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Abstract. We study stochastic games with energy-parity objectives,
which combine quantitative rewards with a qualitative w-regular condition:
The maximizer aims to avoid running out of energy while simultaneously
satisfying a parity condition. We show that the corresponding almost-sure
problem, i.e., checking whether there exists a maximizer strategy that
achieves the energy-parity objective with probability 1 when starting at
a given energy level k, is decidable and in NP N coNP. The same holds
for checking if such a k exists and if a given k is minimal.
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1 Introduction

Simple stochastic games (SSGs), also called competitive Markov decision processes
[30], or 2%—player games [23122] are turn-based games of perfect information
played on finite graphs. Each state is either random or belongs to one of the
players (maximizer or minimizer). A game is played successively moving a pebble
along the game graph, where the next state is chosen by the player who owns
the current one or, in the case of random states, according to a predefined
distribution. This way, an infinite run is produced. The maximizer tries to achieve
an objective (in our case almost surely), while the minimizer tries to prevent this.
The maximizer can be seen as a controller trying to ensure an objective in the
face of both known random failure modes (encoded by the random states) and
an unknown or hostile environment (encoded by the minimizer player).

Stochastic games were first introduced in Shapley’s seminal work [46] in 1953
and have since then played a central role in the solution of many problems
in computer science, including synthesis of reactive systems [45/42]; checking
interface compatibility [27]; well-formedness of specifications [28]; verification of
open systems []; and many others.

A huge variety of objectives for such games was already studied in the
literature. We will mainly focus on three of them in this paper: parity; mean-
payoff; and energy objectives. In order to define them we assume that numeric
rewards are assigned to transitions, and priorities (encoded by bounded non-
negative numbers) are assigned to states.
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The parity objective simply asks that the minimal priority that appears
infinitely often in a run is even. Such a condition is a canonical way to define
desired behaviors of systems, such as safety, liveness, fairness, etc.; it subsumes
all w-regular objectives. The algorithmic problem of deciding the winner in non-
stochastic parity games is polynomial-time equivalent to the model checking of
the modal p-calculus [49] and is at the center of the algorithmic solutions to the
Church’s synthesis problem [44]. But the impact of parity games goes well beyond
automata theory and logic: They facilitated the solution of two long-standing
open problems in stochastic planning [29] and in linear programming [32], which
was done by careful adaptation of the parity game examples on which the strategy
improvement algorithm [31] requires exponentially many iterations.

The parity objective can be seen as a special case of the mean-payoff 0b-
jective that asks for the limit average reward per transition along the run to
be non-negative. Mean-payoff objectives are among the first objectives studied
for stochastic games and go back to a 1957 paper by Gillette [33]. They allow
for reasoning about the efficiency of a system, e.g., how fast it operates once
optimally controlled.

The energy objective [I4] can be seen as a refinement of the mean-payoff
objective. It asks for the accumulated reward at any point of a run not to be
lower than some finite threshold. As the name suggests, it is useful when reasoning
about systems with a finite initial energy level that should never become depleted.
Note that the accumulated reward is not bounded a-priori, which essentially
turns a finite-state game into an infinitely-state one.

In this paper we consider SSGs with energy-parity objectives, which requires
runs to satisfy both an energy and a parity objective. It is natural to consider
such an objective for systems that should not only be correct, but also energy
efficient. For instance, consider a robot maintaining a nuclear power plant. We
not only require the robot to correctly react to all possible chains of events
(parity objective for functional correctness), but also never to run out of energy
as charging it manually would be risky (energy objective).

While the complexity of games with single objectives is often in NP N coNP,
asking for multiple objectives often makes solving games harder. Parity games
are commonly viewed as the simplest of these objectives, and some traditional
solutions for non-stochastic games go through simple reductions to mean-payoff or
energy conditions (which are quite similar in non-stochastic games) to discounted
payoff games that establishes the membership of those problems in UP and coUP
[35]. However, asking for two parity objectives to be satisfied at the same time
leads to coNP completeness [21].

We study the almost sure satisfaction of the energy-parity objective, i.e.,
with probability 1. Such qualitative analysis is important as there are many
applications where we need to know whether the correct behavior arises almost-
surely, e.g., in the analysis of randomized distributed algorithms (see, e.g, [4347])
and safety-critical examples like the one from above. Moreover, the algorithms
for quantitative analysis, i.e., computing the optimal probability of satisfaction,
typically start by performing the qualitative analysis first and then solving a



game with a simpler objective (see, e.g., [23/15]). Finally, there are stochastic
models for which qualitative analysis is decidable but quantitative one is not
(e.g., probabilistic finite automata [6]). This may also be the case for our model.

Our contributions. We consider stochastic games with energy-parity winning
conditions and show that deciding whether maximizer can win almost-surely for
a given initial energy level k is in NP N coNP. We show the same for checking if
such k exists at all and checking if a given k is the smallest possible for which this
holds. The proofs are considerably harder than the corresponding result for MDPs
[40] (on which they are partly based), because the attainable mean-payoff value
is no longer a valid criterion in the analysis (via combinations of sub-objectives).
E.g., even though the stored energy might be inexorably drifting towards +oo
(resp. —o0), the mean-payoff value might still be zero because the minimizer
(resp. maximizer) can delay payoffs for longer and longer (though not indefinitely,
due to the parity condition). Moreover, the minimizer might be able to choose
between different ways of losing and never commit to any particular way after
any finite prefix of the play (see Example .

Our proof characterizes almost-sure energy-parity via a recursive combination
of complex sub-objectives called Gain and Bailout, which can each eventually be
solved in NP N coNP.

