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Argumentation  deals  with the  study of  reasoning  in  “real  world”  settings,  an important  feature  of  which is  that 

conclusions are rarely final: in contrast to the process of mathematical proof, positions arrived at via argumentation 

may be reversed in the light of further data becoming available or on account of changes in attitude. Computational 

models of argumentation are one important foundation of multiagent systems supporting tasks involving negotiation, 

e.g. when a number of agents wish to agree upon a division of resources amongst themselves.

The papers contributing to this thesis address algorithmic, combinatorial and computational complexity issues arising 

in two distinct but closely related contexts. The first considers these properties with reference to a widely used and 

influential computational model of argumentation. In this model,  “arguments” are viewed as atomic elements and the 

principal  relation  of  interest  concerns  whether  an argument  attacks  another.  The formal  structure  is,  therefore,  a 

directed graph (called an argumentation framework) <X,A> with X the set of arguments and AXX, so that <p,q>A 

is  read  as  “the  argument  p attacks  the  argument  q”.   Argumentation  frameworks  provide  a  basis  for  defining 

collections of acceptable arguments as subsets of X meeting particular criteria. The analysis of such extension-based 

semantics in this thesis concentrates on algorithmic and complexity properties.

The second area considered deals with one model of distributed negotiation in multiagent systems in which agents 

attempt to agree upon an allocation of resources. In this model, one has a set of n agents (Ag), and a collection of m 

resources (R). These agents seek to agree a  partition of R (starting from some initial allocation) that takes into account 

the value each agent assigns to distinct subsets of R. The negotiation model allows agents to propose exchanges and 

accept (or reject) offers made by other agents.  The effects  of limiting this general scheme, e.g. by restricting the 

number  of  agents  or  resources  that  may feature  in  a  given  offer,  are  examined  in  a  series  of  papers  analysing 

complexity properties related to deciding the existence of appropriate “contract paths”  together with extremal results 

on the length of such negotiations.
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P.E. Dunne and T.J.M. Bench-Capon.
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I began working on properties of argumentation frameworks after becoming aware of the
graph-theoretic model of these. My colleague Trevor Bench-Capon and I have collaborated
on a number of research papers in this field. Given our different areas of expertise, those
whose contribution was of a highly technical and theoretical nature were formulated and
developed by myself, whereas those whose perspective was rather more speculative and
philosophically slanted were principally developed by him. This article (and the one fol-
lowing) comes within the former category. Its central topic concerns the precise complexity
classification of a (then) open problem in extension-based argumentation semantics. The
relationship between the technical properties of coherence and sceptical acceptance, the
translation from Boolean propositional formulae to argument systems, and the subsequent
exploitation of this translation in establishing complexity classifications were my contribu-
tion.
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The important contributions of this article are the following: presenting a formal opera-
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argument (the Two Party Immediate Response (or TPI) dispute of the title); the introduc-
tion of concepts of “dispute length” and “dispute complexity” as formal mechanisms for
performing quantitative comparisons of dialogue protocols; establishing that dispute com-
plexity can be analysed in terms of pre-existing models of propositional proof systems;
and in presenting a simulation of TPI-derivations by sequent (Gentzen) calculus deriva-
tions. This simulation allows the construction of explicit examples of argument processes
whose shortest resolution is exponential in terms of the number of arguments. All of these
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Abstract

Argument Systems provide a rich abstraction within which divers concepts of reasoning,
acceptability and defeasibility of arguments, etc., may be studied using a unified framework. Two
important concepts of the acceptability of an argument p in such systems are credulous acceptance
to capture the notion that p can be ‘believed’; and sceptical acceptance capturing the idea that if
anything is believed, then p must be. One important aspect affecting the computational complexity
of these problems concerns whether the admissibility of an argument is defined with respect to
‘preferred’ or ‘stable’ semantics. One benefit of so-called ‘coherent’ argument systems being that the
preferred extensions coincide with stable extensions. In this note we consider complexity-theoretic
issues regarding deciding if finitely presented argument systems modelled as directed graphs are

coherent. Our main result shows that the related decision problem is �
(p)
2 -complete and is obtained

solely via the graph-theoretic representation of an argument system, thus independent of the specific
logic underpinning the reasoning theory.
 2002 Elsevier Science B.V. All rights reserved.

Keywords: Argument Systems; Coherence; Credulous reasoning; Sceptical reasoning; Computational
complexity

1. Introduction

Since they were introduced by Dung [8], Argument Systems have provided a fruitful
mechanism for studying reasoning in defeasible contexts. They have proved useful both to
theorists who can use them as an abstract framework for the study and comparison of non-
monotonic logics, e.g., [2,5,6], and for those who wish to explore more concrete contexts
where defeasibility is central. In the study of reasoning in law, for example, they have

* Corresponding author.
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0004-3702/02/$ – see front matter  2002 Elsevier Science B.V. All rights reserved.
PII: S0004-3702(02) 00 26 1- 8



188 P.E. Dunne, T.J.M. Bench-Capon / Artificial Intelligence 141 (2002) 187–203

been used to examine the resolution of conflicting norms, e.g., [12], especially where this
is studied through the mechanism of a dispute between two parties, e.g., [11]. The basic
definition below is derived from that given in [8].

Definition 1. An argument system is a pair H = 〈X ,A〉, in which X is a set of arguments
and A ⊂X ×X is the attack relationship for H. Unless otherwise stated, X is assumed to
be finite, and A comprises a set of ordered pairs of distinct arguments. A pair 〈x, y〉 ∈ A is
referred to as ‘x attacks (or is an attacker of ) y’ or ‘y is attacked by x’.

For R, S subsets of arguments in the system H(〈X ,A〉), we say that

(a) s ∈ S is attacked by R if there is some r ∈ R such that 〈r, s〉 ∈ A.
(b) x ∈ X is acceptable with respect to S if for every y ∈ X that attacks x there is some

z ∈ S that attacks y .
(c) S is conflict-free if no argument in S is attacked by any other argument in S.
(d) A conflict-free set S is admissible if every argument in S is acceptable with respect

to S.
(e) S is a preferred extension if it is a maximal (with respect to ⊆) admissible set.
(f) S is a stable extension if S is conflict free and every argument y /∈ S is attacked by S.
(g) H is coherent if every preferred extension in H is also a stable extension.

An argument x is credulously accepted if there is some preferred extension containing it;
x is sceptically accepted if it is a member of every preferred extension.

The graph-theoretic representation employed by finite argument systems, naturally
suggests a unifying formalism in which to consider various decision problems. To place
our main results in a more general context we start from the basis of the decision problems
described by Table 1 in which: H(X ,A) is an argument system as in Definition 1; x an
argument in X ; and S a subset of arguments in X .

Polynomial-time decision algorithms for problems (1) and (2) are fairly obvious. The
results regarding problems (3–7) are discussed below. In this article we are primarily
concerned with the result stated in the final line of Table 1: our proof of this yields (8)
as an easy corollary.

Table 1
Decision problems in finite argument systems and their complexity

Problem Decision question Complexity

1 ADM(H, S) Is S admissible? P

2 STAB-EXT(H, S) Is S a stable extension? P

3 PREF-EXT(H, S) Is S a preferred extension? CO-NP-complete
4 HAS-STAB(H) Does H have any stable extension? NP-complete
5 CA(H, x) Is x in some preferred extension? NP-complete
6 IN-STAB(H, x) Is x in some stable extension? NP-complete
7 ALL-STAB(H, x) Is x in every stable extension? CO-NP-complete

8 SA(H, x) Is x in every preferred extension? �
(p)
2 -complete

9 COHERENT(H) Is H coherent? �
(p)
2 -complete
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Before proceeding with this, it is useful to discuss important related work of Dimopou-
los and Torres [7], in which various semantic properties of the Logic Programming para-
digm are interpreted with respect to a (directed) graph translation of reduced negative logic
programs: graph vertices are associated with rules and the concept of ‘attack’ modelled by
the presence of edges 〈r, s〉 whenever there is a non-empty intersection between the set
of literals defining the head of r and the negated set of literals in the body of s, i.e., if
z ∈ body(s) then ¬z is in this negated set. Although Dimopoulos and Torres [7] do not em-
ploy the terminology—in terms of credulous acceptance, admissible sets, etc.—from [8]
used in the present article it is clear that similar forms are being considered: the structures
referred to as ‘semi-kernel’, ‘maximal semi-kernel’ and ‘kernel’ in [7] corresponding to
‘admissible set’, ‘preferred extension’ and ‘stable extension’ respectively. The complexity
results for problems (3–6) if not immediate from [7, Theorem 5.1, Lemma 5.2, Proposi-
tion 5.3] are certainly implied by these. In this context, it is worth drawing attention to
some significant points regarding [7, Theorem 5.1] which, translated into the terminology
of the present article states:

The problem of deciding whether an argument system H(X ,A) has a non-empty
preferred extension is NP-complete.

First, this implies the complexity classification for PREF-EXT stated, even when the subset
S forming part of an instance is the empty set.

A second point, also relevant to our proof of (9) concerns the transformation used:
[7] present a translation of propositional formulae Φ in 3-CNF (this easily generalises for
arbitrary CNF formulae) into a finite argument system HΦ . It is not difficult, however,
given H(X ,A) to define CNF-formulae ΦH whose satisfiability properties are dependent
on the presence of particular structures within H, e.g., stable extensions, admissible subsets
containing specific arguments, etc. We thus have a mechanism for transforming a given H
into an ‘equivalent’ system F the point being that F may provide a ‘better’ basis for graph-
theoretic analyses of structures within H.

Our final observation, concerns problem (7): although the given complexity classifica-
tion is neither explicitly stated in nor directly implied by the results of [7], that ALL-STAB

is CO-NP-complete can be shown using some minor ‘re-wiring’ of the argument graph GΦ

constructed from an instance Φ of 3-SAT.1

The concept of coherence was formulated by Dung [8, Definition 31(1), p. 332], to
describe those argument systems whose stable and preferred extensions coincide. One
significant benefit of coherence as a property has been established in recent work of
Vreeswijk and Prakken [13] with respect to proof mechanisms for establishing sceptical
acceptance: problem (8) of Table 1. In [13] a sound and complete reasoning method for
credulous acceptance—using a dialogue game approach—is presented. This approach, as
the authors observe, provides a sound and complete mechanism for sceptical acceptance
in precisely those argument systems that are coherent. Thus a major advantage of coherent

1 This involves removing all except the edge 〈Aux,A〉 for edges 〈A,x〉 or 〈x,A〉: then ALL-STAB(GΦ,A) ⇔
¬3–SAT(Φ).
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argument systems is that proofs of sceptical acceptance are (potentially) rather more readily
demonstrated in coherent systems via devices such as those of [3,13]. The complexity of
sceptical acceptance is considered (in the context of membership in preferred extensions)
for various non-monotonic logics in [5], where completeness results at the third-level of the
polynomial-time hierarchy are demonstrated. Although Dimopoulos et al. [5] conclude that
these complexity results ‘discredit sceptical reasoning as . . . “unnecessarily” complex’, it
might be argued that within finite systems where coherence is ‘promised’ this view may be
unduly pessimistic. Notwithstanding our main result that testing coherence is, in general,
extremely hard, there is an efficiently testable property that suffices to guarantee coherence.
Some further discussion of this is presented in Section 3.

In the next section we present the main technical contribution of this article, that
COHERENT is �

(p)
2 -complete: the complexity class �

(p)
2 comprising those problems

decidable by CO-NP computations given (unit cost) access to an NP oracle. Alternatively,
�

(p)

2 can be viewed as the class of languages, L, membership in which is certified by a
(deterministic) polynomial-time testable ternary relation RL ⊆ W × X × Y such that, for
some polynomial bound p(|w|) in the number of bits encoding w,

w ∈ L ⇔ (∀x ∈ X: |x| � p(|w|))(∃y ∈ Y : |y| � p(|w|)) 〈w,x, y〉 ∈ RL.

Our result in Theorem 2 provides some further indications that decision questions
concerning preferred extensions are (under the usual complexity-theoretic assumptions)
likely to be harder than the analogous questions concerning stable extensions: line (8)
of Table 1 is an easy corollary of our main theorem. Similar conclusions had earlier
been drawn in [5,6], where the complexity of reasoning problems in a variety of non-
monotonic Logics is considered under both preferred and stable semantics. This earlier
work establishes a close link between the complexity of the reasoning problem and that of
the derivability problem for the associated logic. One feature of our proof is that the result
is established purely through a graph-theoretic interpretation of argument, similar in spirit,
to the approach adopted in [7]: thus, the differing complexity levels may be interpreted in
purely graph-theoretic terms, independently of the logic that the graph structure is defined
from.

In Section 3 we discuss some consequences of our main theorem in particular with
respect to its implications for designing dialogue game style mechanisms for Sceptical
Reasoning. Conclusions are presented in Section 4.

2. Complexity of deciding coherence

Theorem 2. COHERENT is �
(p)

2 -complete.

In order to clarify the proof structure we establish it via a series of technical lemmata.
The bulk of these are concerned with establishing �

(p)

2 -hardness, i.e., with reducing a

known �
(p)

2 -complete problem to COHERENT.

We begin with the, comparatively easy, proof that COHERENT(H) is in �
(p)

2 .
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Lemma 3. COHERENT(H) ∈ �
(p)
2 .

Proof. Given an instance, H(X ,A) of COHERENT, it suffices to observe that

COHERENT(H) ⇔ ∀S
(¬PREF-EXT(H, S) ∨ STAB-EXT(H, S)

)
,

i.e., H is coherent if and only if for each subset S of X : either S is not a preferred
extension or S is a stable extension. Since ¬PREF-EXT(H, S) is in NP, i.e., �

(p)

1 and STAB-

EXT(H, S) in P, we have COHERENT in �
(p)

2 as required. ✷
The decision problem we use as the basis for our reduction is QSAT2. An instance

of QSAT2 is a well-formed propositional formula, Φ(X,Y ), defined over disjoint sets of
propositional variables, X = 〈x1, x2, . . . , xn〉 and Y = 〈y1, y2, . . . , yt 〉. Without loss of
generality we may assume that: n = t ; Φ is formed using only the Boolean operations ∧, ∨,
and ¬; and negation is only applied to variables in X ∪ Y . An instance, Φ(X,Y ) of QSAT2
is accepted if and only if ∀αX∃βY Φ(αX,βY ). That is, no matter how the variables in X

are instantiated (αX) there is some instantiation (βY ) of Y such that 〈αX,βY 〉 satisfies Φ .
That QSAT2 is �

(p)

2 -complete was shown in [14].
We start by presenting some technical definitions. The first of these describes a standard

presentation of propositional formulae as directed rooted trees that has been widely used
in applications of Boolean formulae, see, e.g., [9, Chapter 4].

Definition 4. Let Φ(Z) be a well-formed propositional formula (wff) over the variables
Z = 〈z1, z2, . . . , zn〉 using the operations {∧,∨,¬} with negation applied only to variables
of Φ . The tree representation of Φ (denoted TΦ ) is a rooted directed tree with root vertex
denoted ρ(TΦ) and inductively defined by the following rules.

(a) If Φ(Z) = w – a single literal z or ¬z, then TΦ consists of a single vertex ρ(TΦ)

labelled w.
(b) If Φ(Z) = ∧k

i=1 Ψi(Z), for wff 〈Ψ1,Ψ2, . . . ,Ψk〉, TΦ is formed from the k tree
representations 〈TΨi 〉 by directing edges from each ρ(TΨi ) into a new root vertex
ρ(TΦ) labelled ∧.

(c) If Φ(Z) = ∨k
i=1 Ψi(Z), for wff 〈Ψ1,Ψ2, . . . ,Ψk〉, TΦ is formed from the k tree

representations 〈TΨi 〉 by directing edges from each ρ(TΨi ) into a new root vertex
ρ(TΦ) labelled ∨.

In what follows we use the term node of TΦ to refer to an arbitrary tree vertex, i.e., a leaf
or internal vertex.

In the tree representation of Φ , each leaf vertex is labelled with some literal w, (several
leaves may be labelled with the same literal), and each internal vertex with an operation
in {∧,∨}. We shall subsequently refer to the internal vertices of TΦ as the gates of the
tree. Without loss of generality we may assume that the successor of any ∧-gate (tree
vertex labelled ∧) is an ∨-gate (tree vertex labelled ∨) and vice versa. The size of Φ(Z)

is the number of gates in its tree representation TΦ . For formulae of size m we denote by
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〈g1, g2, . . . , gm〉 the gates in TΦ with gm always taken as the root ρ(TΦ) of the tree. Finally
for any edge 〈h,g〉 in TΦ we refer to the node h as an input of the gate g.2

Definition 5. For a formula, Φ(Z), an instantiation of its variables is a mapping, π : Z →
{true, false,∗} associating a truth value or unassigned status (∗) with each variable zi . We
use πi to denote π(zi). An instantiation is total if every variable is assigned a value in
{true, false} and partial otherwise. We define a partial ordering over instantiations γ and
δ to Z by writing γ < δ if: for each i with γi �= ∗, δi = γi , and there is at least one i , for
which γi = ∗ and δi �= ∗.

Given Φ(Z) any instantiation π : Z → {true, false,∗} induces a mapping from the
nodes defining TΦ onto values in {true, false,∗}. Assuming the natural generalisations
of ∧ and ∨ to the domain 〈true, false,∗〉,3 we define for h a node in TΦ , its value ν(h,π)

under the instantiation π of Z as

ν(h,π) =




∗ if h is a leaf node labelled zi or ¬zi and πi = ∗,
πi if h is a leaf node labelled zi and πi �= ∗,
¬πi if h is a leaf node labelled ¬zi and πi �= ∗,∨k

j=1 ν(hj ,π) if h is an ∨-gate with inputs 〈h1, . . . , hk〉,∧k
j=1 ν(hj ,π) if h is an ∧-gate with inputs 〈h1, . . . , hk〉,

where π is clear from the context, we write ν(h) for ν(h,π).
With this concept of the value induced at a node of TΦ via an instantiation π , we can

define a partition of the literals and gates in TΦ that is used extensively in our later analysis.
The value partition Val(π) of TΦ comprises three sets 〈True(π),False(π),Open(π)〉.

(T1) The subset True(π) consists of literals and gates, h, for which ν(h) = true.
(T2) The subset False(π) consists of literals and gates, h, for which ν(h) = false.
(T3) The subset Open(π) consists of literals and gates, h, for which ν(h) = ∗.

The following properties of this partition can be easily proved:

Fact 6.

(a) Open(π) = ∅ ⇔ π is total.
(b) If γ < δ, then True(γ ) ⊂ True(δ) and False(γ ) ⊂ False(δ).

For example in Fig. 1 under the partial instantiation π = 〈z1 = true, z4 = false〉 with all
other variables unassigned, we have: True(π) = {z1,¬z4, g1}; False(π) = {¬z1, z4, g3};
and Open(π) = {z2,¬z2, z3,¬z3, g2, g4}.

2 We note that since any gate may be assumed to have at most n distinct literals among its inputs, our measure
of formula size as ‘number of gates’ is polynomially equivalent to the more usual measure of size as ‘number of
literal occurrences’, i.e., leaf nodes.

3 I.e.,
∧k

j=1 xj is ∗ unless all xj are true or at least one xj is false;
∨k

j=1 xj is ∗ unless all xj are false or at
least one is true.
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Fig. 1. TΦ(z1, z2, z3, z4) for (z1 ∨ z2 ∨ z3) ∧ z4 ∨ (¬z2 ∧ ¬z4).

At the heart of our proof that QSAT2 is polynomially reducible to COHERENT is a
translation from the tree representation TΦ of a formula Φ(X,Y ) to an argument system
HΦ(XΦ,AΦ). It will be useful to proceed by presenting a preliminary translation that,
although not in the final form that will be used in the reduction, will have a number of
properties that will be important in deriving our result.

Definition 7. Let Φ(Z) be a propositional formula with tree representation TΦ having size
m. The Argument Representation of Φ is the argument system RΦ(XΦ,AΦ) defined as
follows. RΦ contains the following arguments XΦ :

(X1) 2n literal arguments {zi,¬zi : 1 � i � n}.
(X2) For each gate gk of TΦ , an argument ¬gk (if gk is an ∨-gate) or an argument gk (if gk

is an ∧-gate). If gm, i.e., the root of TΦ , happens to be an ∨-gate, then an additional
argument gm is included. We subsequently denote this set of arguments by GΦ .

The attack relationship—AΦ—over XΦ contains:

(A1) {〈zi ,¬zi〉, 〈¬zi , zi〉: 1 � i � n}.
(A2) 〈¬gm,gm〉 if gm is an ∨-gate in TΦ .
(A3) If gk is an ∧-gate with inputs {h1, h2, . . . , hr }: {〈¬hi, gk〉: 1 � i � r}.
(A4) If gk is an ∨-gate with inputs {h1, h2, . . . , hr }: {〈hi,¬gk〉: 1 � i � r}.

