
On the Coverability Problem for Pushdown
Vector Addition Systems in One Dimension?

Jérôme Leroux1, Grégoire Sutre1, and Patrick Totzke2

1 Univ. Bordeaux & CNRS, LaBRI, UMR 5800, Talence, France
2 Department of Computer Science, University of Warwick, UK

Abstract. Does the trace language of a given vector addition system
(VAS) intersect with a given context-free language? This question lies at
the heart of several verification questions involving recursive programs
with integer parameters. In particular, it is equivalent to the coverability
problem for VAS that operate on a pushdown stack. We show decidability
in dimension one, based on an analysis of a new model called grammar-
controlled vector addition systems.

1 Introduction

Pushdown systems are a well-known and natural formalization of recursive
programs. Vector addition systems (VAS) are widely used to model concurrent
systems and programs with integer variables. Pushdown vector addition systems
(pushdown VAS) combine the two: They are VAS extended with a pushdown
stack and allow to model, for instance, asynchronous programs [6] and, more
generally, programs with recursion and integer variables.

Despite the model’s relevance for automatic program verification, most classi-
cal model-checking problems are so far only partially solved. Termination and
boundedness are decidable but their complexity is open [12]. Coverability and
reachability are known to be Tower-hard [9], but their decidability is open. In
fact, reachability and the seemingly simpler coverability problem are essentially
the same for pushdown VAS: there is a simple logarithmic-space reduction from
reachability to coverability that only adds one extra dimension.

Contributions. Our main result is that coverability is decidable for 1-dimensional
pushdown VAS. We work with a new grammar-based model called grammar-
controlled vector addition systems (GVAS), which amounts to VAS restricted
to firing sequences defined by a context-free grammar. In dimension one, this
model corresponds to two-stack pushdown systems where one of the two stacks
uses a single stack symbol. To prove our main result, we show that it is enough
to check finitely many potential certificates of coverability. The latter are parse
trees of the context-free grammar annotated with counter information from
the 1-dimensional VAS. We truncate these annotated parse trees thanks to an

? This work was partially supported by ANR project ReacHard (ANR-11-BS02-001).

2 Jérôme Leroux, Grégoire Sutre, and Patrick Totzke

analysis of the asymptotic behaviour of the summary function induced by the
1-dimensional GVAS. Asymptotically-linear summary functions are shown to be
effectively Presburger-definable, which makes the above truncation effective.

Related work. This paper continues a line of research that investigates the
limitations of extending VAS while preserving the decidability of important
verification questions, such as reachability, coverability and boundedness.

The coverability and boundedness problems for ordinary VAS are long known
to be ExpSpace-complete [14,16] and reachability is decidable [15,8,11]. In recent
years, several extensions of VAS have been considered with respect to decidability
and complexity of reachability problems. For instance, Reinhardt [17] showed
that reachability remains decidable for VAS in which one dimension can be tested
for zero. Branching VAS introduce split-transitions and can be interpreted as
bottom-up or top-down tree acceptors. Alternating VAS add a limited form
of alternation where only one player is affected by the counters. Coverability
and boundedness in these models are 2-ExpTime-complete [5,4], reachability is
Tower-hard for branching and undecidable for alternating VAS [10,4].

Closer to this paper is the work of Bouajjani, Habermehl and Mayr [3],
who study a model called BPA(Z). These are context-free grammars where
nonterminals carry an integer parameter that can be evaluated and passed on when
applying a production rule. They show how to compute a symbolic representation
of the reachability set. Their formalism, like the 1-dimensional GVAS considered
here, can model recursive programs with one integer variable. But while BPA(Z)
allows arbitrary Presburger-definable operations on the variable, it cannot model
return values.

Atig and Ganty [1] also study the context-free restriction of the reachability
relation in vector addition systems. Instead of restricting the dimension of the VAS,
they restrict the context-free language and show that reachability is decidable
for the subclass of indexed context-free languages.

Outline. We first recall some background and notation for context-free grammars.
Section 3 formally introduces grammar-controlled vector addition systems, their
coverability problem and the required technology to solve it in dimension one.
In Section 4, we show the existence of small certificates. These are subsequently
proved to be recursive in two steps. Section 5 shows that, for so-called thin GVAS,
the step relation is effectively Presburger-definable. Then, summary functions
are shown to be computable by reduction to the thin case in Section 6.

2 Preliminaries

We let R def
= R ∪ {−∞,+∞} denote the extended real number line and use the

standard extensions of + and ≤ to R. Recall that (R,≤) is a complete lattice.

Z def
= Z ∪ {−∞,+∞} and N def

= N ∪ {−∞,+∞} denote the (complete) sublattices
of extended integers and extended natural numbers, respectively.3

3 Our extension of N contains −∞ for technical reasons.

On Coverability for Pushdown VAS in One Dimension 3

Words. Let A∗ be the set of all finite words over the alphabet A. The empty word

is denoted by ε. We write |w| for the length of a word w in A∗ and wk
def
= ww · · ·w

for its k-fold concatenation. The prefix partial order � over words is defined by
u � v if v = uw for some word w. We write u ≺ v if u is a proper prefix of v. A
language is a subset L ⊆ A∗. A language L is said to be prefix-closed if u � v
and v ∈ L implies u ∈ L.

Trees. A tree T is a finite prefix-closed subset of N∗ satisfying the property that
if tj is in T then ti in T for all i < j. Elements of T are called nodes. Its root is
the empty word ε. An ancestor of a node t is a prefix s � t. A child of a node t
in T is a node tj in T with j in N. A node is called a leaf if it has no child, and
is said to be internal otherwise. The size of a tree T is its cardinal |T |, its height
is the maximal length |t| for any of its nodes t ∈ T .

Context-free Grammars. A context-free grammar is a triple G = (V,A,R),
where V and A are disjoint finite sets of nonterminal and terminal symbols,
and R ⊆ V × (V ∪ A)∗ is a finite set of production rules. The degree of G is

δG
def
= max{|α| | (X,α) ∈ R}. We write

X ` α1 | α2 | . . . | αk

to denote that (X,α1), . . . , (X,αk) ∈ R. For all words w,w′ ∈ (V ∪ A)∗, the
grammar admits a derivation step w ==⇒ w′ if there exist two words u, v in
(V ∪ A)∗ and a production rule (X,α) in R such that w = uXv and w′ = uαv.

Let
∗

==⇒ denote the reflexive and transitive closure of ==⇒. The language of a

word w in (V ∪A)∗ is the set LGw
def
= {z ∈ A∗ | w ∗

==⇒ z}. A nonterminal X is said
to be derivable from a word w ∈ (V ∪ A)∗ if there exists u, v ∈ (V ∪ A)∗ such

that w
∗

==⇒ uXv. A nonterminal X ∈ V is called productive if LGX 6= ∅.

Parse Trees. A parse tree for a context-free grammar G = (V,A,R) is a tree T
equipped with a labeling function sym : T → (V ∪A∪ {ε}) such that R contains
the production rule sym(t) ` sym(t0) · · · sym(tk) for every internal node t with
children t0, . . . , tk. In addition, each leaf t 6= ε with sym(t) = ε is the only child
of its parent. Notice that sym(t) ∈ V for every internal node t. A parse tree is
called complete when sym(t) ∈ (A∪{ε}) for every leaf t. The yield of a parse tree
(T, sym) is the word sym(t1) · · · sym(t`) where t1, . . . , t` are the leaves of T in

lexicographic order (informally, from left to right). Observe that S
∗

==⇒ w, where
S = sym(ε) is the label of the root and w is the yield. Conversely, a parse tree

with root labeled by S and yield w can be associated to any derivation S
∗

==⇒ w.

3 Grammar-Controlled Vector Addition Systems

We first recall the main concepts of vector addition systems. Fix k ∈ N. A
k-dimensional vector addition system (shortly, k-VAS) is a finite set A ⊆ Zk

of actions. Its operational semantics is given by the binary step relations
a−−→

4 Jérôme Leroux, Grégoire Sutre, and Patrick Totzke

over Nk, where a ranges over A, defined by c
a−−→ d if d = c + a. The step

relations are extended to words and languages as expected:
ε−−→ is the identity,

za−−→ def
=

a−−→ ◦ z−−→ for z ∈ A∗ and a ∈ A, and
L−−→ def

=
⋃
z∈L

z−−→ for L ⊆ A∗. For
every word z = a1 · · ·ak in A∗, we let

∑
z denote the sum a1 + · · ·+ ak. Notice

that c
z−−→ d implies d− c =

∑
z, for every c,d ∈ Nk.

