Flesch et al, 2021; Laraki et al, 2013; Maitra and Sudderth, 2007) and
economic theory (Aumann, 1981; Bacharach, 2019; Kalai, 1990).

The simplest type of strategy bases its decisions only on the current state,
and not on the history of the play. Such strategies are called memoryless or
positional. 2 By default, we assume that strategies can use randomization (i.e.,
use mixed actions), while the subclass of deterministic (pure) strategies are
limited to choosing a single pure action at each state. Memoryless randomized
(MR) strategies choose a mixed action at each state, while memoryless
deterministic (MD) strategies choose a pure action at each state, both
independently of the history.

More complex strategies might use some finite amount of memory. The
strategy chooses an action depending only on the current state and the
current memory mode. The memory mode can be updated in every round
according to the current state, the observed chosen actions and the next
state. We assume perfect-information games, so the actions and states are
observable at the end of every round. In general, for strategies that are
not deterministic but use randomization, this memory update may also be
randomized. Therefore, in the case of games, a player does not necessarily know
for sure the current memory mode of the other player. It may be advantageous
for a player to keep his memory mode hidden from the other player. We
distinguish between public memory, where the strategies’ memory mode is
public knowledge, and private memory, which is hidden from the opponent.
A step counter is an infinite memory device corresponding to a discrete clock
that is incremented after every round. We consider this to be a type of public
memory, because the update is deterministic and the memory mode can be
deduced by the opponent. Strategies that use only a step counter are called
Markov strategies. Combinations of the above are possible, e.g., a strategy that
uses a step counter and an additional finite public/private general purpose
memory. The amount/type of memory and randomization required for a good
(ε-optimal, resp. optimal) strategy for a given objective is also called its
strategy complexity.

2A closely related concept is a stationary strategy, which also bases decisions only on the current
state. However, some authors call a strategy “stationary ε-optimal” if it is ε-optimal from every
state, and call it “semi-stationary” if it is ε-optimal only from the fixed initial state. Since this
difference is important in our work, we avoid the term “stationary” here. Instead, if a strategy is
ε-optimal from every state then we call it uniformly ε-optimal. I.e., ε-optimal stationary strategies
are uniformly ε-optimal memoryless strategies.
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The Reachability Objective

With a reachability objective, a play is defined as winning for Maximizer iff
it visits a defined target state (or a set of target states) at least once. Thus
Maximizer aims to maximize the probability that the target is reached. Dually,
Minimizer aims to minimize the probability of reaching the target. So, from
Minimizer’s point of view, this is the dual safety objective of avoiding the
target.

Reachability is arguably the simplest objective in games on graphs. It can
trivially be encoded into the usual reward-based objectives, i.e., every play that
reaches the target gets reward 1 and all other plays get reward 0. Moreover,
it can be encoded into many other objectives including Büchi, Parity and
average-payoff conditions, by turning the target vertex into a good (for the
new objective) sink.

Despite their apparent simplicity, reachability games are not trivial. While
both players have optimal MD strategies in finite-state turn-based reachability
games (Condon, 1992); see also (Kučera, 2011, Proposition 5.6.c, Proposition
5.7.c), this does not carry over to finite-state concurrent reachability games. A
counterexample where Maximizer has no optimal strategy is the Hide-or-Run
game (Everett, 1957, Example 1), also see Kumar and Shiau (1981); de Alfaro
et al (1998).

In countably infinite reachability games, Maximizer does not have an
optimal strategy even if the game is turn-based, in fact not even in countably
infinite MDPs that are finitely branching (Kiefer et al, 2017b). On the other
hand, (Ornstein, 1969, Proposition A) shows that Maximizer has ε-optimal
MD strategies in countably infinite MDPs. Better yet, the MD strategies can
be made uniform, i.e., independent of the start state.3 This led to the question
whether Ornstein’s results can be generalized from MDPs to countably infinite
stochastic games. Secchi (1997), Corollary 3.9, proved the following.

Proposition 1 Maximizer has ε-optimal memoryless (MR) strategies in countably
infinite concurrent reachability games with finite action sets.

However, these MR strategies are not uniform, i.e., they depend on the
start state. In fact, Nowak and Raghavan (1991) showed that there cannot exist
any uniformly ε-optimal memoryless Maximizer strategies in countably infinite
concurrent reachability games with finite action sets. Their counterexample
is called the Big Match on N which, in turn, is inspired by the Big Match
(Gillette, 1958; Solan and Vieille, 2015; Blackwell and Ferguson, 1968; Hansen
et al, 2018). Several fundamental questions remained open:

Q1. Does the negative result of Nowak and Raghavan (1991) still hold in the
special case of countable turn-based (finitely branching) reachability games?

3This memoryless uniformity does not carry over to MDPs with uncountable state spaces by
(Ornstein, 1969, Theorem A).
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Maximizer
countable turn-based games turn-based games concurrent games
MDPs finite branching infinite branching finite action sets

ε-optimal
MD MD ∞-memory MR

(Ornstein, 1969, Thm. B) (Kučera, 2011, Proposition 5.7.c), [Theorem 15] (Secchi, 1997, Cor. 3.9)
[Lemma 5]

Uniform
ε-optimal

MD no MR [Theorem 7]; ∞-memory no MR (Nowak and Raghavan, 1991);
(Ornstein, 1969, Thm. B) det. public 1-bit [Theorem 15] rand. public 1-bit,

[Theorem 6] [Theorem 6]

Optimal

MD no FR (Kučera, 2011, Prop. 5.7.b); ∞-memory ∞-memory
(Ornstein, 1969, Prop. B) No Markov [Proposition 26] [Theorem 15] [Proposition 21]

step counter + det. public 1-bit,
[Theorem 22]

Almost
sure

MD MD ∞-memory MR
(Ornstein, 1969, Prop. B) (Kiefer et al, 2017a, Theorem 5.3) [Theorem 15] [Theorem 27]

Table 1 The strategy complexity of Maximizer for the reachability objective. Since
optimal and Almost sure (a.s.) winning strategies are not guaranteed to exist, the results in
the two bottom rows are conditioned upon their existence. “∞-memory” means that even
randomized strategies with a step counter plus an arbitrarily large finite private memory do
not suffice. Deterministic strategies are useless in concurrent games, regardless of memory.

Minimizer
turn-based games turn-based games concurrent games
finite branching infinite branching finite action sets

(Uniform)
ε-optimal

MD no FR (Kiefer et al, 2017b, Thm. 3);
(Brázdil et al, 2011, Thm. 3.1) det. Markov [Theorem 29] MR, (Nowak and Raghavan, 1991, Thm. 1)

Optimal MD (Brázdil et al, 2011, Thm. 3.1) ∞-memory [Proposition 30] MR (Nowak and Raghavan, 1991, Thm. 1)

Table 2 The strategy complexity of Minimizer for the reachability objective. Since
optimal Minimizer strategies do not need to exist for infinitely branching games (unlike in
the other cases), the result of Proposition 30 is conditioned upon their existence.
Deterministic strategies are useless in concurrent games, regardless of memory.

Q2. If uniformly ε-optimal Maximizer strategies cannot be memoryless, how
much memory do they need?
Q3. Does the positive result of Secchi (Proposition 1 above) still hold if the
restriction to finite action sets is relaxed? The question is meaningful, since
concurrent games where only one player has countably infinite action sets are
still determined (Flesch et al, 2020, Theorem 11) (though not if both players
have infinite action sets, unless one imposes other restrictions). Moreover, what
about infinitely branching turn-based reachability games? How much memory
do good Maximizer strategies need in these cases?

Our Contribution

Our results, summarized in Tables 1 and 2, provide a comprehensive view
on the strategy complexity of (uniformly) ε-optimal strategies for reachability
(and also about optimal strategies when they exist).

Our first result strengthens the negative result of Nowak and Raghavan
(1991) to the turn-based case.

First Lower-Bound result (Q1): (Theorem 7) There exists a finitely
branching turn-based version of the Big Match on N where Maximizer still does
not have any uniformly ε-optimal MR strategy.

Our second result solves the open question about uniformly ε-optimal
Maximizer strategies. While uniformly ε-optimal Maximizer strategies cannot
be memoryless, 1 bit of memory is enough.
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Main Upper-Bound result (Q2): (Theorem 6) In concurrent games with
finite action sets and reachability objective, for any ε > 0, Maximizer has a
uniformly ε-optimal public-memory 1-bit strategy. This strategy can be chosen
as deterministic if the game is turn-based and finitely branching.

Our main contribution (Theorem 2) addresses Q3. It determines the
strategy complexity of Maximizer in infinitely branching reachability games.
Our result is a strong lower bound, and we present the path towards it by
disproving a sequence of hopeful conjectures towards upper bounds.

Hope 1: In turn-based reachability games, Maximizer has ε-optimal MD
strategies.

This is motivated by the fact that the property holds if the game is finitely
branching (Kučera, 2011, Proposition 5.7.c) and Lemma 5 or if it is just an
MDP as in Ornstein (1969).

One might even have hoped for uniformly ε-optimal MD strategies, i.e.,
strategies that do not depend on the start state of the game, but this hope
was crushed by the answer to Q1.

Let us mention a concern about Hope 1 as stated (i.e., disregarding
uniformity). Consider any turn-based reachability game that is finitely
branching, and let x ∈ [0, 1] be the value of the game. The proof of
Proposition 1 actually shows that for every ε > 0, Maximizer has both a
strategy and a time horizon n ∈ N such that for all Minimizer strategies, the
game visits the target state with probability at least x − ε within the first n
steps of the game. There is no hope that such a guarantee on the time horizon
can be given in infinitely branching games. Indeed, consider the infinitely many
states f0, f1, f2, . . ., where f0 is the target state and for i > 0 state fi leads to
fi−1 regardless of the players’ actions, and an additional Minimizer state, u,
where Minimizer chooses, by her action, one of the fi as successor state. In this
game, starting from u, Maximizer wins with probability 1 (he is passive in this
game). Minimizer cannot avoid losing, but her strategy determines when f0 is
visited. This shows that a proof of Hope 1 would require different methods.

In case Hope 1 turns out to be false, there are various plausible weaker
versions. Let us briefly discuss their motivation.

Hope 2: Hope 1 is true if MD is replaced by MR.

This is motivated by Proposition 1, i.e., that in concurrent games with
finite action sets for both players, Maximizer has ε-optimal MR strategies. In
fact, (Flesch et al, 2020, Theorem 12.3) implies that this holds even under the
weaker assumption that just Minimizer has finite action sets (while Maximizer
is allowed infinite action sets).

Hope 3: Hope 1 is true if Maximizer has an optimal strategy.

This is motivated by the fact that in MDPs with Büchi objective (i.e., the
player tries to visit a set of target states infinitely often), if the player has an
optimal strategy, he also has an MD optimal strategy. The same is not true for
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ε-optimal strategies as shown in Kiefer et al (2017b). This example shows that
although optimal strategies do not always exist, if they do exist, they may be
simpler.

Hope 4: Hope 1 is true if Maximizer has an almost surely winning strategy,
i.e., a strategy that guarantees him to visit the target state with probability 1.

This is weaker than Hope 3, because an almost surely winning strategy is
necessarily optimal.

In a turn-based game, let us associate to each state s its value, which is
the value of the game when started in s. We call a controlled step s → s′

value-decreasing (resp., value-increasing), if the value of s′ is smaller (resp.,
larger) than the value of s. It is easy to see that Maximizer cannot do
value-increasing steps and Minimizer cannot do value-decreasing steps, but the
opposite is possible in general.

Hope 5: Hope 1 is true if Maximizer does not have value-decreasing steps.

Hope 6: Hope 1 is true if Minimizer does not have value-increasing steps.

Hopes 5 and 6 are motivated by the fact that sometimes the absence of
Maximizer value-decreasing steps or the absence of Minimizer value-increasing
steps implies the existence of optimal Maximizer strategies and then Hope 3
might apply. For example, in finitely branching turn-based reachability games,
the absence of Maximizer value-decreasing steps or the absence of Minimizer
value-increasing steps implies the existence of optimal Maximizer strategies,
and they can be chosen MD (Kiefer et al, 2017a, Theorem 5).

Hope 7: Hope 1 is true for games with acyclic game graph.

This is motivated, e.g., by the fact that in safety MDPs (where the only
active player tries to avoid a particular state f) with acyclic game graph and
infinite action sets the player has ε-optimal MD strategies (Kiefer et al, 2020a,
Corollary 26). The same does not hold without the acyclicity assumption
(Kiefer et al, 2017b, Theorem 3).

Hope 8: Hope 1 is true if Maximizer can additionally use a step counter to
choose his actions.

This is weaker than Hope 7, because by using a step counter Maximizer
effectively makes the game graph acyclic. However, the reverse does not hold.
Not every acyclic game graph has an implicit step counter.

Hope 9: In turn-based reachability games, Maximizer has ε-optimal strategies
that use only finite memory.

This is motivated, e.g., by the fact that in MDPs with acyclic game graph
and Büchi objective, the player has ε-optimal deterministic strategies that
require only 1 bit of memory, but no ε-optimal MR strategies (Kiefer et al,
2019).
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It might be advantageous for Maximizer to keep his memory mode private.
This motivates the following final weakening of Hope 9.

Hope 10: In turn-based reachability games, Maximizer has ε-optimal
strategies that use only private finite memory.

The main contribution of this paper is to crush all these hopes. That is,
Hope 1 is false, even if all weakenings proposed in Hopes 2-10 are imposed
at the same time. Specifically, we show the following theorem (stated in more
detail as Theorem 15 later on).

Theorem 2 There is a turn-based reachability game (necessarily, by Proposition 1,
with infinite action sets for Minimizer) with the following properties:

1. for every Maximizer state, Maximizer has at most two actions to choose from;

2. for every state Maximizer has a strategy to visit the target state with
probability 1, regardless of Minimizer’s strategy;

3. for every Maximizer strategy that uses only a step counter and private finite
memory and randomization, for every ε > 0, Minimizer has a strategy so that
the target state is visited with probability at most ε.

This lower bound trivially carries over to concurrent stochastic games
with infinite Minimizer action sets, and for all Borel objectives that subsume
reachability, e.g., Büchi, co-Büchi, Parity, average-reward and total-reward.

To put this result into perspective, we show in Section 8 that it is crucial
that Minimizer can use infinite branching (resp. infinite actions sets) infinitely
often. If the game is restricted such that Minimizer can use infinite actions sets
only finitely often in any play then Maximizer still has uniformly ε-optimal
public 1-bit strategies.

While optimal Maximizer strategies need not exist in general, it is still
relevant to study the case where they do exist. If Minimizer can use infinite
branching (resp. infinite actions sets) then Theorem 2 shows that Maximizer
needs infinite memory even in that case. However, optimal Maximizer
strategies in finitely branching turn-based games can be chosen to use a step
counter plus 1 bit of public memory, while just a step counter is not enough;
cf. Section 9.

Finally, in Section 10, we determine the strategy complexity of Minimizer
for all cases. In particular, Minimizer has uniformly ε-optimal memoryless
strategies in turn-based games that are infinitely branching but acyclic.

2 Preliminaries and Notations

A probability distribution over a countable set S is a function f : S → [0, 1]

with
∑

s∈S f(s) = 1. Let supp(f)
def
= {s | f(s) > 0} denote the support of f .

We write D(S) for the set of all probability distributions over S.
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We study perfect-information 2-player stochastic games between the two
players Maximizer (also denoted as 2) and Minimizer (also denoted as 3).

2-Player Concurrent Stochastic Games

A 2-player concurrent game G is played on a countable set of states S. For
each state s ∈ S there are nonempty countable action sets A(s) and B(s) for

Maximizer and Minimizer, respectively. Let Z
def
= {(s, a, b) | s ∈ S, a ∈ A(s), b ∈

B(s)}. For every triple (s, a, b) ∈ Z there is a distribution p(s, a, b) ∈ D(S) over
successor states. We call a state s ∈ S a sink state, or absorbing, if p(s, a, b) = s
for all a ∈ A(s) and b ∈ B(s). The set of plays from an initial state s0 is given
by the infinite sequences in Zω where the first triple contains s0. The game
from s0 is played in stages N = {0, 1, 2, . . . }. At every stage t ∈ N, the play
is in some state st. Maximizer chooses an action at ∈ A(st) and Minimizer
chooses an action bt ∈ B(st). The next state st+1 is then chosen according to
the distribution p(st, at, bt). (Since we just consider the reachability objective
here, we don’t define a reward function.)

2-Player Turn-based Stochastic Games

A special subclass of concurrent stochastic games are turn-based games,
where in each round either Maximizer or Minimizer is passive (i.e., has
just a single action to play). Turn-based games are often represented in a
form that explicitly separates local decisions into Maximizer-controlled ones,
Minimizer-controlled ones, and random decisions. Thus one describes the
turn-based game as G = (S, (S2, S3, S#),−→, P ) where the countable set of
states S is partitioned into the set S2 of states controlled by Maximizer (2),
the set S3 of states controlled by Minimizer (3) and random states S#. The
relation −→ ⊆ S×S is the transition relation. We write s−→s′ if (s, s′) ∈ −→,
and we assume that each state s has a successor state s′ with s−→s′. The
probability function P : S# → D(S) assigns to each random state s ∈ S# a
probability distribution over its successor states.

The game G is called finitely branching if each state has only finitely
many successors; otherwise, it is infinitely branching. A game is acyclic if
the underlying graph (S,−→) is acyclic. Let ⊙ ∈ {2,3}. At each stage t, if
the game is in state st ∈ S⊙ then player ⊙ chooses a successor state st+1

with st−→st+1; otherwise the game is in a random state st ∈ S# and proceeds
randomly to st+1 with probability P (st)(st+1). If S⊙ = ∅, we say that player ⊙
is passive, and the game is a Markov decision process (MDP). A Markov chain
is an MDP where both players are passive.

Strategies and Probability Measures

The set of histories at stage n, with n ∈ N, is denoted by Hn. That is, H0
def
= S

andHn
def
= Zn×S for all n > 0. LetH

def
=

⋃
n∈N Hn be the set of all histories. For

each history h = (s0, a0, b0) · · · (sn−1, an−1, bn−1)sn ∈ Hn, let sh
def
= sn denote
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the final state in h. In the special case of turn-based games, the history can be
represented by the sequence of states s0s1 · · · sh, where si−→si+1 for all i ∈ N.
We say that a history h ∈ H visits the set of states T ⊆ S at stage t if st ∈ T .

A mixed action for Maximizer (resp. Minimizer) in state s is a distribution
over A(s) (resp. B(s)). A strategy for Maximizer (resp. Minimizer) is a function
σ (resp. π) that to each history h ∈ H assigns a mixed action σ(h) ∈ D(A(sh))
(resp. π(h) ∈ D(B(sh)) for Minimizer). For turn-based games this means
instead a distribution σ(h) ∈ D(S) over successor states if sh ∈ S2 (and
similarly for Minimizer with sh ∈ S3). Let Σ (resp. Π) denote the set of
strategies for Maximizer (resp. Minimizer).

An initial state s0 and a pair of strategies σ, π for Maximizer and Minimizer
induce a probability measure on sets of plays. We write PG,s0,σ,π(R) for the
probability of a measurable set of plays R starting from s0. More generally, if
f : Zω → R is a measurable reward function on plays then we write EG,s0,σ,π(f)
for the expected reward w.r.t. f and PG,s0,σ,π. The case of measurable sets of
plays R is subsumed by this, since we can choose f as the indicator function
of R. These measures are initially defined for the cylinder sets and extended
to the sigma algebra by Carathéodory’s unique extension theorem (Billingsley,
1995).