Fig. 2 shows the result of this translation when it is applied to the tree representation of
the formula in Fig. 1.

The arguments defining RΦ fall into one of two sets: 2n arguments corresponding to
the 2n distinct literals over Z; and m (or m + 1) ‘gate’ arguments. The key idea is the
following: any instantiation π of the propositional variables Z of Φ , induces the partition
Val(π) of literals and gates in TΦ . In the argument system RΦ the attack relationship
for gate arguments, reflects the conditions under which the corresponding argument is
admissible (with respect to the subset of literal arguments marked out by π ). For example,



194 P.E. Dunne, T.J.M. Bench-Capon / Artificial Intelligence 141 (2002) 187–203

Fig. 2. The argument system RΦ from the formula of Fig. 1.

suppose g1 is an ∨-gate with literals z1, ¬z2, z3 as its inputs. In the simulating argument
system, g1 is represented by an argument labelled ¬g1 which is attacked by the (arguments
labelled with) literals z1, ¬z2, and z3: the interpretation being that “the assertion ‘g1 is
false’ is attacked by instantiations in which z1 or ¬z2 or z3 are true”. Similarly were g1
an ∧-gate it would appear in RΦ as an argument labelled g1 which was attacked by literals
¬z1, z2, and ¬z3: the interpretation now being that “the assertion ‘g1 is true’ is attacked
by instantiations in which z1 or ¬z2 or z3 are false”. With this viewpoint, any instantiation
π will induce a selection of the literal arguments and a selection of the gate arguments
(i.e., those for which no attacking argument has been included).

Suppose π is an instantiation of Z. The key idea is to map the partition of the tree
representation TΦ as Val(π) onto an analogous partition of the literal and gate arguments
in RΦ . Given π this partition comprises 3 sets, 〈In(π), Out(π), Poss(π)〉 defined by:

(R1) An argument p is in the subset In(π) of XΦ if:

(p is the argument zi , πi = true) or (p is the argument ¬zi, πi = false)

or (p = ¬g ∈ GΦ and g ∈ Tφ is in False(π))

or (p = g ∈ GΦ and g ∈ Tφ is in True(π)).

(R2) An argument p is in the subset Out(π) of XΦ if:

(p is the argument zi , πi = false) or (p is the argument ¬zi, πi = true)

or (p = ¬g ∈ GΦ and g ∈ Tφ is in True(π))

or (p = g ∈ GΦ and g ∈ Tφ is in False(π)).

(R3) An argument p is in the subset Poss(π) of XΦ if:

p /∈ In(π) ∪ Out(π).
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With the formulation of the argument system RΦ(XΦ,AΦ) from the formula Φ(Z) and
the definition of the partition 〈In(π),Out(π),Poss(π)〉 via the value partition Val(π) of TΦ

we are now ready to embark on the sequence of technical lemmata which will culminate
in the proof of Theorem 2.

Our proof strategy is as follows. We proceed by characterising the set of preferred
extensions of RΦ showing—in Lemma 8 through Lemma 11—that these consist of exactly
the subsets defined by In(γZ) where γZ is a total instantiation of Z. In Lemma 12 we
deduce that these are all stable extensions and thus that RΦ is itself coherent. In the
remaining lemmata, we consider the argument systems arising by transforming instances
Φ(X,Y ) of QSAT2. In these, however, we add to the basic system defined by RΦ (which
will have 4n literal arguments and m (or m + 1) gate arguments) an additional set of
3 control arguments one of which attacks all of the Y -literal arguments: we denote this
augmented system by HΦ(WΦ,BΦ). As will be seen in Lemma 15, it follows easily from
Lemma 10 that for any 〈αX,βY 〉 satisfying Φ(X,Y ) the subset In(αX,βY ) is a stable
extension of both RΦ and HΦ . The crucial property provided by the additional control
arguments in HΦ is proved in Lemma 16: if for αX there is no βY for which 〈αX,βY 〉
satisfies Φ(X,Y ) then the subset In(αX) (defined from RΦ ) is a preferred but not stable
extension of HΦ , where In(αX) denotes the set In(αX,∗,∗, . . . ,∗) in which every yi is
unassigned. The reason for introducing the control arguments in moving from RΦ to HΦ

is that In(αX) is not a preferred extension of RΦ : although it is admissible, it could be
extended by adding, for example, Y -literal arguments. The design of HΦ will be such
that unless the gate argument gm can be used in an admissible extension of In(αX) then
In(αX) is already maximal in HΦ and not a stable extension since the control arguments
are not attacked. Finally, in Lemma 17, it is demonstrated that the only preferred extensions
of HΦ are those arising as a result of Lemmas 15 and 16. Theorem 2 will follow easily
from Lemma 17, since the argument gm—corresponding to the root node ρ(TΦ) of the
instance Φ(X,Y )—must necessarily belong to any stable extension in HΦ : hence HΦ

is coherent if and only if for each instantiation αX there is an instantiation βY such that
〈αX,βY 〉 satisfies Φ(X,Y ), i.e., for which gm ∈ In(αX,βY ) in the system RΦ and thence
in the corresponding stable extension of HΦ .

We employ the following notational conventions: αX , βY , (and γZ) denote total
instantiations of X,Y , (and Z); for an argument p in XΦ , gp (respectively hp) denotes
the corresponding gate (respectively node) in TΦ , hence if gp is an ∨-gate, then p is
the argument labelled ¬gp ; PEM (respectively SEM) denotes the set of all preferred
(respectively stable) extensions in the argument system MΦ , where MΦ is one of RΦ

or HΦ .

Lemma 8. ∀γZ In(γZ) is conflict-free.

Proof. Let γZ be an instantiation of Z and consider the subset In(γZ) of XΦ in RΦ .
Suppose that there are arguments p and q in In(γZ) for which 〈p,q〉 ∈ AΦ . It cannot be
the case that hp = ui and hq = ¬ui for ui some literal over zi , since exactly one of {zi ,¬zi}
is in True(γZ) hence exactly one of the corresponding literal arguments is in In(γZ). Thus
q must be a gate argument. Suppose gq is an ∨-gate: q ∈ In(γZ) only if gq ∈ False(γZ)

and therefore hp , which (since 〈p,q〉 ∈ AΦ ) must be an input of gq is also in False(γZ).
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This leads to a contradiction: if hp is a gate then it is an ∧-gate, so p ∈ In(γZ) only if
hp ∈ True(γZ); if hp is a literal ui , then hp ∈ False(γZ) would mean that ¬ui ∈ True(γZ)

and hence ui /∈ In(γZ). The remaining possibility is that gq is an ∧-gate: q ∈ In(γZ) only
if gq ∈ True(γZ) and thus hp ∈ True(γZ). If hp is a gate it must be an input of gq and an
∨-gate: hp ∈ True(γZ) would force p /∈ In(γZ). Finally if the input hp is a literal ui in TΦ

then in RΦ the literal ¬ui attacks q : ui ∈ True(γZ) implies ¬ui /∈ In(γZ). We deduce that
In(γZ) must be conflict-free. ✷
Lemma 9. ∀γZ In(γZ) is admissible.

Proof. From Lemma 8, In(γZ) is conflict-free, so it suffices to show for all arguments
p /∈ In(γZ) that attack some q ∈ In(γZ) there is an argument r ∈ In(γZ) that attacks p. Let
p, q be such that p /∈ In(γZ), q ∈ In(γZ) and 〈p,q〉 ∈AΦ . If q is a literal argument, ui say,
then p must be the literal argument ¬ui and choosing r = q provides a counter-attacker
to p. Suppose q is a gate argument. One of the inputs to gq must be the node hp . If gq

is an ∨-gate then gq ∈ False(γZ) and hp ∈ False(γZ). If hp is a literal ui then the literal
argument r = ¬ui ∈ In(γZ) attacks p; if hp is an ∧-gate then hp ∈ False(γZ) implies there
is some input hr to hp with hr ∈ False(γZ), so that r = ¬hr is in In(γZ) (whether hr is
an ∨-gate or literal) and r attacks p. Similarly, if gq is an ∧-gate then gq ∈ True(γZ) and
hp ∈ True(γZ). If hp is a literal ui then the attacking argument (on q in RΦ ) is the literal
¬ui ∈ Out(γZ), thus r = ui ∈ In(γZ) provides a counter-attack on p. If hp is an ∨-gate
then hp ∈ True(γZ) indicates that some input hr of hp is in True(γZ), so that r = hr is in
In(γZ) and r attacks p. No more cases remain thus In(γZ) is admissible. ✷
Lemma 10. ∀γZ In(γZ) ∈PER.

Proof. From Lemmas 8, 9 and the fact that every argument in XΦ is allocated to either
In(γZ) or Out(γZ) by γZ , cf. Fact 6(a), it suffices to show that for any argument p ∈
Out(γZ) there is some q ∈ In(γZ) such that p and q conflict. Certainly this is the case for
literal arguments, u ∈ Out(γZ) since the complementary literal ¬u is in In(γZ). Suppose
p ∈ Out(γZ) is a gate argument. If gp is an ∨-gate then p ∈ Out(γZ) implies gp ∈ True(γZ)

and hence some input hq of gp must be in True(γZ). The argument q corresponding to
this input node will therefore be in In(γZ). If gp is an ∧-gate then p ∈ Out(γZ) implies
gp ∈ False(γZ) and some input hq of gp must be in False(γZ). The argument ¬hq will be
in In(γZ) and conflicts with p. ✷
Lemma 11. ∀S ∈ PER ∃γZ: S = In(γZ).

Proof. First observe that all S ∈ PER must contain exactly n literal arguments: exactly
one representative from {zi,¬zi} for each i . Let us call such a subset of the literal
arguments a representative set and suppose that U is any representative set with SU any
preferred extension containing U . We will show that there is exactly one possible choice
for SU and that this is SU = In(γ (U)) where γ (U) is the instantiation of Z by: zi = true
if zi ∈ U ; zi = false if ¬zi ∈ U . Consider the following procedure that takes as input a
representative set U and returns a subset SU ∈PER with U ⊆ SU .
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(1) SU := U ; TU :=XΦ .
(2) TU := TU/SU .
(3) if TU = ∅ then return SU and stop.
(4) TU := TU/{q ∈ TU : 〈p,q〉 ∈AΦ for some p ∈ SU }.
(5) SU := SU ∪ {q ∈ TU : for all p ∈ TU , 〈p,q〉 /∈AΦ}.
(6) goto step (2).

We can note three properties of this procedure. Firstly, it always halts: once the literal
arguments in the representative set U and their complements have been removed from TU

(in steps (2) and (4)), the directed graph-structure remaining is acyclic and thus has at least
one argument that is attacked by no others. Thus each iteration of the main loop removes
at least one argument from TU which eventually becomes empty. Secondly, the set SU

is in PER: the initial set (U ) is admissible and the arguments removed from TU at each
iteration are those that have just been added to SU (step (2)) as well as those attacked by
such arguments (step (4)); in addition the arguments added to SU at each stage are those
that have had counter-attacks to all potential attackers already placed in SU . Finally for any
given U the subset SU returned by this procedure is uniquely defined. In summary, every
S ∈ PER is defined through exactly one representative set, US , and every representative
set U develops to a unique SU ∈ PER. Each representative set, U , however, has the form
In(γ (U)) ∩ {zi,¬zi : 1 � i � n}, and hence the unique preferred extension, SU , consistent
with U is In(γ (U)). ✷
Lemma 12. The argument system RΦ(XΦ,AΦ) is coherent.

Proof. The procedure of Lemma 11 only excludes an argument, q , from the set SU

under construction if q is attacked by some argument p ∈ SU . Thus, SU is always a
stable extension, and since Lemma 11 accounts for all S ∈ PER, we deduce that RΦ

is coherent. ✷
Although our preceding three results characterise RΦ as coherent, this, in itself, does

not allow RΦ be used directly as the transformation for instances Φ(X,Y ) of QSAT2. The
overall aim is to construct an argument system from Φ(X,Y ) which is coherent if and only
if Φ(X,Y ) is a positive instance of QSAT2. The problem with RΦ is that, even though
Φ(X,Y ) may be a positive instance, there could be instantiations, 〈αX,βY 〉 which fail to
satisfy Φ(X,Y ) but give rise to a stable extension In(αX,βY ), e.g., for βY with which
Φ(αX,βY ) = false. In order to deal with this difficulty, we need to augment RΦ (giving
a system HΦ ) in such a way that the admissible set In(αX) is a preferred (but not stable)
extension (in HΦ ) only if no instantiation βY allows 〈αX,βY 〉 to satisfy Φ(X,Y ). Thus, in
our augmented system, we will have exactly two mutually exclusive possibilities for each
total instantiation αX of X: either there is no βY for which Φ(αX,βY ) = true, in which
event the set In(αX) will produce a non-stable preferred extension of HΦ ; or there is an
appropriate βY , in which case In(αX,βY ) (of which In(αX) is a proper subset, cf. Fact 6(b))
will yield a stable extension in HΦ .



198 P.E. Dunne, T.J.M. Bench-Capon / Artificial Intelligence 141 (2002) 187–203

Fig. 3. An Augmented Argument Representation HΦ .

Definition 13. For Φ(X,Y ) an instance of QSAT2, the Augmented Argument Representa-
tion of Φ—denoted HΦ(WΦ,BΦ)—has arguments, WΦ = XΦ ∪ CΦ , where XΦ are the
arguments arising in the Argument Representation of Φ(X,Y )—RΦ—as given in Defi-
nition 7 and CΦ = {C1,C2,C3} are 3 new arguments called the control arguments. The
attack relationship BΦ contains all of the attacks AΦ in the system RΦ together with new
attacks,

{〈C1, yi〉, 〈C1,¬yi〉: 1 � i � n
}
,{〈C1,C2〉, 〈C2,C3〉, 〈C3,C1〉

}
,{〈gm,C1〉, 〈gm,C2〉, 〈gm,C3〉

}
.

Using the relabelling of variables in our example formula—Figs. 1, 2—as 〈x1, x2〉 =
〈z1, z2〉, 〈y1, y2〉 = 〈z3, z4〉, the Augmented Argument Representation for the system in
Fig. 2 is shown in Fig. 3.

Lemma 14. If S ∈ PEH then Ci /∈ S for any of {C1,C2,C3}. If S ∈ SEH then gm ∈ S.

Proof. Suppose S ∈ PEH. If gm ∈ S then each of the control arguments is attacked by gm

and so cannot be in S. If gm /∈ S then C3 /∈ S since the only counter-attack to C2 is the
argument C1 which conflicts with C3. By similar reasoning it follows that C2 /∈ S and
C1 /∈ S. For the second part of the lemma, given S ∈ SEH, since {C1,C2,C3} �⊆ S, there
must be some attacker of these in S. The only choice for this attacker is gm. ✷
Lemma 15. ∀〈αX,βY 〉 that satisfy Φ(X,Y ): In(αX,βY ) ∈ SEH.
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Proof. From Lemmas 10 and 12, the subset In(αX,βY ) is in SER. Furthermore, since
gm ∈ True(αX,βY ) it follows that the gate argument gm of RΦ is in In(αX,βY ). For
the augmented system, HΦ , the arguments in In(αX,βY ) remain admissible: attacks
on Y -literal arguments by the control argument C1 are attacked in turn by the gate
argument gm. In addition, using the arguments of Lemma 10 no arguments in Out(αX,βY )

can be added to the set In(αX,βY ) within HΦ without conflict. Thus In(αX,βY ) ∈ SEH
whenever Φ(αX,βY ) holds. ✷
Lemma 16. If αX is such that no instantiation βY of Y , leads to 〈αX,βY 〉 satisfying
Φ(X,Y ) then In(αX) ∈PEH/SEH.

Proof. The subset In(αX) of RΦ can be shown to be admissible (in both RΦ and HΦ ) by
an argument similar to that of Lemma 9.4 Suppose for all βY , we have Φ(αX,βY ) = false,
and consider any subset S of WΦ in HΦ for which In(αX) ⊂ S. We show that S /∈ PEH.
Assume the contrary holds. From Lemma 14 no control argument is in S. If gm ∈ S then
S must contain a representative set, VY say, of the Y -literal arguments matching some
instantiation βY . From the argument used to prove Lemma 11, In(αX,βY ) is the only
preferred extension in RΦ consistent with the literal choices indicated by αX and βY ,
and thus would be the only such possibility for HΦ . Now we obtain a contradiction since
gm /∈ In(αX,βY ) (in either system), and so cannot be used in HΦ to counter the attack
by C1 on the representative set VY . Thus we can assume that gm /∈ S. From this it follows
that no Y -literal argument is in S (as gm is the only attacker of the control argument C1

which attacks Y -literals). Now consider the gates in TΦ topologically sorted, i.e., assigned a
number 1 � κ(g) � m such that all of the inputs for a gate numbered κ(g) are from literals
or gates h with κ(h) < κ(g). Let q be an argument such that gq is the first gate in this
topological ordering for which q ∈ S/In(αX). We must have gq ∈ Open(αX) otherwise—
i.e., q ∈ Out(αX)—q would already be excluded from any admissible set having In(αX)

as a subset. Consider the set of arguments in WΦ that attack q . At least one attacker, p,
must be a node hp in TΦ for which hp ∈ Open(αX). Now our proof is completed: S has
no available counter-attack to the attack by p on q since such could only arise from a
Y -literal argument (all of which have been excluded) or from another gate argument r with
gr ∈ Open(αX), however, κ(gr) < κ(hp) < κ(gq) and r ∈ S contradicts the choice of q .
Fig. 4 illustrates the possibilities. We conclude that the subset In(αX) of WΦ is in PEH
whenever there is no βY with which Φ(αX,βY ) = true, and since the control arguments
are not attacked, In(αX) /∈ SEH. ✷
Lemma 17. If S ∈ SEH then S = In(αX,βY ) (with Φ(αX,βY ) = true). If S ∈ PEH/SEH
then S = In(αX) and Φ(αX,βY ) = false for all βY .

4 A minor addition is required in that since αX is a partial instantiation (of 〈X,Y 〉) it has to be shown that all
arguments p that attack arguments q ∈ In(αX) belong to the subset Out(αX), i.e., are not in Poss(αX). With the
generalisation of ∧ and ∨ to allow unassigned values, it is not difficult to show that if p ∈ Poss(αX) then any
argument q attacked by p in RΦ cannot belong to In(αX).
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Fig. 4. Final cases in the proof of Lemma 16: q ∈ Poss(αX) is not admissible.

Proof. Consider any S ∈ PEH. It is certainly the case that S has as a subset some
representative set, VX from the X-literal arguments. Suppose we modify the procedure
described in the proof of Lemma 11, to one which takes as input a representative set V of
the X-literals and returns a subset SV of the arguments WΦ of HΦ in the following way:

(1) SV := V ; newTV :=WΦ ;
(2) oldTV := newTV ; newTV := oldTV /SV ;
(3) if newTV = oldTV then return SV and stop;
(4) newTV := newTV /{q ∈ newTV : 〈p,q〉 ∈ BΦ for some p ∈ SV };
(5) SV := SV ∪ {q ∈ newTV : for all p ∈ newTV , 〈p,q〉 /∈ BΦ};
(6) goto step (2).

The set SV is an admissible subset of WΦ that contains only X-literal arguments and a
(possibly empty) subset G of the gate arguments GΦ . Furthermore, given V , there is a
unique SV returned by this procedure. It follows that for any S ∈ PEH, V ⊆ S ⇒ SV ⊆ S

for the representative set V associated with S. This set, V , matches the literal arguments
selected by some instantiation α(V ) of X, and so as in the proof of Lemma 11, we can
deduce that SV = In(α(V )). This suffices to complete the proof: we have established that
every set S in PEH contains a subset In(αX) for some instantiation αX : from Lemma 16,
In(αX) is not maximal if and only if S = In(αX,βY ) for some βY with Φ(αX,βY ) =
true. ✷

The proof of our main theorem is now easy to construct.
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Proof of Theorem 2. It has already been shown that COHERENT∈ �
(p)
2 in Lemma 3. To

complete the proof we need only show that Φ(X,Y ) is a positive instance of QSAT2 if and
only if HΦ is coherent.