Our proof of the coNP membership is based on a result on the strategy
complexity of a natural class of objectives, which is of independent interest. We
show (cf. Theorem [6} based on previous work in [34]) that, if an objective O is
such that its complement is both shift-invariant and submixing, and that every
MDP admits optimal finite-memory deterministic maximizer strategies for O,
then the same is true in turn-based stochastic games.

Ezxzample 1. Fig. (1] shows an energy-parity game that the maximizer can win
almost surely when starting with an energy level of > 2 from the middle left
node. Whenever the game is at that node with an energy level > 3, then the
maximizer can turn left and has at least % chance that the energy level will
never drop to 2 while wining the game with priority 2. This is because we can

Fig. 1: A SSG with two maximizer states (O), one minimizer state (&) and one
probabilistic state (O). Each state is annotated with its priority. Each edge is
annotated with a reward by which the energy level is increased after traversing
it (respectively, decreased if the reward is negative). The maximizer wins if the
lowest priority visited infinitely often is even and the energy level never drops
below 0.



view this process as a random walk on a half line. If x,, is the probability of
reaching energy level 2 when starting at energy n then these probabilities are
the least point-wise positive solution to the following system of linear equations:
zo =1z, = %xnﬂ + %xn,l for all n > 3. We then get that z,, = %%2 so the
probability of not reaching energy level 2 is > % for all n > 3. Always turning left
guarantees that, almost surely, the parity condition holds and the limes inferior
of the energy level is not —oo. We call this condition Gain. Strategies for Gain
can be used when the energy level is sufficiently high (at least 3 in our example)
to win with a positive probability.

However, if maximizer plays for Gain and always moves left, then for every
initial energy level the chance of eventually dropping the energy down to level 2
is positive, due to the negative cycle. When that happens, the only other option
for the maximizer is to move right. There minimizer can ‘choose how to lose’,
via a disjunction of two conditions that we later formalize as Bailout. Either
minimizer goes back to the start state without changing the energy level (thus
maximizer wins as the energy stays at level 2 and only the good priority 2 is
seen), or minimizer turns right. In the latter case, the play visits a dominating
odd priority (which is bad for maximizer) but also increases the energy by 1,
which allows maximizer to switch back to playing left for the Gain condition
until energy level 2 is reached again.

Our maximizer strategies are a complex interplay between Bailout and Gain.
In the example, it is easy to see that the probability of seeing priority 1 infinitely
often is zero if maximizer follows the just described strategy (the probability
of requiring to go right more than n times is at most (3)"), so maximizer wins
this energy-parity game almost surely. Note that maximizer does not win almost
surely when the initial energy level is 0 or 1.

Previous work on combined objectives. Non-stochastic energy-parity games
have been studied in [I6]. They can be solved in NP N coNP and maximizer
strategies require only finite (but exponential) memory, a property that also
allowed to show P-time inter-reducibility with mean-payoff parity games. More
recently they were also shown to be solvable in pseudo-quasi-polynomial time [26].
Related results on non-stochastic games (e.g., mean-payoff parity) are summarized
in [I8].

Most existing work, e.g. [I7UI89/40], on combined objectives for stochastic
systems is restricted to Markov decision processes (MDPs; aka 1%—p1ayer games).
Almost-sure energy-parity objectives for MDPs were first considered in [I718],
where a direct reduction to ordinary energy games was proposed. This reduction
relies on the assumption that maximizer can win using finite memory if at all.
Unfortunately, this assumption does not necessarily hold: it was shown in [40]
that an almost sure winning strategy for energy-parity in finite MDPs may
require infinite memory. Nevertheless, it was possible to recover the original
result, that deciding the existence of a.s. winning strategies is in NP N coNP
(and pseudo-polynomial time), by showing that the existence of an a.s. winning
strategy can be witnessed by the existence of two compatible, and finite-memory,



winning strategies for two simpler objectives. We generalize this approach from
MDPs to full stochastic games.

Stochastic mean-payoff parity games were studied in [20], where it was shown
that they can be solved in NP N coNP. However, this does not imply a solution for
stochastic energy-parity games, since, unlike in the non-stochastic case [16], there
is no known reduction from energy-parity to mean-payoff parity in stochastic
games. (The reduction in [I6] relies on the fact that maximizer has a winning finite-
memory strategy for energy-parity, which does not generally hold for stochastic
games or MDPs; see above.)

A related model are the 1-counter MDPs (and stochastic games) studied in
[I2/TTI8], since the value of the counter can be interpreted as the stored energy.
These papers consider the objective of reaching counter value zero (which is
dual to the energy objective of staying above zero), thus the roles of minimizer
and maximizer are swapped. However, unlike in this paper, these works do not
combine termination objectives with extra parity conditions.

Structure of the paper. The rest of the paper is organized as follows. We
start by introducing the notation and formal definitions of games and objectives
in the next section. In Section [3| we show how checking almost-sure energy-parity
objectives can be characterized in terms of two newly defined auxiliary objectives:
Gain and Bailout. In Sections [4] and [f] we show that almost-sure Bailout and
Gain objectives, respectively, can be checked in NP and coNP. Section [f] contains
our main result: NP and coNP algorithms for checking almost-sure energy-parity
games with a known and unknown initial energy, as well as checking if a given
initial energy is the minimal one. We conclude and point out some open problems
in Section [} Due to page restrictions, most proofs in the main body of the paper
were replaced by sketches. The detailed proofs can be found in the full version of
this paper [41].

2 Preliminaries

A probability distribution over a set X is a function f : X — [0,1] such that
Y wex f(x) = 1. We write D(X) for the set of distributions over X.