Objectives

We consider the reachability objective for Maximizer. Given a set T ⊆ S
of states, the reachability objective Reach(T ) is the set of plays that visit
T at least once. From Minimizer’s point of view, this is the dual safety

objective Safety(T )
def
= Zω \ Reach(T ) of plays that never visit T . Maximizer

(resp. Minimizer) attempts to maximize (resp. minimize) the probability of
Reach(T ).

For any subset of states R ⊆ S, let ReachR(T ) denote the objective of
visiting T while remaining in R before visiting T . For X ⊆ N, let ReachX(T )
denote the objective of visiting T in some number of rounds n ∈ X. For n ∈ N
let Reachn(T )

def
= Reach{k|k≤n}(T ) denote the objective of reaching T in at

most n rounds.

Value and Optimality

For a game G, initial state s0 and objective R the lower value is defined as

α(s0)
def
= sup

σ∈Σ
inf
π∈Π

PG,s0,σ,π(R)

Similarly, the upper value is defined as

β(s0)
def
= inf

π∈Π
sup
σ∈Σ

PG,s0,σ,π(R)
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The inequality α(s0) ≤ β(s0) trivially holds. If α(s0) = β(s0), then this
quantity is called the value of the game, denoted by valG,R(s0). Reachability
objectives, like all Borel objectives, have value (Maitra and Sudderth, 1998).
For ε > 0, a strategy σ ∈ Σ from s0 for Maximizer is called ε-optimal if
∀π ∈ Π.PG,s0,σ,π(R) ≥ valG,R(s0) − ε. Similarly, a strategy π ∈ Π from s0
for Minimizer is called ε-optimal if ∀σ ∈ Σ.PG,s0,σ,π(R) ≤ valG,R(s0) + ε. If
a strategy is 0-optimal we simply call it optimal.

Memory-based Strategies

A memory-based strategy σ of Maximizer is a strategy that can be described
by a tuple (M,m0, σα, σm) where M is the set of memory modes, m0 ∈ M is
the initial memory mode, and the functions σα and σm describe how actions
are chosen and memory modes updated; see below. A play according to σ
generates a random sequence of memory states m0, . . . ,mt,mt+1, . . . from a
given set of memory modes M, where mt is the memory mode at stage t.
The strategy σ selects the action at stage t according to a distribution that
depends only on the current state st and the memory mt. Maximizer’s action
at is chosen via a distribution σα(st,mt) ∈ D(A(st)). (Minimizer’s action
is bt). The next memory mode mt+1 of Maximizer is chosen according to a
distribution σm(st, at, bt, st+1) ∈ D(M) that depends on the chosen actions
and the observed outcome. The memory is private if the other player cannot
see the memory mode. Otherwise, it is public.

Let σ[m] denote the memory-based strategy σ that starts in memory mode
m. In cases where the time is relevant and the strategy has access to the time
(by using a step counter) σ[m](t) denotes the strategy σ in memory mode m
at time t.

A finite-memory strategy is one where |M| < ∞. A k-memory strategy is
a memory-based strategy with at most k memory modes, i.e., |M| ≤ k. A
2-memory strategy is also called a 1-bit strategy. A strategy is memoryless
(also called positional) if |M| = 1. A strategy is called Markov if it uses
only a step counter but no additional memory. A strategy is deterministic
(also called pure) if the distributions for the action and memory update are
Dirac. Otherwise, it is called randomized (or mixed). Memoryless randomized
strategies are also called MR and memoryless deterministic strategies are
also called MD. Similarly, randomized (resp. deterministic) finite-memory
strategies are also called FR (resp. FD).

A finite-memory strategy σ is called uniformly ε-optimal for an objective
R iff ∀s ∈ S.∀π.PG,s,σ[m0],π(R) ≥ valG,R(s) − ε, i.e., the strategy performs
well from every state.

The definitions above carry over directly to the simpler turn-based games
where we have chosen/observed transitions instead of actions.
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1

0

Min
0 1

M
a
x 0 ci−1 ci+1

1 lose win

· · · ci−1 ci ci+1 · · ·

win lose

0 1

0 0

1 1 1 0

Fig. 1 The Concurrent Big Match on Z; see Definition 1. On the right is a depiction of the
game graph; on the left we see how joint actions from state ci are resolved.

3 Uniform Strategies in Concurrent Games

First, we consider the concurrent version of the Big Match on the integers, in
the formulation of Fristedt et al (1995).

Definition 1 (Concurrent Big Match on Z) This game is shown in Figure 1. The
state space is {ci | i ∈ Z} ∪ {win, lose}, where the states win and lose are absorbing.
Both players have the action set {0, 1} at each state. If Maximizer chooses action 1
in ci then the game is decided in this round: If Minimizer chooses 0 (resp. 1) then
the game goes to lose (resp. win). If Maximizer chooses action 0 in ci and Minimizer
chooses action 0 (resp. 1) then the game goes to ci−1 (resp. ci+1). Maximizer wins
iff state win is reached or lim inf{i | ci visited} = −∞.

Theorem 3 (Fristedt et al (1995), Theorem 1.1) In the concurrent Big Match on Z,
shown in Figure 1, every state ci has value 1/2. An optimal strategy for Minimizer
is to toss a fair coin at every stage. Maximizer has no optimal strategy, but for any
start state cx and any positive integer N , he can win with probability ≥ N/(2N + 2)
by choosing action 1 with probability 1/(n+1)2 whenever the current state is ci with
i = x+N − n for some n ≥ 0.

The concurrent Big Match on Z is not a reachability game, due to its
particular winning condition. However, the following slightly modified version
(played on N) is a reachability game.

Definition 2 (Concurrent Big Match on N) This game is shown in Figure 2. The
state space is {ci | i ∈ N} ∪ {lose} where lose and c0 are absorbing. Both players
have the action set {0, 1} at each state. If Maximizer chooses action 1 in ci then the
game is decided in this round: If Minimizer chooses 0 (resp. 1) then the game goes
to lose (resp. c0). If Maximizer chooses action 0 in ci and Minimizer chooses action
0 (resp. 1) then the game goes to ci−1 (resp. ci+1).

Maximizer wins iff c0 is reached, i.e., we have the reachability objective
Reach({c0}).

The following theorem summarizes results on the concurrent Big Match on
N by combining results from Fristedt et al (1995) and Nowak and Raghavan
(1991).
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x 0 ci−1 ci+1
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c0 · · · ci−1 ci ci+1 · · ·

lose

0 1

0 0

1 1 1 0

Fig. 2 The Concurrent Big Match on N; see Definition 2. On the right is a depiction of the
game graph; on the left we see how joint actions from state ci are resolved.

Theorem 4 Denote by G the concurrent Big Match game on N, as shown in Figure 2,
and let x ∈ N. Then,
1. valG(cx) = (x+ 2)/(2x+ 2) ≥ 1/2.

2. For every start state cx and N ≥ 0, Maximizer can win with probability ≥
N/(2N+2) by choosing action 1 with probability 1/(n+1)2 whenever the current
state is ci with i = x+N − n for some n ≥ 0.

3. For any ε < 1/2 there is no uniformly ε-optimal memoryless (MR) strategy for
Maximizer. Every MR Maximizer strategy σ attains arbitrarily little from cx as
x → ∞. Formally, lim supx→∞ infπ PG,cx,σ,π(Reach({c0})) = 0.

Proof Item 1 follows directly from (Fristedt et al, 1995, Proposition 5.1).
Item 2 follows from Theorem 3, since it is easier for Maximizer to win in the

game of Definition 2 than in the game of Definition 1.
Towards item 3, we follow the proof of (Nowak and Raghavan, 1991, Lemma 4).

Let σ be an MR Maximizer strategy and f(x) the probability that σ picks action 1
at state cx. There are two cases.

In the first case
∑

x≥1 f(x) < ∞. Let π be the strategy of Minimizer that always
picks action 1. For all x ≥ 1 we have

PG,cx,σ,π(Reach({c0})) ≤ f(x) + (1− f(x))f(x+ 1)

+ (1− f(x))(1− f(x+ 1))f(x+ 2)

+ . . . ≤
∞∑

k=x

f(k) < ∞.

Thus lim supx→∞ PG,cx,σ,π(Reach({c0})) = 0.
In the second case

∑
x≥1 f(x) = ∞. Let π be the strategy of Minimizer that

always picks action 0. For all x ≥ 1 we have

PG,cx,σ,π(Reach({c0})) = (1− f(x))(1− f(x− 1)) · · · (1− f(1))

=
x∏

k=1

(1− f(k))

≤ 1

1 +
∑x

k=1 f(k)

For the final inequality we refer the reader to Proposition 31 in Appendix A. Thus
lim supx→∞ PG,cx,σ,π(Reach({c0})) = 0.

Since, by item 1, valG(cx) = (x + 2)/(2x + 2) ≥ 1/2 for every x ≥ 0, the MR
strategy σ cannot be uniformly ε-optimal for any ε < 1/2. □
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While uniformly ε-optimal Maximizer strategies cannot be memoryless, we
show that they can be chosen with just 1 bit of public memory in Theorem 6.

First we need an auxiliary lemma that is essentially known; see, e.g., Maitra
and Sudderth (1996) Section 7.7, and Flesch et al (2020) Theorem 12.1. We
extend it slightly to fit our purposes, i.e., for the proof of Theorem 6 below.

Lemma 5 Consider a concurrent game with countable state space S, finite action
sets for Minimizer at every state and unrestricted (possibly infinite) action sets for
Maximizer.

For the reachability objective Reach(T ), for every finite set S0 ⊆ S of initial
states, and for every ε > 0, there exists a memoryless strategy σ and a finite set of
states R ⊆ S such that for all s0 ∈ S0

inf
π∈Π

Ps0,σ,π(ReachR(T )) ≥ valReach(T )(s0)− ε ,

where ReachR(T ) denotes the objective of visiting T while remaining in R before
visiting T . If the game is turn-based and finitely branching at Minimizer-controlled
states, there is a deterministic (i.e., MD) such strategy σ.

Proof Since Minimizer’s action sets are finite, by (Flesch et al, 2020, Theorem 11.1),
the game has a value. Moreover, using the finiteness of Minimizer’s action sets again,
it follows from (Flesch et al, 2020, Theorem 12.1) that for all s ∈ S

lim
n→∞ valReachn(T )(s) = valReach(T )(s) , (1)

where Reachn(T ) denotes the objective of visiting T within at most n rounds of the
game.

To achieve the uniformity (across the set S0 of initial states) required by the
statement of the lemma, we add a fresh “random” state (i.e., a state in which each
player has only a single action available) that branches uniformly at random to a
state in S0. Call this state ŝ0. The value of ŝ0 is the arithmetic average of the values
of the states in S0. It follows that every (ε/|S0|)-optimal memoryless strategy for
Maximizer in ŝ0 must be ε-optimal in every state in S0. So it suffices to prove the
statement of the lemma under the assumption that S0 is a singleton, say S0 = {s0}.

Fix ε > 0 and let ε′ def
= ε/4. By Equation (1) there is a number n such that

valReachn(T )(s0) = valReach(T )(s0)− ε′. Let σ be a Maximizer strategy such that

inf
π∈Π

Ps0,σ,π(Reachn(T )) ≥ valReach(T )(s0)− 2ε′ . (2)

For each m with 0 ≤ m ≤ n we will inductively construct a finite subset H ′
m ⊆ Hm

of the m-step histories of plays from s0 that are compatible with σ such that, for
every Minimizer strategy π, the plays in H ′

mZω have probability ≥ 1− m
n ε′, where

the event H ′
mZω is defined as the set of continuations of the m-step histories in H ′

m.
Formally,

inf
π∈Π

Ps0,σ,π(H
′
mZω) ≥ 1− m

n
ε′ (3)

The base case of m = 0 is trivial. Now we show the inductive step from m to
m+1. For any of the finitely many histories h ∈ H ′

m ending in some state s, consider
the chosen mixed actions a ∈ D(A(s)) and b ∈ D(B(s)) by Maximizer and Minimizer,
respectively. Since B(s) is finite, b has finite support. However, the distribution a
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can have infinite support. We fix a sufficiently large finite subset A′ of the support

of a that has probability mass ≥ 1− ε′
2n . Consider the set γ(s) of possible successor

states of s. Since the size of the support of b is upper bounded by the finite number
|B(s)| independently of π, we can pick a finite subset γ′(s) ⊆ γ(s) sufficiently large
such that both Maximizer’s chosen action is inside A′ and the chosen successor state
is inside γ′(s) with probability ≥ 1− 1

nε
′. We then define H ′

m+1 as the finitely many
one-round extensions of histories in H ′

m with Maximizer action in A′ and successor
state in γ′(s). Using the induction hypothesis and the properties above, we obtain
that

inf
π∈Π

Ps0,σ,π(H
′
m+1Z

ω) ≥ inf
π∈Π

Ps0,σ,π(H
′
mZω)(1− 1

n
ε′)

≥ (1− m

n
ε′)(1− 1

n
ε′)

= 1− m+ 1

n
ε′ +

m

n2
ε′2

≥ 1− m+ 1

n
ε′.

This completes the induction step, and thus we obtain (3).
For every 0 ≤ m ≤ n let Rm be the finite set of states that are visited during the

first m steps of the histories in H ′
m. Then R

def
= Rn is a finite set of states. It follows

that

inf
π∈Π

Ps0,σ,π(ReachR(T ))

≥ inf
π∈Π

Ps0,σ,π(H
′
nZ

ω ∩ ReachR(T ))

≥ inf
π∈Π

Ps0,σ,π(H
′
nZ

ω ∩ Reachn(T )) set incl.

= inf
π∈Π

(Ps0,σ,π(Reachn(T ))− Ps0,σ,π(H
′
nZω ∩ Reachn(T )))

≥ inf
π∈Π

(Ps0,σ,π(Reachn(T ))− Ps0,σ,π(H
′
nZω))

≥ inf
π∈Π

(Ps0,σ,π(Reachn(T )))− sup
π∈Π

(Ps0,σ,π(H
′
nZω))

= inf
π∈Π

(Ps0,σ,π(Reachn(T )))− (1− inf
π∈Π

Ps0,σ,π(H
′
nZ

ω))

≥ inf
π∈Π

Ps0,σ,π(Reachn(T ))− ε′ by (3)

≥ valReach(T )(s0)− 3ε′. by (2)

Note that the restriction on the time horizon, n, has been lifted here. In particular,
the above implies that

valReachR(T )(s0) ≥ valReach(T )(s0)− 3ε′. (4)

The restriction of the objective to the (finitely many) states in R means that we have
effectively another reachability game. It is known (Secchi, 1997, Corollary 3.9) that
for concurrent games with finite action sets and reachability objective, Maximizer has
a memoryless ε′-optimal strategy. In turn-based games with finitely many states, he
even has an MD optimal strategy (Condon, 1992). So Maximizer has a memoryless
(in the turn-based case: MD) strategy σ′ such that

inf
π∈Π

Ps0,σ′,π(ReachR(T ))
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≥ valReachR(T )(s0)− ε′ by ε′-optimality of σ′

≥ valReach(T )(s0)− 4ε′ by (4)

= valReach(T )(s0)− ε.

□

Theorem 6 For any concurrent game with finite action sets and reachability
objective, for any ε > 0, Maximizer has a uniformly ε-optimal public 1-bit strategy.
If the game is turn-based and finitely branching, Maximizer has a deterministic such
strategy.

Proof Denote the game by Ĝ, over state space S. Let ε > 0. We show how to construct
the uniformly ε-optimal public 1-bit strategy. It is convenient to describe the 1-bit
strategy in Ĝ in terms of a memoryless strategy in a derived game G with state space
S×{0, 1}, where the second component (0 or 1) reflects the current memory mode of
Maximizer. Accordingly, we think of the state space of G as organized in two layers,
the “inner” and the “outer” layer, with the memory mode being 0 and 1, respectively.
In each state (s, j) of G (where j ∈ {0, 1} denotes the layer), Maximizer can choose
the layer, j′ ∈ {0, 1}, of the successor state (s′, j′), possibly depending on s′. This
is exactly analogous to Maximizer using 1 bit of memory. In these terms, our goal
is to construct, for the layered game G, a memoryless strategy for Maximizer. From
this one can naturally extract a public 1-bit strategy for Maximizer in the original
game Ĝ. Upon reaching the target, the memory mode is irrelevant, so for notational
simplicity we denote the objective as Reach(T ), also in the layered game G (instead
of Reach(T ×{0, 1})). The current state of the layered game is known to both players
(to Minimizer in particular); this corresponds to the (1-bit) memory being public in
the original game Ĝ: at each point in the game, Minimizer knows the distribution of
actions that Maximizer is about to play. Notice that the values of states (s, 0) and
(s, 1) in G are equal to the value of s in Ĝ; this is because the definition of value does
not impose restrictions on the memory of strategies and so the players could, in Ĝ,
simulate the two layers of G in their memory if that were advantageous.

In general Maximizer does not have uniformly ε-optimal memoryless strategies
in reachability games; cf. Theorem 4. So our construction will exploit the special
structure in the layered game, namely, the symmetry of the two layers. The
memoryless Maximizer strategy we construct will be ε-optimal from each state (s, 0)
in the inner layer, but not necessarily from the states in the outer layer.

As building blocks we use the non-uniformly ε-optimal memoryless strategies
that we get from Lemma 5; in the turn-based finitely branching case they are even
MD. We combine them by “plastering” the state space (of the layered game). This is
inspired by the construction in Ornstein (1969); see (Kiefer et al, 2020b, Section 3.2)
for a recent description.4

In the general concurrent case, a memoryless strategy prescribes for each
state (s, i) a probability distribution over Maximizer’s actions. We define a
memoryless strategy by successively fixing such distributions in more and more

4These papers consider MDPs, i.e., Minimizer is passive. In countable MDPs, Maximizer has
uniformly ε-optimal MD strategies even without layering the system (Ornstein, 1969, Proposition
A).
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Fig. 3 Example of sets Si[0] and Si[1] in the two layers of G, where the outer and inner
layers are S × {1} and S × {0}, respectively.

states. Technically, one can fix a state s by replacing the actions A(s) available to
Maximizer by a single action which is a convex combination over A(s). Visually, we
“plaster” the whole state space by the fixings. This is in general an infinite (but
countable) process; it defines a memoryless strategy for Maximizer in the limit.

In the turn-based and finitely branching case, an MD strategy prescribes one
outgoing transition for each Maximizer state. Accordingly, fixing a Maximizer state
means restricting the outgoing transitions to a single such outgoing transition. The
plastering proceeds similarly as in the concurrent case; it defines an MD strategy for
Maximizer in the limit.

Put the states of Ĝ in some order, i.e., s1, s2, . . . with S = {s1, s2, . . .}. The
plastering proceeds in rounds. In round i ≥ 1 we fix the states in Si[0]× {0} and in
Si[1]× {1}, where S1[0], S2[0], . . . ⊆ S are pairwise disjoint and S1[1], S2[1], . . . ⊆ S
are pairwise disjoint; see Figure 3 for an example of sets Si[0] and Si[1] in a two-layer

game. Define Fi[0]
def
=
⋃

j≤i Sj [0] and Fi[1]
def
=
⋃

j≤i Sj [1]. So Fi[0]×{0} and Fi[1]×{1}
are the states that have been fixed by the end of round i. We will keep an invariant
Fi[0] ⊆ Fi[1] ⊆ Fi+1[0].