The VAS reachability problem asks, given a k-VAS A and vectors c,d ∈ Nk,

whether c
A∗−−→ d. This problem is known to be ExpSpace-hard [14], but no

upper bound has been established yet. The VAS coverability problem asks, given

a k-VAS A and vectors c,d ∈ Nk, whether c
A∗−−→ d′ for some vector d′ ≥ d.

This problem is known to be ExpSpace-complete [14,16].

Definition 3.1 (GVAS). A k-dimensional grammar-controlled vector addition
system (shortly, k-GVAS) is a context-free grammar G = (V,A, R) with A ⊆ Zk.

We give the semantics of GVAS by extending the binary step relations of
VAS to words over V ∪ A. Formally, for every word w ∈ (V ∪ A)∗, we let
w−−→ def

=
L−−→ where L = LGw is the language of w. The GVAS reachability problem

asks, given a k-GVAS G = (V,A, R), a nonterminal S ∈ V and two vectors

c,d ∈ Nk, whether c
S−−→ d. The GVAS coverability problem asks, given the

same input, whether c
S−−→ d′ for some vector d′ ≥ d. These problems can

equivalently be rephrased in terms of VAS that have access to a pushdown stack,
called stack VAS in [9] and pushdown VAS in [12]. Lazić [9] showed a Tower
lower bound for these two problems, by simulating bounded Minsky machines.
Their decidability remains open. As remarked in [9], GVAS reachability can be
reduced to GVAS coverability. Indeed, a simple “budget” construction allows
to reduce, in logarithmic space, the reachability problem for k-GVAS to the
coverability problem for (k + 1)-GVAS. This induces a hierarchy of decision
problems, consisting of, alternatingly, coverability and reachability for growing
dimension. The decidability of all these problems is open. This motivates the
study of the most simple case: the coverability problem in dimension one, which
is the focus of this paper. Our main contribution is the following result.

Theorem 3.2. The coverability problem is decidable for 1-GVAS.

For the remainder of the paper, we restrict our attention to the dimension
one, and shortly write GVAS instead of 1-GVAS. Every GVAS can be effectively
normalized, by removing non-productive nonterminals, replacing terminals a ∈ Z
by words over the alphabet {−1, 0, 1}, and enforcing, through zero padding (since
0−−→ is the identity relation), that |α| ≥ 2 for some production rule X ` α. So in

order to simplify our proofs, we consider w.l.o.g. only GVAS of this simpler form.

Assumption. We restrict our attention to GVAS G = (V,A,R) where every
X ∈ V is productive, where A = {−1, 0, 1}, and of degree δG ≥ 2.

We associate to a GVAS G and a word w ∈ (V ∪A)∗ the displacement ∆G
w ∈ Z

and the summary function σGw : N→ N defined by

∆G
w

def
= sup{

∑
z | z ∈ LGw} σGw (n)

def
= sup{d | ∃c ≤ n : c

w−−→ d}

On Coverability for Pushdown VAS in One Dimension 5

Informally, ∆G
w is the “best shift” achievable by a word in LGw , and σGw (n) gives

the “largest” number that is reachable via some word in LGw starting from n or
below. When no such number exists, σGw (n) is −∞ (recall that sup ∅ = −∞).
Since all nonterminals are productive, the language LGw is not empty. Therefore,
∆G
w > −∞ and σGw (n) > −∞ for some n ∈ N.

Remark 3.3 (Monotonicity). For every w ∈ (V ∪ A)∗ and c, d, e ∈ N, c
w−−→ d

implies c + e
w−−→ d + e. Consequently, σGw (n + e) ≥ σGw (n) + e holds for every

w ∈ (V ∪A)∗, n ∈ N and e ∈ N.

A straightforward application of Parikh’s theorem shows that ∆G
w is effectively

computable from G and w. We will provide in Section 6 an effective characteriza-
tion of σGw when the displacement ∆G

w is finite. In order to characterize functions
σGw where the displacement ∆G

w is infinite, it will be useful to consider the ratio
of w, defined as

λGw
def
= lim inf

n→+∞

σGw (n)

n

Notice that λGw ≥ 1. This fact follows from Remark 3.3 and the observation that
σGw (n) > −∞ for some n ∈ N. From now on, we just write Lw, δ, ∆w, σw and
λw when G is clear from the context.

Example 3.4. Multiplication by 2 can be expressed as a summary function using
the GVAS with production rules S ` −1 S 1 1 | ε. Indeed, for every c,

c
S−−→ d ⇐⇒ ∃n ∈ N : c

(−1)n(11)n−−−−−−−→ d

⇐⇒ ∃n ≤ c : c
(−1)n−−−−→ c− n (11)n−−−−→ c+ n = d ⇐⇒ c ≤ d ≤ 2c

Therefore, σS(n) = 2n for every n ∈ N. Observe that ∆S = +∞ and λS = 2. ut

Example 3.5. The Ackermann functions Am : N→ N, for m ∈ N, are defined by
induction for every n ∈ N by:

Am(n)
def
=

{
n+ 1 if m = 0

An+1
m−1(1) if m > 0

These functions are expressible as summary functions for the GVAS with nontermi-
nals X0, . . . , Xm and with production rules X0 ` 1 and Xi ` −1XiXi−1 | 1Xi−1
for 1 ≤ i ≤ m. It is routinely checked that σXm

(n) = Am(n) for every n ∈ N.
Notice also that λX0

= 1, λX1
= 2, and λXm

= +∞ for every m ≥ 2. ut

Lemma 3.6. For every two words u, v ∈ (V ∪A)∗, the following properties hold:

1. ∆uv = ∆u +∆v and σuv = σv ◦ σu.
2. If u

∗
==⇒ v then ∆u ≥ ∆v, λu ≥ λv, and σu(n) ≥ σv(n) for all n ∈ N.

An equivalent formulation of the coverability problem is the question whether
σS(c) ≥ d holds, given a nonterminal S ∈ V and two numbers c, d ∈ N. We solve
this problem by exhibiting small certificates for σS(c) ≥ d, that take the form of
(suitably truncated) annotated parse trees.

6 Jérôme Leroux, Grégoire Sutre, and Patrick Totzke

4 Small Coverability Certificates

To solve the coverability problem, we annotate parse trees in a way that is
consistent with the summary functions. A flow tree for a GVAS G is a parse
tree (T, sym) for G equipped with two functions in, out : T → N, assigning an
input and an output value to each node, and satisfying, for every node t ∈ T , the
following flow conditions:

1. If t is internal with children t0, . . . , tk, then in(t0) ≤ in(t), out(t) ≤ out(tk),
and in(t(j + 1)) ≤ out(tj) for every j = 0, . . . , k − 1.

2. If t is a leaf then out(t) ≤ σsym(t)(in(t)).

We shortly write t : c#d to mean that (in(t), sym(t), out(t)) = (c,#, d). A flow
tree is called complete when the underlying parse tree is complete, i.e., when
sym(t) ∈ (A ∪ {ε}) for every leaf t. The following lemmas state useful properties
of flow trees that can be shown using the flow conditions and the monotonicity
of summary functions (see Remark 3.3). A consequence is that σS(c) ≥ d holds
if, and only if, there exists a complete flow tree with root ε : cSd.

Lemma 4.1. It holds that σ#(c) ≥ d for every node t : c#d of a flow tree.

Lemma 4.2. Let S ∈ V and c, d ∈ N. If σS(c) ≥ d then there exists a complete
flow tree with root ε : bSe such that b ≤ c and e ≥ d.

We will need to compare flow trees. Let the rank of a flow tree (T, sym, in, out)
be the pair (|T |,

∑
t∈T in(t) + out(t)). The lexicographic order �lex over N2 is

used to compare ranks of flow trees. A complete flow tree (T, sym, in, out) is
called optimal if there exists no complete flow tree (T ′, sym ′, in ′, out ′) of strictly
smaller rank such that in ′(ε) ≤ in(ε), sym(ε) = sym(ε), and out ′(ε) ≥ out(ε).
Optimal flow trees enjoy the following important properties, stated formally
below. Firstly, they are tight, meaning that the inequalities in the first flow
condition are in fact equalities. Secondly, they are balanced, meaning that the
input value of each node is never too large compared to its output value.

