Branching-Time Model Checking Gap-Order

Constraint Systems

Richard Mayr Patrick Totzke
University of Edinburgh, UK

September 26, 2013

The Model

Gap Clauses

Def: Gap Clauses

x—y>k

where x, y are integer variables or constants and k € Z.

The Model

Gap Clauses/Constraints

Def: Gap Constraints
N\ (xi—vi> k)

0<i<n

where X;, y; are integer variables or constants and k; € Z.

The Model

Gap Clauses/Constraints

Def: positive Gap Constraints
N\ (xi—vi> k)

0<i<n

where X;, y; are integer variables or constants and k; € N.

The Model

Gap Clauses/Constraints

Def: positive Gap Constraints
N\ (xi—vi> k)

0<i<n

where X;, y; are integer variables or constants and k; € N.

positive GC are not negation-closed!

The Model

Gap Clauses/Constraints

Def: positive Gap Constraints
N\ (xi—vi> k)

0<i<n

where X;, y; are integer variables or constants and k; € N.

positive GC are not negation-closed!

Write
Var = {x,y,...} for the variables
Const C Z for the constants and

Val for the set of valuations v : Var — Z.

Gap Constraints

can characterise subsets S C Val (of satisfied valuations)

can determine how valuations evolve:

Gap Constraints

can characterise subsets S C Val (of satisfied valuations)

can determine how valuations evolve: For instance,
x—x">0

means the value of x does not increase.

The Model

Gap-Order Constraint Systems

Definition (CGS)
are given by finite sets
Var of variables ranging over Z,
Const of integer constants, and

A of positive transitional gap contraints.

The Model

Gap-Order Constraint Systems

Definition (CGS)
are given by finite sets
Var of variables ranging over Z,
Const of integer constants, and
A of positive transitional gap contraints.

Step semantics:

v—V iff v@® 1V |E=C for some C € A.

The Model

Gap-Order Constraint Systems

Definition (CGS)
are given by finite sets
Var of variables ranging over Z,
Const of integer constants, and
A of positive transitional gap contraints.

Step semantics:

v—V iff v@ 1V |=C for some C € A.

The Model

Gap-Order Constraint Systems

Definition (CGS)
are given by finite sets
Var of variables ranging over Z,
Const of integer constants, and
A of positive transitional gap contraints.

Step semantics:

v—V iff v@ 1V |=C for some C € A.

& /(%) v(x), if x € Var
va v (x)=
V(x), ifxe Var

Gap-Order Constraint Systems

Definition (CGS)
are given by finite sets
Var of variables ranging over Z,
Const of integer constants, and
A of positive transitional gap contraints.

Step semantics:

v—V iff v@® 1V |E=C for some C € A.

Ci=(x—X>2DAY -y20)A(y—y
C=W-y>DAKX-—x>0A(-0

Gap-Order Constraint Systems

Definition (CGS)
are given by finite sets
Var of variables ranging over Z,
Const of integer constants, and
A of positive transitional gap contraints.

Step semantics:

v—V iff v@® 1V |E=C for some C € A.

Example:

Ci=(x>x20)A(y =y)
C=x<X)AN(y>y >0

Gap-Order Constraint Systems

Definition (CGS)
are given by finite sets
Var of variables ranging over Z,
Const of integer constants, and
A of positive transitional gap contraints.

Step semantics:

v—V iff v@® 1V |E=C for some C € A.

Example: lex. Countdown of (y, x)

Ci=(x>x20)A(y =y)
Co=(x<X)A(y >y >0)

The Model

Overapproximating Counter Machines

(it —0>0)A(0—c >0)

The Model

Overapproximating Counter Machines

(c1=0)

The Model

Overapproximating Counter Machines

(c1=0)

Finite Control

(state = 0) A (state’ = 1) /] so—>s1

The Model

Overapproximating Counter Machines

(1 =0)
(state = 0) A (state’ = 1) /] so—>s1

Increments/Decrements

(¢ —c1 >0) //a++

The Model

Overapproximating Counter Machines

(a1 =0)
(state = 0) A (state’ = 1) /] so—>s1
(c; —a >0) //ci++

(ct—c,>0)A(c,—0>0) //a--

The Model

Overapproximating Counter Machines

(c1=0)

Finite Control
(state = 0) A (state’ = 1) /] so—>s1

Increments/Decrements are imprecise!

(q—a=0) //c1++
(ca—c,>0)A(c,—0>0) //a--

Results

Model Checking GCS

CTL* Cer94] Model checking CTL
g
undecidable, but LTL is
decidable for IRA.

LTL CTL

Results

Model Checking GCS

CTL* Cer94] Model checking CTL
g
undecidable, but LTL is
decidable for IRA.

LTL CTL

Results

Model Checking GCS

CTL* [Cer94] Model checking CTL
undecidable, but LTL is
decidable for IRA.

ACTL* ECTL* [BP12] LTL and ECTL* are

| PSPACE-complete; ACTL* is
LTL CTL undecidable for GCS.