Let Gi be the game obtained from G after the fixings of the first i − 1 rounds
(with G1 = G). Define

Si[0]
def
= ({si} ∪ Si−1[1]) \ Fi−1[0]

(and S1[0]
def
= {s1}), the set of states to be fixed in round i. In particular, round i

guarantees that states (s, 0) whose “outer sibling” (s, 1) has been fixed previously
are also fixed, ensuring Fi−1[1] ⊆ Fi[0]. It follows from the invariant above that⋃∞

j=1 Sj [0] =
⋃∞

j=1 Sj [1] = S. The set Si[1] will be defined below.
In round i we fix the states in (Si[0]× {0}) ∪ (Si[1]× {1}) in such a way that

(A) starting from any (s, 0) with s ∈ Si[0], the (infimum over all Minimizer
strategies π) probability of reaching T using only fixed states is not much less
than the value valGi,Reach(T )((s, 0)); and

(B) for all states (s, 0) ∈ S×{0} in the inner layer, the value valGi+1,Reach(T )((s, 0))
is almost as high as valGi,Reach(T )((s, 0)).

The purpose of goal (A) is to guarantee good progress towards the target when
starting from any state (s, 0) in Si[0] × {0}. The purpose of goal (B) is to avoid
fixings that would cause damage to the values of other states in the inner layer.

We want to define the fixings in round i. First we define an auxiliary game Ḡi
with state space S̄i

def
= (Fi[0]× {0, 1}) ∪ (S \ Fi[0]). Game Ḡi is obtained from Gi by

collapsing, for all s ∈ S \ Fi[0], the siblings (s, 0), (s, 1) (neither of which have been
fixed yet) to a single state s. See Figure 4. The game Ḡi inherits the fixings from Gi.
The values remain equal; in particular, for s ∈ S \Fi[0], the values of (s, 0) and (s, 1)
in Gi and the value of s in Ḡi are all equal.
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Fig. 4 Example of a game Ḡ3.

Let εi > 0. We apply Lemma 5 to Ḡi with set of initial states Si[0] × {0}. So
Maximizer has a memoryless strategy σi for Ḡi and a finite set of states R ⊆ S̄i so that
for all s ∈ Si[0] we have infπ PḠi,(s,0),σi,π

(ReachR(T )) ≥ valGi,Reach(T )((s, 0))− εi.

Now we carry the strategy σi from Ḡi to Gi by suitably adapting it (see below).
Then we obtain Gi+1 from Gi by fixing (the adapted version of) σi in Gi.

The adaption of σi to Gi is by treating states s ∈ S \ Fi[0] in Ḡi as states in
the outer layer (s, 1) of Gi, as follows. Every transition that in Ḡi goes from a state
(s, j) ∈ Fi[0]× {0, 1} to a state s′ ∈ S \ Fi[0] is redirected so that in Gi it goes from
(s, j) to (s′, 1). Similarly, every transition that in Ḡi goes from a state s′ ∈ S\Fi[0] to
a state (s, j) ∈ Fi[0]×{0, 1} goes in Gi from (s′, 1) to (s, j). Finally, every transition
that in Ḡi goes from a state s′ ∈ S \ Fi[0] to another state t′ ∈ S \ Fi[0] goes in Gi
from (s′, 1) to (t′, 1).

Accordingly, define Si[1]
def
= (Si[0] \ Fi−1[1]) ∪ ((S \ Fi[0]) ∩ R) (this ensures

that Fi[0] ⊆ Fi[1]), and obtain Gi+1 from Gi by fixing the adapted version of σi in
(Si[0]× {0}) ∪ (Si[1]× {1}). This yields, for all s ∈ Si[0],

inf
σ,π

PGi+1,(s,0),σ,π(Reach(Fi[0]×{0})∪(Fi[1]×{1})(T )) ≥ valGi,Reach(T )((s, 0))− εi,

(5)
achieving goal (A) above. Notice that the fixings in Gi+1 “lock in” a good attainment
from Si[0] × {0}, regardless of the Maximizer strategy σ. Now we extend (5) to
achieve goal (B) from above: for all s ∈ S we have

valGi+1,Reach(T )((s, 0)) ≥ valGi,Reach(T )((s, 0))− εi . (6)

Indeed, consider any Maximizer strategy σ in Gi from any (s, 0). Without loss of
generality we can assume that σ is such that the play enters the outer layer only (if at
all) after having entered Fi[0]×{0}. Now change σ to a strategy σ′ in Gi+1 so that as
soon as Fi[0]×{0} is entered, σ′ respects the fixings (and plays arbitrarily afterwards).
By (5) this decreases the (infimum over Minimizer strategies π) probability by at
most εi. Thus,

inf
π

PGi+1,(s,0),σ′,π(Reach(T )) ≥ inf
π

PGi,(s,0),σ,π(Reach(T ))− εi .

Taking the supremum over strategies σ in Gi yields (6).
For any ε > 0 choose εi

def
= 2−iε; thus,

∑
i≥1 εi = ε. Let σ be the memoryless

strategy that respects all fixings in all Gi. Then, by (6), for all s ∈ S we have

inf
π

PG,(s,0),σ,π(Reach(T )) ≥ valG,Reach(T )((s, 0))−
∞∑
i=1

εi ,

so σ is ε-optimal in G from all (s, 0). Hence, the corresponding public 1-bit memory
strategy (with initial memory mode 0, corresponding to the inner layer) is uniformly
ε-optimal in Ĝ. □
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Fig. 5 Turn-based Big Match on N.

4 Uniform Strategies in Turn-based Games

Theorem 4 in the previous section shows that Maximizer has no uniformly
ε-optimal memoryless strategies in concurrent reachability games with finite
action sets (since the concurrent Big Match game on N is a counterexample).
Here we strengthen this negative result by showing that it holds even for the
subclass of finitely branching turn-based reachability games.

To this end, we define a finitely branching turn-based game in Definition 3
that is very similar to the concurrent Big Match on N, as shown in Figure 2.
The difference is that at each ci Maximizer has to announce his mixed choice
of actions first, rather than concurrently with Minimizer. Note that Maximizer
only announces his distribution over the actions {0, 1}, not any particular
action. Since a good Maximizer strategy needs to work even if Minimizer
knows it in advance, this makes no difference with respect to the attainment of
memoryless Maximizer strategies. Another slight difference is that Maximizer
is restricted to choosing distributions with only rational probabilities where
the probability of picking action 1 is of the form 1/k for some k ∈ N. However,
since we know that there exist good Maximizer strategies of this form (cf.
Theorem 4), it is not a significant restriction.

Definition 3 (Turn-based Big Match on N) This game is shown in Figure 5.
Maximizer controls the set {ci | i ∈ N} ∪ {ci,j | i, j ∈ N} ∪ {lose} of states,
whereas Minimizer controls only the states in {di,j | i, j ∈ N}. The remaining set

{r0i,j , r
1
i,j | i, j ∈ N} of states are random. For all i, j ∈ N, there are the following

transitions

ci−→ci,1 ci,j−→ci,j+1 ci,j−→di,j

di,j−→r0i,j di,j−→r1i,j

and lose−→lose. Intuitively, by going from ci to di,j , Maximizer chooses action 1 with
probability 1/j and action 0 with probability 1−1/j. Minimizer chooses actions 0 or 1
by going from di,j to r0i,j or r1i,j , respectively. The probabilistic function is defined by

P (r0i,j)(lose) = 1/j P (r0i,j)(ci−1) = 1− 1/j
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P (r1i,j)(c0) = 1/j P (r1i,j)(ci+1) = 1− 1/j

where i, j ∈ N. The objective is Reach({c0}).
This finitely branching turn-based game mimics the behavior of the game in

Definition 2.

Theorem 7 Consider the turn-based Big Match game G on N from Definition 3 and
let x ∈ N.
1. For every start state cx and N ≥ 0, Maximizer can win with probability ≥

N/(2N+2) by choosing the transitions ci−→ . . . di,j where j = (n+1)2 whenever
he is in state ci with i = x+N − n for some n ≥ 0.

In particular, valG(cx) ≥ 1/2.

2. For any ε < 1/2 there does not exist any uniformly ε-optimal memoryless (MR)
strategy for Maximizer.

Every MR Maximizer strategy σ attains arbitrarily little from cx as x → ∞.
Formally, lim supx→∞ infπ PG,cx,σ,π(Reach({c0})) = 0.

Proof Let G′ be the concurrent game from Definition 2.
Towards item 1, consider the concurrent game G′ and the turn-based game G

from Definition 3. Let cx be our start state. After fixing the Maximizer strategy from
Theorem 4(2) in G′, we obtain an MDP M′ from Minimizer’s point of view. Similarly,
after fixing the strategy described above in G, we obtain an MDP M. Then M′ and
M are almost isomorphic (apart from linear chains of steps ci,j −→ci,j+1 . . . in M′),
and thus the infimum of the chance of winning, over all Minimizer strategies are the
same. Therefore the result follows from Theorem 4(2).

Towards item 2, note that every Maximizer MR strategy σ in G corresponds
to a Maximizer MR strategy σ′ in G′. First, forever staying in states ci,j is losing,
since the target is never reached. Thus, without restriction, we assume that σ almost
surely moves from ci to some di,j eventually. Let pi,j be the probability that σ
moves from ci to di,j . Thus the corresponding strategy σ′ in G′ in ci plays action
1 with probability

∑
j pi,j(1/j) and action 0 otherwise. Again the MDPs resulting

from fixing the respective strategies in G and G′ are (almost) isomorphic, and thus
the result follows from Theorem 4(3). □

In the rest of this section we briefly describe an alternative construction of
a turn-based finitely branching reachability game without uniformly ε-optimal
memoryless Maximizer strategies, i.e., Theorem 8 is a different proof of the
same result as in Theorem 7. In the direct construction in Definition 3,
Maximizer had many alternatives in the states ci (by going to some state
di,j for some j ≥ 1). However, Theorem 6 shows that a deterministic 1-bit
strategy suffices for Maximizer. Thus, it suffices for Maximizer to have just two
alternatives, corresponding to the two memory modes of the 1-bit strategy.
The following definition uses this observation to construct an alternative
counterexample.
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Definition 4 Consider the concurrent reachability game from Definition 2 and let
ε = 1/4. By Theorem 6, Maximizer has a uniform ε-optimal 1-bit strategy σ̂. Let pi,0
(resp. pi,1) be the probability that σ̂ picks action 1 at state ci when in memory mode
0 (resp. memory mode 1).

We construct a turn-based reachability game G with branching degree two where
Maximizer can pick randomized actions according to these probabilities pi,0, pi,1, but
nothing else. Let G = (S, (S2, S3, S#),−→, P ) where S2 = {ci | i ∈ N}∪{lose}, S3 =
{di,0, di,1 | i ∈ N}, and S# = {ri,0,0, ri,0,1, ri,1,0, ri,1,1 | i ∈ N}. We have controlled
transitions ci−→di,j , di,j−→ri,j,k for all i ∈ N and j, k ∈ {0, 1} and lose−→lose.
Intuitively, by going from ci to di,j , Maximizer chooses action 1 with probability pi,j
and action 0 otherwise. Minimizer chooses action k by going from di,j to ri,j,k. The
random transitions are defined by P (ri,j,0)(lose) = pi,j , P (ri,j,0)(ci−1) = 1 − pi,j ,
P (ri,j,1)(c0) = pi,j , P (ri,j,1)(ci+1) = 1− pi,j .

The objective is Reach({c0}).

Theorem 8 Consider the turn-based reachability game G of branching degree two
from Definition 4 and let x ∈ N.
1. valG(cx) ≥ 1/4.

2. There does not exist any uniformly ε-optimal memoryless (MR) strategy for
Maximizer.

Every MR Maximizer strategy σ attains arbitrarily little from cx as x → ∞.
Formally, lim supx→∞ infπ PG,cx,σ,π(Reach({c0})) = 0.

Proof Let G′ be the concurrent game from Definition 2. We have valG′(cx) ≥ 1/2
by Theorem 4. Consider the (1/4)-optimal 1-bit Maximizer strategy σ̂ used in G′

in Definition 4. We can define a corresponding 1-bit Maximizer strategy σ in G. In
every state ci, it picks the move ci−→di,j whenever its memory mode is j, and it
updates its memory in the same way as σ̂. Then

valG(cx) ≥ inf
π

PG,cx,σ,π(Reach({c0}))

= inf
π

PG′,cx,σ̂,π(Reach({c0}))

≥ valG′(cx)− 1/4 ≥ 1/4.

For item 2 the argument is exactly the same as in Theorem 7(2). □

5 No Memoryless Strategies for Reachability in
Infinitely Branching Games

In finitely branching turn-based stochastic 2-player games with reachability
objectives, Maximizer has ε-optimal MD strategies (Lemma 5). We go on
to show that this does not carry over to infinitely branching turn-based
reachability games. In this case, there are not even ε-optimal MR strategies,
i.e., good Maximizer strategies need memory. The reason for this is the infinite
branching of Minimizer. Infinite branching of Maximizer states and random
states does not make a difference in the case of reachability objectives. Each
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u . . .
Definition 5

· · · Di

Definition 6

c0 · · · ci−1 ci ci+1
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ci,j
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j

1− 1
j

1− 1
j

... ...

lose

1

1
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Fig. 6 The scheme of games defined in Definition 5 and in Definition 6, where in the former
the teal-colored boxes are replaced with a line connecting u directly to the ci, whereas in
the latter such a teal-colored box is replaced with a Delay gadget Di illustrated in Figure 7.

infinitely branching Maximizer state can be encoded into a gadget containing
an infinite sequence of binary branching Maximizer states, where the sequence
must eventually be left, because the target state is not on the sequence.
Similarly, each infinitely branching random state can be encoded into a gadget
containing an infinite sequence of binary branching random states, where the
sequence is left eventually almost surely. Such an encoding is not possible for
infinitely branching Minimizer states, because Minimizer could choose to stay
inside the gadget forever, and spuriously win the game. (Strictly speaking,
such encodings do not preserve path lengths. However, we show in Section 6
that a step counter does not help Maximizer anyway.)

Definition 5 Consider the finitely branching turn-based reachability game from
Definition 3. We construct an infinitely branching game G by adding a new
Minimizer-controlled initial state u, Minimizer-transitions u−→ci for all i ∈ N and
lose−→u. See Figure 6 for a scheme of this game. The objective is still Reach({c0}).

Theorem 9 Let G be the infinitely branching turn-based reachability game from
Definition 5.

1. All states in G are almost surely winning. I.e., for every state s there exists a
Maximizer strategy σ such that infπ PG,s,σ,π(Reach({c0})) = 1.

2. For each MR Maximizer strategy σ we have

inf
π

PG,u,σ,π(Reach({c0})) = 0.

I.e., for any ε < 1 there does not exist any ε-optimal MR Maximizer strategy σ
from state u.
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Fig. 7 Delay gadget Di, used in Figure 6.

Proof Towards item 1, first note that by playing

ci−→ci,1−→di,1

Maximizer can enforce that he either wins (if Minimizer goes to r1i,1) or the game

returns to state u (via state lose if Minimizer goes to r0i,1). Thus it suffices to show
that Maximizer can win almost surely from state u. We construct a suitable strategy
σ (which is not MR). By Theorem 7, valG(cx) ≥ 1/2 for every x. Moreover, the
subgraph between any cx and a return to u (which goes via a losing state and is
thus to be avoided by Maximizer) is finitely branching. Thus there exists a strategy
σx and a finite horizon hx such that infπ PG,cx,σx,π(Reachhx

({c0})) ≥ 1/4. Then σ
plays from u as follows. If Minimizer moves u−→cx then first play σx for hx steps,
unless c0 or u are reached first. Then play to reach u again, i.e., the next time that
the play reaches a state ci play ci−→ci,1−→di,1 (thus either Maximizer wins or the
play returns to u). So after every visit to u the Maximizer strategy σ wins with
probability ≥ 1/4 before seeing u again, and otherwise the play returns to u. Thus
infπ PG,s,σ,π(Reach({c0})) ≥ 1− (1/4)∞ = 1. This proves item 1.

Claim 10 Suppose that for each MR Maximizer strategy σ and every ε > 0 there
is a Minimizer strategy π(σ, ε) such that, from u, the probability of visiting c0 before
revisiting u is at most ε. Then item 2 is true.

Proof of the claim Suppose the precondition of the claim. Let σ be an MRMaximizer
strategy. Let π be the Minimizer strategy that, after the i-th visit to u, continues to
play π(σ, ε · 2−i) until the next visit to u. It follows that PG,u,σ,π(Reach({c0})) ≤∑

i≥1 ε · 2
−i = ε. □

It remains to prove the precondition of the claim. Let σ be an MR Maximizer
strategy, and let ε > 0. By Theorem 7(2), there are i ∈ N and a Minimizer strategy π
such that PG′,ci,σ,π(Reach({c0})) ≤ ε, where G′ is the finitely branching subgame of
G from Definition 3. The Minimizer strategy π(σ, ε) that, in G, from u goes to ci and
then plays π has the required property. □
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6 No Markov Strategies for Reachability in
Infinitely Branching Games

Recall that Markov strategies are strategies that use just a step counter as
memory. We strengthen the result from the previous section by modifying
the game so that even Markov strategies are useless for Maximizer. The
modification of the game allows Minimizer to cause an arbitrary but finite
delay before any state ci is entered.

Definition 6 Consider the infinitely branching turn-based reachability game from
Definition 5. We modify it as follows. For each i ∈ N we add a Minimizer-controlled
state bi and redirect all transitions going into ci to go into bi instead. Each bi is
infinitely branching: for each j ∈ N we add a random state bi,j and a transition
bi−→bi,j . We add further states so that the game moves (deterministically, via a
chain of random states) from bi,j to ci in exactly j steps. See Figures 6 and 7 for a
depiction of this game. The objective is still Reach({c0}).

Theorem 11 Let G be the infinitely branching turn-based reachability game from
Definition 6.

1. All states in G are almost surely winning. I.e., for every state s there exists a
Maximizer strategy σ such that infπ PG,s,σ,π(Reach({c0})) = 1.

2. For every Markov Maximizer strategy σ it holds that
infπ PG,u,σ,π(Reach({c0})) = 0. I.e., no Markov Maximizer strategy is
ε-optimal from state u for any ε < 1.

Proof Item 1 follows from Theorem 9(1), as the modification in Definition 6 only
allows Minimizer to cause finite delays.

Towards item 2, the idea of the proof is that for every Markov Maximizer
strategy σ, Minimizer can cause delays that make σ behave in the way it would after
a long time. This way, Minimizer turns σ approximately to an MR-strategy, which
is useless by Theorem 9(2).

In more detail, fix any Markov Maximizer strategy σ. As in the proof of
Theorem 7(2), we can assume that whenever the game is in ci, the strategy σ almost
surely moves eventually to some di,j . Let pi,j,t be the probability that strategy σ,
when it is in ci at time t, moves to di,j . Thus, a corresponding Maximizer strategy in
the (concurrent) Big Match, when it is in ci at time t, picks action 1 with probability

f(i, t)
def
=
∑

j pi,j,t(1/j); cf. the proof of Theorem 7(2). For each i ∈ N, let f(i) be

an accumulation point of f(i, 1), f(i, 2), . . .; e.g., take f(i)
def
= lim inft f(i, t). We have

that

∀i ∈ N ∀t0 ∈ N ∀ε > 0 ∃t ≥ t0 : f(i, t) ≤ f(i) + ε (7)

∀i ∈ N ∀t0 ∈ N ∀ε > 0 ∃t ≥ t0 : f(i, t) ≥ f(i)− ε (8)

Similarly to the proof of Theorem 9(2) (see Claim 10 therein), it suffices to show
that after each visit to u, Minimizer can make the probability of visiting c0 before
seeing u again arbitrarily small. Let ε > 0. We show that Minimizer has a strategy π
to make this probability at most ε.
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Consider the first case where
∑

i≥1 f(i) < ∞. Then there is i0 ∈ N such that∑
i≥i0

f(i) ≤ ε/2. In u, strategy π moves to bi0 . Whenever the game is in some bi,
strategy π moves to some bi,j so that the game will arrive in ci at a time t that

satisfies f(i, t) ≤ f(i) + 2−i · ε/2; such t exists due to (7). In ci Maximizer (using σ)
moves (eventually) to some di,j . Then π always chooses “action 1”; i.e., π moves

to r1i,j . In this way, the play, restricted to states ci, is either of the form ci0 , ci0+1, . . .
(Maximizer loses) or of the form ci0 , ci0+1, . . . , ci0+k, c0 (Maximizer wins). The
probability of the latter can be bounded similarly to the proof of Theorem 4(3); i.e.,
we have

PG,u,σ,π(Reach({c0})) ≤
∞∑

i=i0

f(i) + 2−i · ε
2

≤ ε

2
+

ε

2
= ε.