Lemma 4.3. For every internal node t in an optimal complete flow tree, we have
in(t0) = in(t), in(t1) = out(t0), . . . , in(tk) = out(t(k−1)), and out(t) = out(tk),
where t0, . . . , tk are the children of t.

Lemma 4.4. For every node t in an optimal complete flow tree, it holds that
in(t) ≤ out(t) + δ|V |.

Next, we show how to truncate flow trees while preserving enough information
to decide that the in and out labelings satisfy the flow conditions. Our truncation
is justified by the following lemma.

Lemma 4.5. Let X ∈ V and n ∈ N. If λX = +∞ and there is a derivation
X

∗
==⇒ uXv such that σu(n) > n, then it holds that σX(n) = +∞.

On Coverability for Pushdown VAS in One Dimension 7

Definition 4.6 (Certificates). A certificate is a flow tree (T, sym, in, out) in
which every leaf t with λsym(t) = +∞ has a proper ancestor s ≺ t such that
sym(s) = sym(t) and in(s) < in(t).

Notice that every complete flow tree is a certificate. We now prove the
existence of small certificates. Let S ∈ V and c, d ∈ N such that σS(c) ≥ d. We
introduce the set T of all complete flow trees with root ε : bSe satisfying b ≤ c
and e ≥ d. By Lemma 4.2, the set T is not empty. Let us pick (T, sym, in, out)
in T among those of least rank. By definition, the root ε of T satisfies in(ε) ≤ c
and out(ε) = d. Notice that the complete flow tree T is optimal. Let us introduce
the set U of all nodes t ∈ T such that every proper ancestor s ≺ t satisfies the
following condition:

For every ancestor r � s, sym(r) = sym(s) =⇒ in(r) ≥ in(s) (1)

By definition, the set U is a nonempty and prefix-closed subset of T . The following
fact derives from Lemma 4.1 and the property that T is a complete flow tree.

Fact 4.7. The tree U , equipped with the restrictions to U of the functions sym,
in and out , is a certificate.

Our next step is to bound the height of U as well as the input and output
values of its nodes. We will use the following properties, that are easily derived
from the definition of U , the optimality of T , and Lemmas 4.3 and 4.4.

Fact 4.8. Let r and s be nodes in U such that r ≺ s.

1. If s is internal in U and sym(r) = sym(s) then out(s) < out(r), and
2. If s is a child of r then out(s) ≤ out(r) + (δ − 1)δ|V |.

Consider a leaf t in U . For each i in {0, . . . , |t|}, let ti denote the unique
prefix ti � t with length |ti| = i, and let (#i, di) = (sym(ti), out(ti)). Note that
d0 = out(ε) = d. Fact 4.8 entails that for every i, j with 0 ≤ i, j < |t|,

di+1 ≤ di + δ|V |+1 and (i < j ∧ #i = #j) =⇒ di > dj (2)

Let mi = max{d0, . . . , di} for all i ∈ {0, . . . , |t|}. According to Equation (2),
increasing pairs mi < mi+1 may occur in the sequence m0, . . . ,m|t| only when
#i+1 6∈ {#0, . . . ,#i} or i + 1 = |t|. So there are at most |V | such increasing
pairs. Moreover, for each increasing pair mi < mi+1, the increase mi+1 −mi is
bounded by δ|V |+1. We derive that di ≤ m|t| ≤ d+ |V | · δ|V |+1 < d+ δ2|V |+1 for
all i with 0 ≤ i ≤ |t|, since δ ≥ 2 by assumption. It follows from Equation (2)
that each nonterminal in V appears at most d+ δ2|V |+1 times in the sequence
(#i)0≤i<|t|. By the pigeonhole principle, we get that |t| ≤ |V | · (d+ δ2|V |+1). We
have thus shown that for every node t ∈ U ,

|t| ≤ d · |V |+ δ3|V |+1 and in(t) + out(t) ≤ 2d+ δ2|V |+3 (3)

This concludes the proof of the “only if” direction of the following proposition.
The “if” direction follows from Lemma 4.1, since every certificate is a flow tree.

8 Jérôme Leroux, Grégoire Sutre, and Patrick Totzke

Proposition 4.9. For every S ∈ V and c, d ∈ N, it holds that σS(c) ≥ d if, and
only if, there exists a certificate with root ε : bSd for some b ≤ c and whose nodes
t satisfy Equation (3).

The above proposition leads to a simple procedure to solve the coverability
problem, as we only need to enumerate finitely many potential certificates.
Checking whether an annotated parse tree is a certificate reduces to (a) the
question whether a given nonterminal X has an infinite ratio, and (b) the
coverability question σX(c) ≥ d for nonterminals X with finite ratio. Both
questions will be shown to be decidable in Section 6 by reduction to the subclass
of thin GVAS, which is the focus of the next section.

5 Semilinearity of the Step Relations for Thin GVAS

We turn to reachability relations in a particular subclass of GVAS called thin. A
context-free grammar is said to be thin4 if α ∈ A∗V A∗ for every production rule
X ` α such that X is derivable from α. Recall that Presbuger arithmetic is the
first-order theory of the natural numbers with addition. It is well-known that
semilinear sets coincide with the sets definable in Presburger arithmetic [7].

Theorem 5.1. For every nonterminal symbol S of a thin GVAS, the relation
S−−→ is effectively definable in Presburger arithmethic.

Our argument goes by a reduction to the reachability problem for 2-dimensional
vector addition systems, and uses the following result.

Theorem 5.2 ([13]). Let A be a 2-VAS and Π ⊆ A∗ be a regular language over

its actions. The relation
Π−−→ is effectively definable in the Presburger arithmetic.

Let us call a GVAS G = (V,A,R) simple if for every production rule X ` α,
either X is not derivable from α, or α ∈ AV A. Clearly, every simple GVAS is
thin. Conversely, every thin GVAS can be transformed into an equivalent simple
GVAS by replacing production rules in V ×A∗V A∗ by finitely many new rules
in V ×AV A. See Lemma D.1 in Appendix D for details. Consequently, it suffices
to show the claim of Theorem 5.1 for simple GVAS only.

We show by induction on |V | that
S−−→ is effectively definable in Presburger

arithmethic for every simple thin GVAS G = (V,A,R), and for every nonterminal
S ∈ V . Naturally, if |V | is empty the proof is immediate. Assume the induction is
proved for a number h ∈ N, and let us consider a simple thin GVAS G = (V,A,R)
with |V | = h+ 1, and a nonterminal S ∈ V .

Notice that A
def
= {−1, 0, 1}2 is a vector addition system. We consider the

finite, directed graph with set of nodes V that contains an (a,−b)-labeled edge

4 Thinness entails that for any derivation S
∗

==⇒ w, the number of nonterminals in w is
bounded by δ|V |. This entails that parse trees of thin GVAS are of bounded width.
Thin GVAS are thus a subclass of the finite-index grammars of [1].

On Coverability for Pushdown VAS in One Dimension 9

from X to Y for every production rule X ` aY b in R. To each nonterminal X ∈ V ,
we assotiate the regular language ΠX of words recognized by this finite graph

starting from S and reaching X. By Theorem 5.2,
ΠX−−→, the regular restriction

of the reachability set of A, is effectively definable in Presburger arithmetic.

As a next ingredient, let ΓX be the finite set of words α ∈ (V ∪ A)∗ such
that X ` α is a production rule and X is not derivable from α. We observe that
LGα is equal to the language of α in the simple grammar G′, obtained from G
by removing the nonterminal X and all production rules where X occurs. By
induction, and since

a−−→ are trivially Presburger-definable for terminals a ∈ A, we
deduce that

α−−→ is effectively Presburger-definable as a compositon of Presburger

relations. Because ΓX is finite, we deduce that
ΓX−−→ =

⋃
α∈ΓX

α−−→, is definable
in the Presburger arithmetic as a finite disjunction of Presburger relations.

This following Lemma 5.3 concludes Theorem 5.1.