First suppose that for all instantiations αX there is some instantiation βY for which
Φ(αX,βY ) holds. From Lemmas 15 and 17 it follows that all preferred extensions in HΦ

are of the form In(αX,βY ), and these are all stable extensions, hence HΦ is coherent.
Similarly, suppose that HΦ is coherent. Let αX be any total instantiation of X. Suppose,
by way of contradiction, that for all βY , Φ(αX,βY ) = false. From Lemma 16, In(αX) is
a preferred extension in this case, and hence (since HΦ was assumed to be coherent) a
stable extension. From Lemma 14 this implies that gm ∈ In(αX) which could only happen
if gm ∈ True(αX) for TΦ , i.e., the value of Φ is determined in this case, independently of
the instantiation of Y , contradicting the assumption that Φ(αX,βY ) was false for every
choice of βY . Thus we deduce that Φ(X,Y ) is a positive instance of QSAT2 if and only if
HΦ is coherent so completing the proof that COHERENT is �

(p)

2 -complete. ✷
An easy corollary of the reduction in Theorem 2 is

Corollary 18. SA is �
(p)
2 -complete.

Proof. That SA∈ �
(p)

2 follows from the fact that x is sceptically accepted in H(X ,A) if
and only if: for every subset S of X either S is not a preferred extension or x is in S. To
see that SA is �

(p)

2 -hard, we need only observe that in order for HΦ to be coherent, the
gate argument gm must occur in in every preferred extension of HΦ in the reduction of
Theorem 2 Thus, HΦ is coherent if and only if gm is sceptically accepted in HΦ . ✷

3. Consequences of Theorem 2 and open questions

A number of authors have recently considered mechanisms for establishing credulous
acceptance of an argument p in a finitely presented system H(X ,A) through dialogue
games. The protocol for such games assumes two players—the Defender (D) and
Challenger (C)—and prescribe a move (or locution) repertoire together with the criteria
governing the application of moves and concepts of ‘winning’ or ‘losing’. The typical
scenario is that following D asserting p the players take alternate turns presenting counter-
arguments (consistent with the structure of H) to the argument asserted by their opponent
in the previous move. A player loses when no legal move (within the game protocol) is
available. An important example of such a game is the TPI-dispute formalism of [13] which
provides a sound and complete basis for credulous argumentation. An abstract framework
for describing such games was presented in [11], and is used in [3] also to define a game-
theoretic approach to Credulous Acceptance. Coherent systems are important with respect
to the game formalism of [13]: TPI-disputes define a sound and complete proof theory
for both Sceptical and Credulous games on coherent argument systems; the Sceptical
Game is not, however, complete in the case of incoherent systems. The sequence of moves
describing a completed Credulous Game (for both [3,13]) can be interpreted as certificates
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of admissibility or inadmissibility for the argument disputed. It may be noted that this view
makes apparent a computational difficulty arising in attempting to define similar ‘Sceptical
Games’ applicable to incoherent systems: the shortest certificate that CA(H, x) holds, is
the size of the smallest admissible set containing x—it is shown in [10] that there is always
a strategy for D that can achieve this; it is also shown in [10] that TPI-disputes won by C,
i.e., certificates that ¬CA(H, x), can require exponentially many (in |X |) moves.5 If we
consider a sound and complete dialogue game for sceptical reasoning, then the moves of a
dispute won by D constitute a certificate of membership in a �

(p)

2 -complete language: we
would expect such certificates ‘in general’ to have exponential length; similarly, the moves
in a dispute won by C constitute a certificate of membership in a �

(p)

2 -complete language
and again these are ‘likely’ to be exponentially long. Thus a further motivation of coherent
systems is that sceptical acceptance is ‘at worst’ CO-NP-complete: short certificates that an
argument is not sceptically accepted always exist.

The fact that sceptical acceptance is ‘easier’ to decide for coherent argument systems,
raises the question of whether there are efficiently testable properties that can be exploited
in establishing coherence. The following is not difficult to prove:

Fact 19. If H(X ,A) is not coherent then it contains a (simple) directed cycle of odd length.

Thus an absence of odd cycles (a property which can be efficiently decided) ensures
that the system is coherent. An open issue concerns coherence in random systems. One
consequence of [4] is that random argument systems of n arguments in which each attack
occurs (independently) with probability p, almost surely have a stable extension when p

is a fixed probability in the range 0 � p � 1. Whether a similar result can be proven for
coherence is open.

As a final point, we observe that the interaction between graph-theoretic models of
argument systems and propositional formulae may well provide a fruitful source of
further techniques. We noted earlier that [7] provides a translation from CNF-formulae,
Φ into an argument system HΦ ; our constructions above define similar translations for
arbitrary propositional formulae. We can equally, however, consider translations in the
reverse direction, e.g., given H(X ,A) it is not difficult to see that the CNF-formula,
ΦH = ∧

〈x,y〉∈A(¬x ∨ ¬y) ∧ ∧
x∈X (x ∨ ∨

{z: 〈z,x〉∈A} z) is satisfiable if and only H has
a stable extension. Similar encodings can be given for many of the decision problems of
Table 1. Translating such forms back to argument systems, in effect gives an alternative
formulation of the original argument system from which they were generated, and thus
these provide mechanisms whereby any system, H can be translated into another system
Hdec with properties of concern holding of H if and only if related properties hold in Hdec.
Potentially this may permit both established methodologies from classical propositional
logic6 and graph-theory to be imported as techniques in argumentation.

5 Since these are certificates of membership in a CO-NP-complete language, this is unsurprising: [10] relates
dispute lengths for such instances to the length of validity proofs in the CUT-free Gentzen calculus.

6 Translations from non-classical logics into propositional forms have also been considered in a more general
setting in work of Ben-Eliyahu and Dechter [1].



P.E. Dunne, T.J.M. Bench-Capon / Artificial Intelligence 141 (2002) 187–203 203

4. Conclusion

In this article the complexity of deciding whether a finitely presented argument system is
coherent has been considered and shown to be �

(p)

2 -complete, employing techniques based
entirely around the directed graph representation of an argument system. An important
property of coherent systems is that sound and complete methods for establishing credulous
acceptance adapt readily to provide similar methods for deciding sceptical acceptance,
hence sceptical acceptance in coherent systems is CO-NP-complete. In contrast, as an easy
corollary of our main result it can be shown that sceptical acceptance is �

(p)

2 -complete
in general. Finally we have outlined some directions by which the relationship between
argument systems, propositional formulae, and graph-theoretic concepts offers potential
for further research.
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Abstract

Two Party Immediate Response Disputes (TPI-disputes) are one class of dialogue or argument
game in which the protagonists take turns producing counter arguments to the ‘most recent’ argument
advanced by their opponent. Argument games have been found useful as a means of modelling
dialectical discourse and in providing semantic bases for proof theoretic aspects of reasoning. In
this article we consider a formalisation of TPI-disputes in the context of finite Argument Systems.
Our principal concern may, informally, be phrased as follows: given a specific argument system, H,
and argument x within H, what can be stated concerning the number of moves a dispute might take
for one of its protagonists to accept that x has some defence respectively cannot be defended?
 2003 Elsevier B.V. All rights reserved.

Keywords: Argument systems; Dialogue game; Gentzen system; Proof complexity

1. Introduction

In this paper we are concerned with two important formalisms that have been the
subject of much interest with respect to their application in modelling dialectical process:
Argument Systems [17], and Argument Games [22,29]. Our principal concern is with the
length of disputes when they are conducted in accordance with the etiquette prescribed by
a particular formal protocol. The protocol of interest—TPI-dispute—was outlined in the
work of [38] and in Section 1.2 we present a rigorous formalisation of this with examples
of its operation being described in Section 2. The main technical concerns are dealt with
in Section 3, wherein two questions are examined. Informally, these may be viewed as
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follows: suppose we are presented with an argument system and an argument within this.
If it is required to observe the dispute rules prescribed in some dispute protocol,

(a) when the given argument can be defended, how many moves could it take to prove to
a challenging party that the argument may be defended against any attack?

(b) when the given argument cannot be defended against all possible attacks, how many
moves must it take to convince putative defenders that their position is untenable?

We obtain a precise characterisation answering (a) (Theorem 4, below). In the case
of (b), by developing a construction similar to that used in [16], the question is related
to the widely studied issue of Proof Complexity. Specifically, we demonstrate that by
representing an unsatisfiable CNF-formula, ϕ, as an argument system the dispute protocol
defines a proof calculus that may be employed to show ¬ϕ is a propositional tautology.
Thus, we obtain a partial answer to (b) (in Theorem 5) by establishing that when interpreted
as a calculus for Propositional Logic, the TPI-dispute protocol is ‘not very powerful’:
formally we show that it may be efficiently simulated by a Gentzen system in which the
CUT inference rule is not available.

In the remainder of this section we review the Argument System formalism from [17]
and formally develop the argument game TPI-dispute, originally outlined in [38]. In
Section 2 some illustrative examples of how disputes evolve in this protocol are presented.
As we have already noted, Section 3 presents the core technical contribution, while
Section 4 discusses some issues arising from our results and presents some directions for
further work. Conclusions are given in Section 5.

1.1. Argument systems

Argument systems as a mechanism for studying formalisations of reasoning, acceptabil-
ity, and defeasibility were introduced by Dung [17] and have since received considerable
attention with respect to their use in non-classical logics, e.g., [8,13–15]. The basic defini-
tion of finite argument system below is derived from that given in [17].

Definition 1. An argument system is a pair H= 〈X ,A〉, in which X is a set of arguments
and A⊂ X × X is the attack relationship for H. A pair 〈x, y〉 ∈A is referred to as ‘y is
attacked by x’ or ‘x attacks (or is an attacker of ) y’. The range of an argument x—denoted
range(x)—is the set of arguments that are attacked by x; the range of a set of arguments
S, is the union over all x in S of range(x).

For R, S subsets of X in H(〈X ,A〉), we say that

(a) s ∈ S is attacked by R if there is some r ∈ R such that 〈r, s〉 ∈A.
(b) x ∈ X is acceptable with respect to S if for every y ∈ X that attacks x there is some

z ∈ S that attacks y .
(c) S is conflict-free if no argument in S is attacked by any other argument in S.
(d) A conflict-free set S is admissible if every argument in S is acceptable with respect

to S.
(e) S is a preferred extension if it is a maximal (with respect to ⊆) admissible set.
(f) S is a stable extension if S is conflict free and every argument y /∈ S is attacked by S.
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While some argument systems may not have any stable extension, it is always the case
that some preferred extension is present: the reason being that the empty set is always
admissible.

Definition 2. The decision problem Credulous Acceptance (CA) takes as an instance: an
argument system H = 〈X ,A〉 and an argument x ∈ X . The result true is returned if and
only if at least one preferred extension S of X contains x . If CA(〈H, x〉) holds then x is
said to be credulously accepted in H.

The decision problem Sceptical Acceptance (SA) takes as an instance: an argument
system H = 〈X ,A〉 and an argument x ∈ X . The result true is returned if and only if
every preferred extension S in X contains x . If SA(〈H, x〉) holds x is said to be sceptically
accepted in H.

1.2. Argument games and TPI-disputes

A widely studied concept that has received some attention in the context of argument
systems is that of employing argument games both as models of dialectical discourse
and as a basis for a formal proof theory. The form of such games involves a sequence
of interactions between two protagonists—hereafter referred to as the Defender (D) and
Challenger (C)—wherein the Defender attempts to establish a particular argument in
the face of counterarguments advanced by the Challenger, see, e.g., [10,24,26,29,37]. In
[38] descriptions of games—Two Party Immediate Response Disputes (TPI-disputes)—are
presented for Credulous and Sceptical Argument within the framework considered in the
present article. We consider a rather more tightly specified definition of TPI-disputes: the
form presented in [38] defines notions of move, attack, winning and losing within a dispute.
These, however, are illustrated through a series of examples rather than presenting a precise
semantics for the game as a whole. Our main point of interest concerns the fact that whilst
such games always terminate for finitely specified systems we wish to address how many
steps (as a function of |X |) some disputes may take.

We begin by developing the idea of TPI-disputes, using as a basis the informal schema
of [38]. In informal terms, a TPI-dispute starts from a named argument, x in a given
argument system H. For the Credulous Game, a defender attempts to construct an
admissible set containing x . For a select class of Argument Systems,1 Sceptical Acceptance
can be established by the Defender proving that no attacker of x is credulously accepted.
The Challenger’s aim is to prevent successful construction. The game proceeds by the
players alternately presenting arguments within H that attack the previous arguments
proposed by the other player. The concept of immediate response concerns the requirement
in the game for both players to identify arguments that attack the most recent argument put
forward by the opponent. A number of examples given in [38] indicate that both players
must have the capability of ‘back-tracking’, e.g., if the line of attack followed by the
Challenger fails, it must be possible to adopt a different attack on some previous argument.

We can view the progress of such disputes as a sequence of directed trees each of which
is constructed by a depth-first expansion, the root of each tree being the argument x at the

1 But not all, cf. Theorem 3, and Fig. 1 subsequently.
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heart of the dispute. In this way the game is characterised by the moves through which a
tree is expanded and the rules which force back-tracking by either party.

1.2.1. A model of TPI-disputes

Definition 3. Let H(〈X ,A〉) be an argument system and x an argument in X . A dispute
tree for x in H, TH

x , is a tree whose vertices are a subset of X and whose root is x . The
edges of a dispute tree are directed from vertices to their parent vertex. If t is a leaf vertex
in TH

x the path

t = vk→ vk−1 →·· ·→ v2 → v1 → v0 = x
is called a dispute line.

A dispute line (to v) is a failing attack on x if the number of vertices on the path from
v up to (and including) x is odd. A dispute line is a failing defence of x if this number is
even.

A vertex, v, is open in TH
x if there is an argument, w in X , which attacks v and is

‘available’ (in a sense which is made precise below). If no such argument exists, v is
closed. A dispute line is closed or open according to whether its leaf vertex is closed or
open.

Given a system H(〈X ,A〉) and x ∈ X a TPI-dispute consists of a sequence of moves

M = 〈µ1,µ2, . . . ,µi, . . .〉.
Moves, µ are chosen from a finite repertoire of move types, some (or all) of which may not
be available (depending on the current ‘state’ of a dispute). This state is represented after
the kth move (k � 0), by a tuple σk = 〈Tk, vk,∆k,Γk,Pk,Qk〉. Here
Tk : the dispute tree after k moves;
vk : the ‘current’ argument (vertex of) Tk ;
∆k : arguments available to D;
Γk : arguments available to C;
Pk : arguments proposed as a (subset) of some admissible set by D;
Qk : the set of subsets of arguments that C has shown not to be a subset of an admissible

set.
The initial state (σ0) is 〈〈x〉, x,∆0,Γ0,P0,Q0〉 where

∆0 =X /
({x} ∪ {y: 〈x, y〉 ∈A or 〈y, x〉 ∈A}),

Γ0 =X /
({x} ∪ range(x)

)
,

P0 = {x},
Q0 = ∅.

A dispute, M = 〈µ1,µ2, . . . ,µk〉, is active if there is a legal move µk+1 available to the
current player, i.e., C if k+ 1 is odd,D otherwise. A dispute,M , is terminated ifM is not
active. For a terminated dispute, we use |M| to denote the number of moves in M .

In informal terms the ‘state’ describes the progress so far of a dispute over the
argument x . The defender is attempting to construct in the subset Pk an admissible set
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containing x . In order to achieve this,D, has to respond to attacks put forward by C so that
(if k is odd), the argument vk requiresD to employ an ‘available’ argument in ∆k to attack
vk : the chosen argument will form the component vk+1 of the next state. The Challenger in
attempting to show that x is not credulously accepted maintains a set of subsets of X (the
set Qk) comprising subsets that cannot form part of an admissible set with x .

Before defining the move repertoire we outline the notions of ‘availability’ that are
used. Suppose D must find an argument z with which to attack vk proposed by C, i.e.,
with 〈z, vk〉 ∈A. SinceD aims to construct an admissible set, certainly any z that conflicts
with any argument in Pk cannot be used—Pk must be conflict-free. In addition, should z be
such that Pk ∪{z} has already been shown not to be an admissible set, i.e., for some S ∈Qk
it holds that S ⊆ Pk ∪{z}, then z cannot be used to counter-attack vk . Thus, in summary, an
argument is ‘available’ to D if it attacks the most recent argument put forward by C, does
not conflict with any argument that D is currently defending and can be added to this set
without forming a ‘known’ inadmissible set. Similarly, C, in finding a counterattack to vk
needs to identify some z that attacks vk and is not attacked by any argument in Pk . Thus
the ‘available’ arguments for C at any point are simply those that are not attacked by any
argument in Pk .

A detailed description of how the sets of available arguments develop between moves
is given when we describe the move repertoire.

1.2.2. The move repertoire
It remains to describe the move repertoire, conditions determining applicability, and

consequent changes to σi−1 after performing a move µi .
The various implementations of argument games allow a variety of different moves.

Some, such as [25], provide a small number of basic moves, intended to model disputes
in a generic manner, while others allow a larger number in order to attempt to reflect
the moves made by the participants in particular kinds of dispute, e.g., [22] or to reflect
particular notions of what constitutes an argument. For example Bench-Capon [6] models
arguments as described by Toulmin [34]. Since our framework uses Dung’s very abstract
notion of argument [17], we do not need moves to reflect particular procedures or forms of
argument, and so can use a rather small set of moves.

The repertoire of moves2 we allow comprises just,

{COUNTER, BACKUP, RETRACT}.
The first move can be made by either player, whereas BACKUP is only employed by C, and
RETRACT only by D. These two moves arise from the need to allow back-tracking. In the
description that follows it should be remembered that odd indexed moves are made by the
Challenger and even indexed moves by the Defender.
µk = COUNTER(y). Let σk−1 = 〈Tk−1, vk−1,∆k−1,Γk−1,Pk−1,Qk−1〉. If k is odd, µk

is made by C, and COUNTER(y) can be applied only if 〈y, vk−1〉 ∈A and y ∈ Γk−1, i.e., y
attacks the current argument (vk−1) and is available. The new state, σk , is now

2 The terminology we use is not employed in [38] which is given simply in terms of attacking moves and
back-tracking.
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Tk := Tk−1 + 〈y, vk−1〉,
vk := y,
∆k :=∆k−1,

Γk := Γk−1/{y},
Pk := Pk−1,

Qk :=Qk−1.

If k is even, so that µk is made by D, then COUNTER(y) can be applied only if: y ∈∆k−1;
〈y, vk−1〉 ∈A; and for each set R in Qk−1, R is not contained in Pk−1 ∪ {y}, i.e., D has
available an argument y with which to attack vk−1 and, if y is added to the set of arguments
that D is (currently) committed to then the resulting set has not been ruled inadmissible
earlier.

The new state, σk is now

Tk := Tk−1 + 〈y, vk−1〉,
vk := y,
∆k :=∆k−1/

({y} ∪ {z ∈∆k−1: 〈y, z〉 ∈A or 〈z, y〉 ∈A
})
,

Γk := Γk−1/
({y} ∪ range(y)

)
,

Pk := Pk−1 ∪ {y},
Qk :=Qk−1.

The definition of ∆k from ∆k−1 and y captures the fact that D (in attempting to form an
admissible set) may not violate the requirement to be conflict free. The form taken by Γk
indicates that in adding y to its (currently) accepted arguments,D now has a defence to all
arguments in Γk−1 that y attacks. It follows that there is no gain in these being available
to C.
µk = BACKUP(j, y) (where j is even and 0 � j � k − 3). The BACKUP move is only

invoked by C and corresponds to the situation where C has no available attack with which
to continue the current dispute line. The BACKUP move returns the dispute to the most
recent point (σj ) from which C can mount a fresh attack. Thus, if the (currently open)
dispute line is,

Lk−1 = 〈vk−1 → vk−2 → ·· ·→ vj+1 → vj → ·· ·→ v2 → v1 → v0〉
then

BC1. Lk−1 is a closed failing attack, i.e., there are no arguments z ∈ Γk−1 for which
〈z, vk−1〉 ∈A.

BC2. For each r in the set {j + 2, j + 4, j + 6, . . . , k − 3} there are no arguments

z ∈ Γr/
({vr , vr+1, vr+2, . . . , vk−2} ∪ range

({vr , vr+2, . . . , vk−3}
))

for which 〈z, vr 〉 ∈A.
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BC3. The parameters j and y specified in the move BACKUP(j, y) are such that

y ∈ Γj/
({vj , vj+1, vj+2, . . . , vk−2} ∪ range

({vj , vj+2, . . . , vk−3}
))

and 〈y, vj 〉 ∈A.

In summary, the conditions for the move BACKUP(j, y) to be applicable are: C cannot
continue the current dispute line since there is no argument in C’s arsenal that can be used
to attack the last argument proposed by D (BC1); C cannot mount a new line of attack on
any argument put forward by D in the set {vj+2, vj+4, . . . , vk−3} (BC2); C, by using y ,
can launch a different attack on vj (BC3).