Results

Model Checking GCS

CTL* [Cer94] Model checking CTL
undecidable, but LTL is
decidable for IRA.

ACTL* ECTL* [BP12] LTL and ECTL* are

| PSPACE-complete; ACTL* is
LTL CTL undecidable for GCS.

Results

Model Checking GCS

CTL* [Cer94] Model checking CTL
undecidable, but LTL is
/ \ decidable for IRA.
ACTL* ECTL* [BP12] LTL and ECTL* are
| PSPACE-complete; ACTL* is
LTL CTL undecidable for GCS.
/ \ We EF is decidable and EG
undecidable for GCS.
EG EF

Results

Model Checking GCS

CTL* [Cer94] Model checking CTL
undecidable, but LTL is
decidable for IRA.

ACTL* ECTL* [BP12] LTL and ECTL* are
| PSPACE-complete; ACTL* is
LTL CTL undecidable for GCS.
/ \ We EF is decidable and EG
undecidable for GCS.
EG EF

Results

CTL over Gap Clauses

Ypu=C| | VY| Xy | EFY| EGY | (pUy)

Results

EG over Gap Clauses

Ypu=C| | vVvy | Xy | BRI EGY I

Results

EG over Gap Clauses

Ypu=C| | vVvy | Xy | BRI EGY I

m EG model checking GCS is undecidable.

m Proof by enforcing exact increments/decrements (Simulating
Minski machines).

Results

EF over Gap Clauses

Ypu=C| | YvVvy| Xy | EFY | EGY /NNHUH)

Results

EF over Gap Clauses

Ypu=C| | YvVvy| Xy | EFY | EGY /NNHUH)

m EF model checking GCS is decidable.

m Proof by finding finite representation for Sat(C) that is closed
under negation, union, Pre and Pre*.

Monotonicity Graphs

Gap Constraints as finite labeled graphs over Var U Const

Monotonicity Graphs

Gap Constraints as finite labeled graphs over Var U Const

C=(x—-0>1) N OAI/
ANy —02> 0
A0 —y >0) 'Ox‘y

m Degree of MG: inverse of minimal negative value

Monotonicity Graphs

Gap Constraints as finite labeled graphs over Var U Const

C=(x—0>1) N OAI/ .
ANy —02> 0
A0 -y >0) ;’x‘y

m Degree of MG: inverse of minimal negative value
m Closure of MG has same denotation

Monotonicity Graphs

Gap Constraints as finite labeled graphs over Var U Const

C=(x—-0>1) N OAI/ .
Ay —02> 0
A0 -y >0) ;’x‘y

m Degree of MG: inverse of minimal negative value
m Closure of MG has same denotation

m represent S C Val by finite sets of (arbitrary) MG.

Monotonicity Graphs

Gap Constraints as finite labeled graphs over Var U Const

X

JZ3RN

m Degree of MG: inverse of minimal negative value
m Closure of MG has same denotation

m represent S C Val by finite sets of (arbitrary) MG. Example:
{Mc} represents S = Sat(C) = {v | v(x) > v(y) = 0}.

Monotonicity Graphs

Gap Constraints as finite labeled graphs over Var U Const

X

JZ3RN

m Degree of MG: inverse of minimal negative value
m Closure of MG has same denotation

m represent S C Val by finite sets of (arbitrary) MG. Example:
{Mc} represents S = Sat(C) = {v | v(x) > v(y) = 0}.

pu=C|l pVel| = | Xy | EFY

Negation

Rep(S) = {Mo, Ml, RN Mk}

Negation

Rep(S) = {Mo, Ml, RN Mk}

CMOVCMl\/"'\/CMk

Negation

Rep(S) = {Mo, Ml, RN Mk}

~

CMOVCMl\/"'\/CMk

. is a Gap-Formula in DNF.

Negation

ﬂRep(S) = —|{M0, Ml, RN Mk}

~

—|CM0 VAN —|CM1 VANEERIAN _‘CMk

. is a Gap-Formula in DNF.

~> propagate negations to clauses

Negation

ﬂRep(S) = —|{M0, Ml, RN Mk}

~

—|CM0 VAN —|CM1 VANEERIAN _‘CMk

. is a Gap-Formula in DNF.
~+ propagate negations to clauses

~ negate clauses

Negation

ﬂRep(S) = —|{M0, Ml, RN Mk}

~

—|CM0 VAN —|CM1 VANEERIAN _‘CMk

. is a Gap-Formula in DNF.
~+ propagate negations to clauses

~ negate clauses
~> bring to DNF

Negation

ﬂRep(S) = —|{M0, Ml, RN Mk}

~

—|CM0 VAN —|CM1 VANEERIAN _‘CMk

. is a Gap-Formula in DNF.
~> propagate negations to clauses
~ negate clauses
~> bring to DNF
~> interpret as set of MG

Negation

ﬂRep(S) = —|{M0, Ml, RN Mk}

~

—|CM0 VAN —|CM1 VANEERIAN _‘CMk

. is a Gap-Formula in DNF.
~> propagate negations to clauses
~ negate clauses < increases degree
~ bring to DNF
~> interpret as set of MG