Games, Strategies, Measures. A Simple Stochastic Game (SSG) is a sinkless

def

directed graph G = (V, E, \), the set of states is partitioned into states owned by
mazimizer (Vg), minimizer (Vo) and probabilistic states (V). The set of edges
is ECV xV and A: Vo — D(FE) assigns each probabilistic state a probability
distribution over its outgoing edges. W.l.o.g., we assume that each probabilistic
state has at most two successors, because one can introduce a new probabilistic
state for each excess successor. We let A\(ws) = A(s) for all ws € (VE)*V.

A path is a finite or infinite sequence p < spepsieq ... such that e; =
(SiySi+1) € E holds for all indices i. A run is an infinite path and we write

def

Runs = (VE)“ for the set of all runs.



A strategy for maximizer is a function o : (VE)*Vy — D(F) that assigns
to each path ws € (VE)*Vg a probability distribution over the outgoing edges
of its target node s. That is, o(ws)(e) > 0 implies e = (s,t) € E for some
t € V. A strategy is called memoryless if o(xs) = o(ys) for all z,y € (VE)*
and s € Vg, deterministic if o(w) is Dirac for all w € (VE)*Vg, and finite-state
if there exists an equivalence relation ~ on (V E)*Vg with a finite index, such
that o(p1) = o(p2) if p1 ~ p2. Of particular interest to us will be the class
of memoryless deterministic strategies (MD) and the class of finite-memory
deterministic strategies (FD). Strategies for minimizer are defined analogously
and will usually be denoted by 7: (VE)*Ve — D(E).

A maximizing (minimizing) Markov Decision Process (MDP) is a game in
which minimizer (maximizer) has no choices, i.e., all her states have exactly one
successor. We will write G[7] for the MDP resulting from fixing the strategy 7. A
Markov chain is a game where neither player has a choice. In particular, G[o, 7] is
a Markov chain obtained by setting, in the game G, the strategies for maximizer
and minimizer to o and 7, respectively.

Given an initial state s € V and strategies ¢ and 7 for maximizer and
minimizer, respectively, the set of runs starting in s naturally extends to a
probability space as follows. We write Runsg for the w-cylinder, i.e., the set of all
runs with prefix w € (VE)*V. We let F9 be the o-algebra generated by all these
cylinders. We inductively define a probability function ]P’SG"’*T on all cylinders,
which then uniquely extends to F9 by Carathéodory’s extension theorem [5], by

setting P97 (Runs?) = 1 and P9%7 (Runs?) = H?:_Ol dist;(soeosier ... s;)(e;)
for w = sepsiey ...en—_18n, where e; = (s;,8;41) and dist; is o(-), 7(-) or A(+), for

s; € Vg,V or Vo, respectively.

Objective Functions. A (Borel) objective is a set Obj C F9 of runs. We write

Obj & Runs \ Obj for its complement. Borel objectives Obj are weakly determined
[39/38], which means that

sup inf P77 (Obj) = inf sup PZ"" (Obj).

This quantity is called the value of Obj in state s, and written as Val? (Obj). We
say that Obj holds almost-surely (abbreviated as a.s.) at state s iff there exists
o such that Y7, P97 7 (0bj) = 1. Let ASY (Obj) denote the set of states at which
Obj holds almost surely. We will drop the superscript G and simply write Runs,
P27 and AS (Obj), if the game is clear from the context.

We use the syntax and semantics of operators F (eventually) and G (always)
from the temporal logic LTL [25] to specify some conditions on runs.

A reachability condition is defined by a set of target states " C V. A run
p = Spepsi . .. satisfies the reachability condition iff there exists an i € N s.t.
s; € T. We write FT' C Runs for the set of runs that satisfy this reachability
condition. Given a set of states W C V| we lift this to a safety condition on runs
and write GW C Runs for the set of runs p = sgegsy ... where Vi.s; € W.



A parity condition is given by a bounded function parity : V — N that assigns
a priority (a non-negative integer) to each state. A run p € Runs satisfies the
parity condition iff the minimal priority that appears infinitely often on the run
is even. The parity objective is the subset PAR C Runs of runs that satisfy the
parity condition.

Energy conditions are given by a function r : E — Z, that assigns a reward
value to each edge. For a given initial energy value k£ € N, a run sgegsie; ...
satisfies the k-energy condition if, for every finite prefix of length n, the energy
level k + """ ,r(e;) is greater or equal to 0. Let EN(k) C Runs denote the
k-energy objective, consisting of those runs that satisfy the k-energy condition.

The [-storage condition holds for a run sgegsiey ... if +ZZ§£ r(si,8i+1) >0
holds for every infix $;,€m8m41 .- . Sn. Let ST(k,1) C Runs denote the k-energy
[-storage objective, consisting of those runs that satisfy both the k-energy and
the I-storage condition. We write ST (k) for (J, ST(k,1). Clearly, ST(k) C EN(k).

Mean-payoff and limit-payoff conditions are defined w.r.t. the same reward
function as the energy conditions. The mean-payoff value of a run p = sgegsie; ...
is MP(p) = liminf, 0o 2 327" 7(e;). For A € {>,>,=,<,<} and ¢ € RU
{—00, 00}, the set MP(Ac) C Runs consists of all runs p with MP(p)Ac. Let
LimInf(Ac) C Runs contain all runs p with (liminf, . > i, 7(e;))Ac, and
likewise for LimSup(Ac).

The combined energy-parity objective EN(k) N PAR is Borel and therefore
weakly determined, meaning that it has a well-defined (inf sup = supinf) value
for every game [39I38]. Moreover, the almost-sure energy-parity objective (asking
to win with probability 1) is even strongly determined [37)]: either maximizer has
a strategy to enforce the condition with probability 1 or minimizer has a strategy
to prevent this.