Now consider the second case where
∑

i≥1 f(i) = ∞. Then there is i0 ∈ N such

that
∑i0

i=1 f(i) ≥
1
ε . In u, strategy π moves to bi0 . Whenever the game is in some bi,

strategy π moves to some bi,j so that the game will arrive in ci at a time t that

satisfies f(i, t) ≥ f(i)−2−i; such t exists due to (8). In ci Maximizer (using σ) moves
(eventually) to some di,j . Then π always chooses “action 0”; i.e., π moves to r0i,j .
In this way, the play, restricted to states ci, is either of the form ci0 , ci0−1, . . . , c0
(Maximizer wins) or of the form ci0 , ci0−1, . . . , ci0−k (for some k < i0), followed
by lose, u (Maximizer does not reach c0 before revisiting u). The probability of the
former can be bounded similarly to the proof of Theorem 4(3); i.e., the probability
that the play reaches c0 before u is upper-bounded by

i0∏
i=1

(1−max{f(i)− 2−i, 0}) ≤ 1

1 +
∑i0

i=1(f(i)− 2−i)
by Proposition 31

≤ 1∑i0
i=1 f(i)

≤ ε.

□

7 Good Strategies for Reachability Require
Infinite Memory

We show that even finite private memory, in addition to a step counter, is
useless for Maximizer in infinitely branching reachability games. To this end,
we define a nested version of the game of Definition 6, where the memory
requirements increase unboundedly with the nesting depth.

Definition 7 Let G be the game from Definition 6. We inductively define the

k-nested game Gk as follows (see Figure 8). For the base case, let G1
def
= G.

For every i ≥ 1 let Gi
k be a fresh copy of Gk and let uk,i (resp. ck,i0 ) be the

initial state u (resp. the target state c0) in Gi
k. For every k ≥ 1 we construct Gk+1

by modifying G as follows. The idea is that at every state ci Maximizer first needs to
win the subgame Gi

k before continuing in the game Gk+1, but Minimizer can choose

at which state s in Gi
k the subgame is entered.

We make the state ci Minimizer-controlled and replace the previous Maximizer
transition ci−→ci,1 by Minimizer transitions ci−→s for every state s in Gi

k.
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Game Gk+1 constructed inductively from {Gi
k | i ∈ N}

u . . .

D0 . . . Di−1 Di Di+1

c0 . . . ci−1 ci ci+1

... ...

Game Gi
k

an ingoing transition to each state in Gi
k

uk,i . . .

Dk,i
0

ck,i0

wink,i losek,i

ci,1

...

ci,j

...

di,1

di,j

r0i,1

r1i,1

r0i,j

r1i,j

lose

1

1
j

1

1
j

1− 1
j

1− 1
j

Fig. 8 The scheme of the nested construction in Definition 7.

Moreover, we add the transitions ck,i0 −→wink,i−→ci,1. (The new state wink,i is not

strictly needed. It just indicates that Maximizer has won and exited the subgame Gi
k.)

Note that also in Gk+1 Minimizer can introduce arbitrary delays between states bi
and ci.

The objective in Gk+1 is still Reach({c0}).

Lemma 12 For any k ≥ 1 let Gk be the infinitely branching turn-based reachability
game from Definition 7.
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1. All states in Gk are almost surely winning. I.e., for every state s there exists a
Maximizer strategy σ such that

inf
π

PGk,s,σ,π(Reach({c0})) = 1.

2. For each Maximizer strategy σ with a step counter plus a private finite memory
with ≤ k modes

inf
π

PGk,u,σ,π(Reach({c0})) = 0.

I.e., for any ε < 1 there does not exist any ε-optimal step counter plus k memory
mode Maximizer strategy σ from state u in Gk.

Proof We show Item 1 by induction on k.
In the base case of k = 1 we have G1 = G from Definition 6, and thus the result

holds by Theorem 11(Item 1).
Induction step k−→k + 1. For every state s in Gk+1 outside of any subgame,

let σ′(s) be the almost surely winning Maximizer strategy from s in the non-nested
game G1, obtained from above. By the induction hypothesis, for any state s in a
subgame Gi

k there exists a Maximizer strategy σi
k(s) from s that almost surely wins

this subgame Gi
k.

We now construct a Maximizer strategy σ(s) from any state s in Gk+1. If s is not
in any strict subgame then σ(s) plays like σ′(s) outside of the subgames. Whenever a
subgame Gi

k is entered at some state x then it plays like σi
k(x) until win

k,i is reached

(which happens eventually almost surely by the definition of σi
k(x)) and the play

exits the subgame, and then it continues with the outer strategy σ′(s). Similarly, if
the start state s is in some subgame Gi

k then it first plays σi
k(s) until win

k,i is reached

(which happens eventually almost surely by the definition of σi
k(s)) and the play

exits the subgame, and then it continues like the strategy σ′(ci,1) described above.

Then σ(s) wins almost surely, since the strategies σ′ and σi
k win almost surely.

Towards Item 2, we show, by induction on k, the following slightly stronger
property. For each Maximizer strategy σ in Gk with a step counter plus a private
finite memory with ≤ k modes, for every δ > 0 there exists a Minimizer strategy
π that upper-bounds Maximizer’s attainment by δ regardless of Maximizer’s initial
memory mode and the starting time. Formally,

∀δ > 0 ∃π ∀m ∀t PGk,u,σ[m](t),π(Reach({c0})) ≤ δ (9)

For the base case k = 1 we have G1 = G from Definition 6. Since k = 1, Maximizer
has only one memory mode. Moreover, Minimizer’s strategy from the proof of
Theorem 11(2) works regardless of the starting time t (since it just chooses delays in
the states bi to satisfy (7) and (8)). Thus we obtain (9).

Induction step k−→k+1. Consider the game Gk+1 and a fixed Maximizer strategy
σ with a step counter plus (k+1) private memory modes from state u. Let {0, 1, . . . , k}
denote the k + 1 private memory modes of σ.

From every state ci in Gk+1 we enter the subgame Gi
k, at some state chosen by

Minimizer. When (and if) Maximizer wins this subgame then we are in state wink,i

and the game Gk+1 continues with Maximizer’s choice at ci,1, etc.
Consider the state ci, visited at some time t with some Maximizer memory mode

m. Let π′ be some Minimizer strategy. Then let α(i,m, t, π′) be the probability that
Maximizer will play action “1” (w.r.t. the encoded concurrent game) in the next
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round in Gk+1 after winning the subgame Gi
k (i.e., after reaching wink,i), or loses

the subgame (never reaches wink,i). So α(i,m, t, π′) is the probability of losing the
subgame Gi

k plus
∑

j(1/j)·pj , where pj is the probability of winning the subgame and
then directly going to di,j (i.e., in the same round, without seeing any other state ci

before). To formally capture this notion of the “same round”, we let C
def
= {ci | i ∈ N}

and define

α(i,m, t, π′) def
= PGk+1,ci,σ[m](t),π′(¬Reach({wink,i}))

+
∑
j

(1/j)PGk+1,ci,σ[m](t),π′(di,j beforeagain C)

where (di,j beforeagain C) denotes the set of plays that visit state di,j before visiting
any state in C again, i.e., any visit to C at the start state (here ci) does not count.
The probability α(i,m, t, π′) depends on i (since we are looking at state ci), on
Maximizer’s private memory mode m ∈ {0, 1, . . . , k} at state ci, at the time t ∈ N
when we are at ci and on Minimizer’s strategy π′. Let α(i,m, t)

def
= supπ′ α(i,m, t, π′)

be the supremum over all Minimizer strategies. Let α(i, t)
def
= minm∈{0,...,k} α(i,m, t)

the minimum over all memory modes. Intuitively, when entering the subgame Gi
k

from ci at time t, for each Maximizer memory mode m, for each ε > 0, Minimizer
has a strategy to make the probability of Maximizer playing action “1” after
winning the subgame (or else losing the subgame) at least α(i, t) − ε. Let α(i)
be the maximal accumulation point of the infinite sequence α(i, 1), α(i, 2), . . . , i.e.,

α(i)
def
= lim supt α(i, t). We have:

∀ i ∈ N ∀ ε > 0 ∀ t0 ∈ N ∃ t ≥ t0 : α(i, t) ≥ α(i)− ε (10)

∀ i ∈ N ∀ ε > 0 ∃ t0 ∈ N ∀ t ≥ t0 : α(i, t) ≤ α(i) + ε (11)

Now there are two cases.
In the first case,

∑
i α(i) diverges. Intuitively, since we have α(i) = lim supt α(i, t),

Minimizer chooses the delays at the states bi in order to make α(i, t) “large”, i.e.,
close to α(i), by using (10).

Analogously to Claim 10, it suffices, for every ε > 0 to construct a Minimizer
strategy π in Gk+1 from state u that makes the probability of visiting c0 before
revisiting u (denoted as the event “c0 beforeagain u”) at most ε.

We construct a Minimizer strategy π that plays as follows. First π picks the
transition u−→bi0 for a sufficiently high i0 ∈ N, to be determined. At every state di,j ,

outside of the subgames, π always plays action “0”, i.e., di,j−→r0i,j . This implies that
the state ci is not visited again, unless the state u is re-visited first. (If Maximizer
plays action “1” then he loses this round and the game goes back to u. If Maximizer
plays “0” then the game goes down to ci−1.)

At every state bi at each time t′ the strategy π picks a delay such that the game
arrives at ci at a time t such that

α(i, t) ≥ α(i)− 1

4
2−i. (12)

This is possible by Equation (10). Let Ti be the set of the times t that satisfy (12).
Minimizer’s strategy ensures that the states ci are only reached at times t ∈ Ti.

From state ci, at each time t, for each memory mode m there exists a Minimizer
strategy π(i,m, t) such that we have α(i,m, t, π(i,m, t)) ≥ α(i,m, t) − 1

42
−i, by the

definition of α(i,m, t)
def
= supπ′ α(i,m, t, π′).
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Since the Maximizer memory mode m is private, Minimizer does not know it. So
our Minimizer strategy π hedges her bets over all possible m ∈ {0, . . . , k} and plays
each strategy π(i,m, t) with equal probability 1

k+1 . It follows that for every i and
time t ∈ Ti chosen according to Equation (12), after (and if) winning the subgame
Gi
k, Maximizer plays action “1” with probability

α(i,m, t, π) ≥ 1

k + 1

(
α(i, t)− 1

4
2−i
)

≥ 1

k + 1

(
α(i)− 1

4
2−i − 1

4
2−i
)

=
1

k + 1

(
α(i)− 1

2
2−i
)
.

(13)

Since, outside of subgames, Minimizer always plays action “0” and each state ci is
visited at most once (unless state u is re-visited), we get for every starting memory
mode m′ and starting time t′ ∈ Ti0 that the probability of visiting c0 before revisiting
u is upper-bounded, i.e.,

PGk+1,ci0 ,σ[m
′](t′),π(c0 beforeagain u) ≤

i0∏
i=1

(1−min
m

inf
t∈Ti

α(i,m, t, π)).

Since
∑

i α(i) diverges, it follows from (13) that

∞∑
i=1

min
m

inf
t∈Ti

α(i,m, t, π) ≥

(
1

k + 1

∑
i

α(i)

)
− 1

2k + 2

also diverges. From Proposition 32 we obtain

∞∏
i=1

(1−min
m

inf
t∈Ti

α(i,m, t, π)) = 0

and hence

lim
i0→∞

i0∏
i=1

(1−min
m

inf
t∈Ti

α(i,m, t, π)) = 0.

Thus, for every ε > 0, there exists a sufficiently large i0 such that for all t′ ∈ Ti0 and
all memory modes m′

PGk+1,ci0 ,σ[m
′](t′),π(c0 beforeagain u) ≤ ε.

Recall that at state u the Minimizer strategy π picks the transition u−→bi0 , i.e., the
number i0 is Minimizer’s choice. Moreover, the delay gadget Di0 ensures that state
ci0 is entered at some time t′ ∈ Ti0 , regardless of the time t at state u. Hence, for
all t ∈ N and all memory modes m we have

PGk+1,u,σ[m](t),π(c0 beforeagain u) ≤ ε.

Analogously to Claim 10, we can pick il0 and εl = δ ·2−l after the l-th visit to u such
that for all t ∈ N and all m we have

PGk+1,u,σ[m](t),π(Reach({c0})) ≤
∞∑
l=1

εl = δ

as required.

Now we consider the second case where
∑

i α(i) converges. We construct a
Minimizer strategy π in Gk+1 that plays as follows. First π picks the transition
u−→bi0 for a sufficiently high i0 ∈ N, to be determined. At every state di,j , outside
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of the subgames, π always plays action “1”, i.e., di,j−→r1i,j . This implies that each
state ci with i ≥ i0 is visited at most once, and states ci with 0 < i < i0 are never
visited. (If Maximizer plays action “1” then he immediately wins at c0 and if he
plays “0” then the games goes up to ci+1.)

By Equation (11), for every i ≥ 1 there exists a time ti ∈ N such that

∀t ≥ ti. α(i, t) ≤ α(i) +
1

4
2−i. (14)

Let Ti = {t ∈ N | t ≥ ti} be the set of the times t that satisfy (14). At each state
bi Minimizer’s strategy π delays sufficiently long such that ci is reached at a time
t ∈ Ti. This is possible for every arrival time t′ at bi.

Consider a state s in the subgame Gi
k that is reached at some time t when

Maximizer’s strategy is in some memory mode m, and let π′ be a Minimizer
strategy. Let β(s, i,m, t, π′) be the probability that Maximizer will play action “1”
(w.r.t. the encoded concurrent game) in the next round in Gk+1 after winning

the subgame Gi
k (i.e., after reaching wink,i), or loses the subgame (never reaches

wink,i). So β(s, i,m, t, π′) is the probability, from state s, of losing the subgame Gi
k

plus
∑

j(1/j) · pj , where pj is the probability of winning the subgame and then
directly going to di,j (without visiting any other state ci in between). Recall that
C = {ci | i ∈ N}. We let

β(s, i,m, t, π′) def
= PGk+1,s,σ[m](t),π′(¬Reach({wink,i}))

+
∑
j

(1/j)PGk+1,s,σ[m](t),π′(di,j beforeagain C)

Let β(s, i,m, t)
def
= supπ′ β(s, i,m, t, π′) be the supremum over all Minimizer strategies.

Let
β(s, i, t)

def
= min

m∈{0,...,k}
β(s, i,m, t)

be the minimum over all memory modes.

Claim 13 For all states s in Gi
k and times t we have β(s, i, t+ 1) ≤ (k + 1)α(i, t).

Proof Consider the situation where we are at state ci at time t and the Maximizer
strategy σ is in some memory modem (unknown to Minimizer). Then some particular
Minimizer strategy π̂ could play ci−→s to arrive at s in one step at time t + 1.
Meanwhile, σ can update its memory to some other mode m′ (or a distribution over
memory modes), still unknown to Minimizer. Then π̂ hedges her bets by guessing
Maximizer’s memory mode m′. For each of the k+1 possible modes m′, the Minimizer
strategy π̂ plays, with probability 1

k+1 , an ε-optimal strategy to maximize the

probability that Maximizer plays action “1” after winning Gi
k (or loses the subgame).

Thus

α(i, t) = min
m

sup
π′

α(i,m, t, π′)

≥ min
m

α(i,m, t, π̂)

≥ min
m′

1

k + 1
β(s, i,m′, t+ 1, π̂)
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≥ 1

k + 1
(min
m′

sup
π′

β(s, i,m′, t+ 1, π′)− ε)

=
1

k + 1
(β(s, i, t+ 1)− ε).

Since this holds for every ε > 0, the claim follows. □

By Claim 13, for every s in Gi
k and time t+1 there exists at least one memory mode

m(s, t+1) (a mode m where the minimum β(s, i, t+1) = minm∈{0,...,k} β(s, i,m, t+1)
is realized) such that if σ enters s at time t+1 in mode m(s, t+1) then after winning
Gi
k (if at all) Maximizer plays action “1” with a “small” probability ≤ (k+1)α(i, t).

Crucially, this property holds for the sup over the Minimizer strategies and thus
for every Minimizer strategy inside the subgame Gi

k. In particular it holds for the
Minimizer strategy π that we will construct. We call m(s, t+1) the forbidden memory
mode for state s at time t+ 1.

Above we have defined our Minimizer strategy π so that it adds sufficient delays
in the states bi such that ci is only visited at times t ≥ ti. This implies that states s
in Gi

k are only visited at times t+1 where t ≥ ti. Since for these times Equation (14)
is satisfied, we obtain

∀t ≥ ti. β(s, i,m(s, t+ 1), t+ 1) ≤ (k + 1)(α(i) +
1

4
2−i). (15)

Let σ′ be a restriction of σ that, inside the subgame Gi
k, is never in the forbidden

memory mode m(s, t+ 1) at state s at time t+ 1, or else concedes defeat.

Claim 14 Consider a step counter plus (k + 1) mode Maximizer strategy σ′ in Gi
k

that is never in the forbidden memory mode m(s, t+1) at state s at time t+1. Then
there exists a step counter plus k mode Maximizer strategy σ′′ in Gi

k that performs
equally well as σ′ against any Minimizer strategy.

Proof The strategy σ′ has k + 1 memory modes {0, . . . , k}, plus the step counter.
We will construct the strategy σ′′ to only have k memory modes {0, . . . , k − 1},
plus the step counter. The strategy σ′′ can directly imitate the behavior of σ′ as
follows. Suppose that σ′ enters memory mode k at some state s and time t + 1.
From our assumption that σ′ never enters the forbidden memory mode it follows
that k ̸= m(s, t + 1). In this situation σ′′ enters memory mode m(s, t + 1) instead.
Whenever σ′′ is in memory mode m(s, t + 1) at some state s and time t + 1 then
it plays like σ′ at state s in memory mode k. By the condition on the behavior of
σ′ there is no confusion, σ′′ just uses the memory modes {0, . . . , k − 1} and it still
imitates the behavior of σ. □

By Claim 14, the Maximizer strategy σ′ is equivalent to a strategy with just a step
counter and k memory modes. By the induction hypothesis (9), for this restricted
Maximizer strategy σ′ there exists a Minimizer strategy πi in Gi

k such that

∀m ∀t PGi
k,u

k,i,σ′[m](t),πi
(Reach({ck,i0 })) ≤ δ · 2−(i+1). (16)

We are now ready to construct Minimizer’s strategy π in Gk+1. At every state di,j ,

outside of the subgames, π always plays action “1”, i.e., di,j−→r1i,j . This implies that
each state ci is visited at most once. At the states bi, Minimizer chooses the delays
such that ci is reached at a time t ≥ ti, as described above. From each ci Minimizer
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goes to state uk,i of the subgame Gi
k. Inside each subgame Gi

k Minimizer plays like

πi. By (16), πi performs well in Gi
k (regardless of the initial memory mode and time)

if Maximizer limits himself to σ′.
Now we show that π performs well in Gk+1. Since π first picks the transition

u−→bi0 and then always plays action “1” outside of the subgames, it follows that
each subgame Gi

k with i ≥ i0 is played at most once, and subgames Gi
k with i < i0

are never played. For each subgame Gi
k, let Forbi be the set of plays where Maximizer

enters a forbidden memory mode (for the current state and time) at least once. 5

From Equation (16) we obtain that Maximizer loses Gi
k (and thus Gk+1) with

high probability if he never enters a forbidden memory mode.

max
m

sup
t

PGk+1,ci,σ[m](t),π(Reach({c0}) ∩ Forbi)

≤ max
m

sup
t

PGi
k,u

k,i,σ′[m](t),πi
(Reach({ck,i0 }))

≤ δ · 2−(i+1).