Negation

ﬁRep(S) = —\{MQ, Ml, ceey Mk}

~

—|CM0 A —|C/\//1 VANRREIVAN ﬁCMk

. is a Gap-Formula in DNF.
~> propagate negations to clauses
~ negate clauses < increases degree

x—yPk << y—x>—(k-1)

~> bring to DNF
~> interpret as set of MG

Computing Pre

S ={v|v(x)>vly) =0}

Computing Pre

S ={v|v(x)>vly) =0}

/25N

Computing Pre

AR
A,-'—«
\/\

Computing Pre

S =1r|v(x)>
C1=(x— 1

Computing Pre

{v | vx
(/

Computing Pre

Computing Pre

Computing Pre

Pre(Cy, S)

NB: Degree does not increase

Technique

Computing Pre*

Definition (C)
M M if M(x,y) < M'(x,y) for all x,y € Var U Const.

Technique

Computing Pre*

Definition (C)
M M if M(x,y) < M'(x,y) for all x,y € Var U Const.

M C M’ implies [M] 2 [M]

Technique

Computing Pre*

Definition (C)
M M if M(x,y) < M'(x,y) for all x,y € Var U Const.

M C M’ implies [M] 2 [M]

C is a well-order over MG"

Computing Pre*

Definition (C)
M M if M(x,y) < M'(x,y) for all x,y € Var U Const.

M C M’ implies [M] 2 [M]

C is a well-order over MG"

Compute Pre*(M):

iteratively unfold the finite! backwards coverability tree and take
the union of all nodes. ..

Technique

EF Model Checking GCS is decidable

For given GCS and EF formula ¢, the set Sat(y) is effectively
Gap-definable.

Technique

EF Model Checking GCS is decidable

Theorem
For given GCS and EF formula ¢, the set Sat(y) is effectively

Gap-definable.

Works even with
m arbitrary gap-formulae as atoms and
m positive (trans.) gap-constraints on X/EF operators.

WIP: Equivalence Checking

Bisimulation

m GCS = FS is decidable using char. formulae in EF
m Strong Bisimulation GCS ~ GCS is undecidable

WIP: Equivalence Checking

Bisimulation
m GCS = FS is decidable using char. formulae in EF
m Strong Bisimulation GCS ~ GCS is undecidable
Trace inclusion/equivalence

m GCS C GCS is in EXPSPACE
m Universality is EXPSPACE-hard

WIP: Equivalence Checking

Bisimulation
m GCS = FS is decidable using char. formulae in EF
m Strong Bisimulation GCS ~ GCS is undecidable
Trace inclusion/equivalence
m GCS C GCS is in EXPSPACE
m Universality is EXPSPACE-hard
Simulation Preorder

m GCS =< FS and wv. are decidable (wqo)
m GCS < GCS 7 WIP.

References

References

@ P. A. Abdulla and G. Delzanno. “Constrained Multiset Rewriting”. In:
Proc. AVIS'06, 5th int. workshop on on Automated Verification of
InfiniteState Systems. 2006.

L. Bozzelli. “Strong Termination for Gap-Order Constraint Abstractions
of Counter Systems”. In: LATA. 2012, pp. 155-168.

L. Bozzelli and S. Pinchinat. “Verification of Gap-Order Constraint
Abstractions of Counter Systems”. In: VMCAI 2012, pp. 88-103.

K. Cerans. “Deciding Properties of Integral Relational Automata”. In:
ICALP. 1994, pp. 35-46.

L. Fribourg and J. Richardson. “Symbolic Verification with Gap-Order
Constraints”. In: LOPSTR. 1996, pp. 20-37.

) &) Y =

L. Segoufin and S. Torunczyk. “Automata based verification over linearly
ordered data domains . In: STACS. Vol. 9. Dagstuhl, Germany, 2011,
pp. 81-92.

References

References

@ P. A. Abdulla and G. Delzanno. “Constrained Multiset Rewriting”. In:
Proc. AVIS'06, 5th int. workshop on on Automated Verification of
InfiniteState Systems. 2006.

L. Bozzelli. “Strong Termination for Gap-Order Constraint Abstractions
of Counter Systems”. In: LATA. 2012, pp. 155-168.

L. Boz elli ¢ nd S. Pinchinat. “Verification of Gap-O' der Constraint
Abstra tions o Cou~*2r Sust:ms’. In MY 202, pp. 88-103.

K. Cerans. "Deciding Properties of Integral Relational Automata”. In:
ICALP. 1994, pp. 35-46.

L. Fribourg and J. Richardson. “Symbolic Verification with Gap-Order
Constraints”. In: LOPSTR. 1996, pp. 20-37.

) & = D =

L. Segoufin and S. Torunczyk. “Automata based verification over linearly
ordered data domains ". In: STACS. Vol. 9. Dagstuhl, Germany, 2011,
pp. 81-92.

	The Model
	Results
	Technique
	Future Work
	References