3 Characterizing Energy-Parity via Gain and Bailout

The main theorem of this section (Theorem [5]) characterizes almost sure energy-
parity objectives in terms of two intermediate objectives called Gain and k-Bailout
for parameters k > 0. This will form the basis of all computability results: we

will show (as Theorems and how to compute almost-sure sets for these
intermediate objectives.

Definition 2. Consider a finite SSG G = (V, E, ), as well as reward and parity
functions defining the objectives PAR, LimInf(> —o0), LimSup(= c0) as well as
ST(k,l) and EN(k) for every k,l € N. We define combined objectives Gain and

k-Bailout = U;Bailout(k, 1) where
Gain = LimInf(> —o0) N PAR
Bailout(k,1) = (ST(k,1) N PAR) U (EN(k) N LimSup(= c0)).

The main idea behind these two objectives is a special witness property for
energy-parity. We argue that, if maximizer has an almost-sure winning strategy



for energy-parity then he also has one that combines two almost-sure winning
strategies, one for Gain and one for k-Bailout.

Notice that playing an almost-sure winning strategy for Gain implies a uni-
formly lower-bounded strictly positive chance that the energy level never drops
below zero (assuming it is sufficiently high to begin with). This fact uses the
finiteness of the set of control-states and does not hold for infinite-state MDPs. In
the unlikely event that the energy level does get close to zero, maximizer switches
to playing an almost sure winning strategy for k-Bailout. This is a disjunction of
two scenarios, and the balance might be influenced by minimizer’s choices. In the
first scenario (ST(k,1) N PAR) the energy never drops much and stays above zero
(thus satisfying energy-parity). In the second scenario, (EN(k) N LimSup(= c0)),
the parity objective is temporarily suspended in favor of boosting (while always
staying above zero) the energy to a sufficiently high level to switch back to the
strategy for Gain and thus try again from the beginning. The probability of
infinitely often switching between these modes is zero due to the lower-bounded
chance of success in the Gain phase. Therefore, maximizer eventually wins by
playing for Gain. Note that maximizer needs to remember the current energy
level in order to know when to switch and consequently, this strategy uses infinite
memory.

Ezxample 3. Consider again the game in Fig. [I The middle left state satisfies
both Gain and k-Bailout objectives for all k¥ > 2 almost-surely. The respective
winning strategies are to always go left for Gain or always go right for k-Bailout
when at that state. Note that it neither satisfies 0-Bailout nor 1-Bailout objectives.

We define the subset W C V of states from which maximizer can almost
surely win both Gain and k-Bailout (assuming sufficiently high initial energy),
while at the same time ensuring that the play remains within this set of states.
These are the states from which maximizer can win by freely combining individual
strategies for the Gain and Bailout objectives.

Definition 4. Given a finite SSG G = (V,E,\), let W C V be the largest subset
of states satisfying the following condition

W C AS (Gain N GW) N | JAS (k-Bailout N GWW)
k

This condition describes a fixed-point, and as it is easy to see that if two
sets W71 and Wy are such fixed-points, then so is W, U W5. Thus, the maximal
fixed-point W is well-defined.

Our main characterization of almost-sure energy-parity objectives is the
following Theorem [5| It states that maximizer can almost surely win an EN(k) N
PAR objective if, and only if, he can win the easier k-Bailout objective while
always staying in the safe set W.

Theorem 5. For every k € N, AS (EN(k) N PAR) = AS (k-Bailout N GWV).



Our proof of this characterization theorem relies on the following claim, which
allows to lift the existence of finite-memory deterministic optimal strategies from
MDPs to SSGs. It applies to a fairly general class of objectives and, we believe,
is of independent interest.

Recall that Obj = Runs \ Obj denotes the complement of objective Obj. For
runs a, b, c € Runs we say that a is a shuffle of b and c if there exist factorizations
b = boby... and ¢ = cgcy ... such that a = bocgbicr.... An objective Obj is
called submizing if, for every run a € Obj that is a shuffle of runs b and ¢, either
b € Obj or ¢ € Obj. Obj is shift-invariant if, for every run sjejsses ..., it holds
that sje1sses... € Obj <= sses ... € Obj. Shift-invariance slightly generalizes
the better-known tail condition (see [34] for a discussion).

Theorem 6. Let O be an objective such that O is both shift-invariant and
submizing. If mazimizer has optimal FD strategies (from any state s) for O for
every finite MDP then maximizer has optimal FD strategies (from any state s)

for O for every finite SSG.

This applies in particular to the Gain objective, but not to k-Bailout objectives,
as these are not shift-invariant. A proof of Theorem |§| can be found in [41]. It
uses a recursive argument based on the notion of reset strategies from [34].

The remainder of this section is dedicated to proving Theorem [5| We will
first collect the remaining technical claims about Gain, Bailout, and reachability
objectives. Most notably, as Lemma |8 we show that if maximizer can almost
surely win Gain in a SSG, then he can do so using a FD strategy which moreover
satisfies an energy-parity objective with strictly positive (and lower-bounded)
probability. This is shown in part based on Theorem [f] applied to the Gain
objective. We will also need the following fact about reachability objectives in
finite MDPs.

Lemma 7 ([8, Lemma 3.9]). Let M be a finite MDP and Reachr be the
reachability objective with target T = {s' | Val,, (LimInf(= —o0)) = 1}. One can
compute a rational constant ¢ < 1 and an integer h > 0 such that for all states s
and i > h we have ¥7.PT(EN(i) N Reachr) < ﬁ

Lemma 8. Consider a finite SSG G = (V, E, \) where Gain holds a.s. for every

state s € V. Then, for every 6 € [0,1) and s € V, there exists a k € N and an
FD strategy & s.t.