(17)

On the other hand, we can show that if Maximizer does enter a forbidden memory
mode (for the current state and time) in Gi

k then his chance of playing action “1”

(and thus winning Gk+1 in that round) after (and if) winning the subgame Gi
k is

small. This holds for every Minimizer’s strategy inside Gi
k and thus in particular this

holds for our chosen Minimizer strategy πi.
Recall that π ensures that states in Gi

k are only reached at times t + 1 where
t ≥ ti, and thus Equation (15) applies. Hence, at ci, Maximizer’s chance of satisfying
Forbi and still winning the game in this round (without going to ci+1 and the next
subgame Gi+1

k ) is upper bounded by (k + 1)(α(i) + 1
42

−i). For all m and all t ≥ ti
we have

PGk+1,ci,σ[m](t),π(Reach({c0}) ∩ Forbi ∩ ¬Reach({ci+1}))

≤ (k + 1)(α(i) +
1

4
2−i)

(18)

Since in our current case
∑

i α(i) converges, it follows that
∑

i(k + 1)(α(i) + 1
42

−i)
also converges, and thus there exists a sufficiently large i0 ∈ N such that∑

i≥i0

(k + 1)(α(i) +
1

4
2−i) ≤ δ/2 (19)

Let
nFo(i,m′, t′) def

= PGk+1,ci,σ[m′](t′),π(Reach({c0}) ∩ Forbi)

and

Fo(i,m′, t′) def
= PGk+1,ci,σ[m′](t′),π(Reach({c0}) ∩ Forbi ∩ ¬Reach({ci+1}))

Then from (17), (18) and (19) we obtain that for every initial memory mode m and
time t,

PGk+1,u,σ[m](t),π(Reach({c0}) ≤
∑
i≥i0

max
m′

sup
t′≥ti

nFo(i,m′, t′) +
∑
i≥i0

max
m′

sup
t′≥ti

Fo(i,m′, t′)

5Strictly speaking, Forbi is not an event in Gi
k, since it refers to the memory mode of Maximizer’s

strategy σ. However, since we fix σ first, we can consider the MDP that is induced by fixing σ in
Gi
k. Then Maximizer’s memory mode m and the step counter t are encoded into the states, which

are of the form (s,m, t). In this MDP, Forbi is a measurable event, actually an open set. However,
since Maximizer’s memory is private, Minimizer has only partial observation in this MDP, i.e.,
she cannot distinguish between states (s,m, t) and (s,m′, t). Indeed the Minimizer strategy that
we construct does not assume any knowledge of the memory mode, but instead hedges her bets.
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≤
∑
i≥i0

δ · 2−(i+1) +
∑
i≥i0

(k + 1)(α(i) +
1

4
2−i)

≤ δ/2 + δ/2 = δ

□

In order to show that Maximizer needs infinite memory, in addition to a
step counter, we combine all the nested games Gk into a single game.

Definition 8 For all k ≥ 1 consider the nested games Gk from Definition 7 with
initial state uk and target state ck0 , respectively. We construct a game G with initial
state s0, target state f , Minimizer-controlled transitions s0−→uk for all k, and
Maximizer controlled transitions ck0−→f for all k. The objective in G is Reach({f}).

The following theorem is the formal version of Theorem 2 from the
introduction.

Theorem 15 Let G be the infinitely branching turn-based reachability game from
Definition 8.

1. All states in G are almost surely winning. I.e., for every state s there exists a
Maximizer strategy σ such that infπ PG,s,σ,π(Reach({f})) = 1.

2. For each Maximizer strategy σ with a step counter plus a private finite memory
we have

inf
π

PG,s0,σ,π(Reach({f})) = 0.

I.e., for any ε < 1 there does not exist any ε-optimal step counter plus finite
private memory Maximizer strategy σ from state s0 in G.

Proof Towards Item 1, every state in Gk is almost surely winning by Lemma 12(1).
Thus, after the first step s0−→uk into some game Gk, Maximizer just needs to play
the respective almost surely winning strategy in Gk.

Towards Item 2, consider a Maximizer strategy σ with a step counter and a
finite memory with some number of modes k ∈ N. Then, by Lemma 12(2), for every
δ > 0, Minimizer can choose a first step s0−→uk into Gk and a strategy in Gk that
upper-bounds Maximizer’s attainment to ≤ δ. □

Remark 1 Theorem 15 has implications even for games with finite action sets (resp.
finitely branching turn-based games).

Consider a finitely branching game where the states are labeled with rewards in
{−1, 1}. The objective of Maximizer is to ensure that the lim inf of the seen rewards
is ≥ 0. (Equivalently that states with reward −1 are visited only finitely often. This
is also called a co-Büchi objective in Kiefer et al (2017b)). The infinitely branching
reachability game of Theorem 15 can be encoded into a finitely branching lim inf
game, and thus the lower bound of Theorem 15 carries over. One just replaces every
infinite Minimizer branching s → si for i ∈ N by a Minimizer-controlled gadget
s → s′1 → s′2 . . . and s′i → si with new states s′i that have reward 1. Minimizer cannot
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stay in states s′i forever, since their rewards of 1 makes this winning for Maximizer.
Thus the finitely branching gadgets faithfully encode Minimizer’s original infinitely
branching choice. Finally, the target state c0 is given reward 1 and a self-loop, and
all other states are given reward −1. Thus the lim inf ≥ 0 objective in the new game
corresponds to the reachability objective to reach state c0 in the original game. The
only problem with this construction is that the new gadgets incur extra steps, i.e.,
the step counters in the two games do not coincide. Thus the property that a step
counter does not help Maximizer does not follow immediately from Theorem 15 if
taken as a black box. However, the delay gadgets Di in Definition 7 (and their finitely
branching encoding in the new game) still ensure that the step counter does not help
Maximizer. I.e., the proof of the lower bound for the finitely branching lim inf ≥ 0
game is nearly identical to the proof of Theorem 15.

In the new finitely branching game above, the objective to reach c0 also coincides
with the objective to attain a high expected lim inf of the rewards. Thus ε-optimal
(resp. optimal) strategies to maximize the expected lim inf also require infinite
memory.

Finally, if one flips the signs of the rewards of all transitions in the game above,
then the objective to reach c0 coincides with the objective to minimize the expected
lim sup of the rewards. Thus ε-optimal (resp. optimal) strategies to minimize the
expected lim sup also require infinite memory. This solves the open question in
Section 5 of Secchi (1998).

8 Infinitely Branching but only Finitely Often

In Theorem 15 we showed that already for turn-based reachability games,
ε-optimal strategies for Maximizer require infinite memory. The lower bound
construction crucially uses that Minimizer’s action set is infinite. If Minimizer
has only finite action sets then Maximizer’s ε-optimal strategies can be simpler,
namely MR for concurrent games and MD for turn-based games (cf. Table 1).

However, the connection between Minimizer’s infinite action sets and
Maximizer’s need for infinite memory is not as direct as it might seem. In this
section we consider the restricted setting of concurrent games whereMaximizer
has finite action sets and Minimizer can use an infinite action set at most
finitely often in any play (see also Definition 10 below).

We show in Theorem 20 that in this case, Maximizer still has uniformly
ε-optimal 1-bit strategies. Moreover, we show that this upper bound is tight
in the sense that even if Minimizer can use an infinite action set only once,
ε-optimal Maximizer strategies still require 1 bit of memory.

We start with the lower bound. The following theorem shows that, even
in turn-based reachability games, if Minimizer can use infinite branching just
once, MR strategies cannot be ε-optimal for Maximizer for any ε < 1/2.

Definition 9 Consider the Turn-based Big Match on N (Definition 3 on
page 19), and add a new infinitely branching Minimizer-controlled initial state u and
Minimizer-transitions u−→cx for all x ∈ N.
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Theorem 16 There exists a turn-based game G as in Definition 9 with initial state
u and reachability objective Reach({c0}) such that

1. All states except u are finitely branching, and all plays from u use infinite
branching exactly once.

2. valG(u) ≥ 1/2.

3. infπ PG,u,σ,π(Reach({c0})) = 0 holds for every Maximizer MR strategy σ.

Proof Item 1 holds by the construction in Definition 9, since u is the only state with
infinite branching and plays cannot return to u.

Towards Item 2., Theorem 7(Item 1) yields valG(cx) ≥ 1/2 for every x ∈ N, and
thus valG(u) ≥ 1/2.

Towards Item 3., by Theorem 7(Item 2), for every MR Maximizer strategy
σ we have lim supx→∞ infπ PG,cx,σ,π(Reach({c0})) = 0. Since in our game the
Minimizer strategy π gets to pick the transition u → cx for an arbitrary x ∈ N,
infπ PG,u,σ,π(Reach({c0})) = 0. □

Towards the upper bound, we first define the case where Minimizer can use
infinite action sets only finitely often in any play.

Definition 10 Let G be a concurrent game on a countable set of states S and S∞ def
=

{s ∈ S | |B(s)| = ∞} the states with an infinite Minimizer action set. Let S′ ⊆ S
be the subset of states s such that every play from s (under any strategies) visits S∞

only finitely often.

Different plays from the same start state can have different numbers of
visits to S∞. Even if this number is finite for every play, there is no uniform
finite upper bound. Thus the condition of Definition 10 on plays does not imply
a finite bound for the start state. However, we show that an ordinal bound
exists.

We introduce a ranking function I : S′ → O so that I(x) is an upper
bound on the number of possible visits to S∞, including the current state x.
This is based on a classic result on well-founded relations. Recall that a binary
relation E ⊆ S × S is well-founded if every non-empty subset X ⊆ S has a
minimal element w.r.t. E.

Theorem 17 (Jech (2002) Theorem 2.27) If E ⊆ S × S is well-founded then there
exists a unique function ρ : V → O such that for all x ∈ V

ρ(x) = sup{ρ(y) + 1 | yEx}.
In particular, yEx implies ρ(y) < ρ(x). Moreover, if V is countable then sup ρ(V ) is
a countable ordinal.

Definition 11 (Ranking function I) Let G be a concurrent reachability game on a
countable set of states S, and let S′, S∞ ⊆ S be as in Definition 10. Let → ⊆ S × S
be the induced game graph, i.e., x→y ⇐⇒ ∃a, b. y ∈ supp(p(x, a, b)).
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Let V
def
= S′ ∩ S∞ and E ⊆ V × V be the reversal of the closure of → over states

in S′ \ S∞, i.e., (y, x) ∈ E ⇐⇒ ∃k ≥ 0, z1, . . . , zk ∈ S′ \ S∞ : x → z1 → · · · →
zk → y.

From the definition of S′ we obtain that E is a well-founded relation on V . By
Theorem 17, there exists a unique function ρ : V → O such that for all x ∈ V

ρ(x) = sup{ρ(y) + 1 | yEx}. (20)

By convention, sup ∅ = 0. We first define our ranking function I : V → O only on

the set V by I(x)
def
= ρ(x) + 1. Intuitively, I(x) is the upper bound on the number of

visits to S∞, including the current state x. We then extend the function I from V to
S′ as follows. For every x ∈ S′ \ V let

I(x)
def
= sup{ρ(y) | y ∈ V ∧ x →+ y},

where →+ is the transitive closure of →. Since we assume sup ∅ = 0, the states x
that cannot reach S∞ satisfy I(x) = 0.

Lemma 18 The ranking function I : S′ → O satisfies the following properties.

x→y implies I(x) ≥ I(y) (21)

x ∈ S∞ ∩ S′ ∧ x→y implies I(x) > I(y) (22)

and γ(G) def
= sup I(S′) is a countable ordinal.

Proof Equation (21) and Equation (22) follow directly from the definition of function
I in Definition 11. Since S and S′ are countable, sup I(S′) is a countable ordinal by
Theorem 17. □

It follows from Lemma 18 that states in S′ can be part of cycles, but not
part of any cycle that contains a state from S∞. E.g., in the game in Figure 8
we have S′ = {c0}, i.e., none of the states are in S′ except for the target.

Now we show that 1 bit of public memory is sufficient for Maximizer,
provided that Minimizer can use infinite action sets only finitely often in any
play. I.e., for every ε > 0, Maximizer has a public 1-bit strategy for reachability
that is uniformly ε-optimal from S′.

First we need a slight generalization of the reachability objective.

Definition 12 (Weighted reachability) Let G be a concurrent game on S and T ⊆ S.
Let f : T → [0, 1] be a reward function. We lift f to plays f : Zω → [0, 1] as follows.

If a play h ∈ Zω never visits T then f(h)
def
= 0. Otherwise, let f(h)

def
= f(s) where s

is the first state in T that is visited by h. Let Wf denote the weighted reachability
objective, i.e., to maximize the expected payoff w.r.t. function f .

Weighted reachability generalizes reachability (just let f(s) = 1 for all
s ∈ T ). Now we generalize Theorem 6 to weighted reachability.
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Theorem 19 For any concurrent game with finite action sets and weighted
reachability objective, for any ε > 0, Maximizer has a uniformly ε-optimal public
1-bit strategy. If the game is turn-based and finitely branching, Maximizer has a
deterministic such strategy.

Proof We can encode weighted reachability into ordinary reachability. Given a
concurrent game G with target set T and weighted reachability objective Wf , we
construct a modified game G′ with target set {t}, where t is a new state, as follows.
From every state s ∈ T , regardless of the chosen actions, the game goes to t with
probability f(s) and to a special new sink state ⊥ with probability 1 − f(s). Then
Wf in G coincides with Reach({t}) in G′, i.e., EG,s,σ,π(f) = PG′,s,σ,π(Reach({t})).
The result follows from Theorem 6, since the 1-bit strategy can be carried from G′

to G. □

Theorem 20 Let G be a concurrent game with finite Maximizer action sets on a
countable set of states S with reachability objective Reach(T ) and S′ ⊆ S as in
Definition 10.

For every ε > 0, Maximizer has a public 1-bit strategy that is uniformly ε-optimal
from every state in S′. If the game is turn-based then Maximizer has a deterministic
such strategy.

Proof Let I : S′ → O be the ranking function from Definition 11. For every ordinal

α ∈ O let Sα
def
= {s ∈ S′ | I(s) = α}. We have S′ =

⋃
α≤γ(G) Sα for the countable

ordinal γ(G) by Lemma 18. Let S<α
def
=
⋃

β<α Sβ and S≤α
def
=
⋃

β≤α Sβ . We can
assume without restriction that the states in T are absorbing and thus T ⊆ S0.

Since γ(G) is a countable ordinal, the set {α ∈ O | α ≤ γ(G)} is countable and

thus we can pick an injection g : {α ∈ O | α ≤ γ(G)} → N. Let εα
def
= ε · 2−g(α) for

every α ≤ γ(G).
For every ordinal α ≤ γ(G) we consider a restricted subgame Gα of G that is

played on the subspace S≤α. The objective of Gα is a weighted reachability objective,

defined relative to a reward function fα like in Definition 12. Let Tα
def
= S<α ∪ T be

a target set. We consider the weighted reachability objective Wfα where fα : Tα →
[0, 1] with fα(s)

def
= valG,Reach(T )(s).

For every α ≤ γ(G) and s ∈ Sα we show that

valGα,Wfα
(s) = valG,Reach(T )(s) (23)

If α = 0 then the equality (23) holds trivially, since T0 = T and f0(s) = 1 for every
s ∈ T .

Now we consider the case of α > 0. For the ≤ inequality of (23), first assume
towards a contradiction that valGα,Wfα

(s) > valG,Reach(T )(s) for some state s ∈ Sα.
Let

ε′ def
= (valGα,Wfα

(s)− valG,Reach(T )(s))/3 > 0

and σ an ε′-optimal Maximizer strategy from s for Wfα in Gα. We construct a
Maximizer strategy σ′ in G from s as follows. Initially, σ′ plays like σ. Then upon
reaching some state s′ in Tα it switches to an ε′-optimal strategy for Reach(T ) from
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s′. Hence, we get that PG,s,σ′,π(Reach(T )) ≥ valGα,Wfα
(s)− 2ε′ > valG,Reach(T )(s),

a contradiction. Therefore valGα,Wfα
(s) ≤ valG,Reach(T )(s).

Towards the ≥ inequality of (23), consider an ε′-optimal strategy σ from s for
Reach(T ) in G and apply it in Gα. For any Minimizer strategy π from s, let Rs,σ,π

be the set of plays from s consistent with σ, π. Let Rs,σ,π
s′ ⊆ Rs,σ,π be the subset of

plays where s′ is the first visited state with I(s′) < α. Since s ∈ Sα and α > 0 but
T ⊆ S0, every play from s that reaches T must first visit some state s′ ∈ S<α. Thus
these subsets Rs,σ,π

s′ are a disjoint partition of Rs,σ,π, i.e.,

Rs,σ,π =
⊎

s′∈S<α

Rs,σ,π
s′ (24)

Then

valGα,Wfα
(s)

≥ inf
π

EGα,s,σ,π(fα) def. of value

= inf
π

∑
s′∈S<α

PG,s,σ,π(R
s,σ,π
s′ ) · fα(s′) by (24)

= inf
π

∑
s′∈S<α

PG,s,σ,π(R
s,σ,π
s′ ) · valG,Reach(T )(s

′) def. of fα

≥ inf
π

∑
s′∈S<α

PG,s,σ,π(R
s,σ,π
s′ ∩ Reach(T )) π can restart at s′

= inf
π

PG,s,σ,π(Reach(T )) by (24)

≥ valG,Reach(T )(s)− ε′. def. of σ

Since the above holds for every ε′ > 0, it follows that valGα,Wfα
(s) ≥

valG,Reach(T )(s) and we obtain (23).

We now define Maximizer’s public 1-bit strategy σ on S′ in G. It uses two memory
modes {0, 1} and σ[m] denotes σ with current memory mode m. The strategy σ starts
in memory mode 0, i.e., σ = σ[0] (cf. “Memory-based Strategies” in Section 2).

First we consider a slightly modified weighted reachability objective Wf ′
α
on Gα

where f ′α : Tα∪S∞ → [0, 1] and f ′α(s)
def
= valG,Reach(T )(s). This game effectively ends

when a state in S∞ (with an infinite Minimizer action set) is visited, unlike for the
Wfα objective where the game only ends in the following step when it inevitably (by
definition of the ranking function) visits a state in S<α. Thus effectively the game
Gα with objective Wf ′

α
has only finite action sets, since it stops before infinite action

sets can be used. Therefore, by Theorem 19, there exists a uniformly (ϵα/2)-optimal
public 1-bit strategy σ′

α for Maximizer on Gα with objective Wf ′
α
. We now extend

σ′
α to a uniformly ϵα-optimal public 1-bit strategy σα for Maximizer on Gα with

objective Wfα . It suffices for Maximizer to play (ϵα/2)-optimal in all states Sα∩S∞

w.r.t. the one-shot game with reward function fα, regardless of the current memory
mode. (These one-shot games with infinite Minimizer action sets and finite Maximizer
action sets have a value by (Flesch et al, 2020, Theorem 3), and thus Maximizer can
play ϵα/2-optimally.) After this one-shot game, the index of any successor state will
always be < α, by definition of the ranking function.