The new state σk effected by the move BACKUP(j, y) is given by:

Tk := Tk−1 + 〈y, vj 〉,
vk := y,
∆k :=∆k−1,

Γk := Γj/
({y, vj+1, vj+2, . . . , vk−1} ∪ range

({vj+2, vj+4, . . . , vk−1}
))
,

Pk := Pk−1,

Qk :=Qk−1.

Note that ∆k does not revert to its content at the ‘backup’ position∆j :D has ‘committed’
to defending these in order to force C to adopt a new line of dispute. Secondly, the set, Γk ,
of available arguments for C, has all of the arguments advanced in progressing from vj+1
to vk−3 removed (rather than simply the ‘old’ attack vj+1 and the ‘new’ attack y on vj ):
sinceD has already established a suitable line of defence to each of these, their only utility
to the challenger would be in prolonging a dispute, rather than winning it.
µk = RETRACT. The RETRACT move is only made by D. Suppose

σk−1 = 〈Tk−1, vk−1,∆k−1,Γk−1,Pk−1,Qk−1〉
is the current state (so that k − 1 is odd). For RETRACT to be applicable D must have no
available attack on vk−1 and Pk−1 �= {x}. In this case, the Challenger has succeeded in
showing that the set Pk−1 cannot be extended to form an admissible set. Thus the only
option available to the Defender is to try constructing a new admissible set containing x .
Formally, the next state σk is given as

Tk := 〈x〉,
vk := x,
∆k :=∆0,

Γk := Γ0,

Pk := P0,

Qk :=Qk−1 ∪ {Pk−1}.
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1.2.3. Discussion
The main point that should be noted is the asymmetry concerning BACKUP and

RETRACT. Firstly, BACKUP may be seen as the Challenger invoking a new line of attack
within the same dispute tree. On the other hand, RETRACT represents the dispute over x
being started again, this time, however, with the knowledge that some lines of defence are
not available, i.e., those that would result in a ‘known’ inadmissible set being constructed.
Of course, as will be shown later, if x is credulously accepted then D, employing ‘best
play’ will never need to make a retraction. In defining the game rules, however, we cannot
assume that D will play ‘intelligently’ and thus may, inadvertently, call upon arguments
that are eventually exposed as collectively indefensible. It may be observed that the position
from which the dispute is resumed (following a retraction) is the opening dispute tree:
while, in principle, one could define the next dispute tree to result from some variant of the
current one, such an approach affords no significant gain.

1.2.4. Credulous and sceptical games

Definition 4. LetM〈H,x〉 = 〈µ1,µ2, . . . ,µk〉 be a terminated TPI-dispute over an argument
x in the argument system H. M〈H,x〉 is a successful (credulous) defence of x if k is even,
and a successful rebuttal of x if k is odd.

The following result reformulates Proposition 1 of [38] in terms of the formal
framework introduced above.

Theorem 1. CA(H, x)⇔ (∃M〈H,x〉: M〈H,x〉 is a successful defence of x).

Proof. First suppose that CA(H(〈X ,A〉, x) holds, i.e., that x is credulously accepted in
H. Consider any admissible set, Sx , of H containing x . It is certainly the case that using
only the arguments in Sx , D can always COUNTER attacks available to C (recall that in
replying to COUNTER(y) from C the response COUNTER(z) will remove from C’s arsenal
of attacks any argument attacked by z). Furthermore,D never has to invoke the RETRACT

move. It follows that such a dispute will eventually terminate with C having no further
move, i.e., as a successful defence of x .

Conversely, suppose that M〈H,x〉 is a successful defence of x . Consider the set Pk
pertaining after µk the final move of the dispute. It is certainly the case that x ∈ Pk (since
this holds throughout the dispute). In addition, Pk is conflict-free (since ∆j never makes
available to D, arguments that conflict with those in Pj ). Finally, since C has no move
available, every attack on arguments y ∈ Pk must have been countered, i.e., is defended
by some p ∈ Pk . The three properties just identified establish that Pk is an admissible set
containing x , hence x is credulously accepted. ✷
Theorem 2. For all TPI-dispute instances, 〈H, x〉 either all terminated M〈H,x〉 are
successful defences of x or all are successful rebuttals.

Proof. Suppose the contrary and
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M(1) = 〈µ1
1,µ

1
2, . . . ,µ

1
m

〉
with σ 1

m =
〈
T 1
m,v

1
m,∆

1
m,Γ

1
m,P

1
m,Q

1
m

〉
,

M(2) = 〈µ2
1,µ

2
2, . . . ,µ

2
n

〉
with σ 2

n =
〈
T 2
n , v

2
n,∆

2
n,Γ

2
n ,P

2
n ,Q

2
n

〉
are different TPI-disputes with M(1) a successful defence of x and M(2) a successful
rebuttal of x within H. Since M(1) is a successful defence, the subset P 1

m is an admissible
set (containing x). If M(2) is a successful rebuttal of x , then D must reach the point
where no RETRACT move is applicable. Consider the admissible set, P 1

m found by M(1)

and the first move t at which some Q ⊆ P 1
m is added to Q2

t−1. It must be the case that
µ2
t = RETRACT (or t = n+ 1) and that D has no available defence with which to counter
v2
t−1. Now we derive a contradiction: v2

t−1 attacks y ∈ P 2
t−2 =Q⊆ P 1

m and the progress of
M(2) has left no counter attack on v2

t−1 available to D. On the other hand, such a defence
(z, say) is present in P 1

m since it is an admissible set and z would only be unavailable if
it attacked or was attacked by Q, contradicting the fact that P 1

m (of which Q is a subset)
must be conflict-free. ✷
Definition 5. For an argument system H(〈X ,A〉) and x ∈ X , the x-augmented system, Hx
is the system formed by adding a new argument {xa} to X together with attack {〈x, xa〉}.

The following reformulates Proposition 2 of [38].

Theorem 3. Let H be an argument system in which every preferred extension is also a
stable extension and let x be an argument in H.3 The argument x is sceptically accepted
in H if and only if, there is a dispute, M , providing a successful rebuttal of xa in the
x-augmented system Hx .

Proof. Let H be an argument system in which every preferred extension is stable. First
suppose that x is sceptically accepted in H, the first part of the theorem will follow (via
Theorem 1) by showing that xa is not credulously accepted in the x-augmented system.
Suppose the contrary and that Sa ⊂X ∪{xa} is a preferred extension in Hx that contains xa .
The set Sa cannot contain x , and must contain at least one attacker of x . The set, Sa/{xa},
however, is an admissible set in H and cannot be developed to a preferred extension
containing x . This contradicts the premise that x is sceptically accepted in H.

Conversely, suppose that xa is not credulously accepted in the x-augmented system Hx .
Consider any preferred extension S of H. Suppose x /∈ S. Since S is a stable extension,
there is some attacker, y , of x , in S and since y attacks x which is the only attack on xa in
the x-augmented system, we deduce that S ∪ {xa} would form a preferred extension in Hx
contradicting the premise that xa is not credulously accepted. ✷

The example in Fig. 1 is adapted from [38], and shows that the stability condition is
needed. In this example of an x-augmented system, xa is not in any preferred extension
since there is no defence to the attack by x (y is inadmissible since it is effectively self-
attacking). Within the original system, however, x is not sceptically accepted: there are

3 Argument systems satisfying this condition are termed coherent in [17, Definition 31(1), p. 332].
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Fig. 1. x-augmented system with xa not credulously accepted nor x sceptically accepted.

two preferred extensions—{x, z} and {u}—the latter containing neither x nor its attacker
y . We note that testing if an argument system is coherent, i.e., every preferred extension
is also stable, is likely to be difficult: Dunne and Bench-Capon [19] having demonstrated
this to be $p2 -complete, although there is an efficiently decidable property that guarantees
coherence.

2. Examples

In order to clarify how particular disputes develop we give two examples based on the
argument systems, shown in Fig. 2. It may be observed that the system in Fig. 2(b) can be
interpreted as a representation of the tautology,

¬F(y, z)=¬((y ∨ z)∧ (y ∨¬z)∧ (¬y ∨ z)∧ (¬y ∨¬z)) (1)

and so serves to illustrate dispute progression for proving credulous acceptance of the
argument ¬F and sceptical acceptance of the same argument, i.e., that the argument F
in this system is not credulously accepted. A general translation from CNF formulae to
argument systems will be given in Definition 7.

For Fig. 2(a) one possible TPI-dispute over x (in which we abbreviate COUNTER,
BACKUP, and RETRACT to C,B,R) is,

k µk vk ∆k Γk Pk Qk

0 – x {u,v,w} {y, z,u, v,w} {x} ∅
1 C(y) y {u,v,w} {z,u, v,w} {x} ∅
2 C(v) v {u} {z,u} {x, v} ∅
3 B(0, z) z {u} {u} {x, v} ∅
4 R x {u,v,w} {y, z,u, v,w} {x} {x, v}
5 C(y) y {u,v,w} {z,u, v,w} {x} {x, v}
6 C(u) u {v,w} {z, v,w} {x,u} {x, v}
7 B(4, z) z {v,w} {v,w} {x,u} {x, v}
8 C(w) w ∅ ∅ {x,u,w} {x, v}

(2)
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Fig. 2. Two example argument systems.

It may be observed thatD, at µ2, makes an ‘incorrect’ move in attacking y using v (instead
of u) thus removing w from the set of available arguments and allowing C to force a
retraction by attacking x with z. Of course, D could have shortened the length of the
dispute by playing COUNTER(u) as the second move. As we noted earlier, the intention is
to define the protocol for disputes in such a way that even if D advances what turn out to
be ill-advised counter-attacks, this does not result in the game being lost since there are
opportunities to correct. For Fig. 2(a) there are exactly three possible TPI-disputes over x:
two in which C first counter-attacks with y , and one in which the initial counter-attack is
using z.

As a final illustration we give an example of a dispute establishing sceptical acceptance
of −F in the system of Fig. 2(b). It is not difficult to see that this follows by showing that
F is not credulously accepted, so the description is given in terms of a successful rebuttal
of F ;

k µk vk Pk Qk

0 – F {F } ∅
1 C(C1) C1 {F } ∅
2 C(y) y {F,y} ∅
3 B(0,C3) C3 {F,y} ∅
4 C(z) z {F,y, z} ∅
5 B(0,C4) C4 {F,y, z} ∅
6 R F {F } {{F,y, z}}
7 C(C1) C1 {F } {{F,y, z}} (3)

8 C(z) z {F,z} {{F,y, z}}
9 B(6,C2) C2 {F,z} {{F,y, z}}

10 R F {F } {{F,y, z}, {F,z}}
11 C(C1) C1 {F } {{F,y, z}, {F,z}}
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12 C(y) y {F,y} {{F,y, z}, {F,z}}
13 B(10,C3) C3 {F,y} {{F,y, z}, {F,z}}
14 R F {F } {{F,y, z}, {F,z}, {F,y}}
15 C(C1) C1 {F } {{F,y, z}, {F,z}, {F,y}}

and now, D cannot counter-attack C1 without constructing an already shown to be
inadmissible set nor RETRACT since P15 = {F }.

3. Complexity of argument games

The preceding sections have largely been concerned with a rigorous formulation of the
concept of TPI-dispute as first outlined in [38]. The principal aim of the present paper,
however, is to consider the following questions.

Question 1. Given a TPI-dispute instance—〈H, x〉—such that x is credulously accepted in
H, how many moves are required (in the worst case) in a dispute M defining a successful
defence of x?

Question 2. Given a TPI-dispute instance—〈H, x〉—such that x is not credulously
accepted in H, how many moves are necessary (in the best case) for a dispute M
establishing a successful rebuttal of x?

In view of Theorem 3, Question 2, is of interest with respect to the number of moves
required to establish sceptical acceptance of an argument.

In order to make these precise, we introduce the idea of Dispute Complexity. Given an
instance of a TPI-dispute, 〈H, x〉, its dispute complexity, denoted δ(H, x) is,

δ(H, x)= min
M: M is a terminated dispute over x in H

|M|.

Question 1 turns out to have a relatively straightforward characterisation using the
following idea.

Definition 6. Let H(〈X ,A〉) be an argument system and x ∈ X an argument that is
credulously accepted in H. The rank of x in H, denoted ρ(H, x), is defined by

min
S⊆X /{x}: S∪{x} is admissible in H

|S|.

Theorem 4. For any TPI-dispute instance—〈H, x〉—in which x is credulously accepted
in H,

δ(H, x)= 2ρ(H, x).

Proof. To see that δ(H, x)� 2ρ(H, x), consider the subset S of X that attains the value
ρ(H, x). By an argument similar to that in the proof of Theorem 1, x can be defended
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in a TPI-dispute, with D employing only arguments in S. Adopting such a strategy,
D never needs to invoke the RETRACT move. The size of the set, P , to which D is
committed increases by one with each move made by D as more members of S are
added. It follows that, since S is admissible, the Challenger will have no further moves
open once D has committed to every argument in S. To complete the proof we show
that δ(H, x)� 2ρ(H, x). Consider a TPI-dispute, M , that attains δ(H, x) and the dispute
tree, T|M| that is active when the Challenger admits defeat. Certainly, |M| must be at
least twice the number of arguments in T|M| (excluding x). The arguments to which D is
committed after the |M|th move must define an admissible set (otherwise C could continue
the dispute by finding an appropriate y attacking some member of P|M|). It follows that
|P|M|/{x}|� ρ(H, x) and thence δ(H, x)� 2ρ(H, x) as required. ✷

Theorem 4, in its characterisation of the answer to our first question, can be interpreted
in the following way: if an argument x is credulously accepted in the system H then
there is a ‘short proof’ of this, i.e., using the TPI-dispute that achieves δ(H, x) moves.
It is important to note that this does not imply that deciding if such a proof exists can be
accomplished efficiently: given the results of [16]4 (from which it may be deduced that CA

is NP-complete) it seems unlikely that such a decision method could be found.
For the remainder of this paper we are concerned with the second question raised. As

with the view proposed in the preceding paragraph, we can interpret results concerning this
question in terms of properties of the ‘size’ of ‘proofs’ that an argument is not credulously
accepted. The decision problem CA being NP-complete, indicates that such proofs are
concerned with a CO-NP-complete problem. While all NP-complete problems are such that
positive instances of these have concise proofs that they are positive instances (this being
one of the defining characteristics of the class NP as a whole) it is suspected that no CO-NP-
complete problem has this property. In other words, we have the following (long-standing)
conjecture: if L is a CO-NP-complete problem, then there are (infinitely many) instances,
x of L, for which L(x) is true but the ‘shortest proof’ of this is of length superpolynomial
in the number of bits needed to encode x .5

The discussion above suggests that (assuming NP �= CO-NP) there must be infinitely
many instances 〈H, x〉 for which x is not credulously accepted in H and for which
δ(H, x)—the dispute complexity of the instance—is superpolynomial in |X |, the number
of arguments in the system.

Our goal in the remainder of this paper is to establish the existence of a sequence of
TPI-dispute instances—〈HN,x〉—havingN arguments, x not credulously accepted in HN ,
and with the number of moves in any terminated TPI-dispute being exponential in N . Of
course, since these bounds apply only to our specific formalisation, this raises the question
of defining ‘more powerful’ dispute protocols.

4 Dimopoulos and Torres [16] employ rather different terminology from that introduced by Dung [17],
however, it is not difficult to relate the two: a brief discussion interpreting the contribution of [16] in terms of
Dung’s argument systems is presented in [19].

5 In complexity-theoretic terms, this is the assertion that NP �= CO-NP. It is worth noting that if true, it implies
P �= NP. The converse, however, is not (necessarily) true: in principle one might have NP= CO-NP and P �= NP.
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3.1. Propositional tautologies and argument systems

The proof that CA is NP-complete obtained in [16] is effected through a reduction from
3-SAT, this construction extending easily to CNF-SAT, i.e., without the restriction of three
literals per clause. The class of argument systems that result via this translation of CNF

formulae turn out to be central to the analysis of dispute complexity, we therefore review
the details of this in,

Definition 7. Given,

ϕ(Zn)=
m∧
i=1

Ci =
m∧
i=1

(
ki∨
j=1

yi,j

)

a propositional formula in CNF comprising m clauses—Ci—the ith containing exactly
ki � 1 distinct literals over the propositional variables Zn = 〈z1, z2, . . . , zn〉, the argument
system Hϕ(〈Xϕ,Aϕ〉) has 2n+m+ 1 arguments

Xϕ = {ϕ} ∪ {C1,C2, . . . ,Cm} ∪ {z1,¬z1, z2,¬z2, . . . , zn,¬zn}
and attack relationship Aϕ in which,

(1) ∀Ci 〈Ci,ϕ〉 ∈Aϕ .
(2) ∀zj 〈zj ,¬zj 〉 ∈Aϕ and 〈¬zj , zj 〉 ∈Aϕ .
(3) 〈zj ,Ci〉 ∈Aϕ if zj is a literal in the clause Ci .
(4) 〈¬zj ,Ci〉 ∈Aϕ if ¬zj is a literal in the clause Ci .

For convenience we will subsequently write y ∈C rather than ‘y is a literal in the clauseC’.

This system is similar (although not identical) to the mechanism defined in [16,
Theorem 5.1, p. 227]. It is straightforward to show as a consequence,

Fact 1. The CNF formula ϕ(Zn) is satisfiable if and only if the argument ϕ is credulously
accepted in the system Hϕ(〈Xϕ,Aϕ〉).

Thus in attempting to derive lower bounds on dispute complexity for cases in which x
is not credulously accepted in H, we could focus on bounding δ(Hϕ,ϕ) for appropriate
instances in which ¬ϕ(Zn) is a tautology, i.e., ϕ(Zn) is not satisfiable.

Our approach to establishing such lower bounds will be rather less direct than that of
examining δ(Hϕ,ϕ) for a specific propositional tautology ¬ϕ. Instead, we shall show that
the progression of a TPI-dispute over ϕ can be ‘efficiently simulated’ within a specific
Proof Calculus for Propositional Logic: since the calculus we employ is known to require
exponentially long proofs to validate certain tautologies, it will then follow that δ(Hϕ,ϕ)
for such ϕ must also be exponential (in the number of arguments defining Hϕ).

It is worth noting, at this point, that there is a rich corpus of research concerning the
length of proofs in various proof systems. Results on the complexity of General Resolution
date back to the seminal paper of Haken [23] in which this approach was shown to require
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exponential length proofs for tautologies corresponding to the combinatorial Pigeon-Hole
Principle, with important subsequent work in, e.g., [1,3,4,30], etc. Excellent introductory
surveys discussing progress involving proof complexity may be found in the articles by
Pudlák [31] and Beame and Pitassi [5].

3.2. The Gentzen Calculus for Propositional Logic

The Proof Calculus around which our simulation is built is the Gentzen (or Sequent)
Calculus, [21], with, however, one of its standard inference rules being unavailable.

In its most general (propositional) form, the Gentzen Calculus, prescribes rules for
deriving sequents—Γ ⇒∆—where Γ , ∆ are sets of propositional formulae (over a set of
atomic propositional variables {x1, x2, x3, . . .}) built using some finite (complete) logical
basis. A proof of the sequent Γ ⇒ ∆, consists of a sequence of derivation steps each
of which is either an axiom or follows by applying one of the rules to (at most) two
previously derived sequents. In what follows we observe the convention of employing
upper case Roman letters—{A,B,C, . . . , }—to denote propositional formulae, and upper
case Greek letters—{Γ,∆, . . .}—to denote sets of such formulae. We use Γ,A to denote
the set Γ ∪ {A}.
Definition 8 (Gentzen Calculus for Propositional Formulae). Let L be the language of
well-formed formulae using the basis {∧,∨,¬} and propositional variables drawn from
{z1, z2, z3, . . .}.

A sequent is an expression the form Γ ⇒ ∆ where Γ , ∆ are (finite) subsets of L,
i.e., sets of well-formed formulae. For a sequent S = Γ ⇒∆ we use LHS(S) to denote Γ
and, similarly, RHS(S) to denote ∆. A Gentzen System is defined by a set GS of axioms
and inference rules. A sequent Γ ⇒ ∆ is provable in the Gentzen System GS (written
�GS Γ ⇒∆), if there is a finite sequence of sequents,

S1, S2, . . . , Sk−1, Sk, Sk+1, . . . , St

for which St is the sequent Γ ⇒ ∆ and for all k (1 � k � t), the sequent Sk is either an
axiom of GS or there are sequents Si , Sj (with i, j < k) and an inference rule r of GS
such that Sk may be inferred from Si and Sj as a consequence of the rule r . The Proof
Complexity of a sequent S in the Gentzen System GS (denoted π(S,GS) is defined for
provable sequents, to be the least t such that S is derived by a sequence of t sequents.6

We shall use a modification of the Gentzen system, G shown in Table 1, wherein A and
B are members of L, and Γ , ∆, etc. subsets of L.

