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l l Vector Addition Systems — Recap

Definition
A VAS is a finite set of vectors a € Z9. For v,v' : N? it has a step

a .
v— Vv if vVv=v+a.

» Equivalent to Petri Nets
(concurrency, weak counters, event systems)

» Reachability: decidable
Mayr'81,Kosaraju’82, . .. Leroux and Schmitz'15

» Coverability, Boundedness: EXPSPACE-complete
Lipton’76, Rackoff'78

» Most Games/Equivalences undecidable (e.g. Bisimulation)

Jan&ar'95
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l l Pushdown Vector Addition Systems
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l l Pushdown Vector Addition Systems

... are products of VAS with pushdown automata. They can for
example model recursive prorams with variables over N.

o w3 (©
2: procedure DOUBLEX

if (x A x> 0) then

x4+ (x—1)
DoUBLEX push(A) e 0 pop(A)
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6: end if
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l l Pushdown Vector Addition Systems

» Reachability = Coverability (= State-Reachability)
TOWER-hard Lazic'13
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l l Pushdown Vector Addition Systems

» Reachability d dim. = Coverability d 4+ 1 dim.
TOWER-hard Lazic'13

> Coverability in 1 dim. is decidable Leroux, Sutre, and T.’15

» Boundedness: decidable with Hyper-Ackermannian bounds

Leroux, Praveen, and Sutre'14

Theorem [LSP'14]

If a PVAS configuration (p, L, n) is bounded then the cardinality of
the reachability set is at most F,a..q|(d - n).
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» Counter-, Stack-, and Combined Boundedness Problems.

Combined
Stack Counter
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l l Pushdown Vector Addition Systems

Reachability d dim. = Coverability d + 1 dim.
TOWER-hard Lazic'13

Coverability in 1 dim. is decidable Leroux, Sutre, and T.’15
Boundedness: decidable with Hyper-Ackermannian bounds
Leroux, Praveen, and Sutre'14

Counter-, Stack-, and Combined Boundedness Problems.
Combined

=

Stack

v

vy

v

The following is in EXPTIME.

1-PVAS Counter-Boundedness

Given: 1-dim. PVAS, initial configuration (p, w,a).
Question: is {b | (p,w,a) — (p’,w’, b)} infinite?
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l l Another Perspective

Definition (Context-free Controlled VAS)

a VAS A C Z9 together with a context-free language £ C A*.
There is a step s —» t between s, t € N9 if

a a a
ajaz...ak €L and s—-5H2 ...t
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Another Perspective

given as GfG

Definition (Context-free Controlled VAS) /
a VAS A C Z9 together with a context-free language £ C A*.
There is a step s X, t between s, t € N¥ if

a a a
X = ajap...ax and s—-52 ... 2¢

Theorem
For Cf-Controlled VAS, Coverability (and Reachability) logspace
reduces to Boundedness.

Observation
Relevant for the PVAS boundedness problem is the trace language
{we A*| (po, L) -5} defined by the PDA.

Main Theorem
Boundedness of 1-dim VAS controlled by a prefix-closed language

is in EXPTIME. )
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A derivation tree with consistent in/out labels in Z U {—o0}.
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low Trees

A derivation tree with consistent in/out labels in Z U {—o0}.

ab means a = b’ > b; —oob means 3a € N. a =5 b > b.

6/12



P

low Trees

A derivation tree with consistent in/out labels in Z U {—o0}.

TCTif
L |T|<|T'| or
2. |T)|=1T'| and > (labels > —oc0) on T is smaller than on T’

6/12



ﬁ

low Trees

A derivation tree with consistent in/out labels in Z U {—o0}.

TCTif
L |T|<|T'| or
2. |T)|=1T'| and > (labels > —oc0) on T is smaller than on T’

6/12



| | C

ertificates

Definition
A certificate is a flow tree with a node bb’ and a descendant
Cc’ such that

1. b<cor

2. b=cand ' < V.

>0
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l l Certificates (cont.)

TheoremS
{a' | a — &'} is infinite iff there is a certificate with root (< a).

Unboundedness = Certificate:

> a5 b for sufficiently large b
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Unboundedness = Certificate:

> a2 b for sufficiently large b
» a minimal flow tree must have long branch
» wqo (<, =) on (input x V) implies matching nodes with b < ¢

» minimality excludes b=cAc’ > b

Unboundedness <= Certificate:
> yield is uvwxy € £ with > v >0and Y v+> x>0

> All uv"wx™ are in L and executable.

» Prefix-closedness of £ implies uv” and uv"wx" € L.
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l l Certificates (cont.)
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l l Bounding C-minimal Certificates

(maybe on blackboard if time)

Theorem
Let G = (V,A,R,S) be a CfG generating a prefix-closed language
over A ={-1,0,1} and n € N an initial value. Then

{m|n N m} is infinite iff it admits a certificate with height and
all input/output values bounded by n + 4*(IVI+1).
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| | C

onclusion

Discussed here
» Pushdown VAS; Boundedness of counter/stack/both
» Cf-controlled VAS; Flow Trees
» prefix-closed control ~ counter-Boundedness
» Counter-Boundedness in 1-PVAS is in EXPTIME

Open Problems

» Decidability of PVAS Reachability (even in dim 1)
» is Boundedness reducible to Reachability in Cf~-C-VAS?

» Complexity of 1-PVAS counter-Boundedness
(NP- ExpPTIME)

» Complexity of 1-PVAS Coverability (NP— EXPSPACE)
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Additional Stuff
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l l Weak Computation of Ackermann Functions A,,

A ( ) def n-+ 1 ifm=20
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AL (1) ifm>0
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l l Weak Computation of Ackermann Functions A

Ann) {n—|—1 ifm=0

AMtL(1) ifm>0

(s0,m.L, n) == (s0, L, Am(n))
If (S()7 ml, n) SN (50, 1, n’) then n’ < Am(n) 12/12
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