In the special case of turn-based games, σ′
α can be chosen as deterministic by

Theorem 19. Moreover, Maximizer is then passive in the one-shot games from states
in S∞, since these states belong to Minimizer who has an infinitely branching choice
there. Thus, in turn-based games, σα is deterministic as well.
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The Maximizer strategy σ = σ[0] starts with memory mode 0. In every state
s with I(s) = α the strategy σ plays like σα. Whenever we make a step s → s′

with I(s′) < I(s) then its sets the memory mode to 0 again. (It is impossible that
I(s′) > I(s) by the definition of I.) Since all the σα are public 1-bit strategies, so is
σ. In the special case of turn-based games, the σα are deterministic and thus also σ
is deterministic.

We now show by induction on α (for every α ≤ γ(G)) that σ is uniformly

ε′α-optimal in G for objective Reach(T ) from every state s ∈ S≤α, where ε′α
def
=∑

β≤α εβ .

In the base case of α = 0 we have G = G0 on S0, ε
′
0 = ε0 and σ = σ0. Since

T0 = T ⊆ S0, the objectives Wf0 and Reach(T ) coincide. Formally, for any σ′, π′,
we have

EG0,s,σ′,π′(f0) = PG0,s,σ′,π′(Reach(T )) (25)

By our construction above, σ0 is a uniformly ϵ0-optimal public 1-bit strategy for
Maximizer on G0 with objective Wf0 . Thus, for every s ∈ S0 we have

inf
π

PG,s,σ,π(Reach(T ))

= inf
π

PG0,s,σ0,π(Reach(T )) G = G0 and σ = σ0

= inf
π

EG0,s,σ0,π(f0) by (25)

≥ valG0,Wf0
(s)− ε0 ε0-optimality of σ0

= valG,Reach(T )(s)− ε′0 by (23) and ε′0 = ε0

For the induction step let α > 0. If s ∈ S<α then the claim holds by induction
hypothesis. Now let s ∈ Sα and π be an arbitrary Minimizer strategy. Let R be the
set of induced plays from s under σ and π and Rs′ ⊆ R be the subset of plays where
s′ is the first visited state with I(s′) < α. Recall that σ is a 1-bit strategy with
two memory modes {0, 1}. For m ∈ {0, 1}, σ[m] denotes the strategy σ with current
memory mode m. Therefore, σ[m] can be applied to start at any state, since it does
not depend on the history. The initial memory mode is 0, i.e., σ = σ[0].

PG,s,σ,π(Reach(T ))

= PG,s,σ[0],π(Reach(T ))

≥
∑

s′∈S<α

PG,s,σ[0],π(Rs′) · inf
π′

PG,s′,σ[0],π′(Reach(T ))

(the memory mode of σ is set to 0 at s′, since I(s′) < α)

≥
∑

s′∈S<α

PG,s,σ[0],π(Rs′) · (valG,Reach(T )(s
′)− ε′I(s′)) ind. hyp.

=
∑

s′∈S<α

PG,s,σ[0],π(Rs′) · fα(s′)−
∑

s′∈S<α

PG,s,σ[0],π(Rs′) · ε′I(s′) def. fα

≥ EGα,s,σα,π(fα)− sup
s′∈S<α

ε′I(s′)

≥ valGα,Wfα
(s)− εα − sup

s′∈S<α

ε′I(s′) σα is εα-optimal

= valG,Reach(T )(s)− εα − sup
s′∈S<α

ε′I(s′) by (23)

= valG,Reach(T )(s)− (εα + sup
s′∈S<α

ε′I(s′))
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≥ valG,Reach(T )(s)− ε′α

Therefore, for every s ∈ S′ = S≤γ(G) our strategy σ is ε′γ(G)-optimal. Moreover,

ε′γ(G) =
∑

β≤γ(G) εβ =
∑

β≤γ(G) ε · 2
−g(β) ≤ ε, since g : {α ∈ O | α ≤ γ(G)} → N is

injective. Thus σ is uniformly ε-optimal from S′ in G. □

9 Optimal Maximizer Strategies

In finite turn-based reachability games, there always exist optimal Maximizer
strategies, and even optimal memoryless deterministic ones Condon (1992),
(Kučera, 2011, Proposition 5.6.c, Proposition 5.7.c). This does not carry
over to finite concurrent reachability games. E.g., in the snowball game (aka
Hide-or-Run game) described in (Everett, 1957, Example 1) and Kumar and
Shiau (1981); de Alfaro et al (1998), Maximizer does not have any optimal
strategy. However, it was recently shown by Bordais et al (2022) that, in finite
concurrent games with finite action sets, optimal Maximizer strategies, if they
exist, can be chosen as memoryless randomized.

In countably infinite reachability games, optimal strategies for Maximizer
need not exist in general even if the game is turn-based, in fact not even in
countably infinite MDPs that are finitely branching Ornstein (1969); Kiefer
et al (2017b).

In this section we study the memory requirements of optimal Maximizer
strategies under the condition that such an optimal strategy exists.

If we allow infinite action sets for Minimizer (resp. infinite Minimizer
branching in turn-based games) then optimal (and even almost surely winning)
Maximizer strategies require infinite memory by Theorem 15. Thus, in the
rest of this section, we consider games with finite action sets (resp. turn-based
games where the players are finitely branching).

9.1 Turn-Based Games

Here we consider turn-based reachability games where the players have only
finitely many choices at each controlled state (i.e., finite action sets). It turns
out that the memory requirements of optimal Maximizer strategies, if they
exist, also depend on whether random states are infinitely branching or finitely
branching, i.e., on whether these distributions have finite support.

If we allow infinite branching at random states, then optimal Maximizer
strategies require infinite memory, even with a step counter, by the following
example. (A weaker result, without considering the step counter, was shown
in (Kučera, 2011, Prop. 5.7.b).)

Definition 13 Let G be the following turn-based reachability game depicted in
Figure 9, where Maximizer and Minimizer have only finite branching (i.e., finite
action sets), with initial state s0 and target state t. State s0 is a random state and the
distribution p(s0) over its infinitely many successor states is defined as p(s0)(s

′
i) =

1
2i

for all i ≥ 1. Further, for every i ≥ 1 there is a Minimizer-controlled state s′i and
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s0 s′1

tlose
1 − 1/211/21

s′2

tlose
1 − 1/221/22

...

s′i

tlose
1 − 1/2i1/2i

...

1/21

1/22

1/2i

...

s′′1
t

lose

1 − 1/2
1

1/21

s′′2
t

lose

1 − 1/2
2

1/22

...

s′′i
t

lose

1 − 1/2
i

1/2i

...

Fig. 9 The game G from Definition 13. Choices depicted in red immediately end the game
after one round, their alternative choices are drawn in blue.

a Maximizer-controlled state s′′i . In s′i Minimizer chooses between moving to state
s′′1 or (via a random state) to the target with probability 1− 1

2i
and to a losing sink

with probability 1
2i
. At s′′i Maximizer chooses between moving to state s′′i+1 or (via a

random state) to target t with probability 1− 1
2i

and to a losing sink with probability
1
2i
.

Proposition 21 There exists a turn-based reachability game G where Maximizer and
Minimizer have only finite branching (i.e., finite action sets) with initial state s0 and
objective Reach({t}) as in Definition 13, such that

1. Maximizer has an optimal strategy from s0.

2. Every randomized Maximizer strategy from s0 that uses only a step counter and
finite private memory is not optimal.

Proof We have valG(s
′′
i ) = 1 for all i, and so valG(s

′
i) = 1 − 1

2i
for all i, and so

valG(s0) =
∑∞

i=1
1
2i

· (1 − 1
2i
). (The latter series equals 2

3 , but that will not be
needed.) It follows that the only optimal Minimizer strategy is the one that chooses
the red option at any state s′i (where i ≥ 1). Note that Maximizer does not make
any choices if Minimizer plays her optimal strategy.

Towards Item 1, Maximizer’s optimal strategy σ from s0 is defined as follows. In
plays where the state s′′1 is not reached, Maximizer does not make any decisions. If s′′1
is reached, Maximizer considers the history of this play: If Minimizer chose the move
from s′i to s′′1 for some i ≥ 1, then Maximizer chooses moves (via states s′′2 , . . . , s

′′
i−1)

to state s′′i for the same i, and at state s′′i he chooses the red option (end the game
and win with probability 1− 2−i. Note that in this way Maximizer takes the action



Springer Nature 2021 LATEX template

42 Strategy Complexity of Reachability in Countable Stochastic 2-Player Games

that Minimizer refused to take (although it would have been optimal for her) at s′i.
With this Maximizer strategy σ, for every Minimizer strategy π, the probability to
reach t equals

PG,s0,σ,π(Reach({t})) =
∞∑
i=1

1

2i
·
(
1− 1

2i

)
= valG(s0)

meaning that σ is optimal.
Towards Item 2, we note that the step counter from s0 is implicit in the states

of G (except in the target t and the losing sink state), and thus superfluous for
Maximizer strategies. Hence it suffices to prove the property for Maximizer strategies
with finite memory. Let σ be an FR Maximizer strategy with finitely many memory
modes {1, . . . , k}. At state s′′1 this strategy σ can base its decision only on the current

memory mode m ∈ {1, . . . , k}. Let X(m)
def
= infπ PG,s′′1 ,σ[m],π(Reach({t})) be the

probability of reaching the target if σ is in mode m at state s′′1 . (From state s′′1 only
Maximizer plays, thus Minimizer has no influence.) Since X(m) < 1 and the memory

is finite, we have Y
def
= maxm∈{1,...,k} X(m) < 1. There exists a number i sufficiently

large such that Y < 1 − 1
2i
. Let π be a Minimizer strategy from s0 that takes the

blue option from s′i to s′′1 , but chooses the red option in all states s′j with j ̸= i. Then
we have

PG,s0,σ,π(Reach({t})) ≤ 1

2i
Y +

∑
j ̸=i

1

2j
·
(
1− 1

2j

)

<

∞∑
j=1

1

2j
·
(
1− 1

2j

)
= valG(s0)

and thus σ is not optimal. □

Note that the counterexample in Definition 13 and Proposition 21 has
some particular properties. Even though the players have finite action sets, the
random state s0 is infinitely branching. Moreover, while s0 admits an optimal
Maximizer strategy, the same does not hold for all states in the game, e.g., the
states s′′i have value 1, but do not admit any optimal Maximizer strategy.

The following theorem shows that if we impose any such extra condition on
the game (i.e., even all random states are finitely branching, or all states admit
an optimal Maximizer strategy) then the memory requirements of optimal
Maximizer strategies are somewhat lower. In these cases, just a step counter
and 1 bit of public memory are sufficient.

Theorem 22 Let G be a turn-based reachability game with finite action sets with
initial state s0 and objective Reach({t}) such that at least one of the following two
conditions is satisfied:

(A) G is finitely branching (at all states, including the random states), or

(B) Every state in G admits an optimal Maximizer strategy.

Suppose that Maximizer has an optimal strategy σ, i.e., PG,s0,σ,π(Reach({t})) ≥
valG(s0) holds for all Minimizer strategies π. Then Maximizer also has a
deterministic such strategy that uses 1 bit of public memory and a step counter.
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In the proof of Theorem 22 we will use the following version of the optional
stopping theorem.

Theorem 23 (Optional Stopping Theorem) Suppose X0, X1, . . . is a submartingale
adapted to a filtration F0,F1, . . .; i.e., Xn ≤ E(Xn+1 | Fn) for all n. Suppose further

that there is c ∈ R with |Xn| ≤ c almost surely for all n. Then the limit X∞
def
=

limn→∞ Xn exists almost surely. Let τ1, τ2 be stopping times with τ1 ≤ τ2 almost
surely (where τ1 = ∞ and τ2 = ∞ may have positive probability). Then we have
Xτ1 ≤ E(Xτ2 | Fτ1) almost surely.

Proof The proof is immediate from (Neveu, 1975, Proposition IV-5-24,
Corollary IV-2-25). □

Notice that if, in addition to the other preconditions of Theorem 23, the
submartingale X0, X1, . . . is a martingale, i.e., Xn = E(Xn+1 | Fn) for all n,

then it follows, by considering Yn
def
= −Xn for all n, that we have Xτ1 = E(Xτ2 |

Fτ1) almost surely.
For the proof of Theorem 22 we also use Kiefer et al (2017a) Theorem 5(2),

slightly generalized as the following lemma.

Lemma 24 Let G be a turn-based reachability game, such that Minimizer has finite
action sets and Minimizer does not have any value-increasing transitions; i.e., for
all transitions s−→s′ with s ∈ S3 we have valG(s) = valG(s

′).
Then there exists some MD Maximizer strategy that is optimal from every state

that admits an optimal strategy.

Proof First we consider the special case where G is finitely branching (i.e., at every
state, not just at the Minimizer-controlled states). The statement then follows from
(Kiefer et al, 2017a, Thm. 5(2)), but there it is stated only for a single initial state
that admits an optimal strategy. Therefore, denote by Sopt ⊆ S the set of states that
admit an optimal strategy. Add a fresh random state, say s0, such that the support
of P (s0) equals Sopt . This might require infinite branching, but one can easily encode
infinite branching of random states into finite branching in the case of reachability
objectives, using a “ladder” gadget of fresh intermediate finitely branching random
states. Since every state in Sopt admits an optimal strategy, the new state s0 admits
an optimal strategy. The mentioned result (Kiefer et al, 2017a, Thm. 5(2)) applied
to s0 gives an MD Maximizer strategy σ that is optimal starting from s0. But then
σ must be optimal from every state in Sopt .

The above result can be generalized to allow infinitely branching random states
by the same encoding as above, using a “ladder” of fresh intermediate finitely
branching random states. Similarly, infinitely branching Maximizer states can also
be encoded into a “ladder” of fresh intermediate finitely branching Maximizer states.
This encoding gives Maximizer the additional option to remain on the ladder forever,
but this is not a problem. Since the target is not on the ladder, staying on the
ladder forever would be losing for Maximizer. Finally, since we are dealing with MD
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strategies, the strategies can be carried back from the finitely branching game that
uses the “ladder” gadget encoding to the infinitely branching original game. (The
same would not hold for Markov strategies in general, since the encoding does not
preserve path lengths. Also it is not possible to encode infinite Minimizer branching
in this way, because Minimizer could spuriously win by staying on the ladder gadget
forever.) □

Proof of Theorem 22. Denote by Ḡ the game obtained from G by deleting
Minimizer’s value-increasing transitions, i.e., those transitions s−→s′ with s ∈ S3
and valG(s) < valG(s

′). As G has finite Minimizer action sets, each Minimizer state
still has at least one outgoing transition in Ḡ, and all states have the same value in G
and Ḡ, and all states that admit an optimal Maximizer strategy in G admit an optimal
Maximizer strategy in Ḡ and vice versa. Denote by Sopt ⊆ S the set of states that
admit an optimal Maximizer strategy. By Lemma 24, there exists an MD Maximizer
strategy σ̄ in Ḡ that is optimal from every state in Sopt . Thus, for any s ∈ S2∩Sopt ,
the transition s−→s′ that σ̄ prescribes preserves the value, i.e., val(s) = val(s′),
and s′ ∈ Sopt . By assumption, s0 ∈ Sopt . Thus, σ̄ is optimal from s0 in Ḡ. Hence,
σ̄ is optimal from s0 in G if Minimizer never chooses a value-increasing transition
s−→s′ with s ∈ S3 and val(s) < val(s′). We view such a transition as a gift from
Minimizer of size val(s′)− val(s) > 0.

Let us now sketch a first draft of a Maximizer strategy that is optimal from s0
in G.

• Play the strategy σ̄ until Minimizer gives a gift of, say, ε > 0. Use the 1 bit
of public memory to record the fact that a gift has been given.

• Then play an ε-optimal MD strategy, which exists by Lemma 5.

The problem with this draft strategy is that storing the size of Minimizer’s gift ε
appears to require infinite memory, not just 1 bit, because ε could be arbitrarily small.
Moreover, the different ε-optimal MD strategies might prescribe different choices for
different ε.

Therefore, we use the step counter to deduce a lower bound on any nonzero gift
that Minimizer may have given up to that point in time.

Let R(i) be the set of states that could be reached from s0 with nonzero
probability under any pair of strategies within ≤ i steps.

Under condition (A), R(i) is finite for every i ∈ N, because G is finitely branching.

Here we just define the finite set S(i)
def
= R(i). (Under condition (B), S(i) will be a

subset instead.)
Under condition (B), even though both players have finite action sets, random

states are still allowed to be infinitely branching. Thus R(i) could be infinite.
However, since the players have finite action sets, for every time i ≥ 0 and δ > 0,
there exists a finite subset of states S(i, δ) ⊆ R(i) such that under any pair of
strategies σ, π from s0, the probability of ever being outside S(i, δ) at any time t ≤ i
is upper-bounded by δ. I.e.,

∀σ, π PG,s0,σ,π(Reachi(S \ S(i, δ))) ≤ δ. (26)

Since only random states can be infinitely branching, S(i, δ) can easily be defined

by cutting infinite tails off distributions, e.g., losing ≤ δ · 2−(t+1) in the t-th round.
Additionally, we can define these sets such that they are monotone increasing in i.
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That is, S(i, δ) ⊆ S(i+1, δ) for all i ∈ N. We then define S(i)
def
= S(i, 2−i), and these

sets are also monotone increasing in i.
Let εi > 0 denote the size of the smallest nonzero gift that Minimizer can give

from any state inside S(i), i.e.,

εi
def
= min{(val(s′)− val(s)) > 0 | s → s′ ∧ s ∈ S(i) ∩ S3}.

We have εi > 0, because S(i) is finite and Minimizer has finite action sets. Moreover,
the εi are monotone decreasing in i, because the sets S(i) are monotone increasing.

Under condition (A), εi is a lower bound on all possible Minimizer gifts until time
i, while under condition (B) it is only a lower bound on most of Minimizer’s possible
gifts until time i (namely on those originating from a state in the subset S(i)).

However, we will show that, under condition (B), it is safe for Maximizer to
ignore gifts from Minimizer if gifts are given only finitely often. (This does not hold
under condition (A).) So our Maximizer strategy will ignore gifts from Minimizer at
time i if the gift originates from a state outside S(i). Indeed, except for a nullset
of plays, Minimizer cannot give a gift at infinitely many times i at states outside of
S(i), because it is so unlikely to be outside S(i) at time i. Consider an arbitrary pair
of strategies σ, π and let R ⊆ s0S

ω be the set of plays s0s1 · · · sisi+1 . . . from s0
where si /∈ S(i) for infinitely many i ∈ N.

Claim 25 ∀σ, π PG,s0,σ,π(R) = 0.

Proof Consider a number k ∈ N. For every play s0s1 · · · sisi+1 . . . in R there exists
a number k′ > k such that sk′ /∈ S(k′). Let Rk′ ⊆ R be the subset of plays where
k′ is the smallest number > k where sk′ /∈ S(k′). Then R can be partitioned as R =

⊎k′>kRk′ . However, by S(k′) = S(k′, 2−k′
) and (26), we have PG,s0,σ,π(Rk′) ≤ 2−k′

and thus PG,s0,σ,π(R) ≤
∑

k′>k 2
−k′

≤ 2−k. Since this holds for every k ∈ N, the
result follows. □

Another problem with the draft strategy is that the ε-optimal MD strategy from
Lemma 5 is ε-optimal only from a finite set of initial states (uniformly ε-optimal
memoryless strategies do not always exist; see Theorem 7).