1. V7. P77 (Gain) = 1, and
2. Vr. P27 (EN(k) N PAR) > 4.

Proof. Fix a § € [0,1) and a state s € V. Both LimiInf(= —c0), as well as PAR
objectives are shift-invariant and submizing, and therefore also the union has
both these properties. It follows that Gain = LimInf(> —c0) N PAR = LimInf(=
—00) U PAR is both shift-invariant and submixing, since the complement of a
parity objective is also a parity objective. By Lemma [I6] and Theorem [0} there
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exists an almost-sure winning FD strategy ¢ for maximizer for the objective Gain
from s, i.e., V7. P27 (Gain) = 1, thus yielding Item

Let M be the MDP obtained from G by fixing the strategy ¢ for maximizer
from s. Since G is finite and & is FD, also M is finite. In M we have V7. P7(Gain) =
1. In particular, in M, the set T = {s' | Val, (LimInf(= —00)) = 1} is not
reachable, i.e., V7. PT(Reachr) = 0.

By Lemmal[7] in M there exists a horizon h € N _and a constant ¢ < 1 such that
for all ¢ > h we have V7. PT(EN(2) N Reachr) <

in /\/l the condition Reachy evaluates to true and we have V7. IF’T(EN( ) >

that 1 - 1°'_kc > 0 and obtain V7. IP’;(EN(k)) > 4 in M. Moreover, the above
property V7. PZ(Gain) = 1 in particular implies V7. PT(PAR) = 1. Thus we obtain
v7.PT(EN(k) N PAR) > § in M.

Back in the SSG G, we have Vr.P%7(EN(k) N PAR) > § as required for
Ttem [21 O

Lemma 9. EN(k) N PAR C k-Bailout.

Proof. Let p be a run in EN(k) N PAR. There are two cases. In the first case
we have p € U;ST(k,l) N PAR and thus directly p € k-Bailout. Otherwise, p ¢
UiST(k,1)NPAR. Since p € PAR, we must have p ¢ U;ST(k,1). Since p € EN(k), it
follows that p does not satisfy the [-storage condition for any [ € N. So, for every
I € N, there exists an infix p’ of p s.t. [+ 7(p") < 0. Let p” be the prefix of p before
p'. Since p € EN(k) we have k+r(p”p") > 0 and thus r(p”) > —k—r(p’) > —k+1.
To summarize, if p ¢ U;ST(k,1) N PAR then, for every [, it has a prefix p” with
r(p") > —k + 1. Thus p € LimSup(= c0). Thus p € k—BaiIout. O

We now define W’ as the set of states that are almost-sure winning for
energy-parity with some sufficiently high initial energy level. (W' is also called
the winning set for the unknown initial credit problem.)

Definition 10. W’ £ J, AS (EN(k) N PAR).
Lemma 11.

1. AS (EN(k) N PAR) C AS (Gain N GW)
2. AS (EN(k) N PAR) C AS (k-Bailout N GIV")

Proof. Let s € AS (EN(k) N PAR) and o a strategy that witnesses this property.

Except for a null-set, all runs p = sepsiey...€,_15, ... from s induced by o
satisfy EN(k) N PAR.
Let ,0 = sepsiel...Sm be a finite prefix of p. For every n > 0 we have

k+>0 ' 7(e;) > 0, since p € EN(k). In particular this holds for all n > m.
So, for every n > m, we have k + > " Yr(e) + Z?:_nll r(e;) > 0. Therefore
sm € AS (EN(K") N PAR), where k' = k + Zi:ol r(e;), as witnessed by playing
o with history segsie; ... sy, from s,,. Thus s,, € |J, AS (EN(k) N PAR) = W,
i.e., almost all o-induced runs p satisfy GW’.
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Towards Item [I} we have EN(k) C LimInf(> —oc) and thus EN(k) N PAR C
LimlInf(> —o0) N PAR = Gain. Therefore o witnesses s € AS (Gain N GW’).

Towards Item [2, we have EN(k) N PAR C k-Bailout by Lemma [9] Thus o
witnesses s € AS (k-Bailout N GW'). O

Lemma 12. W/ CW.

Proof. Tt suffices to show that W’ satisfies the monotone condition imposed on
W (cf. Deﬁnition, since W is defined as the largest set satisfying this condition.

Let s € W' = |J, AS (EN(k) N PAR). Then s € AS (EN(/%) N PAR) for some

fixed k. By Lemma (1) we have s € AS (GainNGW’). By Lemma (2) we
have s € AS (l%-Banout N GW’) C U, AS (k-Bailout N GIV"). O

Proof of Theorem[5 Towards the C inclusion, we have
AS (EN(k) N PAR) C AS (k-Bailout N GW') C AS (k-Bailout N GWW)

by Lemma [T1|(2) and Lemma [12]
Towards the D inclusion, let s € AS (k-Bailout N GW) and o1 be a strategy

that witnesses this. We show that s € AS (EN(k) N PAR). We now consider the
modified SSG G’ = (W, E, \) with the state set restricted to W. In particular,
s € W and o, witnesses s € AS (k-Bailout) in G’. We now construct a strategy o
that witnesses s € AS (EN(k) N PAR) in G’, and thus also in G. The strategy o
will use infinite memory to keep track of the current energy level of the run.

Apart from o7, we require several more strategies as building blocks for the
construction of o.

First, in G we had Vs’ € W.s' € AS (GainNGW), and thus in G’ we have
Vs’ € W.s' € AS (Gain). For every s’ € W we instantiate Lemma [§ for G’ with
6 = 1/2 and obtain a number ky and a strategy &, with

1. V. Pif”T(Gain) =1, and
2. V7. PJ" T (EN(ky') N PAR) > 1/2.

Let ki & max{ky | s € W}. The strategies 6 are called gain strategies.