Lemma 5.3. For for all c, d ∈ N, c
S−−→ d if, and only if, the following relation

holds:
φS(c, d)

def
=
∨
X∈V

∃c′, d′ ∈ N (c, d)
ΠX−−→ (c′, d′) ∧ c′ ΓX−−→ d′ (4)

Proof. Assume that c
S−−→ d. It means that there exists w ∈ LS such that

c
w−−→ d. Since w ∈ A∗, we deduce that a sequence of derivation steps from S

that produces w must necessarily derive at some point a nonterminal symbol
X with a production rule X ` α such that α ∈ A∗, and in particular α ∈ ΓX .
By considering the first time a derivation step X

α
==⇒ with α ∈ ΓX occurs, we

deduce a sequence X0, . . . , Xk of nonterminal symbols with X0 = S, a sequence
r1, . . . , rk of production rules rj ∈ R of the form Xj−1 ` ajXjbj with aj , bj ∈ A,
a production rule rk+1 ∈ R of the form Xk ` α where α ∈ ΓXk

, and a word

w′ ∈ Lα such that w = a1 . . . akw
′bk . . . b1. Since c

w−−→ d, it follows that there

exist c′, d′ ∈ N such that c
a1...ak−−−−→ c′

w′−−→ d′
bk...b1−−−−→ d. Thus (c, d)

π−−→ (c′, d′)

with π
def
= (a1,−b1) . . . (ak,−bk). It follows that φS(c, d) holds. Conversely, if

φS(c, d) holds, by reversing the previous proof steps, if follows that c
S−−→ d. A

detailed proof is given in Appendix D. ut

6 Computation of Summaries for Bounded Ratios

In this section, we show that the summary function σX is effectively computable
when the ratio λX is finite. In addition, the question whether λX is finite is
shown to be decidable. These results are ultimately obtained by reduction to the
thin GVAS case. We first consider nonterminals with finite displacements.

The next lemma follows from the observation that if the maximal displacement
of a nonterminal is finite, then it can already be achieved by a short word.

Lemma 6.1. Let S ∈ V be a nonterminal with ∆S < +∞. Then it holds that
σS(n) = n+∆S for every n ∈ N such that n ≥ δ|V |.

10 Jérôme Leroux, Grégoire Sutre, and Patrick Totzke

Proposition 6.2. For every nonterminal S ∈ V with ∆S < +∞, the function
σS is effectively computable.

The following lemma will be useful in our reduction below.

Lemma 6.3. Let X ∈ V be a nonterminal. If there is a derivation X
∗

==⇒ uXv
such that ∆uv = +∞ then it holds that λX = +∞.

We will now show that summaries are computable for nonterminals with finite
ratio. The main idea is to transform the given GVAS into an equivalent thin
GVAS, by hard-coding the effect of nonterminals with finite displacement. This
is effective due to Proposition 6.2. Computability of λX and σX then follows
from Theorem 5.1. The following ad-hoc notion of equivalence is sufficient for
this purpose. Crucially, it has no requirement for nonterminals with infinite ratio.

Two GVAS G = (V,A,R) and G′ = (V ′, A′, R′) are called equivalent if firstly
V = V ′, secondly λGX = λG

′

X for every nonterminal X, and thirdly σGX = σG
′

X for
every nonterminal X with finite ratio.

Unfoldings. For our first transformation, assume a nonterminal X ∈ V with
∆G
X < +∞. The unfolding of X is the GVAS H = (V,A,R′) where R′ is obtained

from R by removing all production rules X ` α and instead adding, for every
0 ≤ i ≤ δ|V | with j = σGX(i) > −∞, a rule X ` (−1)i(1)j .

Observe that the language LHX is finite, and that H can be computed from G
and X because σGX is computable by Proposition 6.2.

Fact 6.4. The unfolding of X is equivalent to G.

Expansions. Our second transformation completely inlines a given nonterminal
with finite language. Given a nonterminal Y ∈ V with LGY finite, the expansion
of Y is the GVAS H = (V,A,R′) where R′ is obtained from R by replacing each
production rule X ` α0Y α1 · · ·Y αk, with Y not occurring in α0 · · ·αk, by the
rules X ` α0z1α1 · · · zkαk where z1, . . . , zk ∈ LGY . Note that H can be computed
from G and Y . Obviously, languages are preserved by this transformation, i.e.,
LGw = LHw for every w in (V ∪A)∗. The following fact follows.

Fact 6.5. The expansion of Y is equivalent to G.

Abstractions. Our last transformation simplifies a given nonterminal with infinite
ratio, in such a way that its ratio remains infinite. Given a nonterminal X ∈ V
with λGX = +∞, the abstraction of X is the GVAS H = (V,A∪{1}, R′) where R′

is obtained from R by removing all production rules X ` α and replacing them
by the two rules X ` 1X | ε. Note that H can be computed from G and X.

Fact 6.6. The abstraction of X is equivalent to G.

We now show how to effectively transform a GVAS into an equivalent thin
GVAS. As a first step, we hard-code the effect of nonterminals with finite
displacement into the production rules, using unfoldings and expansions described

On Coverability for Pushdown VAS in One Dimension 11

above. By Facts 6.4 and 6.5, this results in an equivalent GVAS. Moreover, it
now holds that every nonterminal Y occurring on the right handside α of some
production rule X ` α has ∆Y = +∞. Let (V,A,R) be the constructed GVAS
and assume that it is not already thin. This means that there exists a production
rule X ` α with α 6∈ A∗V A∗ such that X is derivable from α. So X

∗
==⇒ uXv for

some words u, v in (V ∪A)∗ such that uv contains some nonterminal Y . As Y
occurs on the right handside of the initial production rule, it must have an infinite
displacement. From Lemma 3.6 we thus get that also ∆uv = +∞, and Lemma 6.3
lets us conclude that λX = +∞. Therefore, by Fact 6.6, we may replace G by the
abstraction of X. Observe that this strictly decreases the number of production
rules violating the condition for the system to be thin and at the same time it
preserves the property that ∆Y = +∞ for every Y ∈ V occurring in the right
handside a production rule. By iterating this abstraction process, we obtain a
thin GVAS that is equivalent to the GVAS that we started with. We have thus
shown the following proposition. Its corollary follows from Theorem 5.1, and
states the missing ingredients for the proof of the coverability problem.

Proposition 6.7. For every GVAS G, there exists an effectively constructable
thin GVAS that is equivalent to G.

Corollary 6.8. The question whether λX < +∞ holds for a given GVAS G and
a given nonterminal X, is decidable. Moreover, if λX < +∞ then the function
σX is effectively computable.

Proof (of Theorem 3.2). Thanks to Proposition 4.9, it suffices to check finitely
many candidate certificates, each consisting of a parse tree (T, sym) of bounded
height and labeling functions in, out : T → N with bounded values. It remains to
show that it is possible to verify that a given candidate is in fact a certificate. For
this, it needs to satisfy the two flow conditions from page 6 and moreover, every
leaf t with λsym(t) = +∞ must have some ancestor s ≺ t with sym(s) = sym(t)
and in(s) < in(t).

The first flow condition can easily be verified locally. By Corollary 6.8, it is
possible to check if λsym(t) < +∞ for every leaf t and therefore verify the third
condition. In order to verify the second flow condition, it suffices to check that
σsym(t)(in(t)) ≥ out(t) holds for all leaves with finite ratio λsym(t) < +∞. This
is effective due to Corollary 6.8. Indeed, if none of the above checks fail then it
follows from Lemma 4.5 that σsym(t)(in(t)) ≥ out(t) necessarily holds also for
the remaining leaves t with λsym(t) = +∞ (see Lemma E.3 in Appendix E for
details). This means that the candidate satisfies the second flow condition and
therefore all requirements for a certificate. ut

7 Conclusion

The decidability of the coverability problem for pushdown VAS is a long-standing
open question with applications for program verification. In this paper, we proved

12 Jérôme Leroux, Grégoire Sutre, and Patrick Totzke

that coverability is decidable for 1-dimensional pushdown VAS. We reformulated
the problem to the equivalent coverability problem for 1-dimensional grammar-
controlled vector addition systems, and analyzed their behaviour in terms of
structural properties of derivation trees.

An NP lower complexity bound can be shown by reduction from the Subset
Sum problem. A closer inspection of our approach allows to derive an ExpSpace
upper bound, using recent results by Blondin et al. [2] on 2-dimensional VAS
reachability. The exact complexity is open, and so is the decidability of the
problem for larger dimensions.