Therefore, we partition time into infinitely many finite phases Φ1 =
{1, . . . , t1},Φ2 = {t1 + 1, . . . , t2},Φ3 = {t2 + 1, . . . , t3}, etc., and refer to Φ1,Φ3, . . .
as odd and to Φ2,Φ4, . . . as even phases. The length of the phases is determined
inductively; see below. Let Si with S(ti−1 + 1) ⊆ Si ⊆ R(ti−1 + 1) be a sufficiently
large finite subset of the states that could be reached by the beginning of phase i such
that the following condition holds: Under any pair of strategies, for any s ∈ S(ti−1),
conditioned under the event that s has been visited at some time t ≤ ti−1, the
probability of being inside Si at time ti−1 + 1 is ≥ 1 − (εti−1/2). Under condition

(A), we can simply take Si
def
= R(ti−1 + 1), since that is finite. Under condition (B),

since S(ti−1) is finite and the players have finite action sets, we obtain a suitable Si

by cutting suitably small tails off distributions. Note that Si does not depend on the
pair of strategies. The lengths of the phases Φ1,Φ2, . . . are determined as follows.

(LO) Each odd phase Φi is long enough (i.e., ti is chosen large enough) so that we

have infπ PḠ,s,σ̄,π(ReachΦi
({t})) ≥ val(s)

2 for all s ∈ Si ∩ Sopt , where we write
ReachΦi

({t}) for the event that t is reached within ti−ti−1 steps, i.e., the length
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of phase Φi. That is, if Φi begins at a state s ∈ Si ∩Sopt and if Minimizer does
not give a gift during Φi, the Maximizer strategy σ̄ realizes at least half of the
value of s already within Φi. The length of Φi can be chosen finite, because Si

is finite and Minimizer has finite action sets.

(LE) For each even phase Φi, by Lemma 5, there is an MD Maximizer
strategy σi so that Φi can be made long enough so that we have
infπ PG,s,σi,π(ReachΦi

({t})) ≥ val(s) − (εti−1/2) for all s ∈ Si. Again the
length of Φi can be chosen finite, because Si is finite and Minimizer has finite
action sets. If Minimizer has given a gift from a state s ∈ S(ti−1) in the previous
phase, then this gift will be ≥ εti−1 . Moreover, by the definition of Si, we will
then be in a state in Si at the beginning of phase Φi with very high conditional
probability ≥ 1 − (εti−1/2) (or even surely under condition (A)). Thus, in the
phase Φi, the Maximizer strategy σi can undercut Minimizer’s gift and realizes
most of the value of s already within Φi.

We now define a deterministic Maximizer strategy σ from s0 that uses a step counter
and 1 bit of public memory. Later we show that σ is optimal from s0. Strategy σ uses
two memory modes, m0 and m1, where m0 is the initial mode. Strategy σ updates
the mode as follows.

(U1) While in m0 and in an odd phase Φi: if Minimizer gives a gift from a state
s ∈ S(ti) switch to m1. I.e., Maximizer uses the bit to remember that Minimizer
has given a gift and will undercut it in the next even phase. The size of the gift
is lower-bounded by εti > 0. Note that Maximizer ignores all Minimizer gifts
from states outside S(ti) (which can only happen under condition (B)).

(U2) While in m0 and upon entering an odd phase: if the new state does not admit
an optimal strategy, switch to m1. This can only happen if Minimizer has given
a gift in some previous even phase (and not at all under condition (B)). If
Minimizer had given a gift in some previous odd phase then the memory mode
would already be m1. If Minimizer has never given a gift then the current state
would still admit an optimal strategy, since Maximizer never voluntarily leaves
Sopt .

Note that once the mode has been switched to m1 it is never switched back to m0.
Strategy σ plays as follows.

(P1) While in m0 and in Sopt : play σ̄. This keeps the game in Sopt , at least until
possibly Minimizer gives a gift. (Under condition (A), the play might leave Sopt

after a Minimizer gift. Under condition (B), all plays stay inside Sopt .)

(P2) While in m0 and in a state s ∈ S2 \ Sopt : choose a value-preserving transition,
i.e., s−→s′ with val(s) = val(s′). Such a transition must exist, due to the
finite Maximizer branching in G.

(P3) While in m1 during an odd phase: choose a value-preserving transition, i.e.,
s−→s′ with val(s) = val(s′). Such a transition must exist, due to the finite
Maximizer branching in G. Intuitively, Maximizer has recorded the fact that
Minimizer has given a non-ignored gift, but waits until the next even phase to
capitalize on it.

(P4) While in m1 during an even phase Φi: play the MD strategy σi from the
definition (LE) of the even phase Φi. It follows from (U1) and (U2) that σi has
been played from the beginning of Φi. (Here Maximizer undercuts Minimizer’s
previous gift.)
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Note that not all possible gifts by Minimizer are detected, i.e., result in a switch
to memory mode m1. First, gifts in phase Φi from states outside S(ti) are ignored.
Moreover, Minimizer could give a gift in an even phase while staying in Sopt , or
the game might just temporarily leave Sopt but move back to Sopt before the next
odd phase, thus avoiding rule (U2). However, this is not a problem for Maximizer:
Since the game returns to Sopt before the next odd phase, Maximizer is fine to just
continue playing σ̄ by (P1), because he will realize at least half of the value (at least
of most states; those in Si) during the next odd phase.

To show that σ is optimal from s0, fix an arbitrary Minimizer strategy π for the
rest of this proof, and assume that the target t is a sink. Let us write P for PG,s0,σ,π
and E for the associated expectation. We need to show that val(s0) ≤ P(Reach({t})).

For a play s0s1 · · · ∈ {s0}Sω, define a random variable τ1, taking values in
N ∪ {∞}, such that τ1 = ∞ if Minimizer never gives a gift or all Minimizer gifts
are ignored, and τ1 = j < ∞ if sj−→sj+1 is the first non-ignored Minimizer gift.
Also define a random variable τ2, taking values in N ∪ {∞}, such that τ2 = ∞ if no
mode switch from m0 to m1 ever occurs, and τ2 = k < ∞ if k is the beginning of the
even phase following a mode switch from m0 to m1. The random variables τ1 +1, τ2
are both stopping times. As long as Minimizer does not give any non-ignored gift,
Maximizer plays σ̄ and, by (P1), keeps the game in Sopt , and thus, by (U1) and (U2),
the mode remains m0. Hence, τ1 < τ2 ≤ ∞ or τ1 = ∞ = τ2.

Further, define random variables V0, V1, . . . and W0,W1, . . ., taking values

in [0, 1], by Vi
def
= val(si) for all i ≤ τ1, and Vi = Vτ1 for all i ≥ τ1, and Wi

def
= val(si)

for all i ≤ τ2, and Wi = Wτ2 for all i ≥ τ2. By (P1), (P2) and (P3), Maximizer
preserves the value in each of his transitions, at least until τ2. Thus, W0,W1, . . .
is a submartingale. Minimizer cannot decrease the value, but might increase it
when giving a gift. Under condition (B), Minimizer might give ignored gifts before
τ1. Thus, V0, V1, . . . is a submartingale. Under condition (A), Minimizer gifts are
never ignored, and thus V0, V1, . . . is even a martingale. By Theorem 23, V0, V1, . . .
and W0,W1, . . . converge almost surely to random variables, which we may call,
without risk of confusion, Vτ1 (which equals Vτ1+1) and Wτ2 , respectively. Again by
Theorem 23, we have

val(s0) = EV0 ≤ EVτ1+1 = EVτ1 . (27)

Now consider the event τ2 = ∞. By (U1) and (U2), Minimizer does not give
any non-ignored gift in any odd phase and the state at the beginning of every odd
phase admits an optimal strategy for Maximizer. This property is ensured by each of
the conditions (A) and (B). Under condition (A), Minimizer gifts are never ignored.
Condition (B) ensures that the game is always in a state that admits an optimal
strategy for Maximizer, and thus in particular at the beginning of every odd phase.

Under condition (A), Minimizer will not give any gift at all in any odd phase,
and thus by (P1) Maximizer plays the strategy σ̄ undisturbed in every odd phase.

Since (A) implies that Si
def
= R(ti−1 + 1), definition (LO) ensures that in every odd

phase Maximizer realizes at least half of the value of the state at the beginning of
the phase.

Under condition (B), Minimizer might still give ignored gifts in odd phases, which
could disrupt the attainment of Maximizer’s strategy σ̄. However, by Claim 25, except
in a nullset of plays, there are only finitely many ignored Minimizer gifts in a play.
I.e., almost every play is eventually undisturbed by ignored Minimizer gifts in odd
phases. Moreover, no part of the value is lost, since V0, V1, . . . is a submartingale, and
every state admits an optimal strategy for Maximizer. Hence, except in a nullset, by
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(LO), Maximizer eventually realizes at least half of the value of each state s ∈ Si that
it is in at the beginning of every odd phase Φi. Finally, since S(ti−1 + 1) ⊆ Si, the
probability of being in a state s ∈ Si at the beginning of an odd phase Φi converges
to 1 as i → ∞.

Therefore, under either condition (A) or (B), we have that

P({τ2 = ∞} ∩ {W∞ > 0} \ Reach({t})) = 0 . (28)

Thus,

E(V∞ | τ1 = ∞) ≤ P(V∞ > 0 | τ1 = ∞)

= P(W∞ > 0 | τ1 = ∞) ≤ P(Reach({t}) | τ1 = ∞) .

Hence, continuing (27),

val(s0) ≤ P(τ1 = ∞) · E(V∞ | τ1 = ∞) +
∑

0≤j<∞
P(τ1 = j) · E(Vj | τ1 = j)

≤ P(Reach({t}), τ1 = ∞) +
∑

0≤j<∞
P(τ1 = j) · E(Vj | τ1 = j) ,

(29)

where here and henceforth, to avoid clutter, we may write “,” for the intersection of
events. Let j ∈ N. It follows from the definitions of τ1 and εj that on τ1 = j we have
Wj+1 ≥ Wj + εj . Thus,

E(Vj | τ1 = j)

= E(Wj | τ1 = j) by def. of Vj ,Wj

≤ −εj + E(Wj+1 | τ1 = j) as explained above

≤ −εj + E(Wτ2 | τ1 = j) Theorem 23

= −εj + P(τ2 = ∞ | τ1 = j) · E(W∞ | τ1 = j, τ2 = ∞) +

+
∑

j+1≤k<∞
P(τ2 = k | τ1 = j) · E(Wk | τ1 = j, τ2 = k) .

(30)
Concerning the first expectation, we have

E(W∞ | τ1 = j, τ2 = ∞) ≤ P(W∞ > 0 | τ1 = j, τ2 = ∞)

≤ P(Reach({t}) | τ1 = j, τ2 = ∞) by (28).
(31)

Concerning expectations under the sum, let k > j, and denote by H(j, k) the
set of histories s0 · · · sk ∈ {s0}Sk such that for some (hence, all) extension(s)
r = s0 · · · sksk+1 · · · we have τ1(r) = j and τ2(r) = k. Then we have

P(τ1 = j, τ2 = k) · E(Wk | τ1 = j, τ2 = k)

=
∑

h=s0···sk∈H(j,k)

P({h}Sω) · val(sk) by the defs.

≤
∑

h∈H(j,k)

P({h}Sω) ·
(
P(Reach({t}) | {h}Sω) + εk−1/2 + εk−1/2

)
by (P4),(LE)

Minimizer’s gift at time j happens in some odd phase Φi and is ≥ εti .

The next even phase begins at time k = ti + 1.

Each of the two errors in this even phase are ≤ εti/2 = εk−1/2.

≤
∑

h∈H(j,k)

P({h}Sω) ·
(
P(Reach({t}) | {h}Sω) + εj

)
εk−1 ≤ εj
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ui si ui+1 si+1 ui+2
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1
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1

1
4 − 1

2i+1
1
4 + 1

2i+1

t ⊥

yi 1− yi

t ⊥

1
2

1

1
4 − 1

2i+2
1
4 + 1

2i+2

t ⊥

yi+1 1− yi+1

· · ·· · ·

Fig. 10 Finitely branching turn-based reachability game G, where optimal Maximizer
strategies cannot be Markov. For clarity, we have drawn several copies of the target state t.
The number yi is defined to be 1

2
− 1

2i+1 ; see Proposition 26.

= P(τ1 = j, τ2 = k) ·
(
P(Reach({t}) | τ1 = j, τ2 = k) + εj

)
.

Thus,∑
j+1≤k<∞

P(τ2 = k | τ1 = j) · E(Wk | τ1 = j, τ2 = k)

≤
∑

j+1≤k<∞
P(τ2 = k | τ1 = j) ·

(
P(Reach({t}) | τ1 = j, τ2 = k) + εj

)
≤ P(Reach({t}) | τ2 < ∞, τ1 = j) + εj .

Combined with Equations (30) and (31) this gives

E(Vj | τ1 = j) ≤ P(Reach({t}) | τ2 = ∞, τ1 = j) + P(Reach({t}) | τ2 < ∞, τ1 = j)

≤ P(Reach({t}) | τ1 = j) .

Combined with (29), we obtain

val(s0) ≤ P(Reach({t}), τ1 = ∞) + P(Reach({t}), τ1 < ∞) = P(Reach({t})) ,

as required. □

The following example shows a corresponding lower bound to Theorem 22,
i.e., even if both conditions (A) and (B) hold, just a step counter does not
suffice for optimal Maximizer strategies.

Proposition 26 There exists a finitely branching turn-based reachability game G
with initial state u1 and objective Reach({t}), as shown in Figure 10, such that

1. From every state in G, Maximizer has an optimal strategy.

2. Every randomized Maximizer strategy from u1 that uses only a step counter and
no memory is not optimal.
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Proof Consider first a version of G, say G′, in which the only outgoing transition from
the states ui is the horizontal one, shown in red in Figure 10. I.e., in G′ Minimizer
does not have any choice and thus G′ can be regarded as a maximizing MDP. Let σ
be the MD Maximizer strategy that chooses at all states si the horizontal outgoing
transition, shown in red in Figure 10. Then we have

PG′,ui,σ(Reach({t})) =

∞∑
j=0

1

2j
·
(
1

4
− 1

2i+j+1

)
=

1

2
− 1

3
· 1

2i−1
.

In G′, strategy σ is optimal for Maximizer everywhere. Indeed the only alternative
is to take the vertical outgoing transition at some state si, which is suboptimal by
the following. Consider a strategy σ′ that chooses at state si the vertical outgoing
transition. Then we have

PG′,si,σ′(Reach({t})) = 1

2
− 1

2i+1

<
1

2
− 1

3
· 1

2i

= PG′,ui+1,σ(Reach({t}))
= PG′,si,σ(Reach({t}))
≤ valG′(si) .

(32)

Consider now the original game G as shown in Figure 10. Since Minimizer has
additional options, the value at each state is not larger than at the corresponding
state in G′.

However, we show that, in G, Maximizer still has an optimal strategy σ̂ from
every state s. It suffices to show this property for states s = uk for any k ≥ 1. At
states s = sk, the optimal move is always to go right to uk+1, because the vertical
transition is suboptimal by (32), and at random states no decision can be made until
the next step (or ever).

We show that, starting from uk, strategy σ̂ attains the same value (12 − 1
3 · 1

2k−1 )

in G as in G′. Namely, define σ̂ so that as long as Minimizer chooses the horizontal
(red) outgoing transitions at ui, Maximizer chooses the horizontal (red) outgoing
transition at si; once Minimizer deviates and chooses the non-horizontal outgoing
transition at, say, ui, then Maximizer responds by choosing the vertical outgoing
transition at si. (The strategy σ̂ is a deterministic public 1-bit strategy, but we do
not need that here.)

Intuitively, for Minimizer a “deviation”, i.e., choosing a non-horizontal outgoing
transition, is value-increasing and thus suboptimal. But she may try to lay a trap for
Maximizer and trick him into visiting all states ui, si. To stop this from happening,
Maximizer, using σ̂, responds to a Minimizer deviation by also deviating, i.e., by
choosing a vertical outgoing transition. Such a deviation is suboptimal for him, but
the game is constructed so that a Maximizer deviation decreases the value less than
Minimizer has previously increased it by her deviation. In effect, with σ̂, Maximizer
attains as much as in G′ if Minimizer never deviates; if Minimizer deviates, Maximizer
attains slightly more than in G′. Thus, σ̂ is optimal.

Formally, let π be any Minimizer strategy. Denote by Di the event that Minimizer
deviates at ui (for some i ≥ k), i.e., chooses the non-horizontal outgoing transition
at ui. Since the Maximizer strategy σ̂ responds by choosing the vertical outgoing
transition at si, we have

PG,uk,σ̂,π(Reach({t}) | Di) =
1

2
− 1

2i+1
>

1

2
− 1

3
· 1

2i−1
= PG′,ui,σ(Reach({t})) ,
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i.e., by deviating at ui, Minimizer increases the probability of reaching t compared to
her not deviating at ui or thereafter (which corresponds to playing in G′). We have
already argued that PG′,ui,σ(Reach({t})) = valG′(ui) ≥ valG(ui). It follows that σ̂
is optimal, which concludes the proof of Item 1.

Towards Item 2, note that in G the step counter from u1 is implicit in the current
state. In particular, starting from u1, if a state si is visited then it is visited as
the 3i-th state. It follows that a step counter is not useful for Maximizer strategies.
Thus, it suffices to show that no memoryless strategy for Maximizer is optimal. Let
σ be any memoryless Maximizer strategy. If σ chooses at every si the horizontal
outgoing transition, the probability of reaching t is zero if Minimizer never chooses
the horizontal outgoing transition at any ui; thus, σ is not optimal. Hence, we can
assume that there is a state si at which σ chooses with a positive probability the
vertical outgoing transition. Denote by Ei the event that Maximizer chooses the
vertical outgoing transition at si. Let π be the Minimizer strategy that at all uj
chooses the horizontal outgoing transition. Recall that π is optimal for Minimizer
everywhere. Similarly to (32) above, we have

PG,u1,σ,π(Reach({t}) | Ei) =
1

2
− 1

2i+1
<

1

2
− 1

3
· 1

2i
= valG(ui+1) = valG(si) .

Thus, σ is not optimal. As σ was chosen arbitrarily, Maximizer does not have an
optimal memoryless strategy. This proves Item 2. □

In the example in Figure 10, subgame-perfect Maximizer strategies cannot
guarantee any positive probability of reaching the target state, because they
would always choose the step si → ui+1 for all i ∈ N. Thus an optimal
Maximizer strategy may need to take steps that are locally sub-optimal in
subgames.

However, in those turn-based reachability games with finite Minimizer
action sets where optimal subgame-perfect Maximizer strategies do exist, there
also exist such strategies that are memoryless and deterministic by (Kiefer
et al, 2017a, Theorem 5).

9.2 Concurrent Games

The lower bounds for turn-based games from Section 9.1 immediately carry
over to concurrent games. It is an open question whether the upper bounds
carry over. We conjecture that a suitably adapted version of Theorem 22
might hold for concurrent games (e.g., condition (A) might be generalized by
requiring that all probability distributions have finite support). However, such
a generalization faces several obstacles. In concurrent games, it is more difficult
to define what it means for Minimizer to “give a gift”, and how to define a
restricted version of the game where such gift-giving is forbidden. Also one
would need a suitably generalized version of Lemma 24.