It may be observed that the Resolution Rule is, in fact, a special case of the CUT rule: if
we consider clauses

P = x ∨
r∨
i=1

yi; Q=¬x ∨
s∨
i=1

zi

6 We note that some authors choose to define proof complexity in terms of the total number of symbol
occurrences over the derivation. For the class of propositional formulae we will be considering, the two measures
are polynomially equivalent.



236 P.E. Dunne, T.J.M. Bench-Capon / Artificial Intelligence 149 (2003) 221–250

Table 1
The Gentzen system G

Axioms
{A} ⇒ {A}

Rules
(θ⇒) Γ ⇒∆ Γ ⇒∆ (⇒ θ)

Γ,A⇒∆ Γ ⇒∆,A

(CUT) Γ ⇒∆,A ; Γ ′,A⇒∆′
Γ ∪ Γ ′ ⇒∆∪∆′

(¬⇒) Γ ⇒∆,A Γ,A⇒∆ (⇒¬)
Γ,¬A⇒∆ Γ ⇒∆,¬A

(∨⇒) Γ,A⇒∆ ; Γ ′,B⇒∆′ Γ ⇒∆,A,B (⇒∨)
Γ ∪ Γ ′,A∨B⇒∆∪∆′ Γ ⇒∆,A∨B

these are resolved (on x) to the clause

r∨
i=1

yi ∨
s∨
j=1

zj .

The clause P may be expressed as the sequent, {y1, . . . , yr} ⇒ {¬x} and Q as {¬x} ⇒
{¬z1, . . . ,¬zs} whence the sequent {y1, . . . , yr} ⇒ {¬z1, . . . ,¬zs} follows from the CUT

rule. For a more detailed comparison of General Resolution and Gentzen calculi the reader
is referred to [2].

The Gentzen system that we will be considering is G/CUT, i.e., that which allows all
of the rules of the system G except for the CUT rule. We recall some standard results
concerning the systems G and G/CUT.

Fact 2 (Gentzen [21]). The propositional formula F ∈ L is a tautology if and only if
�G ∅⇒ {F}.

Fact 3 (The Gentzen Cut-Elimination Theorem [21]).

�G ∅⇒ {F} if and only if �G/CUT ∅⇒ {F}.

Fact 3 establishes that the CUT rule is not needed in order to derive any provable sequent.
Nonetheless, CUT turns out to be an extremely powerful operation:

Fact 4 (Urquhart [35,36]). There are (infinite) sequences of formulae 〈Fn〉 in L for which:

(a) Fn is a propositional tautology of n propositional variables.
(b) π(∅⇒ {Fn},G)=O(nk) (for k ∈N).
(c) π(∅⇒ {Fn},G/CUT)=/(2nε ) (where ε > 0).
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These constructions by Urquhart are explicit, i.e., a specific sequence 〈Fn〉 is proved to
have the properties stated in Fact 4.

We now state and prove the main theorem of this paper.

Theorem 5. Let

ϕ(Zn)=
m∧
i=1

Ci =
m∧
i=1

(
ki∨
j=1

yi,j

)

be any unsatisfiable CNF-formula, Hϕ be the argument system defined from ϕ(Zn) as given
in Definition 7, and Sϕ the ( provable) sequent,

∅ ⇒
m⋃
i=1

{
¬
(

ki∨
j=1

yi,j

)}
.

Then,

π
(
Sϕ,G/CUT

)
� δ(Hϕ,ϕ)+ 2n+m. (4)

Less formally, Theorem 5 states that the length of the shortest proof of ¬ϕ (ϕ being
in CNF) being a tautology within the CUT-free Gentzen system cannot be ‘much greater
than’ the number of moves needed to form a successful rebuttal of ϕ in the argument
system Hϕ .

Proof of Theorem 5. Let, ϕ, Hϕ , and Sϕ be as described in the Theorem statement. Given
any terminated TPI-dispute,M over ϕ in Hϕ we describe how its progress may simulated
in the Gentzen system G/CUT. We first observe two important properties of the dis-
puteM .

Firstly, M may be encoded as a sequence of ordered sets, Ri , (for which the term
retraction round will subsequently be employed). Each of these takes the form

Ri = 〈D1, y1,D2, y2, . . . ,Dj , yj , . . . ,Dq, yq,Fi〉, (5)

where

{D1,D2, . . . ,Dq,Fi} ⊆ {C1,C2, . . . ,Cm}, yj ∈Dj, yj /∈ Fi ∀1 � j � q.

In other words, Ri describes the alternation between clauses (D) used to attack ϕ and
counterattacks (y) used to repel these attacks. The final attack by the clause Fi is the
position at which the retraction of {ϕ,y1, y2, . . . , yq} is forced. We observe that |R1| is the
number of moves made in M prior to the first RETRACT move; and in general, |Ri | is the
number of moves between the retraction arising from Ri−1 and the next such in M .

In the final move of M , the corresponding set R, contains just a single clause: i.e., that
clause of ϕ upon which the Defender, by reason of the totality of earlier retractions, can
mount no attack.

The second property of interest concerns the relationship between the literals defining
a retraction forcing clause, F , and those used to defend against attacks on ϕ within the
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current dispute tree, i.e., the literals {y1, y2, . . . , yq}. The literals in F may be partitioned
into two sets,

W = {w1,w2, . . . ,wr}; U = {u1, u2, . . . , us} (6)

wherein the literals in W cannot be used to attack F since for each w ∈ W , ¬w ∈
{y1, y2, . . . , yq} and those in U are unavailable since for each u ∈ U , there is some subset
V of {y1, y2, . . . , yq} such that the Defender has retracted {ϕ,V,u} in an earlier move.

With the two observations above, the idea underlying the proof may be described,
informally, as efficiently deriving sequents that simulate the reasoning through which
retractions are forced. More precisely, given

〈R1,R2, . . . ,Ri, . . . ,Rt 〉
the sequence of retraction rounds describing the dispute M , we construct a mapping
β : {1,2, . . . , t}→N and sequents

〈S1, S2, S3, . . . , Sp〉
for which

β(i + 1) > β(i)� 1 (1 � i < t)
β(t)� p � β(t)+m

and

Sp = Sϕ = ∅ ⇒
m⋃
i=1

{
¬
(

ki∨
j=1

yi,j

)}
.

In general, the sequent Sβ(i) will express the fact that the Defender must retract the set
{ϕ,y1, y2, . . . , yq} in the ith round, since this leaves no defence available to an attack by
the clause Fi on ϕ.

To avoid a surfeit of subscripts, we use Yi to denote the set {y1, y2, . . . , yq} of literals
defining Ri , with Wi and Ui being the partition of the retraction forcing clause, Fi , as
described in (6) (obviously the exact number of literals in each of these will be dependent
on which retraction round Ri is relevant).

When Ui �= ∅, for each u ∈ Ui , ret(u,Yi) is a minimal (with respect to ⊆) subset of
Yi for which the set of arguments {ϕ,u, ret(u,Yi)} has been the subject of an earlier
retraction.7 Finally, index(u,Yi) is,

index(u,Yi)=max
{
k � β(i − 1): LHS(Sk)= ret(u,Yi) ∪ {u}

}
. (7)

Note. That index(u,Yi) is well-defined will be clear from the remainder of the proof.

The theorem will follow from the claim below.

7 An indefinite article is required here, since there may be more than one such subset, e.g., {ϕ,y1, u} and
{ϕ,y2, u} could both have been retracted: the subsequent argument will show that in such cases, ret(u,Y ) can be
chosen to be either {y1} or {y2}.
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Claim 1. Given 〈R1, . . . ,Rt 〉 the sequence of retraction rounds defined by M , there is a
mapping β : {1,2, . . . , t} →N, with the following properties: β(i + 1) > β(i) > 1; and, if
the sequent, Sβ(i) is defined to be

Sβ(i) = {Yi}⇒ {¬Fi} ∪
⋃
u∈Ui

RHS(Sindex(u,Yi)),

then

(a) Sβ(i) is well-defined, i.e., index(u,Yi) is defined for each u ∈ Ui .
(b) Sβ(i) is provable in G/CUT with π(Sβ(i),G/CUT)� β(i).

Proof. First note that we may use the following derivations as the first 2n lines, prior to
establishing Sβ(1). In consequence, β(1) > 2n.

Sequent via Line
{zj }⇒ {zj } Axiom 2j − 1
{zj ,¬zj }⇒ ∅ (¬⇒) and 2j − 1 2j

We complete the proof of the claim by induction on i � 1. The inductive base, i = 1, deals
with the retraction enforced by R1, i.e., we need to show that the sequent

Sβ(1) = {Y1}⇒ {¬F1}
is derivable. Noting that R1 represents the first occurrence of a RETRACT move by the
Defender, the set U1 must be empty, i.e., the retraction is forced because each literal that
could be used to attack F1 is unavailable by reason of Y1 containing its negation. It follows
that,

F1 =W1 = {w1,w2, . . . ,wr },
Y1 = {¬w1,¬w2, . . . ,¬wr, yr+1, yr+2, . . . , yq}.

Let Tk (for 1 � k � r) be the sequent,

{¬w1,¬w2, . . . ,¬wk},Ak⇒∅ where Ak =
k∨
j=1

wj .

For k = 1, the sequent T1 = {w1,¬w1} ⇒ ∅ has already been derived. For k > 1, Tk is
derived in one step from the sequent {wk,¬wk} ⇒ ∅ and Tk−1 by a single application of
the rule (∨⇒). We deduce that,

{¬w1,¬w2, . . . ,¬wk},F1 ⇒∅
is derived in k − 1 steps, and the required sequent—Sβ(1)—by a single application of
(⇒¬) to Tr followed by q − r applications of (θ⇒) in order to construct

{¬w1, . . . ,¬wr, yr+1, . . . , yq}⇒ {¬F1}.
This gives the value of β(1) as 2n+ q , where we note that µ2q+2 is the first RETRACT

move occurring in M .
For the Inductive Step, we assume for all retraction rounds Rj with 1 � j < i that the

following hold:
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(IH1) The value of β(j) has been defined.
(IH2) The sequent,

Sβ(j) = {Yj }⇒ {¬Fj } ∪
⋃
u∈Uj

RHS(Sindex(u,Yj ))

has been derived in G/CUT after β(j) steps.

To complete the inductive proof of Claim 1, we ‘simulate’ the retraction round Ri and to
this end it is necessary to,

(C1) define a value of β(i) which is greater than β(i − 1), and
(C2) show that the sequent,

{Yi}⇒ {¬Fi} ∪
⋃
u∈Ui

RHS(Sindex(u,Yi))

is well-defined and derivable in a further β(i)− β(i − 1) steps.

Consider the retraction forcing clause, Fi = {Wi,Ui}, so that

Yi = {¬w1,¬w2, . . . ,¬wr, yr+1, yr+2, . . . , yq}.
If Ui = ∅, then with β(i)= β(i − 1)+ q , the sequent,

Sβ(i) = {Yi}⇒ {¬Fi}
is derivable in a further q steps using exactly the same approach as employed in the
Inductive Base. Thus we may assume that Ui is non-empty with

Ui = {u1, u2, . . . , us}.
Recalling that 〈Wi,Ui〉 is a partition of Fi it is certainly the case that neither ¬u ∈ Yi nor
u ∈ Yi (the latter holding since Fi was available to the Challenger with which to attack ϕ).
This being so and u being unavailable to the Defender to attack Fi it follows that there
has been a retraction round in which some subset of Yi together with u (and ϕ) have been
retracted. Therefore, some such subset of Yi must satisfy the criteria defining ret(u,Yi)
with respect to u. Suppose Rj is the round at which a committment to {ϕ,u, ret(u,Yi)}
was retracted by the Defender. Clearly, j < i and hence from the Inductive Hypothesis, the
sequent, Sβ(j), with,

Sβ(j) =
{
u, ret(u,Yi)

}⇒∆ where ∅ ⊂∆⊆ {¬C1, . . . ,¬Cm}
has been derived. As a result we deduce that for each u ∈ Ui , the value index(u,Yi) is
defined and does not exceed β(i − 1). In summary, we have proven (via the Inductive
Hypothesis) the existence of s = |Ui | sequents,

〈Si,1, Si,2, . . . , Si,s 〉
for which

LHS(Si,k)= ret(uk,Yi)∪ {uk} and RHS(Si,k)⊆ {¬C1,¬C2, . . . ,¬Cm}.
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We can now complete the derivation of the required sequent Sβ(i).
From s − 1 applications of (∨⇒) using Si,1, Si,2, . . . , Si,s we obtain

Sβ(i−1)+s−1 =
{

s⋃
k=1

ret(uk,Yi)

}
,

s∨
k=1

uk ⇒
{

s⋃
k=1

RHS(Si,k)

}
.

A further r applications of (∨⇒) involving Sβ(i−1)+s−1 and the sequents

{wk,¬wk}⇒ ∅
yields Sβ(i−1)+r+s−1 as{

s⋃
k=1

ret(uk,Yi)

}
∪
{

r⋃
k=1

¬wk
}
,

s∨
k=1

uk ∨
r∨
k=1

wk ⇒
{

s⋃
k=1

RHS(Si,k)

}
.

Recalling that,

Fi =
(

s∨
k=1

uk ∨
r∨
k=1

wk

)

a single application of (⇒¬) to Sβ(i−1)+r+s−1 gives Sβ(i−1)+r+s as,{
s⋃
k=1

ret(uk,Yi)

}
∪
{

r⋃
k=1

¬wk
}
⇒

{
s⋃
k=1

RHS(Si,k)

}
, ¬Fi.

Finally, since it may be the case that{
s⋃
k=1

ret(uk,Yi)

}
∪
{

r⋃
k=1

¬wk
}
⊂ Yi

(i.e., a strict subset of Yi ) a total of,∣∣∣∣∣Yi
/{ s⋃

k=1

ret(uk,Yi)∪
r⋃
k=1

¬wk
}∣∣∣∣∣

applications of (θ⇒) will give Sβ(i) as,

Sβ(i) = {Yi}⇒ {¬Fi} ∪
⋃
u∈Ui

RHS(Sindex(u,Yi)),

where

β(i − 1)+ r + s � β(i)� β(i − 1)+ r + s + q � β(i − 1)+ 2q.

Note that 2q = |Ri |−1 is the total number of moves occurring inM between the retraction
round Ri−1 and Ri . This completes the inductive proof of the claim. ✷

To complete the proof of the theorem we need only observe that the total number of
steps required to derive Sϕ is bounded above by β(t)+m.



242 P.E. Dunne, T.J.M. Bench-Capon / Artificial Intelligence 149 (2003) 221–250

(The additional m arises from the possibility that Sβ(t) may be of the form ∅⇒∆ with
∆ a (non-empty) strict subset of

{¬C1,¬C2, . . . ,¬Cm}.
This could occur if some subset ψ of ϕ’s clauses defined an unsatisfiable CNF-formula.
In such cases Sβ(t) would not be identical to the sequent Sϕ of the theorem statement,
however, at most m applications of (⇒ θ) (adding the ‘missing’ ¬Ci clauses) will suffice
to derive Sϕ from Sβ(t).)

From the analysis in the proof of the claim it is clear that the values β(i) satisfy:

β(i)� β(i − 1)+ |Ri | when 1< i � t,
β(1)� 2n+ |R1|,

hence β(t)� 2n+∑t
i=1 |Ri |� 2n+ |M|.

Thus from any terminated TPI-dispute, M , over the unsatisfiable CNF-formula ϕ in the
argument system Hϕ we may construct a proof in G/CUT that ¬ϕ is a tautology, i.e., of
the sequent Sϕ . Since this proof involves at most |M| + 2n+m steps we conclude that

π(Sϕ,G/CUT)� δ(Hϕ,ϕ)+ 2n+m
as required. ✷

From Theorem 5 we get,

Corollary 1. There are (infinite) sequences of argument systems with arguments x ∈ X not
credulously accepted but with the number of moves in any TPI-dispute establishing such
exponential in |X |.

To conclude this section, we illustrate how the example of Fig. 2(b) that resulted in the
dispute given in (3) translates into a derivation of the required sequent following the proof
in Theorem 5.

3.3. Example

Recall that Fig. 2(b) could be interpreted as the tautology

¬F(y, z)=¬((y ∨ z)∧ (y ∨¬z)∧ (¬y ∨ z)∧ (¬y ∨¬z)). (8)

From (3) using the encoding of retraction rounds described in the proof of Theorem 5

R1 =
〈
(y ∨ z), y, (¬y ∨ z), z, (¬y ∨¬z)〉,

R2 =
〈
(y ∨ z), z, (y ∨¬z)〉,

R3 =
〈
(y ∨ z), y, (¬y ∨ z)〉,

R4 =
〈
(y ∨ z)〉.

(9)

The sequent we wish to derive is

∅⇒ {¬(y ∨ z),¬(y ∨¬z),¬(¬y ∨ z),¬(¬y ∨¬z)}. (10)
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Following the mechanism in the theorem, for R1 we wish to derive

Sβ(1) = {y, z}⇒
{¬(¬y ∨¬z)}.

This is obtained by

Sequent via Line

{y}⇒ {y} Axiom 1

{y,¬y}⇒ ∅ 1, (¬⇒) 2

{z}⇒ {z} Axiom 3

{z,¬z}⇒ ∅ 3, (¬⇒) 4

{y, z}, (¬y ∨¬z)⇒∅ 2,4, (∨⇒) 5

{y, z}⇒ {¬(¬y ∨¬z)} 5, (⇒¬) 6

Hence β(1)= 6.
For R2 the sequent required is

Sβ(2) = {z}⇒
{
(¬(y ∨¬z),¬(¬y ∨¬z)}

where we use the fact that ret(y, {z})= {z}, so that index(y, {z})= 6.

Sequent via Line

{z}, (y ∨¬z)⇒{¬(¬y ∨¬z)} 4,6, (∨⇒) 7

{z}⇒ {¬(¬y ∨¬z),¬(y ∨¬z)} 7, (⇒¬) 8

whence β(2) = 8. Notice that in deriving S7, LHS(S4) is viewed as {z},¬z and LHS(S6)

as {z}, y , i.e., with Γ = Γ ′ = {z}, A= ¬z, and B = y when the inference rule (∨⇒) of
Table 1 is used.

For R3 the sequent required is

Sβ(3) = {y}⇒
{¬(¬y ∨ z),¬(y ∨¬z),¬(¬y ∨¬z)},

where we use the fact that ret(z, {y})= ∅, so that index(z, {y})= 8.8

Sequent via Line

{y}, (¬y ∨ z)⇒{¬(¬y ∨¬z),¬(y ∨¬z)} 2,8, (∨⇒) 9

{y}⇒ {¬(¬y ∨¬z),¬(y ∨¬z),¬(¬y ∨ z)} 9, (⇒¬) 10

giving β(3)= 10.
Finally for R4 we have

ret(y,∅)= ∅ with index(y,∅)= 10,

ret(z,∅)= ∅ with index(z,∅)= 8,

8 Were ret(z, {y}) not subject to a minimality condition, it could also be chosen as {y}, giving index(z, {y})=
6. This choice would, in fact, still lead to a proof of the required final sequent. We also note the need for
index(z, {y}) to be maximal since LHS(S3)= {z}.
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so that using S8, S10 and (∨⇒) gives

S11 =
{
(y ∨ z)}⇒ {¬(¬y ∨¬z),¬(y ∨¬z),¬(¬y ∨ z)}

and with a single application of (⇒¬) to S11, we derive the required sequent

S12 = ∅⇒
{¬(y ∨ z),¬(y ∨¬z),¬(¬y ∨ z),¬(¬y ∨¬z)}.

The results above show that TPI–disputes can be interpreted as a proof calculus with which
to establish unsatisfiability of propositional formula presented in CNF, and that viewed
thus, the number of ‘moves’ taken to resolve a dispute—i.e., prove thatΦ is unsatisfiable—
is bounded below by the number of lines in the shortest derivation of⇒¬Φ in a CUT-free
Gentzen System.

It may be shown that for any unsatisfiable CNF-formula Φ , the number of moves
required in a TPI-dispute over 〈HΦ,Φ〉 cannot be ‘much larger’ than the size of the smallest
clausal tableau refutation of Φ . An immediate consequence of this result being that the
propositional proof system afforded by TPI-disputes is polynomially equivalent—in sense
of [12]—to CUT-free Gentzen Systems and Clausal Tableaux, i.e., if 〈Π1,Π2〉 are any two
proof systems from

{Gentzen/CUT, Clausal Tableaux, TPI-dispute}
then the length of the shortest validity proofs of ¬Φ for CNF-formulae Φ in Π1 is at worst
polynomially larger than the length of the shortest proof in the system Π2. This follows
from the equivalence of Clausal Tableaux and CUT-free Gentzen Systems, details of which
may be found in [33, Chapter XI].