Second, by the finiteness of V, there is a minimal number ks such that
Uy AS (k-Bailout NGW) = (J,. <, AS (k-Bailout N GW) in G. Therefore, in G’ we
have that

W C | JAS (k-Bailout) = | ] AS (k-Bailout) = AS (k»-Bailout) .
k k<ko

Thus in G’ for every s’ € W there exists a strategy &4 with V7. IF’;},S' "7 (ky-Bailout) =

1. The strategies &y are called bailout strategies. Let k' < ky + ko — k + 1. We
now define the strategy o.

Start: First o plays like oy from s. Since o7 witnesses s € AS (k-Bailout) against
every minimizer strategy 7, almost all induced runs p = segsye; ... satisfy
either
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(A) (U;ST(k,1) N PAR), or
(B) (EN(k) N LimSup(= c0)).

Almost all runs p of the latter type (B) (and potentially also some runs of
type (A)) satisfy EN(k) and 22:0 r(e;) > k' eventually for some [. If we
observe Zé:o r(e;) > k' for some prefix segsie ...e;s of the run p then our
strategy o plays from s’ as described in the Gain part below. Otherwise, if
we never observe this condition, then our run p is of type (A) and o continues
playing like oy. Since property (A) implies (EN(k) N PAR), this is sufficient.

Gain: In this case we are in the situation where we have reached some state s’

after some finite prefix p’ of the run, where r(p’) > k’. Our strategy o now
plays like the gain strategy 64, as long as r(p") > k' — kq holds for the current

prefix p’ of the run. By Item this will satisfy V7. P7*""" (EN (ks )NPAR) > 1/2
and thus V7. P77 (EN(k1) N PAR) > 1/2. It follows that with probability
> 1/2 we will keep playing &4 forever and satisfy PAR and always r(p') >
k" — k1 and thus EN(k), since k+ r(p') > k+ k' — k1 =ko +1 > 0.
Otherwise, if eventually r(p’) = k' — k1 — 1 then we have k + r(p') = k2. In
this case (which happens with probability < 1/2) we continue playing as
described in the Bailout part below.

Bailout: In this case we are in the situation where we have reached some

state s” € W after some finite prefix p’ of the run, where k + r(p’) = ko.
Since s” € W, we can now let our strategy o play like the bailout strategy
G+ and obtain V7.P7;""" (k2-Bailout) = 1. Thus almost all induced runs

" =s"eys1e1 ... from s” satisfy either

(A) (U;ST(k2,1) NPAR), or
(B) (EN(k2) N LimSup(= o0)).

As long as r(p’) < k' holds for the current prefix p’ of the run, we keep
playing &. Otherwise, if eventually r(p’) > &’ holds, then we switch back
to playing the Gain strategy above. All the runs that never switch back to
playing the Gain strategy must be of type (A) and thus satisfy PAR. Since
we have ky-Bailout C EN(ks), it follows that, for every prefix p” of the run
from s”, according to &5~ we have kg + r(p”) > 0. Thus, for every prefix p”’
of p, we have k + r(p"") =k +r(p') + r(p”) = ko + r(p”") > 0. Therefore, the
EN(k) objective is satisfied by all runs.

As shown above, almost all runs induced by o that eventually stop switching
between the three modes satisfy EN(k) N PAR. Switching from Gain/Bailout to
Start is impossible, but switching from Gain to Bailout and back is possible.
However, the set of runs that infinitely often switch between Gain and Bailout is
a null-set, because the probability of switching from Gain to Bailout is < 1/2.
Thus, o witnesses s € AS (EN(k) N PAR). O
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Remark 18. Tt follows from the results above that W/ = W. The C inclusion
holds by Lemma [I2] For the reverse inclusion we have

W C | JAS (k-Bailout N GW) by Definition
k
= JAS (EN(k) N PAR) by Theorem [f]
k
=W by Definition
4 Bailout

In this section we will argue that it is possible decide, in NP and coNP, whether
the bailout objective can be satisfied almost surely. More precisely, we show the
existence of procedures to decide if, for a given k£ € N and state s, there exists
an | € N such that s almost-surely satisfies the Bailout(k,[) objective

Bailout(k,l) =  (ST(k,1) N PAR) U (EN(k) N LimSup(= c0)).

Recall that the idea behind the Bailout objective is that, during a game
for energy-parity, maximizer is temporarily abandoning the parity (but not the
energy) condition in order to increase the energy to a sufficient level (which
will then allow him to try an a.s. strategy for Gain once more). However, in a
stochastic game — as opposed to an MDP [40] — an opponent could possibly
prevent this increase in energy level at the expense of satisfying the original
energy-parity objective in the first place (cf. Example . The Bailout objective
is designed to capture the disjunction of both outcomes, as both are favorable
for the maximizer. The parameter k is the acceptable total energy drop (i.e., the
initial value), and the parameter [ is the acceptable energy drop on any infix of
a play, which translates to the upper bound on the energy level in the second
outcome.

The question can be phrased equivalently as membership of a control state s
in the almost-sure set for the k-Bailout objective for a given game G and energy
level k € N.

Theorem 14. One can check in NP, coNP and pseudo-polynomial time if, for
a given SSG G = (V,E,)), k € N and control state s € V, mazimizer can
almost-surely satisfy k-Bailout from s.

Moreover, there are K,L € N, polynomial in |V| and the largest absolute
transition reward, so that |, ASY (k-Bailout) = ASY (Bailout(K, L)). And so,

checking whether state s belongs to |, ASY (k-Bailout) is in NP and coNP.