References

1. Atig, M.F., Ganty, P.: Approximating Petri net reachability along context-free
traces. In: FSTTCS. pp. 152–163 (2011)

2. Blondin, M., Finkel, A., Göller, S., Haase, C., McKenzie, P.: Reachability in two-
dimensional vector addition systems with states is PSPACE-complete. In: LICS
(2015), to appear

3. Bouajjani, A., Habermehl, P., Mayr, R.: Automatic verification of recursive proce-
dures with one integer parameter. TCS 295, 85–106 (2003)

4. Courtois, J., Schmitz, S.: Alternating vector addition systems with states. In: MFCS.
pp. 220–231 (2014)

5. Demri, S., Jurdzinski, M., Lachish, O., Lazic, R.: The covering and boundedness
problems for branching vector addition systems. JCSS 79(1), 23–38 (2013)

6. Ganty, P., Majumdar, R.: Algorithmic verification of asynchronous programs. ACM
Trans. Progr. Lang. Syst. 34(1), 6:1–6:48 (2012)

7. Ginsburg, S., Spanier, E.H.: Semigroups, Presburger formulas and languages. Pacific
J. Math. 16(2), 285–296 (1966)

8. Kosaraju, S.R.: Decidability of reachability in vector addition systems (preliminary
version). In: STOC. pp. 267–281 (1982)

9. Lazic, R.: The reachability problem for vector addition systems with a stack is not
elementary. CoRR abs/1310.1767 (2013)

10. Lazic, R., Schmitz, S.: Non-elementary complexities for branching VASS, MELL,
and extensions. In: CSL/LICS (2014)

11. Leroux, J.: Vector addition system reachability problem: a short self-contained
proof. In: POPL. pp. 307–316 (2011)

12. Leroux, J., Praveen, M., Sutre, G.: Hyper-ackermannian bounds for pushdown
vector addition systems. In: CSL/LICS (2014)

13. Leroux, J., Sutre, G.: On flatness for 2-dimensional vector addition systems with
states. In: CONCUR. pp. 402–416 (2004)

14. Lipton, R.J.: The reachability problem requires exponential space. Tech. Rep. 63,
Yale University (Jan 1976)

15. Mayr, E.W.: An algorithm for the general Petri net reachability problem. In: STOC.
pp. 238–246 (1981)

16. Rackoff, C.: The covering and boundedness problems for vector addition systems.
TCS 6(2), 223–231 (1978)

17. Reinhardt, K.: Reachability in Petri nets with inhibitor arcs. ENTCS 223(0),
239–264 (2008)

On Coverability for Pushdown VAS in One Dimension 13

A Elementary Parse Trees

Let G = (V,A,R) be a context-free grammar. A parse tree (T, sym) for G is
called elementary, if it contains no two nodes s ≺ t with sym(s) = sym(t). A
flow tree (see Section 4) shall be called elementary when the underlying parse
tree is elementary.

Remark A.1. If the degree δ of G is nonzero, then every elementary parse tree
has at most δ|V | leaves.

B Proofs for Section 3

Lemma 3.6. For every two words u, v ∈ (V ∪A)∗, the following properties hold:

1. ∆uv = ∆u +∆v and σuv = σv ◦ σu.
2. If u

∗
==⇒ v then ∆u ≥ ∆v, λu ≥ λv, and σu(n) ≥ σv(n) for all n ∈ N.

Proof. Let u, v ∈ (V ∪A)∗. For the proof of part 1), recall that Lu and Lv are
non-empty, since all nonterminals are productive. We derive from the definition
of the displacement that:

∆u +∆v = sup{
∑
z | z ∈ Lu} + sup{

∑
z | z ∈ Lv}

= sup{
∑
zu +

∑
zv | zu ∈ Lu ∧ zv ∈ Lv}

= sup{
∑
zuzv | zu ∈ Lu ∧ zv ∈ Lv}

= sup{
∑
z | z ∈ Luv} [Luv = LuLv]

= ∆uv

Let n ∈ N and let us show that σuv(n) = σv ◦ σu(n). Assume that c
uv−−→ d

with c ≤ n. There exists c′ such that c
u−−→ c′

v−−→ d. Observe that c′ ≤ σu(n).
It follows from the definition of σv that d ≤ σv(σu(n)). We have shown that

σuv(n) ≤ σv ◦ σu(n). Conversely, suppose that c′
v−−→ d with c′ ≤ σu(n). By

definition of σu(n), there exists c ≤ n and d′ ≥ c′ such that c
u−−→ d′. We get

that c
u−−→ d′

v−−→ d′′ for some d′′ ≥ d. Observe that d′′ ≤ σuv(n). It follows that
d ≤ σuv(n). We have shown that σv ◦ σu(n) ≤ σuv(n).

We now prove point 2. Assume that u
∗

==⇒ v, and let n ∈ N. Observe that
Lu ⊇ Lv. Therefore, it holds that {

∑
z | z ∈ Lu} ⊇ {

∑
z | z ∈ Lv} and that

{d | ∃c ≤ n : c
u−−→ d} ⊇ {d | ∃c ≤ n : c

v−−→ d}. The first inclusion entails that
∆u ≥ ∆v, and the second inclusion entails that σu(n) ≥ σv(n). The last assertion,
namely λu ≥ λv, follows from the fact that σu(n) ≥ σv(n) for all n ∈ N. ut

C Proofs for Section 4

Lemma 4.1. It holds that σ#(c) ≥ d for every node t : c#d of a flow tree.

14 Jérôme Leroux, Grégoire Sutre, and Patrick Totzke

Proof. Let (T, sym, in, out) be a flow tree. We prove the claim by structural
induction on T . For leaf nodes t, the claim holds by the second flow requirement.
For internal nodes t : cXd, assume that the claim holds for the children t0, . . . , tk
of t. Suppose that tj : cj#jdj for all j with 0 ≤ j ≤ k. Since X ==⇒ #0 · · ·#k,
Lemma 3.6 implies that σX(n) ≥ σ#k

◦ · · · ◦ σ#0
(n) for all n ∈ N. By the first

flow requirement, it holds that c0 ≤ c, c1 ≤ d0, . . . , ck ≤ dk−1, and d ≤ dk. We
derive from the monotonicity of summary functions (see Remark 3.3) that

σX(c) ≥ σ#k
◦ · · · ◦ σ#0

(c0) [c ≥ c0]

≥ σ#k
◦ · · · ◦ σ#1

(c1) [σ#0
(c0) ≥ d0 ≥ c1]

≥ σ#k
(ck) [σ#j

(cj) ≥ dj ≥ cj+1]

≥ d [σ#k
(ck) ≥ dk ≥ d]

By induction, we conclude that the lemma holds for every node of T . ut

Lemma 4.2. Let S ∈ V and c, d ∈ N. If σS(c) ≥ d then there exists a complete
flow tree with root ε : bSe such that b ≤ c and e ≥ d.

Proof. Assume that σS(c) ≥ d. This means that there exists e ≥ d such that

c
S−−→ e, which in turn means that there exists w ∈ LS such that c

w−−→ e. Since
w ∈ LS , there exists a derivation S

∗
==⇒ w, hence, a complete parse tree with root

labeled by S and yield w. This parse tree, together with the fact that c
w−−→ e,

induces a complete flow tree with root ε : cSe. ut

Lemma 4.3. For every internal node t in an optimal complete flow tree, we have
in(t0) = in(t), in(t1) = out(t0), . . . , in(tk) = out(t(k−1)), and out(t) = out(tk),
where t0, . . . , tk are the children of t.

Proof. The first flow condition requires in(t0) ≤ in(t), in(t1) ≤ out(t0), . . . ,
in(tk) ≤ out(t(k − 1)), and out(t) ≤ out(tk), for every internal node t with
children t0, . . . , tk. For the converse inequalities, assume that in(t0) < in(t) (the
other cases are analogous). Then, changing the labeling of the node t using
in(t) := in(t0) provides a complete flow tree of strictly smaller rank, contrary to
the optimality of T . ut

Lemma 4.4. For every node t in an optimal complete flow tree, it holds that
in(t) ≤ out(t) + δ|V |.