Definition 9. Let Φ(Zn) = ∧m
i=1Ci be an unsatisfiable CNF-formula with clause set

{C1,C2, . . . ,Cm}. A clausal tableau forΦ is a tree T (V,E) in which the non-leaf vertices,
v, are associated with a clause C(v) of Φ , in accordance with the following rules.

On any path ρ = v0 → v1 → ·· ·→ vr from the root (ρ) to a leaf vr , each clause Ci of
Φ labels at most one of {v0, v1, . . . , vr−1}. If ρ ∈ V is the root of T and C(ρ)=∨k

i=1 yρ,i
the clause associated with ρ, then ρ has exactly k children—〈v1, v2, . . . , vk〉 with the edge
〈ρ, vj 〉 labelled yi,j . If v ∈ V is a non-leaf vertex (other than the root) let U be the set
of literals labelling edges on the (unique) path from ρ to v and C(v) =∨s

i=1 yv,i be the
clause associated with v. Again, v has exactly s children 〈w1,w2, . . . ,ws〉 with the edges
〈v,wi 〉 labelled yv,i . In this case, however, the vertex wi is a leaf labelled ⊥ if the literal
¬yv,i ∈ U . A vertex is closed if every path from it leads to a leaf (labelled ⊥). A clausal
tableau is a refutation for Φ if its root is closed.

The size of a clausal tableau T (V,E)—denoted τ (T )—is the total number of internal
vertices contained in it. The clausal tableau complexity of an unsatisfiable CNF-formula
Φ(Zn), is

τ
(
Φ(Zn)

) =
def

min
{
τ (T ): T is a clausal tableau refutation of Φ(Zn)

}
.

Theorem 6. Let Φ(Zn) =∧m
i=1Ci be an unsatisfiable CNF-formula and T (V,E) any

clausal tableau refutation of Φ(Zn), then δ(HΦ,Φ)� (2n+ 1)τ (T ).

Proof. See [18]. ✷
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4. Discussion and further work

In this paper our primary goal has been to formalise the argument game (TPI-dispute)
introduced in [38] and to analyse this in terms of one particular computational measure—
dispute complexity. For what is technically the most interesting case—the length of dispute
required to convince Defenders of an argument that their position is untenable—we
have shown in Theorem 5 that applying this dispute regime to simple argument system
representations of propositional tautologies occasions a form of proof calculus. This
calculus is in one sense, however, extremely limited: any proof within it being capable of
description by a comparable length proof in a CUT-free Gentzen System. Since examples
are known of tautologies where allowing CUT admits exponentially shorter proofs9 the
protocol enforced by TPI-disputes when applied to certain propositional argument systems
may take significantly longer to reach a conclusion than ‘more powerful’ deductive
systems. We noted earlier, in describing the semantics of the RETRACT move that the
position reverted to is the initial argument, rather than some ‘intermediate’ state of the
dispute tree being developed. Among the reasons for favouring returning to the initial
position, is that the length of disputes (as indicated by our simulation using CUT-free
Gentzen Systems) does not, primarily, result from potentially repeating chains of defence
which will ultimately fail: if the retraction mechanism were to revert to a ‘sub-tree’ of the
dispute tree, cf. in a similar manner to that of the Challenger’s BACKUP move, then this
could be simulated from the initial argument just by repeating the relevant COUNTER and
BACKUP moves. Since the size of any dispute tree can be at most the number of arguments
within the system itself, a more sophisticated RETRACT semantics could only shorten the
length of a dispute by a polynomial factor—not reduce it exponentially.

Before dealing with some questions that are raised by the main result of this paper, it
may be useful to place our concerns in the general context of argument systems, dialogue
games, reasoning systems, etc. While the view of dialogue process as a 2-player game has
been long established, e.g., MacKenzie’s DC [27], interpretations of Toulmin’s Argument
Schema [34] as a game-based method [6], etc., the direction towards which such work has
tended is in attempting formally to capture different types of dialogue process: e.g., [22]
is, primarily, concerned with argument in a legal reasoning context. As a result there is
a wealth of differing models of dialogue ranging from taxonomies of dialogue types as
in Reed [32] and Walton and Krabbe [39] to frameworks modelling divers concepts of
what ‘winning’ a dialogue game might mean, e.g., [24]. Despite this variety of approaches,
one unifying trend is that the central concern is primarily semantic, i.e., in defining the
form(s) that games take, the rules and processes by which games evolve, the conditions
under which games terminate, and in establishing degrees of soundness and completeness
of the game capabilities. The question of how ‘efficient’ such processes might be, however,
seems to have been largely neglected, with the exception of general complexity-theoretic
classifications of Argumentation Frameworks within specific non-classical logics, e.g.,
[13–15] or analyses of termination properties. Thus, little work is evident concerning more
general contexts for the two questions which this paper has considered, i.e., with different

9 In fact, Urquhart [36], shows G/CUT can be weaker than simple truth-tables proving worst-case lower
bounds of /(n!) for the former as opposed to upper bounds of n2n for the latter.
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protocols for the conduct of dialogues, different attack semantics, concepts of ‘winning’
other than credulous acceptance. If practical applications of dialectic and reasoning games
are to be realised—as has become widely posited with the advent of autonomous agent
systems—then measures analogous to our concept of dispute complexity may be of
importance in evaluating implemented systems.

A rather different situation to that outlined in the preceding paragraph, pertains with
respect to concepts of Proof Complexity, that we have used as the basis of our analysis
of dispute complexity: Cook and Reckhow [12] introduced a formal mechanism for
comparing the complexity of different proof calculi so that two ‘different’ systems are
regarded as equipotent if a formal proof in one can be ‘simulated’ in the other with only
a small increase in size. An important feature of this approach is that it can be developed
to address questions concerning proof strategies for acceptance of instances in CO-NP-
problems other than UNSAT, e.g., the Graph Stability Number calculus of Chvátal [11],
or the Hajós Calculus for proving a graph has chromatic number greater than 3, [7,28].
It is the case, however, that these analyses are effectively only dealing with Classical
(Propositional) Logic, and such results as extend to non-classical Logics do so only by
virtue of propositional logic being treatable as a sub-case, e.g., Haken [23] trivially applies
to the Resolution Calculus for Temporal Logic of [20] simply by expressing the relevant
tautology without the use of any temporal operators, i.e., exactly as its propositional
form.

We conclude by reviewing some directions for further research, that encompass both
argument and dialogue game developments as well as extensions to the concept of dispute
complexity.

Within the framework of [12] while it is known that the Gentzen System G/CUT

is weaker than both the system G and Propositional Proof systems employing General
Resolution only, it is an open problem as to whether G and Resolution are equivalent,
i.e., it has yet to be shown that, e.g., the Pigeon-Hole Principle tautologies require
exponential length proofs in G, however no (efficient) simulation of G by Resolution has
been constructed. Theorems 5 and 6 establish that using the TPI-dispute protocol as a
vehicle for constructing proofs of propositional tautologies, ¬ϕ, affords a system which is
equivalent to G/CUT and Clausal Tableaux, thus we might represent the respective power
of various proof calculi for propositional tautologies informally as,

G � Resolution> (G/CUT ≡ TPI≡ Clausal Tableaux). (11)

The situation depicted in (11) raises some interesting questions. Firstly, it may be noted
that Theorem 5 operates in only ‘one direction’, that is we express the problem of proving
a propositional formula to be a tautology as a problem of showing an argument is not
credulously accepted in an argument system, thence relating a calculus for the latter to a
calculus for the former. We have not considered, however, translations of argument systems
into propositional formulae. For example, given 〈H(X ,A), x〉, the CNF-formula ϕ〈H,x〉
over variables X is,

x ∧
∧

〈y,z〉∈A
(¬y ∨¬z)∧

∧
y∈X

(
y ∨

∨
{z: 〈z,y〉∈A}

z

)
. (12)
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It is easy to show that there is a stable extension of H containing x if and only if ϕ〈H,x〉(X )
is satisfiable.10

Translations such as (12) also allow us to give a more precise interpretation of what
might be meant by ‘more powerful’ dispute protocol. Thus, let Π be a (2-player) dispute
protocol for argument systems (i.e., prescribing the repertoire of moves, state changes,
move applicability, termination conditions, etc.) with the properties that: given an instance
〈H, x〉 of CA

(a) Π can produce a successful defence of x if and only if x is credulously accepted in H.
(b) Π either always produces a successful defence or always results in a successful

rebuttal of x .

We can define analogous notions of dispute complexity with respect to arbitrary
protocols—say, δ(〈H, x〉,Π)—and hence regard protocol Π1 as ‘at least as powerful’ as
protocolΠ2 (denotedΠ1 �Π2) if there is a constant k with which: for all dispute instances
〈H, x〉

δ
(〈H, x〉,Π1

)=O
(
δ
(〈H, x〉,Π2

)k)
.

Problem 1. What features must be incorporated in a dispute protocol, Π , in order for it
to be more powerful than TPI? That is, for the dispute complexity of infinitely many TPI-
disputes to be superpolynomial in the dispute complexity of Π on the same instances.

Problem 2. Similarly, what features must be incorporated in Π for it to be at least as
powerful as General Resolution, Gentzen Systems, etc.?

It should be noted that there are subtle differences between Problems 1 and 2. The
former could be examined directly without recourse to phrasing in terms of propositional
proofs, the latter however is specifically concerned with the use of dispute protocols as a
propositional proof mechanism.

With respect to Problem 1 it has been observed earlier that something other than ‘local’
modifications to the state following a RETRACT move is needed.

A rather more general concern is that of what criteria must a ‘reasonable’ dispute
protocol satisfy. From complexity-theoretic considerations, the move repertoire and its
implementation cannot be permitted to be ‘too powerful’, e.g., treating as single operations
moves which are predicated on identifying structures in an argument graph whose
construction is NP-hard. While the TPI-dispute protocol is ‘realistic’ in the sense that the
applicability of a proposed move can be validated efficiently (this, of course, is not the same
as identifying a ‘best’ move), in addressing the issues raised by Problem 1 one may wish

10 Although it is possible to construct a (‘short’) CNF encoding ‘preferred extension containing x’ rather than
stable, this has a rather more opaque form. In any event since the absence of a preferred extension of x implies
the absence of a stable extension of x, for the constructions of interest (i.e., negative instances) the TPI-dispute
protocol defined still applies. Furthermore, Dimopoulos and Torres [16] show that deciding if H has a stable
extension containing a given argument x is also NP-complete.
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to restrict consideration to ‘reasonable’ protocols.11 It is, of course, unlikely (given the
conjecture NP �= CO-NP) that there is a ‘reasonable’ dispute protocol capable of resolving
any dispute within a number of moves polynomial in the size of the argument system
concerned. Nevertheless, just as the fact that existing lower bounds on Proof Complexity
in failing to encompass all possible systems—as would be needed to prove NP �= CO-NP—
motivates consideration of more powerful proof systems, so it is reasonable to examine
and precisely formulate ‘increasingly powerful’ dispute protocols.

Finally, even for ‘weak’ systems such as TPI-disputes in the case of instances which lead
to successful rebuttals of an argument, there is the issue of the Challenger constructing the
‘best’ line of attack, i.e., of finding the dispute that minimises dispute complexity. An
analogous situation in Proof Complexity was formulated in Bonet et al. [9]: suppose ϕ
is an unsatisfiable CNF with m clauses and n variables. Letting π(ϕ,S) denote the size
of the shortest proof of ¬ϕ in some Propositional Proof System S, then for a function,
q : N3 →N, S is said to be q-automatizable if there exists a (deterministic) algorithm that
produces a proof (in the system S) of¬ϕ in time q(π(ϕ,S), n,m). The cases of interest are
where q is polynomially bounded in π(ϕ,S). Informally, if a proof system is polynomially-
bounded automatizable, then this gives an algorithm that can ‘efficiently’ construct a proof
that is ‘not much larger’ than the optimal proof. The concept of q-automatizability can
be reformulated in the obvious way to refer to dispute complexity (or indeed verification
calculi for other CO-NP-complete problems). This motivates,

Problem 3. Let 〈H, x〉 be any TPI-dispute instance in which there are n arguments and
for which x is not credulously accepted in H. Is there a deterministic algorithm that in
q(δ(H, x), n) steps returns a terminated TPI-dispute M establishing a successful rebuttal
of x and with q bounded by a polynomial in δ(H, x)? In other words, is the TPI-dispute
protocol q-automatizable for some polynomial q?

To conclude our discussion of possible directions for further research, we note
that our model of dispute assumes both protagonists have complete knowledge of the
argument system (i.e., the finite directed graph structure). Thus the Defender may
choose counterattacks which are known to eliminate particular (subsequent) attacks by
the Challenger; similarly, as may be evinced by the development of the disputes from
unsatisfiable CNF-formulae, the Challenger may invoke attacks, potential defences to
which have been ruled out, e.g., when the Defender uses a literal y to attack a clause
C, the Challenger may continue using an available clause containing ¬y , knowing that ¬y
cannot be used as a defence. In many situations it may not be the case that such complete
knowledge is held ab initio. The modelling of disputes where the protagonists’ views of
the system evolve over several moves would provide a significant development of the
preliminary formalism described in this paper. Such an extension would have considerable
practical interest, since many of the implementations require such evolution. For example,
Gordon’s [22] game is intended to induce the participants to present the arguments that

11 Similar considerations arise in Proof Complexity and an accepted formalism has evolved to distinguish
‘reasonable’ from ‘unreasonable’ proof calculi. For the complexity-theoretic aspects affecting dispute protocols
such a formalism seems a plausible basis.
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they wish to deploy, essentially establishing the argumentation framework which will
be subsequently used when the question comes to trial. In [6] it is assumed that each
participant has only a partial view on the argumentation framework which is extended by
elements recognised by their opponents as the dialogue proceeds. If we consider disputes
between autonomous agents, it is perhaps unrealistic to expect them to begin with a shared
understanding of the overall argumentation framework.

5. Conclusion

In this paper we have introduced a formal concept of dispute complexity with which
to consider questions regarding the number of moves required in a dialogue over a given
argument before one player accepts that the argument is/is not defensible. Building on the
Argument System formalism of [17] and the argument game—TPI-dispute—discussed in
[38], a precise formulation of the latter has been presented. With this formulation at hand,
we are able to prove that there are instances representing a win for the Challenger but
for which exponentially many moves must be played before the Defender is convinced
of this. Our techniques exploit the close relationship between such dispute protocols and
the concept of formal proof calculi for propositional tautologies by showing that the TPI-
dispute protocol applied to representations of these can be used to build a proof of validity
in a CUT-free Gentzen System whose length is comparable to the number of moves needed
in a TPI-dispute. The ideas and techniques put forward in this paper represent just a
preliminary foundation: an extensive range of open questions and further directions for
research arise from this, only a selection of which have been discussed.
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Abstract

We investigate the computational complexity of a number of
questions relating to deductive argument systems, in partic-
ular the complexity of linking deductive and more abstract
argument systems. We start by presenting a simple model
of deductive arguments based on propositional logic, and
define logical equivalence and defeat over individual argu-
ments. We then extend logical equivalence to sets of argu-
ments, and show that the problem of checking equivalence of
argument sets is co-NP-complete. We also show that the prob-
lem of checking that an argument set contains no two logi-
cally equivalent arguments is NP-complete, while the prob-
lem of checking that a set of arguments is maximal (i.e., that
no argument could be added without such an argument being
logically equivalent to one that is already present) is co-NP-
complete. We then show that checking whether a digraph
over an argument set is sound with respect to the defeat re-
lation is co-NP-complete, while the problem of showing that
such a digraph is complete is NP-complete, and the problem
of showing both soundness and completeness is Dp-complete.

Introduction

Argumentation is the process of attempting to construct
rationally justifiable set of beliefs (Prakken & Vreeswijk
2001), and is increasingly used as a mechanism to support
interaction in multiagent systems (Parsons, Wooldridge, &
Amgoud 2003). The argumentation process typically starts
with a knowledge base that contains logical conflicts, and is
hence inconsistent: argumentation can be understood as the
process of extracting a rationally justifiable position from
this inconsistent starting point. Essentially two different ap-
proaches to formalizing arguments have been put forward
in the literature. The first is the abstract argument frame-
work of (Dung 1995). In this framework, the starting point
is simply a digraph, with vertices in the graph correspond-
ing to arguments, and edges in the graph representing the
notion of attack, or defeat, between arguments. Abstract
argument systems are so-called because they abstract away
from the internal structure and properties of individual ar-
guments, and focus instead simply on the attack relation
between arguments. An alternative approach, which in-
stead gives arguments some internal, logical structure, is

Copyright c© 2006, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

that of deductive argument systems (Pollock 1992; 1994;
Krause et al. 1995; Amgoud 1999; Besnard & Hunter 2001;
Parsons, Wooldridge, & Amgoud 2003).

Our aim in this paper is to investigate the computational
complexity of a number of questions relating to deductive ar-
gument systems, but in particular, the complexity of linking
deductive argument systems and abstract argument systems.
Such a linking seems to be necessary if we are to use argu-
mentation systems, for example as the basis of inter-agent
communication in multiagent systems. To capture the inter-
nal structure and intended meaning of arguments, we need
something of deductive arguments, while to capture the in-
teractions between arguments, and to formulate appropriate
solution concepts, we clearly need something akin to an ab-
stract argument system. Thus, to be practically useful, it
seems an argumentation framework must have linked ele-
ments of both deductive and abstract argument systems.

We start by presenting a simple model of deductive ar-
guments, and define notions logical equivalence and defeat
over individual arguments. We then extend logical equiv-
alence to sets of arguments, and show that the problem of
checking equivalence of argument sets is co-NP-complete.
We also show that the problem of checking that an argument
set is distinct (i.e., contains no two logically equivalent argu-
ments) is NP-complete, while the problem of checking that a
set of arguments is maximal (i.e., that no argument could be
added without such an argument being logically equivalent
to one that is already present) is co-NP-complete. We then
show that checking whether a graph over an argument set is
sound with respect to the defeat relation is co-NP-complete,
while the problem of showing that such a graph is complete
is NP-complete, and the problem of showing both soundness
and completeness is Dp-complete.

Deductive Arguments, Defeat, & Equivalence

We present the model of deductive arguments that we work
with throughout the remainder of this paper. This model
is closely related to those of (Besnard & Hunter 2001; Par-
sons, Wooldridge, & Amgoud 2003). Let Φ0 = {p, q, . . .}
be a finite, fixed, non-empty vocabulary of Boolean vari-
ables, and let Φ denote the set of (well-formed) formulae of
propositional logic over Φ0, constructed using the conven-
tional Boolean operators (“∧”, “∨”, “→”, “↔”, and “¬”),
as well as the truth constants “⊤” (for truth) and “⊥” (for



falsity). We refer to a finite subset of Φ as a database, and
use ∆,∆′,∆0, . . . as variables ranging over the set of Φ-
databases. We assume a conventional semantic consequence
relation “|=” for propositional logic, writing ∆ |= ϕ to mean
that ϕ is a logical consequence of the database ∆. We write
|= ϕ as a shorthand for ∅ |= ϕ; thus |= ϕ means that ϕ
is a tautology. We denote the fact that formulae ϕ,ψ ∈ Φ
are logically equivalent by ϕ ∼ ψ; thus ϕ ∼ ψ means that
|= ϕ ↔ ψ. Note that “∼” is a meta-language relation sym-
bol, which should not be confused with the object-language
bi-conditional operator “↔”.

If ∆ ⊆ Φ is a database, then an argument, α, over ∆ is
a pair α = (C, S) where C ∈ Φ is a propositional formula
which we refer to as the conclusion of the argument, and
S ⊆ ∆ (S 6= ∅) is a subset of ∆ which we refer to as the
support of the argument, such that S |= C, i.e., C is a log-
ical consequence of S. Notice that we omit two constraints
on arguments that are commonly assumed in the literature,
namely that S is consistent, and that S is minimal (Besnard
& Hunter 2001; Parsons, Wooldridge, & Amgoud 2003). Of
the two, minimality is generally regarded as an aesthetic cri-
terion, rather than technically essential. Consistency is more
important, and of course by relaxing this constraint we ad-
mit into our analysis some scenarios that do not seem to have
any useful interpretation; but of course this does not invali-
date the results we present. Let A(∆) denote the set of ar-
guments over ∆. If α is an argument, then we denote the
support of α by S(α) and the conclusion of α by C(α).