A special case of optimal Maximizer strategies are those that win almost
surely. Here no memory is needed at all, and these strategies can even be made
uniform. The following upper bound for concurrent games trivially carries over
to turn-based games (with finite action sets).
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Theorem 27 Given a concurrent game with finite action sets and a reachability
objective, there exists some randomized memoryless Maximizer strategy that is almost
surely winning from every state that admits an almost surely winning strategy (i.e.,
the same strategy works from all these states).

Proof Let G be a concurrent game with state space S, and let Reach(T ) be a
reachability objective.

Without restriction, we can assume that all states in S admit an almost surely
winning strategy. Otherwise, we consider the subgame G′ obtained by restricting G
to S′, ie the game on the subgraph induced by S′, where S′ ⊆ S is the subset of
states that admit an almost surely winning strategy in G. Then all states in S′ admit
an almost surely winning strategy in G′. (Note that this construction of G′ would not
work if we replaced the “almost surely winning” condition by the weaker condition
of “having value 1”.)

In order to construct a memoryless Maximizer strategy σ̂ that wins almost surely
from every state, we inductively define a sequence of modified games Gi in which the
strategy of Maximizer is already fixed on a finite subset of the state space, and where
all states in Gi still admit an almost surely winning strategy. Fix an enumeration
s1, s2, . . . of S in which very state s appears infinitely often.

For the base case we have G0
def
= G and the property holds by our assumption on G.

Given Gi, we construct Gi+1 as follows. We use Lemma 5 to get a memoryless
strategy σi and a finite subset of states Ri s.t. infπ PGi,si,σi,π(ReachRi

(T )) ≥
valGi

(si)− 2−i = 1− 2−i.
Let G′

i be the subgame of Gi that is restricted to Ri and further let

R′
i

def
= {s ∈ Ri | inf

π
PG′

i,s,σi,π(ReachRi
(T )) > 0}

be the subset of states in Ri where σi has strictly positive attainment in G′
i. In

particular, we have si ∈ R′
i for all i ≥ 1. Since R′

i is finite, we have

λi
def
= min

s∈R′
i

inf
π

PG′
i,s,σi,π(ReachRi

(T )) > 0.

We now construct Gi+1 by modifying Gi as follows. For every state
s ∈ R′

i we fix Maximizer’s (randomized) action according to σi. Then
infπ PGi+1,si,σ,π(Reach(T )) ≥ 1− 2−i and infπ PGi+1,s,σ,π(ReachR′

i
(T )) ≥ λi for all

s ∈ R′
i and all σ ∈ ΣGi+1

(and thus in particular for the strategy σ̂ that we will
construct).

Now we show that in Gi+1 all states s still have an almost surely winning strategy.
Let σ be an a.s. winning Maximizer strategy from s in Gi, which exists by the

induction hypothesis. We now define an a.s. winning Maximizer strategy σ′ from s
in Gi+1.

If the game does not enter R′
i then σ′ plays exactly as σ (which is possible since

outside R′
i no Maximizer actions have been fixed). If the game enters R′

i then it will
reach the target within R′

i (i.e., before exiting R′
i, if ever) with probability ≥ λi > 0.

Plays that do not stay inside R′
i then exit R′

i at some state s′ /∈ R′
i. Then, from s′, σ′

plays an a.s. winning strategy w.r.t. Gi (which exists by the induction hypothesis).
Now we show that σ′ wins almost surely from s in Gi+1. The plays from s can

be partitioned into the following three subsets. The first set of plays visit R′
i only

finitely often and eventually forever follow an a.s. winning strategy outside of R′
i
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and thus (except for a nullset) eventually reach the target. The second set of plays
enter R′

i infinitely often and the third set of plays eventually forever remain in R′
i.

For plays in both the second and third sets, the probability of reaching the target
from the current state does not converge to zero, since λi > 0. Hence, by Lévy’s 0-1
law, the probability of reaching the target must converge to 1, and thus (except for
a nullset) the plays in the second and third set also reach the target. Therefore σ′

almost surely wins from s in Gi+1.
Finally, we can construct the memoryless Maximizer strategy σ̂. Since our

enumeration of the states s1, s2, . . . contains every state s ∈ S infinitely often, in
particular it contains every state in S. Moreover, si ∈ R′

i for every i ≥ 1. Thus, in the
limit of the games G∞, all Maximizer choices are fixed. The memoryless Maximizer
strategy σ̂ plays according to these fixed choices, i.e., it plays like σi at state si for all
i ∈ N. Note that if si ∈ R′

i then, for all j > i, the mixed action of σj at si coincides
with the mixed action of σi at si, because σj is defined in a game where Maximizer’s
mixed action in si is already fixed.

Since σ̂ plays like σi inside R′
i, we obtain infπ PG,si,σ̂,π(Reach(T )) ≥

infπ PGi,si,σi,π(ReachRi
(T )) ≥ 1−2−i for all i ∈ N. Let s ∈ S. Since our enumeration

of the states contains every state infinitely often, s = si holds for infinitely many i,
and thus we obtain infπ PG,s,σ̂,π(Reach(T )) = 1 as required. □

10 Minimizer Strategies

In the previous sections we have considered the strategy complexity of
Maximizer’s strategies. In this section we complete the picture of the strategy
complexity of Minimizer. In reachability games, Minimizer strategies are
generally simpler than Maximizer strategies, because they do not need to make
progress towards the target. By (Nowak and Raghavan, 1991, Thm. 1), we
already know that Minimizer always has optimal (and thus ε-optimal) MR
strategies in concurrent reachability games with finite action sets. In (Brázdil
et al, 2011, Thm. 3.1), this result is strengthened in the context of finitely
branching turn-based games, where it is shown that Minimizer always has MD
such strategies. In the sequel, as depicted in Table 2, we close the remaining
gaps in the theory by studying the strategy complexity of Minimizer in
infinitely branching turn-based reachability games. We prove that ε-optimal
Minimizer strategies in infinitely branching turn-based reachability games
can be chosen as deterministic and Markov (Theorem 29). In contrast,
optimal Minimizer strategies need not always exist in infinitely branching
turn-based reachability games. However, even if optimal Minimizer strategies
do exist, a step counter plus finite private memory is not sufficient in general
(Proposition 30).

We begin by considering games on acyclic graphs. Memoryless strategies in
acyclic games yield Markov strategies in general games, since an encoded step
counter makes the graph acyclic. In fact, the following result about acyclic
games is slightly more general, since not all acyclic graphs yield an implicit step
counter, i.e., the same state might be reached via paths of different lengths.



Springer Nature 2021 LATEX template

54 Strategy Complexity of Reachability in Countable Stochastic 2-Player Games

Lemma 28 For every acyclic turn-based reachability game G =
(S, (S2, S3, S#),−→, P ), reachability target T ⊆ S and every 0 < ε < 1 there
exists an MD Minimizer strategy π which satisfies, for every state s0 ∈ S and every
Maximizer strategy σ, that PG,s0,σ,π(Reach(T )) ≤ valG,Reach(T )(s0)(1 + ε). Hence,
acyclic turn-based reachability games admit uniformly ε-optimal MD strategies for
Minimizer.

Proof Let us shortly write val(s) = valG,Reach(T )(s) for the value of a state s and
let ι : S → N \ {0} be an enumeration of the state space starting at 1. Define π as
the MD Minimizer strategy that, at any state s ∈ S3, picks a successor s′ such that

val(s′) ≤ val(s)(1 + ln(1 + ε)2−ι(s)).

To show that this strategy π satisfies the claim we (over)estimate the error by

L(s)
def
=
∏

s′∈Post∗(s)(1 + ln(1 + ε)2−ι(s′)) where Post∗(s) ⊆ S is the set of states

reachable from state s ∈ S (under any pair of strategies). Notice that this guarantees
that

1 < L(s) ≤
∏
i>0

(
1 + ln(1 + ε)2−i

)

≤ exp

(∑
i>0

ln(1 + ε)2−i

)
(33)

≤ exp(ln(1 + ε)) = 1 + ε

where the third inequality uses that 1 + x ≤ exp(x).
Let σ be an arbitrary Maximizer strategy. For this pair σ, π of strategies let’s

consider plays (Xi)i≥0 that start in s0 ∈ S and proceed according to σ, π, and let
EG,s0,σ,π be the expectation with respect to PG,s0,σ,π.

An induction on n using our choice of strategy gives, for every initial state s0 ∈ S,
that

EG,s0,σ,π(val(Xn)) ≤ val(s0)L(s0). (34)

Indeed, this trivially holds for n = 0 as EG,s0,σ,π(val(X0)) = val(s0) and L(s0) > 1.
For the induction step there are three cases.

Case 1: s0 ∈ S3 and π(s0) = s. Let σ[s0 → s] denote the Maximizer strategy
from s that behaves just like σ does after observing the first step, i.e., satisfies
σ[s0 → s](sh) = σ(s0sh) for all suffix histories h ∈ S∗. Then

EG,s0,σ,π(val(Xn+1)) = EG,s,σ[s0→s],π(val(Xn))

≤ val(s)L(s) ind. hyp.

≤ val(s0)
(
1 + ln(1 + ε)2−ι(s0)

)
L(s) def. of π

≤ val(s0)L(s0) acyclicity; def. of L(s0).

Case 2: s0 ∈ S2. Again, for any state s let σ[s0 → s] denote the suffix strategy
consistent with σ after the first step. Then

EG,s0,σ,π(val(Xn+1)) =
∑
s∈S

σ(s0)(s) · EG,s,σ[s0→s],π(val(Xn))
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≤
∑
s∈S

σ(s0)(s) · val(s)L(s)

≤
∑
s∈S

σ(s0)(s) · val(s)
(
1 + ln(1 + ε)2−ι(s0)

)
L(s)

≤
∑
s∈S

σ(s0)(s) · val(s)L(s0)

≤ val(s0)L(s0),

where the first inequality holds by induction hypothesis, the second holds because
1 < (1 + ln(1 + ε)2−ι(s0)), and the third is acyclicity and the definition of L(s0).

Case 3: s0 ∈ S# is analogous to case 2, with the only difference that the initial
successor distribution is P (s0), the one fixed by the game, instead of σ(s0) and the
last inequality becomes an equality.

Together with the observation (Equation (33)) that L(s0) ≤ (1 + ε) for every s0, we
derive that

lim inf
n→∞ EG,s0,σ,π(val(Xn)) ≤ val(s0)(1 + ε). (35)

Finally, to show the claim, let [Xn ∈ T ] : Sω → {0, 1} be the random variable
that indicates that the nth state is in T . Note that [Xn ∈ T ] ≤ val(Xn) because
target states have value 1. Recall that Reachn(T ) denotes the objective of visiting T
within at most n rounds of the game. We conclude that

PG,s0,σ,π(Reach(T )) = PG,s0,σ,π

( ∞⋃
i=0

Reachi(T )

)
semantics of Reach(T )

= lim
n→∞PG,s0,σ,π

(
n⋃

i=0

Reachi(T )

)
continuity of measures

= lim
n→∞PG,s0,σ,π (Reachn(T )) T is a sink

= lim
n→∞EG,s0,σ,π([Xn ∈ T ]) definition of [Xn ∈ T ]

≤ lim inf
n→∞ EG,s0,σ,π(val(Xn)) as [Xn ∈ T ] ≤ val(Xn)

≤ val(s0)(1 + ε) by Equation (35).

□

Theorem 29 Turn-based games, even infinitely branching ones, with reachability
objective admit uniformly ε-optimal strategies for Minimizer that are deterministic
and Markov.

Proof For a given game G = (S, (S2, S3, S#),−→, P ) and reachability target T ⊆ S,
one can construct the acyclic game that encodes the stage (clock value) into the
states: G′ = (S, (S′

2, S
′
3, S

′
#),−→′, P ′) where S′ = S×N, S′

2 = S2×N, S′
3 = S3×N

S′
# = S#×N, and for all i ∈ N, (s, i)−→′(t, i+1) ⇐⇒ s−→t and P ((s, i))((t, i+1)) =

P (s)(t).
Every Markov strategy in G uniquely gives rise to a memoryless strategy in G′

and vice versa. The claim now follows from Lemma 28. □
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t
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t
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...
...
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t
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2−i

1 − 2−i
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Fig. 11 The game G from Definition 14.

In infinitely branching turn-based reachability games, optimal Minimizer
strategies need not exist (Kiefer et al, 2017b). When they do exist, they
may need infinite memory. We slightly improve the result of (Kučera, 2011,
Proposition 5.6.(a)) by showing that even a step counter does not help
Minimizer.

Definition 14 We define an infinitely branching turn-based reachability game G
with initial state s0 and target state t. See Figure 11 for a depiction. Let s0 be
Maximizer-controlled. We have transitions s0 → s′i for all i ≥ 1. All states s′i are
random states with P (s′i)(t) = 1/2 − 2−i and P (s′i)(u) = 1/2 + 2−i. The state u is
Minimizer-controlled with transitions u → s′′i for all i ≥ 1. All states s′′i are random
states with P (s′′i )(t) = 2−i and P (s′′i )(b) = 1− 2−i for a losing sink state b.

Proposition 30 There exists an infinitely branching turn-based reachability game G
with initial state s0 and objective Reach({t}) as in Definition 14, such that

1. Minimizer has an optimal strategy from s0.

2. Every randomized Minimizer strategy from s0 that uses only a step counter and
finite private memory is not optimal.

Proof Towards Item 1, we note that valG(u) = 0 and thus valG(s0) = 1/2.
Minimizer’s optimal strategy π from s0 is defined as follows. In plays where the
state u is not reached, Minimizer does not make any decisions. If state u is reached,
Minimizer considers the history of this play: If Maximizer made the step s0 → s′i
for some i ≥ 1, then Minimizer plays u → s′′i for the same i. Now we show that π
is optimal for Minimizer from s0. Let σ be an arbitrary Maximizer strategy from
s0 and let xi be the probability that σ chooses the step s0 → s′i. This must be a
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distribution, i.e.,
∑

i≥1 xi = 1. Then we have

PG,s0,σ,π(Reach({t})) =
∑
i≥1

xi((1/2− 2−i) + (1/2 + 2−i)2−i)

≤
∑
i≥1

xi(1/2) = 1/2 = valG(s0)
(36)

as required.
Towards Item 2, we note that the step counter from s0 is implicit in the states

of G, and thus superfluous for Minimizer strategies. Hence it suffices to prove the
property for Minimizer strategies with finite memory. Let π be an FR Minimizer
strategy with finitely many memory modes {1, . . . , k}. In state u this strategy π can

base its decision only on the current memory mode m ∈ {1, . . . , k}. Let X(m)
def
=

PG,u,σ,π[m](Reach({t})) be the probability of reaching the target if π is in mode m
at state u. (From state u only Minimizer plays, thus Maximizer has no influence.)

Since X(m) > 0 and the memory is finite, we have Y
def
= minm∈{1,...,k} X(m) > 0.

There exists a number i sufficiently large such that 2−i < Y/2. Let σ be a Maximizer
strategy from s0 that chooses the transition s0 → s′i. Then we have

PG,s0,σ,π(Reach({t})) ≥ (1/2− 2−i) + (1/2 + 2−i)Y > 1/2 = valG(s0)

and thus π is not optimal. □

11 Conclusion and Outlook

Our results closed many gaps about the strategy complexity of reachability
games; cf. Table 1 and Table 2. To summarize our main contributions, we
return to the open questions raised in Section 1, which are now answered.

Q1. The negative result of Nowak and Raghavan (1991) can be strengthened.
There are no uniformly ε-optimal memoryless Maximizer strategies in
countably infinite reachability games, not even if the game is turn-based
and finitely branching; cf. Theorem 7. This highlights the difference between
(turn-based) 2-player stochastic games and MDPs. In the latter, there do exist
uniformly ε-optimal memoryless strategies for reachability Ornstein (1969).
Q2. In concurrent reachability games with finite action sets, uniformly
ε-optimal Maximizer strategies exist and they require only 1 bit of public
memory. In turn-based games, these strategies can even be chosen as
deterministic. See Theorem 6.
Q3. If Minimizer is allowed infinite action sets then reachability games are
much more difficult for Maximizer. Even in turn-based reachability games with
infinitely branching Minimizer states, Maximizer strategies based on a step
counter plus arbitrary finite private memory are insufficient. In general, they
cannot guarantee any positive attainment against all Minimizer strategies,
even if the start state has value 1. In fact, the counterexample in Theorem 15
satisfies the even stronger property that all states in it admit an almost surely
winning Maximizer strategy.

Open questions for further work concern the strategy complexity of optimal
Maximizer strategies, where they exist. In general, a step counter plus finite
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private memory is not sufficient for optimal Maximizer strategies, even in
turn-based reachability games, by Proposition 21. However, under certain mild
conditions, a step counter plus 1 bit of public memory suffices for optimal
Maximizer strategies in turn-based reachability games, by Theorem 22. A
similar theorem might hold for concurrent reachability games with finite action
sets under suitably adapted conditions.
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Appendix A Technical Lemmas

The following inequality is due to Weierstrass.

Proposition 31 (Bromwich (1955) p. 104–105) Given an infinite sequence of real
numbers an with 0 ≤ an ≤ 1, the following holds for all n ∈ N.

n∏
k=1

(1− ak) ≤
1

1 +
∑n

k=1 ak

Proof By induction on n. In case n = 1 we have (1− a1)(1 + a1) = (1− a21) ≤ 1 as
required. For the induction hypothesis we assume

n∏
k=1

(1− ak)

(
1 +

n∑
k=1

ak

)
≤ 1

For the induction step we have
n+1∏
k=1

(1− ak)

(
1 +

n+1∑
k=1

ak

)
= (1− an+1)

n∏
k=1

(1− ak)

((
1 +

n∑
k=1

ak

)
+ an+1

)

≤ (1− an+1)

(
1 + an+1

n∏
k=1

(1− ak)

)
≤ (1− an+1)(1 + an+1)

= (1− a2n+1) ≤ 1

□

Proposition 32 Given an infinite sequence of real numbers an with 0 ≤ an < 1, we
have ∞∏

n=1

(1− an) > 0 ⇔
∞∑

n=1

an < ∞.

and the “⇒” implication holds even for the weaker assumption 0 ≤ an ≤ 1.

Proof If an = 1 for any n then the “⇒” implication is vacuously true, but the “⇐”
implication does not hold in general. In the following we assume 0 ≤ an < 1.

In the case where an does not converge to zero, the property is trivial. In the
case where an → 0, it is shown by taking the logarithm of the product and using the
limit comparison test as follows.

Taking the logarithm of the product gives the series
∞∑

n=1

ln(1− an)

whose convergence (to a finite number ≤ 0) is equivalent to the positivity of the
product. It is also equivalent to the convergence (to a number ≥ 0) of its negation∑∞

n=1 − ln(1− an). But observe that (by L’Hôpital’s rule)

lim
x→0

− ln(1− x)

x
= 1.
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Since an → 0 we have

lim
n→∞

− ln(1− an)

an
= 1.

By the limit comparison test, the series
∑∞

n=1 − ln(1 − an) converges if and only if
the series

∑∞
n=1 an converges. □

Proposition 33 Given an infinite sequence of real numbers an with 0 ≤ an ≤ 1,
∞∏

n=1

an > 0 ⇒ ∀ε > 0 ∃N.
∞∏

n=N

an ≥ (1− ε).

Proof If there is n with an = 0 or if ε ≥ 1 then the property is vacuously true.
In the following we assume an > 0 and ε < 1. Since

∏∞
n=1 an > 0, by taking the

logarithm we obtain
∑∞

n=1 ln(an) > −∞. Thus for every δ > 0 there exists an N s.t.∑∞
n=N ln(an) ≥ −δ. By exponentiation we obtain

∏∞
n=N an ≥ exp(−δ). By picking

δ = − ln(1− ε) the result follows. □
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