Proof. Let (T, sym, in, out) be an optimal complete flow tree. We only prove the
lemma for the root ε : c#d, since every subtree of an optimal complete flow tree
is also an optimal complete flow tree. Let t1, . . . , t`, with ti : ciaidi, denote the
leaves of T in lexicographic order (informally, from left to right).

We first show that c − d ≤ `. Note that a1, . . . , a` are in (A ∪ {ε}) since
(T, sym) is a complete parse tree. It holds that A ⊆ {−1, 0, 1} by assumption.
We derive that σai(di + 1) ≥ di for all i with 1 ≤ i ≤ `. The optimality of T
entails that ci ≤ di + 1. Indeed, if ci > di + 1 for some i then we would obtain a
complete flow tree of lesser rank by changing the labeling of the node ti using

On Coverability for Pushdown VAS in One Dimension 15

in(ti) := di + 1. This would contradict the optimality of T . By Lemma 4.3, it
holds that c1 = c and d` = d. It also follows from Lemma 4.3 that di = ci+1 for
all i with 1 ≤ i < `. We get that c− d = c1 − d` = (c1 − d1) + · · ·+ (c` − d`) ≤ `.

We now prove that c ≤ d + δ|V |. Assume towards a contradiction that
c > d+ δ|V |. It follows that T has ` > δ|V | leaves. We derive from Remark A.1
that (T, sym) is not elementary. By iteratively collapsing5 nodes s ≺ t with
sym(s) = sym(t), we obtain a complete and elementary parse tree (T ′, sym ′)
with |T ′| < |T |. The root labeling is preserved by this transformation, that is
sym ′(ε) = #. Since (T ′, sym ′) is elementary, it contains at most δ|V | leaves.
Therefore, it induces a complete flow tree (T ′, sym ′, in ′, out ′) satisfying in ′(ε) =
d+ δ|V | and out ′(ε) ≥ d. We obtain that, in ′(ε) ≤ in(ε), sym(ε) = sym(ε), and
out ′(ε) ≥ out(ε). This contradicts the optimality of T . ut

Lemma 4.5. Let X ∈ V and n ∈ N. If λX = +∞ and there is a derivation
X

∗
==⇒ uXv such that σu(n) > n, then it holds that σX(n) = +∞.

Proof. Assume that λX = +∞ and that there exists u, v ∈ (V ∪A)∗ such that

X
∗

==⇒ uXv and σu(n) > n. Since every nonterminal is productive, there exists
b ∈ N such that σv(b) ≥ 0. By Remark 3.3, we derive that (σv)

k(m+ kb) ≥ m
for every k,m ∈ N. Similarly, since σu(n) ≥ n + 1, we get from Remark 3.3
that (σu)k(n) ≥ n+ k for every k ∈ N. Define λ = b+ 1. Since λ < λX = +∞,
there exists m0 ∈ N such that σX(m) ≥ λ ·m for all m ≥ m0. For every k ∈ N
with k ≥ m0, it holds that X

∗
==⇒ ukXvk, which entails, by monotonicity of the

summary functions, that

σX(n) ≥ σukXvk(n) [Lemma 3.6]

= σvk ◦ σX ◦ σuk(n) [Lemma 3.6]

≥ σvk ◦ σX(n+ k)

≥ σvk(λ · (n+ k))

= σvk(λ · n+ k + kb) [λ = b+ 1]

≥ λ · n+ k

We have thus shown that σX(n) ≥ k for every k ∈ N with k ≥ m0. We conclude
that σX(n) = +∞. ut

The two following facts are part of the proof of Proposition 4.9. Recall that, in
the context of this proof, (T, sym, in, out) is a complete flow tree that is optimal,
and that U is the set of all nodes t ∈ T such that every proper ancestor s ≺ t
satisfies Equation (1), which is copied below:

For every ancestor r � s, sym(r) = sym(s) =⇒ in(r) ≥ in(s)

Fact 4.7. The tree U , equipped with the restrictions to U of the functions sym,
in and out , is a certificate.

5 Collapsing two nodes s ≺ t consists in replacing the subtree rooted in s by the subtree
rooted in t.

16 Jérôme Leroux, Grégoire Sutre, and Patrick Totzke

Proof. It follows from U ⊆ T and Lemma 4.1 that U is a flow tree. Let us show
that every leaf of U satisfies the condition of Definition 4.6. Let t be a leaf of U
such that λsym(t) = +∞. Since (T, sym) is a complete parse tree, every leaf u of
T verifies sym(u) ∈ (A ∪ {ε}), hence, λsym(u) = 1. It follows that t has a child u
in T . But u 6∈ U as otherwise t would be internal in U . So there exists a proper
ancestor s ≺ u that violates Equation (1). Since t itself is in U , we get that s = t.
We derive that there exists an ancestor r of s = t such that sym(r) = sym(t)
and in(r) < in(t). ut

Fact 4.8. Let r and s be nodes in U such that r ≺ s.

1. If s is internal in U and sym(r) = sym(s) then out(s) < out(r), and
2. If s is a child of r then out(s) ≤ out(r) + (δ − 1)δ|V |.

Proof. Let us start with the first assertion. By contradiction, assume that s is
internal in U , sym(r) = sym(s) and out(s) ≥ out(r). Since s is internal in U ,
s is the proper ancestor of some node in U , hence, s verifies Equation (1). We
derive that in(s) ≤ in(r). Observe that the subtree of T rooted in r contains
more nodes than the subtree of T rooted in s. It follows that the subtree of T
rooted in r is not optimal, which contradicts the optimality of T . The second
assertion is easily derived from Lemmas 4.3 and 4.4, the observation that r has
at most δ children, and the fact that T is optimal. ut

D Proofs for Section 5

Lemma D.1. For every thin GVAS G = (V,A,R) one can contruct a simple
GVAS G′ = (V ′, A′, R′) such that V ⊆ V ′ and LGS = LG

′

S for all S ∈ V .

Proof. We assume that 0 ∈ A. Let us consider a production rule X ` α with
α = a1 . . . aiY bj . . . b1 where Y ∈ V , and a1 . . . , ai, bj , . . . , b1 is a sequence of
terminal symbols in A. We let m ≥ 1 be a positive integer such that i, j ≤ m.
Define ai+1, . . . , am and bm, . . . , bj+1 to be 0, and introduce fresh nonterminal
symbols X1, . . . , Xm−1. The production rule X ` α is then replaced by the

production rules Xj−1 ` ajXjbj where 1 ≤ j ≤ m, X0
def
= X, and Xm

def
= Y . Just

observe that such a transformation let the language LS unchanged. ut

Lemma 5.3. For for all c, d ∈ N, c
S−−→ d if, and only if, the following relation

holds:
φS(c, d)

def
=
∨
X∈V

∃c′, d′ ∈ N (c, d)
ΠX−−→ (c′, d′) ∧ c′ ΓX−−→ d′ (4)

Proof. To see this, fix any two numbers c, d ∈ N. Assume first that c
S−−→ d. It

means that there exists a word w ∈ LS such that c
w−−→ d. Since w is a word over

the terminal symbols, we deduce that a sequence of derivation steps from S that
produces w must necessarily derive at some point a nonterminal symbol X with
a production rule X ` α such that α ∈ A∗, and in particular α ∈ ΓX .

On Coverability for Pushdown VAS in One Dimension 17

By considering the first time that a derivation step X
α

==⇒ with α ∈ ΓX
occurs, we deduce that all the previous derivation steps replace nonterminal
symbols by words in AV A. We extract a sequence X0, . . . , Xk of nonterminal
symbols with X0 = S, a sequence r1, . . . , rk of production rules rj ∈ R of the
form Xj−1 ` ajXjbj with aj , bj ∈ A, a production rule rk+1 ∈ R of the form
Xk ` α where α ∈ ΓXk

, and a word w′ ∈ Lα such that:

w = a1 . . . akw
′bk . . . b1 (5)

Since c
w−−→ d, we derive that there exists a sequence c0 . . . ck ∈ N and a

sequence dk, . . . , d0 ∈ N satisfying the following relation.

c = c0
a1−−→ c1 · · ·

ak−−→ ck
w′−−→ dk

bk−−→ dk−1 · · ·
b1−−→ d0 = d (6)

This is true if, and only if, in the 2-VAS A, there exists a path

(c, d) = (c0, d0)
(a1,−b1)−−−−−−→ (c1, d1) · · · (ak,−bk)−−−−−−→ (ck, dk) (7)

Let c′
def
= ck, d′

def
= dk, and X

def
= Xk. Observe that π

def
= (a1,−b1) . . . (ak,−bk) is

a word in ΠX such that (c, d)
π−−→ (c′, d′). Moreover, from c′

w′−−→ d′ we get that

c′
ΓX−−→ d′. Together this means that φS(c, d) is true.
Conversely, assume that φS(c, d) holds. Since ψS(c, d) is a finite disjunction,

there exist X ∈ V and c, d, c′, d′ ∈ N such that (c, d)
ΠX−−→ (c′, d′) and c′

ΓX−−→ d′.
Let us consider a word π ∈ ΠX of the form π = (a1,−b1) . . . (ak,−bk) such

that (c, d)
π−−→ (c′, d′). We also introduce a word α ∈ ΓX such that c′

α−−→ d′.