There are two common ways of defining defeat between
two deductive arguments (Prakken & Vreeswijk 2001): re-
buttal (where the conclusion of each argument is logically
equivalent to the negation of the conclusion of the other)
and undercut (where the conclusion of the attacker contra-
dicts some part of the support of the other). It is not hard
to see that the rebuttal relation between arguments will be
symmetric, and this potentially limits its value as an analyt-
ical concept (Besnard & Hunter 2001). We therefore focus
on undercutting (Besnard & Hunter 2001). There are in fact
a number of ways of defining undercuts (Besnard & Hunter
2001), and our choice here is largely motivated by simplic-
ity. We say an argument α1 defeats an argument α2 (written
def (α1, α2)) if ∃ϕ ∈ S(α2) such that C(α1) ∼ ¬ϕ. The
problem of checking whether def (α1, α2) is obviously co-
NP-complete.

Now, consider the circumstances under which two argu-
ments may be said to be equivalent. First, consider the
equivalence of formulae: we have two obvious interpreta-
tions of “equivalence” w.r.t. formulae. The first is simply
that of syntactic equivalence, which we denote by equality
(“=”); and the second is that of logical equivalence, which
you will recall is denoted by∼. Let us now extend these no-
tions to arguments. We write α1 = α2 to mean that α1 and
α2 are syntactically equivalent, i.e., that C(α1) = C(α2)
and S(α1) = S(α2). What about logical equivalence of
arguments? We will say that arguments α1 and α2 over a
database ∆ are logically equivalent (written: α1 ≈ α2) iff
C(α1) ∼ C(α2), i.e., if they are in complete logical agree-
ment w.r.t. the conclusion. The point here is that this ignores
syntactic variations in the presentation of the argument’s

conclusion. In general, for any database ∆, there will be
more syntactically distinct arguments over ∆ than there will
be logically distinct arguments over ∆. To see this, simply
consider a database ∆1 = {p → q, p}, and the arguments
(q, {p, p → q}) and (¬¬q, {p, p → q}), both of which are
syntactically distinct, but (q, {p, p → q}) ≈ (¬¬q, {p, p →
q}). It is evident that checking whether two arguments are
logically equivalent is co-NP-complete.

Argument Sets, Distinctness, & Maximality

We now change our focus to consider subsets of arguments.
We extend our notion of equivalence of arguments to sub-
sets of arguments as follows. We say X1 ⊆ A(∆) and
X2 ⊆ A(∆) are logically equivalent (written: X1 ≈

∼ X2)
iff there exists a bijection f : X1 → X2 such that ∀α ∈ X1,
we have α ≈ f (α). The ∃∀ pattern of quantifiers in the
checking of equivalence of argument sets suggests that this
is computationally harder than checking equivalence of for-
mulae or arguments – perhaps Σp

2-complete (Papadimitriou
1994, pp.424–425). However, this turns out not to be the
case:

Theorem 1 The problem of checking equivalence of argu-
ment sets is co-NP-complete.

Proof: It will be convenient to work with the comple-
mentary problem – INEQUIVALENT ARGUMENT SETS (IAS)
– and to prove that IAS is NP-complete. Showing NP-
hardness is straightforward, so we focus on membership of
NP. Let X1 = {α1, α2, . . . , αm} and X2 = {β1, . . . , βm}.
where αi = (ϕi, Si) and βi = (ψi,Ti) are arguments in
A(∆). We use Φ and Ψ to denote the sets {ϕ1, . . . , ϕm}
and {ψ1, . . . , ψm}.

Let B(Φ,Ψ,E) be the bipartite graph on (disjoint) sets
of m vertices labelled Φ and Ψ and whose edges are E =
{{ϕi, ψj} : S(αi) = S(βj)}. For a ∈ 〈⊥,⊤〉n, Ba(Φ,Ψ,Fa)
is the subgraph of B(Φ,Ψ,E) containing only the edges
Fa = {{ϕi, ψj} : ϕi(a) = ψj(a) }. For Y ⊆ 〈⊥,⊤〉n,
BY(Φ,Ψ,FY) is the subgraph of B(Φ,Ψ,E) whose edges are
FY = {{ϕi, ψj} : ϕi(a) = ψj(a) for every a ∈ Y}. Letting
TOT denote the set 〈⊥,⊤〉n it is easy to see the following:
X1 ≈
∼ X2 iff BTOT(Φ,Ψ,FTOT) contains a perfect matching,

i.e., a subset of m edges defining a bijective mapping be-
tween Φ and Ψ.

For V ⊂ Φ, let Γ(V,BY) denote the subset of Ψ
formed by Γ(V,BY) = {ψj : {ϕi, ψj} ∈
FY for some ϕi ∈ V}. From the König-Hall Theorem
((Berge 1976, Ch. 7, Thm. 5, p. 134)), there is a per-
fect matching in BTOT(Φ,Ψ,FTOT) if and only if ∀ V ⊂
Φ |Γ(V,BTOT)| ≥ |V|. Suppose it is the case that X1 6≈

∼ X2,
i.e., 〈X1,X2〉 is accepted as an instance of IAS. From the ar-
gument above, this happens if and only if BTOT(Φ,Ψ,FTOT)
does not contain a perfect matching, and thus there will be
some strict subset of Φ, V say, for which |Γ(V,BTOT)| < |V|.

These observations lead to the following NP algorithm to
decide IAS.

1. Non-deterministically choose some V ⊂ Φ.

2. Non-deterministically choose some W ⊂ Ψ of size |V| −
1.



3. Non-deterministically select a set F of |V|.(m − |W|) <
m2 distinct a ∈ TOT.

4. For each ϕ ∈ V and each ψ ∈ Ψ \ W check that
if {ϕ,ψ} ∈ E then there is some a ∈ F for which
ψ(a) 6= ϕ(a).

The last stage involves only polynomially many tests, each
of which requires simply evaluating two formulae on a given
instantiation.

To see that this algorithm is correct it suffices to observe
that the structure 〈V,W,F〉 witnesses that 〈X1,X2〉 is a pos-
itive instance of IAS: there are at most |V|.(m − |V|) pairs
〈ϕi, ψj〉 with ϕi ∈ V and ψj 6∈ W. If S(αi) = S(βj) then
{ϕi, ψj} ∈ E, however, we only require one instantiation
a ∈ TOT in order to eliminate this edge from FTOT. Thus we
need at most |V|.(m − |V|) < m2 instantiations to remove
all edges between V and Ψ \ W. It follows that 〈V,W,F〉
provides a polynomial length certificate for membership in
IAS. 2

Next, we define the notion of distinctness for sets of ar-
guments. The intuition is that a set of arguments is distinct
if it does not contain duplicated arguments, where duplica-
tion is measured with respect to logical equivalence of argu-
ments. Formally, we say argument set X ⊆ A(∆) is distinct
iff ∀α1, α2 ∈ X: if (α1 6= α2) then (α1 6∼ α2).

Theorem 2 The problem of checking whether an argument
set is distinct is NP-complete.

Proof: Membership of NP follows from the fact that check-
ing distinctness of an argument set X ⊆ A(∆) reduces
to the |X|2 independent satisfiability checks, i.e., verifying
that for all α1, α2 ∈ X, such that α1 6= α2, the formula
(C(α1) ∧ ¬C(α2)) ∨ (¬C(α1) ∧ C(α2)) is satisfiable. For
NP-hardness, we reduce SAT. Given a SAT instance ϕ, sim-
ply check that the argument set X1 = {(ϕ, {ϕ}), (⊥, {⊥})}
is distinct. 2

We say a set of arguments X ⊆ A(∆) is maximal w.r.t. ∆
if it is not possible to add an argument from A(∆) to X with-
out X becoming indistinct. Intuitively, if a set of arguments
X is maximal with respect to some database ∆, then it con-
tains all the arguments that can be made about ∆: it is not
possible to pick an argument from A(∆) without duplicating
a member of X (where duplication is measured with respect
to logical equivalence). Notice that distinctness does not of
course imply maximality, but neither does maximality imply
distinctness. That is, an argument set can be maximal but
contain duplicates. Indeed, the set A(∆) of all arguments
that can be made with respect to a database ∆ is an obvious
example of such a maximal but indistinct set.

In analysing the computational complexity of checking
maximality it will be convenient to work with its comple-
mentary form, which we dub NON-MAS. In this problem,
instances 〈∆,X〉 are accepted iff there is some β ∈ A(∆)
whose conclusion is not logically equivalent to that of any
argument in X. We observe that the “natural” formulation of
NON-MAS in determining the status of an instance 〈∆,X〉 is
as

∃ S ⊆ ∆, ϕ : 〈ϕ, S〉 ∈ A(∆) ∧
∧

α∈X

(ϕ 6∼ C(α))

This formulation raises two difficulties: unless restrictions
are placed on ϕ, the structure 〈ϕ, S〉which must be validated
as an argument in A(∆) may have size that is not polynomi-
ally bounded in the size of the instance 〈∆,X〉1; we have to
validate S |= ϕ (in general CO-NP-hard) and ϕ 6∼ C(α) for
each α ∈ X (in general, NP-hard). Overall, even assuming
the restriction to formulae whose size, |ϕ| (measured as the
number of literals occurring in ϕ) is bounded by some poly-
nomial in the instance size, it would appear that NON-MAS

is “unlikely” to be decidable by an NP computation: with the
formulation and the restriction imposed we get only a Σp

2 al-
gorithm. However, not only is it unnecessary explicitly to
restrict ϕ, we may also validate S |= ϕ for all relevant ϕ in
polynomial time (in the size of the instance 〈∆,X〉). In this
way we can show that NON-MAS ∈ NP a result which, cou-
pled with the easy proof that NON-MAS is NP-hard, allows
us to deduce that NON-MAS is NP-complete.

The following result is central to our subsequent proof
that NON-MAS ∈ NP.

Lemma 1 Let 〈∆,X〉 be an instance of NON-MAS and n
be the number of Boolean variables in the vocabulary Φ0

of ∆. The instance 〈∆,X〉 is accepted if and only if there
is a propositional formula, ϕ, over Φ0 for which all of the
following properties hold:

a. ∆ |= ϕ.

b. ϕ is a CNF-formula containing at most |X| clauses, each of
which is defined by exactly n literals, so that |ϕ| ≤ n|X|.

c. ∀ α ∈ X, C(α) 6∼ ϕ.

Proof: From the definition of NON-MAS it is immediate
that if ϕ with the properties (a) through (c) exists, then it is
certainly the case the 〈∆,X〉 is accepted as an instance of
NON-MAS: the argument (ϕ,∆) being distinguished from
all arguments in X.

For the converse implication, suppose it is the case that
(ψ, S) ∈ A(∆) and that for each α ∈ X, we have ψ 6∼ C(α).
We first observe that, since S |= ψ it is certainly the case
that ∆ |= ψ. For any instantiation a ∈ 〈⊤,⊥〉n, let χa be
the propositional formula given as the disjunction over all
literals over Φ0 that take the value ⊥ under a: thus χa(b) =
⊥ ⇔ b = a. Consider the set of (full) instantiations of Φ0,
⊥(ψ), defined by,

⊥(ψ) = {a ∈ 〈⊤,⊥〉n : ψ(a) = ⊥}

It is well-known that for any propositional formula, ψ, is
logically equivalent to the formula ψCNF defined via

ψCNF =
∧

a∈⊥(ψ)

χa

Thus from ∆ |= ψ we have ∆ |= ψCNF. In addition, however,
for any subset R of ⊥(ψ) it further holds that

∆ |=





∧

a∈R

χa





1Given a database ∆, it may be the case that there is some ϕ
such that ∆ |= ϕ and the shortest formula ψ such that ϕ ∼ ψ is of
length exponential in the size of ∆. In other words, there could be
arguments that we can construct from a database whose conclusion
is necessarily exponential in the size of the database.



Since ψCNF 6∼ C(α) for any α ∈ X, it follows that we can
identify k = |X| instantiations, 〈a1, a2, . . . , ak〉 for which
ψCNF(ai) 6= C(αi)(ai). We now define the subset RX of
⊥(ψ) to contain { ai : C(αi)(ai) = ⊤} and fix ϕ (the
propositional formula whose existence we wish to establish)
as

∧

a∈RX
χa. For ϕ defined in this way, from our earlier

analysis: ∆ |= ϕ, as required by (a); ϕ is in CNF, and con-
tains at most |X| clauses (since |RX| ≤ |X|) with each clause
defined from exactly n literals – as required by (b); finally
ϕ 6∼ C(α) for any α ∈ X – as required by (c). To see that (c)
does hold true of ϕ it suffices to observe that ⊥(ϕ) = RX so
that if ai ∈ RX then ϕ(ai) = ⊥ and (from the definition of
RX) C(αi)(ai) = ⊤; similarly if ai 6∈ RX then C(αi)(ai) = ⊥
and (from the fact that ⊥(ϕ) = RX) ϕ(ai) = ⊤.

In total if it is the case that 〈∆,X〉 is accepted as an in-
stance of NON-MAS, then we can identify some ϕ with the
properties (a)–(c) described in the Lemma statement. 2

Given this, we can now prove that:

Theorem 3 The problem of checking maximality of argu-
ment sets is CO-NP-complete.

Proof: We prove the equivalent result that NON-MAS is
NP-complete. We first show NON-MAS is NP-hard using a
reduction from SAT. Given an instance ϕ of SAT, consider
the database ∆ = {¬ϕ} with X ⊆ A(∆) chosen to be
{(⊤, {¬ϕ})}. We claim that ϕ is satisfiable iff X is not max-
imal w.r.t. ∆.

We now show that NON-MAS ∈ NP. Consider the follow-
ing non-deterministic algorithm.

1. For each αi ∈ X, non-deterministically choose an instan-
tiation, ai of Φ0.

2. Construct the formula ϕ =
∧

a
i
:C(αi)(a

i
)=⊤ χa

i

3. Test if ∆ |= ϕ, accepting if this is the case.

By Lemma 1 it is certainly the case that 〈∆,X〉 is accepted
as an instance of NON-MAS if and only if the algorithm de-
scribed has an accepting computation. Stages (1) and (2)
can clearly be realised in non-determininistic polynomial
time. The final stage, however, is easily completed in de-
terministic polynomial-time: ϕ is a CNF formula for which
⊥(ϕ) = {ai : C(αi)(ai) = ⊤}. Thus to verify ∆ |= ϕ it
suffices to check that for each a ∈ ⊥(ϕ) some ψ ∈ ∆ has
ψ(a) = ⊥. Since |⊥(ϕ)| ≤ |X| this final stage takes time
polynomial in the size of the instance 〈∆,X〉. 2

Of particular interest to us are argument sets over ∆ that
are both maximal and distinct. We say a set of arguments
X is canonical with respect to ∆ if it is both maximal and
distinct w.r.t. ∆. A canonical argument set thus represents
a limit of what can be argued from a database without rep-
etition. We will let can(∆) denote the canonical argument

sets of ∆, so can(∆) ⊆ 2A(∆). First, we prove that every
non-empty database ∆ has a canonical argument set.

Theorem 4 For all ∆ 6= ∅ ⊆ Φ, can(∆) 6= ∅.

Proof: We use the same proof idea as Lindenbaum’s
lemma. Let σ : α0, α1, . . . be an enumeration of arguments
over ∆: such an enumeration clearly exists. Corresponding

to σ, define a sequence of argument sets X0,X1, . . . where
X0 = {α0}, and for n > 0,

Xn =

{

Xn−1 ∪ {αn} if Xn−1 ∪ {αn} is distinct
Xn−1 otherwise.

Finally, define an argument set X by: X =
⋃∞

n=0 Xn. By
construction, X will be a canonical argument set of ∆. 2

The following, easily established result gives our motiva-
tion for using the term “canonical”.

Fact 1 Canonical argument sets are logically equivalent.
That is, ∀X1,X2 ∈ can(∆): X1 ≈

∼ X2.

We note, in addition, the following consequence of
Lemma 1, the proof of which is omitted.

Corollary 1 If X ∈ can(∆), then |X| = 2|⊥(δ)|, where
δ =

∧

ϕ∈∆ ϕ.

Argument Graphs

Let us now consider the issue of linking deductive and
abstract argument systems. Given a set of arguments
X ⊆ A(∆), the defeat predicate def (· · · ) induces a graph
(X, {(α1, α2) | α1, α2 ∈ X, def (α1, α2)}) over X, which
can obviously be understood as being analogous to the
graph structures of Dung’s abstract argument systems (Dung
1995). Note that there are some technical difficulties in-
volved in “lifting” a defeat relation to a Dung argumenta-
tion graph in this way. In particular, Besnard and Hunter
show that unless modified, Dung’s notion of an admissible
set turns out to collapse under this interpretation; although
the notion of an admissible set can be refined to make more
sense when interpreted for deductive argument systems, this
comes at the cost of eliminating some apparently reasonable
cases (Besnard & Hunter 2001). Thus, solution concepts
which make sense when studied with respect to arbitrary
graphs do not necessarily make sense when the defeat rela-
tion is given a concrete interpretation in terms of deductive
arguments, suggesting a need for refined versions of these.
However, the issue of formulating appropriate Dung-style
solution concepts for deductive argument systems is some-
what tangential to the paper at hand, and we shall not investi-
gate this particular issue. Instead, we focus on the problems
of establishing links between deductive and more abstract
argument systems.

To motivate the discussion, suppose we are given a set
of arguments X ⊆ A(∆) (for some ∆), and a graph GX =
(X,E ⊆ X×X), so that the vertices of GX are the members of
X. How might X and GX be related? Two obvious questions
then suggest themselves:

1. Soundness: Does GX “correctly” represents the defeat re-
lation def (· · · ) over X? Formally, GX will be sound with
respect to X iff ∀α1, α2, if GX(α1, α2) then def (α1, α2).

2. Completeness: Does GX “completely” represents the de-
feat relation def (· · · ) over X? Formally, GX will be com-
plete with respect to X iff ∀α1, α2, if def (α1, α2) then
GX(α1, α2).



Theorem 5 Given a set of arguments X, the problem of
checking whether a graph GX = (X,E ⊆ X × X) is sound
with respect to the defeat relation def (· · · ) over X is co-NP-
complete.

Proof: Consider membership of co-NP. Recall that sound-
ness of GX with respect to X means that ∀αi, αj ∈ X, if
GX(αi, αj) then def (αi, αj). We work with the complement
of the problem, i.e., the problem of showing that ∃αi, αj ∈ X
such that GX(αi, αj) and not def (αi, αj). The following NP

algorithm decides the problem: (i) Guess αi, αj ∈ X and
k propositional valuations ξ1, . . . , ξk, where k = |S(αj)|;
(ii) Verify that GX(αi, αj) and that ξ1 |= (C(αi) ∧ ψ1) ∨
¬(C(αi)∨ψ1), ξ2 |= (C(αi)∧ψ2)∨¬(C(αi)∨ψ2), . . . , ξk |=
(C(αi)∧ψk)∨¬(C(αi)∨ψk), where S(αj) = {ψ1, . . . , ψk}.
The algorithm is clearly in NP. For hardness, we reduce
TAUT, the problem of deciding whether a propositional logic
formula ϕ is a tautology. Given a TAUT instance ϕ, define
GX = ({α1, α2}, {(α1, α2)}) where α1 = (ϕ, {ϕ}) and
α2 = (⊥, {⊥}). GX is sound w.r.t. X iff ϕ is a tautology. 2

Theorem 6 Given a set of arguments X, the problem of
checking whether a graph GX = (X,E ⊆ X × X) is com-
plete with respect to the defeat relation def (· · · ) over X is
NP-complete.

Proof: Membership of NP is by the following algorithm:
For each α1, α2 ∈ X such that not GX(α1, α2), and for each
ϕ ∈ S(α2) guess a valuation ξ and verify that ξ |= C(α1) ∧
ϕ. For NP-hardness we reduce SAT. Given a SAT instance
ϕ, define GX = ({α1, α2}, {(α1, α1), (α2, α2), (α2, α1)})
where α1 = (ϕ, {ϕ}) and α2 = (⊤, {⊤}). GX is complete
w.r.t. X iff ϕ is satisfiable. 2

Now consider the problem of determining whether a graph
GX over a set of arguments X is both sound and complete.

Theorem 7 Given a set of arguments X, the problem of
checking whether a graph GX = (X,E ⊆ X × X) is
both sound and complete with respect to the defeat relation
def (· · · ) over X is Dp-complete.