Proof (sketch). This is shown by a sequence of transformations of the game and
ultimately reduced to a finding the winner of a non-stochastic game with an
energy-parity objective, which is known to be solvable in NP, coNP and pseudo-
polynomial time [19]. One important observation is that it is possible to replace,



14

without changing the outcome, the energy EN(k) condition in the Bailout(k,!)
objective by the more restrictive energy-storage ST(k,[) condition. See [41] for
further details. O

5 Gain

In this section we will argue that it is possible to decide, in NP and coNP, whether
the Gain objective (i.e., LimInf(> —o0) N PAR) can be satisfied almost surely.

We start by investigating the strategy complexity of winning strategies for
the Gain objective.

Lemma 15. In every finite SSG, minimizer has optimal MD strategies for
objective Gain.

Proof. We show that maximizer has MD optimal strategies for LimInf(= —o0) U
PAR. This is equivalent to the claim of the lemma because LimInf(> —o0) N PAR =
LimInf(= —o0) U PAR and the complement of a parity condition is itself a parity
condition (with all priorities incremented by one).

We note that both LimInf(= —o0), as well as parity objectives PAR are shift-
invariant and submixing and therefore also that the union LimInf(= —o0) U PAR
has both these properties. The claim now follows from the fact that SSGs
with objectives that are both submixing and shift-invariant admit MD optimal
strategies for maximizer [34) Theorem 5.2]. O

Based on the results in [40] one can show a similar claim for maximizer strategies
in MDPs.

Lemma 16. For finite MDPs, almost-sure winning mazximizer strategies for Gain
can be chosen FD.

Using the existence of MD optimal minimizer strategies (Lemma and a coNP
upper bound for checking almost sure Gain in MDPs established in [40], we can
derive a coNP procedure. See [41] for full details.

Theorem 17. Checking whether a state s € V' of a SSG satisfies Gain almost-
surely is in coNP.

The rest of this section will deal with the NP upper bound, which is the most
challenging part of this paper. The crux of our proof is the observation that
if maximizer has a strategy that wins almost surely against all MD minimizer
strategies, then he wins almost surely. This is because one of these MD strategies is
optimal due to Lemma [T5] We show that, in order to witness such an almost-sure
winning strategy for maximizer in SSG G, it suffices to provide a polynomially
larger SSG Gs, together with an almost-sure winning strategy for the storage-
parity objective (see Theorem in Section @ in Gs. This will give us an NP
algorithm, because G3, along with its winning strategy, can be guessed and verified
in polynomial time. Formally we claim that:
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Theorem 18. Checking whether a state s € V' of G satisfies Gain almost-surely
is in NP.

Proof. (sketch) For technical convenience, we will assume w.l.o.g. that every
SSG henceforth is in a normal form, where every random state has only one
predecessor, which is owned by the maximizer. To show the existence of G3, we
are going to introduce two intermediate games: G; and Go. These games are never
constructed by our NP algorithm, but are just defined to break down the complex
construction of Gs into more manageable steps.

Intuitively, G; is just G where all rewards on edges are multiplied by a large
enough factor, f, to turn strategies with a mean-payoff > 0 into ones with
mean-payoff > 2. G5 is an extension of G; where the maximizer is given a choice
before every visit to a probabilistic node. He can either let the game proceed
as before, or sacrifice part of his one-step reward in exchange for a more evenly
balanced reward outcome, so the energy can no longer drop arbitrarily low
when a probabilistic cycle is reached. As a result, in Gs it suffices to consider
a storage-parity objective (see Theorem in Section @ instead of Gain. The
number of choices maximizer is given is the number of MD minimizer strategies,
which clearly can be exponential. That would not suffice for an NP algorithm.
Therefore, we show that most of these choices are redundant and can be removed
without impairing the almost sure wining region. As the result of that pruning,
we obtain G3 of polynomial size. O

For the the technical details of the G — G; — G — G3 constructions please
see [41]. Figure [2| shows how these transformations may look like.

6 The Main Results

In this section, we prove the main results of the paper, namely that almost-sure
energy parity stochastic games can be decided in NP and coNP. The proofs
are straightforward and follow from the much more involved characterization of
almost sure energy parity objective in terms of the Bailout and Gain objectives
established in Section [3| and their computational complexity analysis in Sections
[ and [f] respectively.

Theorem 19. Given an SSG, energy level k*, checking if a state s is almost-sure

winning for EN(k*) N PAR is in NP N coNP.

Proof. Recall that we can compute the set W from Definition [4 by iterating

W, < AS(GainNGWi_1) N UAS (k-Bailout N GW;_1)
k

starting with Wy = V, until we reach the greatest fixed point . Note that
at step i we need to solve almost sure Gain and almost sure |J,, AS (k-Bailout),
where the states of the game are restricted to W;_;. There can be at most |V|
steps, because at least one state is removed in each iteration.
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(a) The original game G = Gy (b) The game Go (¢) The game Gs

Fig.2: An example game G (left) and the derived games. The strategy that
always loops in the right-most state of G ensures a mean-payoff of 3. As this
is the only MD strategy for maximizer that ensures a positive mean-payoff, a
factor f = 1 is sufficient here and we have G; = G. In the derived game G5 in
Fig. [2b| there are as many trade-in options for the random state as there are MD
minimizer’s strategies in Gy (just two in this example). The blue one (top left)
corresponds to minimizer going left and the red one (top right) to going up in Gj.
Maximizer almost-surely wins Gain in G iff he almost-surely wins a storage-parity
condition (see Theorem in Gs.

It then suffices to check AS (k-BailoutnGW) (i.e., AS (k-Bailout) for the
subgame that consists only of the states of the fixed point W for k = k*. Note
that this step can be skipped if k* > K, the bound from Theorem

Before we discuss how to use NP and coNP procedures to construct these sets
and to conduct the final test on the fixed point W, we note that the ‘NGW;_,’ does
not add anything substantial, as these are simply the same tests and procedures
conducted on the subgame that only consist of the states of W;_;.

