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Gap Clauses/Constraints

Def: positive Gap Constraints
N\ (xi—vi> k)

0<i<n

where X;, y; are integer variables or constants and k; € N.

positive GC are not negation-closed!

Write
Var = {x,y,...} for the variables
Const C Z for the constants and

Val for the set of valuations v : Var — Z.
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can characterise subsets S C Val (of satisfied valuations)

can determine how valuations evolve: For instance,
x—x">0

means the value of x does not increase.



The Model

Gap-Order Constraint Systems

Definition (CGS)
are given by finite sets
Var of variables ranging over Z,
Const of integer constants, and

A of positive transitional gap contraints.




The Model

Gap-Order Constraint Systems

Definition (CGS)
are given by finite sets
Var of variables ranging over Z,
Const of integer constants, and
A of positive transitional gap contraints.

Step semantics:

v—V iff v@® 1V |E=C for some C € A.




The Model

Gap-Order Constraint Systems

Definition (CGS)
are given by finite sets
Var of variables ranging over Z,
Const of integer constants, and
A of positive transitional gap contraints.

Step semantics:

v—V iff v@ 1V |=C for some C € A.




The Model

Gap-Order Constraint Systems

Definition (CGS)
are given by finite sets
Var of variables ranging over Z,
Const of integer constants, and
A of positive transitional gap contraints.

Step semantics:

v—V iff v@ 1V |=C for some C € A.

& /(%) v(x), if x € Var
va v (x)=
V(x), ifxe Var




Gap-Order Constraint Systems

Definition (CGS)
are given by finite sets
Var of variables ranging over Z,
Const of integer constants, and
A of positive transitional gap contraints.

Step semantics:

v—V iff v@® 1V |E=C for some C € A.

Ci=(x—X>2DAY -y20)A(y—y
C=W-y>DAKX-—x>0A( -0



Gap-Order Constraint Systems

Definition (CGS)
are given by finite sets
Var of variables ranging over Z,
Const of integer constants, and
A of positive transitional gap contraints.

Step semantics:

v—V iff v@® 1V |E=C for some C € A.

Example:

Ci=(x>x20)A(y =y)
C=x<X)AN(y>y >0



Gap-Order Constraint Systems

Definition (CGS)
are given by finite sets
Var of variables ranging over Z,
Const of integer constants, and
A of positive transitional gap contraints.

Step semantics:

v—V iff v@® 1V |E=C for some C € A.

Example: lex. Countdown of (y, x)

Ci=(x>x20)A(y =y)
Co=(x<X)A(y >y >0)
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The Model

Overapproximating Counter Machines

(c1=0)

Finite Control
(state = 0) A (state’ = 1) /] so—>s1

Increments/Decrements are imprecise!

(q—a=0) //c1++
(ca—c,>0)A(c,—0>0) //a--
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CTL over Gap Clauses
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Results

EG over Gap Clauses

Ypu=C| | vVvy | Xy | BRI EGY I

m EG model checking GCS is undecidable.

m Proof by enforcing exact increments/decrements (Simulating
Minski machines).
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Results

EF over Gap Clauses

Ypu=C| | YvVvy| Xy | EFY |  EGY /NNHUH)

m EF model checking GCS is decidable.

m Proof by finding finite representation for Sat(C) that is closed
under negation, union, Pre and Pre*.
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Monotonicity Graphs

Gap Constraints as finite labeled graphs over Var U Const

X

JZ3RN

m Degree of MG: inverse of minimal negative value
m Closure of MG has same denotation

m represent S C Val by finite sets of (arbitrary) MG. Example:
{Mc} represents S = Sat(C) = {v | v(x) > v(y) = 0}.

pu=C|l pVel| = | Xy | EFY
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Negation

ﬁRep(S) = —\{MQ, Ml, ceey Mk}

~

—|CM0 A —|C/\//1 VANRREIVAN ﬁCMk

. is a Gap-Formula in DNF.
~> propagate negations to clauses
~ negate clauses < increases degree

x—yPk << y—x>—(k-1)

~> bring to DNF
~> interpret as set of MG



Computing Pre

S ={v|v(x)>vly) =0}



Computing Pre
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Computing Pre

S =1r|v(x)>
C1=(x— 1




Computing Pre

{v | vx
(/
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Computing Pre

Pre(Cy, S)

NB: Degree does not increase
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Computing Pre*

Definition (C)
M M if M(x,y) < M'(x,y) for all x,y € Var U Const.

M C M’ implies [M] 2 [M]

C is a well-order over MG"

Compute Pre*(M):

iteratively unfold the finite! backwards coverability tree and take
the union of all nodes. ..
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Technique

EF Model Checking GCS is decidable

Theorem
For given GCS and EF formula ¢, the set Sat(y) is effectively

Gap-definable.

Works even with
m arbitrary gap-formulae as atoms and
m positive (trans.) gap-constraints on X/EF operators.
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WIP: Equivalence Checking

Bisimulation
m GCS = FS is decidable using char. formulae in EF
m Strong Bisimulation GCS ~ GCS is undecidable
Trace inclusion/equivalence
m GCS C GCS is in EXPSPACE
m Universality is EXPSPACE-hard
Simulation Preorder

m GCS =< FS and wv. are decidable (wqo)
m GCS < GCS 7 WIP.



References

References

@ P. A. Abdulla and G. Delzanno. “Constrained Multiset Rewriting”. In:
Proc. AVIS'06, 5th int. workshop on on Automated Verification of
InfiniteState Systems. 2006.

L. Bozzelli. “Strong Termination for Gap-Order Constraint Abstractions
of Counter Systems”. In: LATA. 2012, pp. 155-168.

L. Bozzelli and S. Pinchinat. “Verification of Gap-Order Constraint
Abstractions of Counter Systems”. In: VMCAI 2012, pp. 88-103.

K. Cerans. “Deciding Properties of Integral Relational Automata”. In:
ICALP. 1994, pp. 35-46.

L. Fribourg and J. Richardson. “Symbolic Verification with Gap-Order
Constraints”. In: LOPSTR. 1996, pp. 20-37.

) & ) Y =

L. Segoufin and S. Torunczyk. “Automata based verification over linearly
ordered data domains . In: STACS. Vol. 9. Dagstuhl, Germany, 2011,
pp. 81-92.



References

References

@ P. A. Abdulla and G. Delzanno. “Constrained Multiset Rewriting”. In:
Proc. AVIS'06, 5th int. workshop on on Automated Verification of
InfiniteState Systems. 2006.

L. Bozzelli. “Strong Termination for Gap-Order Constraint Abstractions
of Counter Systems”. In: LATA. 2012, pp. 155-168.

L. Boz elli ¢ nd S. Pinchinat. “Verification of Gap-O' der Constraint
Abstra tions o Cou~*2r Sust:ms’. In MY 202, pp. 88-103.

K. Cerans. "Deciding Properties of Integral Relational Automata”. In:
ICALP. 1994, pp. 35-46.

L. Fribourg and J. Richardson. “Symbolic Verification with Gap-Order
Constraints”. In: LOPSTR. 1996, pp. 20-37.

) & = D =

L. Segoufin and S. Torunczyk. “Automata based verification over linearly
ordered data domains ". In: STACS. Vol. 9. Dagstuhl, Germany, 2011,
pp. 81-92.



	The Model
	Results
	Technique
	Future Work
	References