This last relation shows that there exists w′ ∈ LG(α) such that c′
w′−−→ d′. From

(c, d)
π−−→ (c′, d′) we derive a sequence (c0, d0), . . . , (ck, dk) of pairs in N×N such

that (ck, dk) = (c′, d′) and such that relation (7) and thus (6) hold. Hence, c
w−−→ d

where w is the word satisfying (5). Since w ∈ LS , it follows that c
S−−→ d. ut

E Proofs for Section 6

By definition of the displacement, if ∆S < +∞, then there exists a word w ∈ LS
such that ∆S =

∑
w. The following lemma provides a way to bound the length

of such a word w.

Lemma E.1. For every nonterminal S ∈ V with ∆S < +∞, there is a complete
elementary parse tree with root labeled by S and yield w ∈ A∗ such that ∆S =

∑
w.

Proof. Since ∆S < +∞, there exists a complete parse tree with root labeled by
S and yield w ∈ A∗ such that

∑
w = ∆S . Let (T, sym) be such a parse tree

with the fewest possible number of nodes and assume towards a contradiction
that T is not elementary. This means there exists s ≺ t in T and X ∈ V such
that sym(s) = X = sym(t). The subtree rooted in s provides a derivation

18 Jérôme Leroux, Grégoire Sutre, and Patrick Totzke

X
∗

==⇒ uXv for two words u, v in A∗. Notice that if
∑
u +

∑
v > 0 then

∆X = +∞. Then, Lemma 3.6 implies that ∆S ≥ ∆uXv = ∆u +∆X +∆v = +∞,
which contradicts the assumption of the lemma. Therefore,

∑
u +

∑
v ≤ 0.

By collapsing the subtree {t′ ∈ T | s � t′ ∧ t 6� t′}, we get a new parse
tree (T ′, sym ′) with |T ′| < |T |, sym ′(ε) = S and yield w′ ∈ A∗ satisfying∑
w′ =

∑
w − (

∑
u+

∑
v) ≥

∑
w ≥ ∆S . Since clearly, w′ ∈ LS , by definition

of the displacement it holds that
∑
w′ ≤ ∆S and therefore that

∑
w′ = ∆S .

This contradicts our assumed minimality of T . Hence T is elementary. ut

The corollary below follows from Lemma E.1 and the observation (Remark A.1)
that the yield of an elementary parse tree is a word of length bounded by δ|V |.

Corollary E.2. For every nonterminal S ∈ V with ∆S < +∞, and for every
c ≥ δ|V | there exists an elementary complete flow tree with root ε : cSd such that
d = c+∆S.

Proof. According to Lemma E.1, there exists a complete elementary parse tree
(T, sym) with root labeled by S and yield w ∈ A∗ such that ∆S =

∑
w. Since this

tree is elementary, it has no more than δ|V | leaves. Hence, |w| ≤ δ|V | ≤ c, which

entails that c
w−−→ c + ∆S . It is routinely checked that the parse tree (T, sym)

induces an elementary complete flow tree with root ε : cSd, where d = c+∆S . ut

Lemma 6.1. Let S ∈ V be a nonterminal with ∆S < +∞. Then it holds that
σS(n) = n+∆S for every n ∈ N such that n ≥ δ|V |.

Proof. Observe that σS(n) ≤ n + ∆S holds for every S ∈ V and n ∈ N. The
remaining inequality follows from Corollary E.2 and Lemma 4.1. ut

Proposition 6.2. For every nonterminal S ∈ V with ∆S < +∞, the function
σS is effectively computable.

Proof. Let S ∈ V with ∆S < +∞, and let c ∈ N. Observe that σS(c) ≤ c+∆S .
Therefore, the computation of σS(c) reduces to the question whether σS(c) ≥ d,
given d ∈ N. To decide the latter, we show that σS(c) ≥ d if, and only if, there
exists a complete flow tree with root ε : bSe satisfying b ≤ c and e ≥ d, and of

height bounded by h
def
= |V | · (δ|V |+ 1). The “if” direction follows from Lemma 4.1

and the monotonicity of the summary function σS . For the “only if” direction,
assume that σS(c) ≥ d. By Lemma 4.2, there exists a complete flow tree with root
ε : bSe satisfying b ≤ c and e ≥ d. Pick one, say (T, sym, in, out), that contains
the least number of nodes t ∈ T with |t| > h. We show that, in fact, T contains no
such node. Since ∆S < +∞, we derive from Lemma 3.6 that ∆sym(r) < +∞ for
every node r ∈ T . Now, consider a leaf t in T . Assume, towards a contradiction,
that |t| > h. The main observation is that for every two nodes r, s ∈ T ,

r ≺ s ≺ t ∧ sym(r) = sym(s) =⇒ in(r) 6= in(s) (8)

For if this were not the case, then

On Coverability for Pushdown VAS in One Dimension 19

– either out(r) ≤ out(s), in which case we could replace the subtree rooted in
r by the subtree rooted in s, contradicting the minimality assumption on T .

– or out(r) > out(s), which would entail, with the same reasoning as in the
proof of Lemma E.1, that ∆sym(r) = +∞, which is impossible.

By the pigeonhole principle, it follows from Equation (8) that there exists an
ancestor s ≺ t such that |s| ≤ |V | ·δ|V | and in(s) ≥ δ|V |. The height of the subtree
rooted in s is strictly larger than |V |, since t is in it. Because ∆sym(s) < +∞
we can use Corollary E.2 and replace, without violating the flow conditions, the
subtree rooted in s by a complete flow tree of height at most |V |. This contradicts
the minimality assumption on T .

The observation that in(t) and out(t) are both bounded by in(ε)+δh for every
node t of a complete flow tree of height h concludes the proof the proposition. ut

Lemma 6.3. Let X ∈ V be a nonterminal. If there is a derivation X
∗

==⇒ uXv
such that ∆uv = +∞ then it holds that λX = +∞.

Proof. Assume that X
∗

==⇒ uXv with ∆uv = +∞. Let λ ∈ R with λ ≥ 1, and
let us show that λX ≥ λ. It is routinely checked that, since ∆uv = +∞, there
exists µ ∈ {

∑
z | z ∈ Lu} and ν ∈ {

∑
z | z ∈ Lv} such that λµ + ν ≥ 0 and

µ+ ν ≥ 1. Observe that ∆u ≥ µ, ∆X ≥ 0 and ∆v ≥ ν. Therefore, there exists
m ∈ N such that σu(m) ≥ m + µ, σX(m) ≥ m and σv(m) ≥ m + ν. It follows
from Remark 3.3 that these inequalities hold for all n ≥ m as well. Let n, k ∈ N
such that n ≥ m and n+ kµ ≥ m. Note that n+ kµ+ kν ≥ m since µ+ ν ≥ 1.
Since X

∗
==⇒ ukXvk, we get, by monotonicity of the summary functions, that

σX(n) ≥ σvk ◦ σX ◦ σuk(n) [Lemma 3.6]

≥ σvk ◦ σX(n+ kµ)

≥ σvk(n+ kµ)

≥ n+ kµ+ kν

≥ n+ k ·max{1, µ(1− λ)} [µ+ ν ≥ 1 ∧ λµ+ ν ≥ 0]

If µ ≥ 0 then, for every k ∈ N, it holds that n+ kµ ≥ m, hence, σX(n) ≥ n+ k.
We derive that σX(n) = +∞ for every n ≥ m, which entails that λX = +∞.
Otherwise, µ < 0. Take k = bn−m−µ c and let r = n − m + kµ. Observe that

0 ≤ r ≤ −µ− 1. Since n+ kµ ≥ m, we get that σX(n) ≥ n− kµ(λ− 1) from the
above inequalities. We derive that σX(n) ≥ λn+ (λ− 1)(µ+ 1−m) for every
n ≥ m, which entails that λX ≥ λ. ut

We now show that the transformations used in our reduction to thin GVAS
are indeed correct, i.e., produce equivalent systems. Recall that two GVAS
G = (V,A,R) and G′ = (V ′, A′, R′) are called equivalent if firstly V = V ′,
secondly λGX = λG

′

X for every nonterminal X, and thirdly σGX = σG
′

X for every
nonterminal X with finite ratio.