To obtain an NP procedure for constructing AS (Gain)—or, as remarked
above, AS (Gain N GW,_1)—we can guess and validate its membership for each
state s in this set, using the NP result from Theorem and we can guess
and validate its non-membership for each state s not in this set in NP, using
the coNP result from Theorem Similarly, we can guess and validate both
the membership and the non-membership in [ J, AS (k-Bailout N GW;_;)—and
of |J;, AS (k-Bailout N GW;_1) by analysing the subgame with only the states in
W;_1—Dby using the NP and coNP result, respectively, from Theorem

Once we can construct these sets, we can also intersect them and check if a
fixed point has been reached. (One can, of course, stop when s ¢ W;.)

We can now conduct the final check in NP using Theorem

A coNP algorithm that constructs W can be designed analogously: once W;_1
is known, membership and non-membership of a state s in AS (Gain N GW;_) can
be guessed and validated in coNP by Theorem [[7]and by Theorem [I8] respectively;
and membership or non-membership of a state in ( J,, AS (k-Bailout " GW;_;) can
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be guessed and validated in coNP using the coNP and NP part, respectively, of
Theorem 14l

Once W is constructed, we can conduct the final check in coNP using Theo-
rem O

This result, together with the upper bound on the energy needed to win
energy-parity objective, allows us to solve the “unknown initial energy problem’
[7], which is to compute the minimal initial energy level required.

)

Corollary 20. For any state s, checking if there is k such that AS (EN(k) N PAR)
holds is in NP N coNP. Also, for a given k*, checking if k* is the minimal energy
level required to win almost surely is in NP N coNP as well.

Proof. Due to Theorem([14] if there is an energy level k for which AS (EN(k) N PAR)
holds, then it also holds for the bound K whose size is polynomial in the size of
the game. We can then simply calculate K and then use NP and coNP algorithms
from Theorem [19| for AS (EN(K) N PAR).

As for the second claim, note that checking whether maximizer cannot win
almost surely EN(k) N PAR is also in NP and coNP as a complement of a coNP
and an NP set, respectively. Therefore, for an NP /coNP upper bound it suffices to
simultaneously guess certificates for almost surely EN(k*) N PAR and not almost
surely EN(k* — 1) N PAR and verify them in polynomial time. O

Finally, let us mention that the slightly more restrictive storage-parity objec-
tives can also be solved in NP N coNP. These are almost identical to energy-parity
except that, in addition, there must exist some bound [ € N such that the energy
level never drops by more than [ during a run. This extra condition ensures
that, if the storage-parity objective holds almost-surely, then there must exist a
finite-memory winning strategy for maximizer.

Theorem 21. One can check in NP, coNP and pseudo-polynomial time if, for
a given SSG H o (V,E,\), k € N and control state s € V, mazximizer can
almost-surely satisfy ST(k) N PAR from s.

Moreover, there is a bound L € N, polynomial in the number of states and
the largest absolute transition reward, so that ST(k) N PAR = ST(k, L) N PAR.

Proof. (sketch) This result follows by a simple adaptation of the proofs showing
the same computational complexity of the Bailout objective (Section . See [41]
for further details. O

FEzample 22. In the game in Fig. |1} maximizer cannot ensure the storage-parity
condition ST(k)NPAR for any initial energy level k. This is because it would imply
the existence of a finite-memory almost-surely winning strategy, which as we
have already argued, cannot be true. More intuitively, to prevent an intermediate
energy drop by [ units, a winning maximizer strategy for storage-parity would
need to stop moving left after observing the negative cycle in the leftmost state [
successive times. However, when maximizer moves right, this gives minimizer the
chance to visit the rightmost bad state (with dominating odd priority 1). The
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chance of that happening is (1/3)! > 0. In particular, this probability is > 0 for
any value of the intermediate energy drop . Therefore, for any fixed [, maximizer
would need to move right infinitely often to satisfy storage and lose (against an
optimal minimizer strategy that moves to the rightmost state).

7 Conclusion and Outlook

We showed that several almost-sure problems for combined energy-parity ob-
jectives in simple stochastic games are in NP N coNP. No pseudo-polynomial
algorithm is known (just like for stochastic mean-payoff parity games [20]). All
these problems subsume (stochastic) parity games, by setting all rewards to 0.
Thus the existence of a pseudo-polynomial algorithm would imply that (stochastic
and non-stochastic) parity games are in P, which is a long-standing open problem.

It is known that maximizer already needs infinite memory to win almost-
surely a combined energy-parity objective in MDPs [40]. Our results do not imply
anything about the memory requirement for optimal minimizer strategies in SSGs
for this objective. We conjecture that memoryless minimizer strategies suffice. If
this conjecture holds (and is proven), this would greatly simplify the coNP upper
bound that we established for this problem.

A natural question is whether results on mean-payoff/energy /parity games
can be generalized to a setting with multi-dimensional payoffs. Non-stochastic
multi-mean-payoff and multi-energy games have been studied in [48[36/1]. To
the best of our knowledge, the techniques used there, e.g. upper bounds on
the necessary energy levels as in [36], do not generalize to stochastic games (or
MDPs).

Multiple mean-payoff objectives in MDPs have been studied in [10l24], but
the corresponding multi-energy (resp. multi-energy-parity) objective has extra
difficulties due to the 0-boundary condition on the energy. L.e., even on Markov
chains, and without any parity condition, it subsumes problems about multi-
dimensional random walks. Some partial results on Markov chains and MDPs
have been obtained in [I3I2/3], but the decidability of the almost-sure problem
for stochastic multi-energy-parity games (and MDPs) remains open.
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