Fact 6.4. The unfolding of X is equivalent to G.

20 Jérôme Leroux, Grégoire Sutre, and Patrick Totzke

Proof. Recall that the unfolding of a nonterminal X with ∆G
X < +∞, is the

GVAS H = (V,A,R′) where R′ is obtained from R by removing all production
rules X ` α and instead adding, for every 0 ≤ i ≤ δ|V | with j = σGX(i) > −∞, a
rule X ` (−1)i(1)j .

We first prove that σGX = σHX . First note that σGX(−∞) = σHX (−∞) = −∞
and σGX(+∞) = σHX (+∞) = +∞. Let n ∈ N. By definition of H, we get that
σHX (n) = max{n−i+σGX(i) | 0 ≤ i ≤ δ|V |∧i ≤ n}. It follows from Remark 3.3 that
σHX (n) = n−m+σGX(m) where m = min{δ|V |, n}. If n ≤ δ|V | then we immediately
get that σHX (n) = σGX(n). Otherwise, n > δ|V | and σHX (n) = n− δ|V | + σGX(δ|V |).
We derive from Lemma 6.1 that σHX (n) = σGX(n).

We now prove that σGS = σHS for every nonterminal S. Let c, d ∈ N. Assume
that σGS (c) ≥ d. By Lemma 4.2, there exists a complete flow tree (T, sym, in, out)
for G with root ε : cSd. Let U denote the set of all nodes t ∈ T such that every
proper ancestor s ≺ t verifies sym(s) 6= X. By definition, the set U is a nonempty
and prefix-closed subset of T . Moreover, sym(t) 6= X for each internal node t of
U , and sym(t) ∈ ({X} ∪A) for each leaf t of U . It follows that U is a flow tree
for H, since σG# = σH# for every # ∈ ({X} ∪ A). Note that the root of U also

satisfies ε : cSd. We derive from Lemma 4.1 that σHS (c) ≥ d.
Conversely, the same reasoning as above shows that σHS (c) ≥ d implies

σGS (c) ≥ d. We have thus shown that σGS (c) ≥ d⇔ σHS (c) ≥ d, for every c, d ∈ N.
It follows that σGS = σHS . By definition of the ratio, we also get that λGS = λHS . ut

Fact 6.6. The abstraction of X is equivalent to G.

Proof. Recall that the the abstraction of a nonterminal X ∈ V with λGX = +∞,
is the GVAS H = (V,A ∪ {1}, R′) where R′ is obtained from R by removing all
production rules X ` α and replacing them by the two rules X ` 1X | ε.

Let DX denote the set of nonterminals S ∈ V such that X is derivable from
S in G. Note that DX is also the set of nonterminals S ∈ V such that X is
derivable from S in H. Recall that λGX = +∞. By definition of H, it holds that
λHX = +∞. It follows from Lemma 3.6 that λGS = λHS = +∞ for every S ∈ DX .

Now consider a nonterminal S 6∈ DX . It is readily seen that G and H have the
same derivations S

∗
==⇒ w starting from S. Therefore, LGS = LHS . It follows that

σGS = σHS . By definition of the ratio, we also get that λGS = λHS . The observation
that every nonterminal with finite ratio is in V \DX concludes the proof. ut

Corollary 6.8. The question whether λX < +∞ holds for a given GVAS G and
a given nonterminal X, is decidable. Moreover, if λX < +∞ then the function
σX is effectively computable.

Proof. By Proposition 6.7, it is enough show the claim for thin GVAS. Let us
consider a thin GVAS G = (V,A,R) and a nonterminal X ∈ V . By Theorem 5.1,

the relation
X−−→ is effectively definable in Presburger arithmethic. Therefore, so

is the set ΣX(n)
def
= {d | ∃c ≤ n : c

X−−→ d}, for any given n ∈ N. We derive that
its supremum σX(n) = supΣX(n) is computable.

On Coverability for Pushdown VAS in One Dimension 21

We now prove that the question whether λX < +∞ is decidable. Since the

relation
X−−→ is effectively definable in Presburger arithmethic, it is effectively

semilinear [7]. This means that we can compute a finite family {(bi,P i)}i∈I of
vectors bi in N2 and finite subsets P i of N2, with P i = {p1

i , . . . ,p
`i
i }, such that

X−−→ =
⋃
i∈I

(
bi + Np1

i + · · ·+ Np`ii
)

. We consider two cases.

– If there exists i ∈ I and a vector p in
⋃
i∈I P i such that p(1) = 0 and

p(2) > 0, then bi(1)
X−−→ (bi(2) + kp(2)) for every k ∈ N. It follows that

σX(bi(1)) = +∞, which entails, by monotonicity of σX , that λX = +∞.
– Otherwise, there exists λ ∈ R with λ ≥ 1 such that p(2) ≤ λp(1) for every

vector p in
⋃
i∈I P i. Define b = max{bi(2) | i ∈ I}. It is routinely checked

that d ≤ λc+ b for every c, d with c
X−−→ d. We derive that σX(n) ≤ λn+ b

for every n ∈ N, which implies that λX ≤ λ.

We have shown that λX = +∞ if, and only if, there exists p in
⋃
i∈I P i with

p(1) = 0 and p(2) > 0. The latter condition is decidable, and so is the former. ut

Lemma E.3. Let (T, sym) be a parse tree and let in, out : T → N. Then
(T, sym, in, out) is a certificate if the three following conditions hold:

(i) All internal nodes satisfy the first flow condition,
(ii) Every leaf t ∈ T with λsym(t) < +∞ satisfies the second flow condition, and

(iii) Every leaf t ∈ T with λsym(t) = +∞ has a proper ancestor s ≺ t such that
sym(s) = sym(t) and in(s) < in(t).

Proof. Assume that (i)–(iii) hold. We only need to show that every leaf of T
satisfies the second flow condition. By contradiction, assume that T contains a leaf
t with out(t) 6≤ σsym(t)(in(t)). It follows from (ii) and (iii) that λsym(t) = +∞ and
that t has a proper ancestor s ≺ t such that sym(s) = sym(t) and in(s) < in(t).
Let t1, . . . , t`, with ti : ci#idi, denote the leaves of the subtree of T rooted in
s, in lexicographic order (informally, from left to right). Obviously, t = tk for
some k in {1, . . . , `}. We may suppose, without loss of generality, that t1, . . . , tk−1
satisfy the second flow condition. This means that di ≤ σ#i

(ci) for all i with
1 ≤ i < k. Since every internal node satisfies the first flow condition, it holds
that in(s) ≥ c1 and di ≥ ci+1 for all i with 1 ≤ i < k. We derive from the
monotonicity of summary functions that

σ#1···#k−1
(in(s)) = σ#k−1

◦ · · · ◦ σ#1
(in(s)) [Lemma 3.6]

≥ σ#k−1
◦ · · · ◦ σ#1

(c1) [in(s) ≥ c1]

≥ ck [σ#i
(ci) ≥ di ≥ ci+1]

> in(s) [ck = in(t) > in(s)]

Define u = #1 · · ·#k−1, X = sym(s) = #k, and v = #k+1 · · ·#`. Recall that
t1, . . . , t` are the leaves, in lexicographic order, of the subtree of T rooted in
s. Therefore, we have the derivation X

∗
==⇒ uXv. We obtain from Lemma 4.5

that σX(in(s)) = +∞. Since in(t) ≥ in(s), we get that σX(in(t)) = +∞, which
contradicts our assumption that out(t) 6≤ σX(in(t)). ut

	On the Coverability Problem for Pushdown Vector Addition Systems in One Dimension