Proof: Membership in Dp follows from Theorems 6 and
Theorem 5. For completeness, we reduce SAT-UNSAT (Pa-
padimitriou 1994, p.415), instances of which comprise a pair
〈ϕ,ψ〉 of propositional formulae. Such an instance is ac-
cepted if ϕ is satisfiable and ψ is unsatisfiable. First, from
ϕ we create a new formula ϕ∗ = ϕ ∧ p, where p is a new
Boolean variable, which does not appear in either ϕ or ψ.
The formula ϕ∗ has the following properties, all of which
are used in what follows: (i) ϕ∗ will be satisfiable iff ϕ
is satisfiable; (ii) ϕ∗ is not a tautology, even if ϕ is; and
(iii) neither ϕ∗ ∼ ψ nor ϕ∗ ∼ ¬ψ. We then create an ar-
gument set X = {α1, α2, α3, α4} where: α1 = (ϕ∗, {ϕ∗}),
α2 = (ψ, {ψ}), α3 = (⊤, {⊤}), and α4 = (⊥, {⊥}). Our
argument graph GX = (X,E) has X as defined above, and
E = {(α2, α3), (α2, α2), (α3, α4), (α4, α3)}. Table 1 re-
lates the graph GX in this construction to the defeat relation
def (· · · ) induced over X for possible properties of ϕ and ψ.
Note that the properties in the def (· · · ) column of Table 1
are by established by simple propositional logic reasoning.

(αi, αj) def (αi, αj)? GX(αi, αj)?

(α1, α1) no no

(α1, α2) no no

(α1, α3) iff ϕ∗ is unsatisfiable no

(α1, α4) no (since ϕ∗ is not a tautology) no

(α2, α1) no no

(α2, α2) no no

(α2, α3) iff ψ is unsatisfiable yes

(α2, α4) iff ψ is a tautology no

(α3, α1) iff ϕ∗ is unsatisfiable no

(α3, α2) iff ψ is unsatisfiable yes

(α3, α3) no no

(α3, α4) yes yes

(α4, α1) no (since ϕ∗ is not a tautology) no

(α4, α2) iff ψ is a tautology no

(α4, α3) yes yes

(α4, α4) no no

Table 1: Defeat relation and argument graph properties for
the construction of Theorem 7.

We claim that ϕ is satisfiable and ψ is unsatisfiable iff GX

is sound and complete w.r.t. X. (→) Suppose ϕ is satisfi-
able and ψ is unsatisfiable. We must show that GX is sound
and complete w.r.t. X. Soundness means that if GX(αi, αj)
then def (αi, αj). With respect to Table 1, this means show-
ing that a “yes” in the GX(αi, αj) column implies a “yes” in
the def (αi, αj) column. That def (α3, α4) and def (α4, α3)
is obvious, so consider whether def (α2, α3): since by as-
sumption ψ is unsatisfiable, then it must defeat α3. Com-
pleteness means that if not GX(αi, αj) then not GX(αi, αj).
This can be verified by examination of Table 1. (←) Sup-
pose GX is sound and complete w.r.t. X, i.e., that GX(αi, αj)
iff def (αi, αj). We must show that this implies ϕ is satisfi-
able and ψ is unsatisfiable. This can be done by examination
of cases in Table 1. 2

Suppose that instead of being given a graph over a set of
arguments, we are given an arbitrary graph, G = (V,E),
where V is simply an abstract set of vertices and E ⊆ V×V ,
and we are asked whether G “captures” a given deductive
argument system. Here, G really is simply a Dung-style ar-
gument system: the nodes in the graph are not arguments,
and hence we are not given any interpretation of them with
respect to the given deductive argument system. How might
we establish a link between such a graph and a deductive
argument system? It depends on the way in which the de-
ductive argument system itself is presented:

1. as a graph GX over A(∆);

2. as a (sub)set of arguments X ⊆ A(∆); or

3. as a database ∆ ⊆ Φ.

In the first case, we are given both a graph G = (V,E)
and an argument graph GX = (X,EX ⊆ X × X). The
problems of soundness and completeness in this case reduce
to standard graph theoretic problems: Soundness means
checking whether G is isomorphic to some subgraph of GX ,
while completeness means checking whether GX is isomor-
phic to some subgraph of G, and checking soundness and



completeness means checking that G and GX are isomor-
phic. From standard results in complexity theory, (in par-
ticular the fact that the SUBGRAPH ISOMORPHISM problem
is NP-complete) it follows immediately that the problems of
checking soundness or completeness for this representation
are both NP-complete. The problem of checking both sound-
ness and completeness, however, is exactly the well known
open problem GRAPH ISOMORPHISM. A classification of
the complexity of this problem would in itself represent a
major event in the theory of computational complexity.

With respect to the second representation, we are given
a set of arguments X ⊆ A(∆) and a graph G = (V,E).
Here, we have less information: we have no argument graph
to compare G with, just a set of arguments X. Thus we do
not know a priori what the vertices of G are supposed to
correspond to in X – we thus need to “interpret” vertices in G
with respect to members of X in our definitions of soundness
and completeness. Formally, we will say:

• a graph G = (V,E) is a sound abstraction of a set of
arguments X ⊆ A(∆) if there exists an injective func-
tion f : V → X such that ∀v1, v2 ∈ V , if G(v1, v2) then
def (f (v1), f (v2)); and

• a graph G = (V, e) is a complete abstraction of X ⊆
A(∆) iff there exists an injective function f : X → V such
that ∀α1, α2 ∈ X, if def (α1, α2) then G(f (α1), f (α2)).

The proofs of Theorems 5 and 6 can be readily adapted to
show the following:

Theorem 8 The problem of checking whether a graph G is
a sound abstraction of a set of arguments X ⊆ A(∆), is co-
NP-hard, while the problem of checking whether a graph G
is a complete abstraction of a set of arguments X ⊆ A(∆),
is NP-complete.

With respect to the third representation, we are given sim-
ply a database ∆ and a graph G = (V,E). This case seems
the most elaborate computationally but also perhaps the least
interesting practically. Once again, we are given even less
information to work with: we only have the database of for-
mulae from which arguments may be constructed. So, how
are we to interpret the soundness and completeness ques-
tions? Recalling that for any database ∆ ⊆ Φ, the set of
canonical argument sets over ∆ is denoted by can(∆), we
can give the following interpretation to soundness and com-
pleteness for graphs G = (V,E) against databases ∆:

• a graph G = (V,E) is a sound canonical abstraction of
a database ∆ if ∃X ∈ can(∆) such that G is a sound ab-
straction of X; and

• a graph G = (V,E) is a complete canonical abstraction
of a database ∆ if ∃X ∈ can(∆) such that G is a complete
abstraction of X.

It should be clear that these concepts, are much more
baroque (and much less amenable to formal analysis) than
those we have studied above. They involve quantifying over
canonical argument sets, which as we noted in Corollary 1
will be exponentially large in the number of falsifying as-
signments for ∆, and hence in general doubly exponential
in the number of Boolean variables. We will thus not inves-
tigate these latter problems further here.

Related Work & Conclusions

The work described in this paper has been concerned with
the computational complexity of answering certain ques-
tions about sets of arguments. The particular questions we
have considered have not previously been considered, but
there are several authors whose work is related to ours in
one way or another. For example, the work of Besnard and
Hunter (Besnard & Hunter 2001) has some elements in com-
mon with our work — a definition of equivalence between
arguments that is the same as ours, and a notion of canon-
icity of argument. Their work, however, is focussed exclu-
sively on the properties of a specific deductive argumenta-
tion system while ours deals with properties that apply to a
range of argumentation systems. Other authors have consid-
ered the computational complexity of answering questions
related to arguments. Most notable, perhaps, is the work
of Dimopoulos et al. who have investigated the complex-
ity of computing the acceptability of individual deductive
arguments — a surprisingly hard process because of the re-
cursive nature of the relationships between arguments (Di-
mopoulos, Nebel, & Toni 2002).
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Abstract

One difficulty that arises in abstract argument systems is that many natural questions regarding argument acceptability are, in
general, computationally intractable having been classified as complete for classes such as NP, co-NP, and Π

p
2 . In consequence, a

number of researchers have considered methods for specialising the structure of such systems so as to identify classes for which
efficient decision processes exist. In this paper the effect of a number of graph-theoretic restrictions is considered: k-partite systems
(k � 2) in which the set of arguments may be partitioned into k sets each of which is conflict-free; systems in which the numbers
of attacks originating from and made upon any argument are bounded; planar systems; and, finally, those of k-bounded treewidth.
For the class of bipartite graphs, it is shown that determining the acceptability status of a specific argument can be accomplished in
polynomial-time under both credulous and sceptical semantics. In addition we establish the existence of polynomial time methods
for systems having bounded treewidth when deciding the following: whether a given (set of) arguments is credulously accepted; if
the system has a non-empty preferred extension; has a stable extension; is coherent; has at least one sceptically accepted argument.
In contrast to these positive results, however, deciding whether an arbitrary set of arguments is “collectively acceptable” remains
NP-complete in bipartite systems. Furthermore for both planar and bounded degree systems the principal decision problems are as
hard as the unrestricted cases. In deriving these latter results we introduce various concepts of “simulating” a general argument
system by a restricted class so allowing any argument system to be translated to one which has both bounded degree and is planar.
Finally, for the development of basic argument systems to so-called “value-based frameworks”, we present results indicating that
decision problems known to be intractable in their most general form remain so even under quite severe graph-theoretic restrictions.
In particular the problem of deciding “subjective acceptability” continues to be NP-complete even when the underlying graph is a
binary tree.
© 2007 Elsevier B.V. All rights reserved.

Keywords: Computational properties of argumentation; Argumentation frameworks; Computational complexity

1. Introduction

Since their introduction in the seminal work of Dung [23] abstract argument systems have proven to be a valuable
paradigm with which to formalise divers semantics defining argument “acceptability”. In these a key component is the
concept of an “attack” relationship wherein the incompatibility of two arguments—p and q , say—may be expressed
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in terms of one of these “attacking” the other: such relationships may be presented independently of any internal
structure of the individual arguments concerned so that the properties of the overall argument system, e.g. which of
its arguments may be defended against any attack and which are indefensible, depend solely on the attack relationship
rather than properties of individual argument schemata. Among other applications, this abstract view of argumentation
has proven to be a powerful and flexible approach to modelling reasoning in a variety of non-classical logics, e.g. [15,
20,23].

We present the formal definitions underpinning argument systems in Section 2, including two of the widely-studied
admissibility semantics—preferred and stable—introduced in [23]: at this point we simply observe that these describe
differing conditions which a maximal set of mutually compatible arguments, S, must satisfy in order to be admissible
within some argument system comprising arguments X with attack relationship A ⊂ X ×X .

Despite the descriptive power offered by abstract argument systems one significant problem is the apparent in-
tractability of many natural questions concerning acceptability under all but the most elementary semantics: such
intractability classifications encompassing NP-completeness and co-NP-completeness results of Dimopoulos and Tor-
res [21] and the Π

p

2 -completeness classifications presented in Dunne and Bench-Capon [27]. Motivated, at least to
some degree, by these negative results a number of researchers have considered mechanisms by which argument sys-
tems may be specialised or enriched so that the resulting structures admit efficient decision procedures. Two main
strategies are evident: the first, and the principal focus of the present paper, has been to identify purely graph-theoretic
conditions leading to tractable methods for those cases within which these are satisfied; the second, which itself may
be coupled with graph-theoretic restrictions, is to consider additional structural aspects in developing the basic argu-
ment and attack relationship form. Under the first category, [23] already identifies directed acyclic graphs (DAGs) as a
suitable class, while recent work of Coste-Marquis et al. [17] has shown that symmetric argument systems—those in
which p attacks q if and only if q attacks p—also form a tractable class. Graph-theoretic considerations also feature
significantly in work of Baroni et al. [5,6].

Probably the two most important exemplars of the second approach are the Preference based argumentation frame-
works of Amgoud and Cayrol [1] and Value based argumentation frameworks introduced by Bench-Capon [9]. While
the supporting motivation for both formalisms is, perhaps, more concerned with providing interpretations and reso-
lution of issues arising from the presence of multiple maximal admissible sets which are mutually inconsistent, both
approaches start with an arbitrary argument system, 〈X ,A〉, and reduce it to an acyclic system, 〈X ,B〉 in which
B ⊆ A this reduction being determined via some additional relationship R: the main distinction between [1] and [9]
being the exact manner in which R is defined.

In this paper some further classes of graph-theoretic restrictions are considered: k-partite directed graphs, bounded
degree systems, planar argument systems, and those with k-bounded treewidth. In the first class, for which the case
k = 2 is of particular interest, the argument set X may be partitioned into k pairwise disjoint subsets—〈X1, . . . ,Xk〉
such that every attack in A involves arguments belonging to different sets in this partition: the special case, k = 2,
defines the class of bipartite directed graphs. The bounded degree class limits the number of attacks on (the argument’s
in-degree) and by (its out-degree) any x ∈ X , i.e. |{y: 〈y, x〉 ∈ A}| and |{y: 〈x, y〉 ∈ A}| are bounded by given
values (p, q): again the special case p = q = 2 is of particular interest. The concept of treewidth, introduced in
work of Robertson and Seymour, e.g. [37], has proven to be a useful aid in developing efficient methods for many
computationally hard problems, e.g. via very general approaches such as those of Arnborg et al. [3], Courcelle [18,19],
even in the case of problems which are not directly graph-theoretic in nature, e.g. Gottlob et al. [32].

In the remainder of this paper formal background and definitions are given in Section 2 together with the decision
questions considered. Section 3 describes two important systems from [21,27] that feature in a number of subsequent
hardness proofs, while Sections 4 and 5 present results concerning, respectively, k-partite and bounded degree directed
graphs. Planarity is discussed in Section 6 and properties of bounded treewidth systems are given in Section 7. The
range of results proved indicate that for many of these restrictions it is possible to obtain efficient decision processes:
both credulous and sceptical acceptability of individual arguments may be determined in polynomial time within
bipartite systems. In the case of systems with bounded treewidth, similar positive results for a number of properties
are derivable using a number of deep results originally obtained in [18,19] and developed in [3]. It turns out, however,
that for the development of standard argument systems into value-based frameworks we do not obtain more efficient
mechanisms simply by limiting the graph structure: in Section 8 we show that two basic decision problems in this
model remain hard even when the underlying graph structure is a binary tree. Conclusions and developments are
discussed in Section 9.
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2. Finite argument systems—basic definitions

The following concepts were introduced in Dung [23].

Definition 1. An argument system is a pair H = 〈X ,A〉, in which X is a finite set of arguments and A ⊂ X × X is
the attack relationship for H. A pair 〈x, y〉 ∈ A is referred to as ‘y is attacked by x’ or ‘x attacks y’. For S ⊆ X , the
set of arguments N+(S) is given by

N+(S) =
⋃
x∈S

{
y: 〈x, y〉 ∈A

}

The convention of excluding “self-attacking” arguments, also observed in [17], is assumed, i.e. for all x ∈X , 〈x, x〉 /∈
A. For R, S subsets of arguments in the system H(X ,A), we say that

(a) s ∈ S is attacked by R if there is some r ∈ R such that 〈r, s〉 ∈A, i.e.

attacks(R, s) ≡def ∃r ∈ R s.t.〈r, s〉 ∈A

(b) x ∈X is acceptable with respect to S if for every y ∈X that attacks x there is some z ∈ S that attacks y, i.e.

acceptable(x, S) ≡def ∀y ∈ X 〈y, x〉 ∈ A ⇒ attacks(S, y)

(c) S is conflict-free if no argument in S is attacked by any other argument in S,

cf (S) ≡def ∀y ∈ S ¬attacks(S, y)

(d) A conflict-free set S is admissible if every y ∈ S is acceptable w.r.t S. That is,

adm(S) ≡def cf (S) ∧ (∀y ∈ S acceptable(y, S)
)

(e) S is a preferred extension if it is a maximal (with respect to ⊆) admissible set.

pref (S) ≡def adm(S) ∧ (∀T ⊆ X S ⊂ T ⇒ ¬adm(T )
)

(f) S is a stable extension if S is conflict free and every y /∈ S is attacked by S.

stable(S) ≡def cf (S) ∧ (∀x ∈X (x /∈ S) ⇒ attacks(S, x)
)

(g) H is coherent if every preferred extension in H is also a stable extension.

coherent
(
H(X ,A)

) ≡def ∀S ⊆ X pref (S) ⇒ stable(S)

Following the terminology of [17], H(X ,A) is symmetric if for every pair of arguments x, y in X it holds that
〈x, y〉 ∈A if and only if 〈y, x〉 ∈ A.

An argument x is credulously accepted if there is some preferred extension containing it; x is sceptically accepted
if it is a member of every preferred extension.

Combining the ideas of credulous and sceptical with preferred and stable, provides a number of differing formal-
isations for the concept of a set of arguments being acceptable: these are sometimes referred to as the credulous
preferred/stable semantics and sceptical preferred/stable semantics. Unless we explicitly state otherwise we will usu-
ally be considering the preferred variant of these.

We make one further assumption regarding the graph-theoretic structure of argument systems: as an undirected
graph, H(X ,A) is connected. In informal terms, this states that systems do not consist of two or more “isolated”
graphs.1

The concepts of credulous and sceptical acceptance motivate a number of decision problems, summarised in Ta-
ble 1, that have been considered in [21,27].

1 With a single exception—that of Corollary 2—all of our results hold without this assumption.
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Table 1
Decision problems in finite argument systems

Problem Instance Question Complexity

(a) CA H(X ,A), x ∈ X Is x credulously accepted? NP-complete
(b) CAS H(X ,A), x ∈ X Is x in any stable extension? NP-complete
(c) PREF-EXT H(X ,A) Does H have a non-empty preferred extension? NP-complete
(d) STAB-EXT H(X ,A) Does H have any stable extension? NP-complete
(e) SAS H(X ,A), x ∈ X Is x in every stable extension? CO-NP–complete
(f) SA H(X ,A), x ∈ X Is x sceptically accepted? Π

p
2 -complete

(g) COHERENT H(X ,A) Is the system H coherent? Π
p
2 -complete

These problems (a–d) are NP-complete,2 while (e) is CO-NP-complete follows from results of [21]. Problems (f)
and (g) were shown to be Π

p

2 -complete in [27].
These questions are formulated in terms of single arguments, it will be useful to consider analogous concepts with

respect to sets. Thus CA{} denotes the decision problem whose instances are an argument system 〈X ,A〉 together
with a subset S of X : the instance being accepted if there is a preferred extension T for which S ⊆ T . Similarly, SA{}
accepts instances for which S is a subset of every preferred extension.

In contrast, we have the following more positive results.

Fact 2.

(a) Every argument system H has at least one preferred extension (Dung [23]).
(b) If H(X ,A) is a DAG then H has a unique preferred extension. This is also a stable extension and may be found

in time linear in |X | + |A| (Dung [23]).
(c) If H(X ,A) is symmetric then CA, SA, CA{}, and SA{} are all polynomial-time decidable. Furthermore H is

coherent (Coste-Marquis et al. [17]).
(d) If H(X ,A) contains no odd-length simple directed cycles, then H is coherent (Dunne and Bench-Capon [27]).
(e) If H(X ,A) is coherent then SA(H, x) can be decided in co-NP.

Fact 2(e) is an easy consequence of the sceptical acceptance methods described in work of Vreeswijk and
Prakken [40].

While Fact 2(a) ensures the existence of a preferred extension—a property that is not guaranteed to be the case
for stable extensions—it is possible that the empty set of arguments (which is always admissible) is the unique such
extension. Noting Table 1(c), whether a given argument system H(X ,A) has a non-empty preferred extension is
unlikely to be efficiently decidable in general.

3. The argument systems HΦ and GΦ and their properties

A number of our subsequent hardness proofs regarding various graph-theoretic restrictions are obtained by trans-
forming argument systems used in earlier reductions of [21,27] in classifying the decision problems CA and SA. In
order to avoid repetition it will be useful formally to introduce the two systems used in these contexts. Noting that
both systems take as their starting point some CNF formula Φ , we denote these subsequently by HΦ and GΦ .

3.1. The system HΦ

The form we describe is virtually identical to that first presented by Dimopoulos and Torres [21, Theorem 5.1,
p. 227] where it is used to establish NP-hardness of CA via a reduction from 3-SAT.

Given a CNF formula Φ(Zn) = ∧m
j=1 Cj with each Cj a disjunction of literals from {z1, . . . , zn,¬z1, . . . ,¬zn},

the argument system, HΦ(X ,A) has

2 An earlier, unpublished, NP-completeness proof for (d) is attributed to Chvatal in [31, GT57, p. 204]. We note also the result of Fraenkel [30]
mentioned in Section 6.
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Fig. 1. The argument system HΦ .

X = {Φ,C1, . . . ,Cm} ∪ {zi,¬zi : 1 � i � n}
A = {〈Cj ,Φ〉: 1 � j � m

} ∪ {〈zi,¬zi〉, 〈¬zi, zi〉: 1 � i � n
}

∪ {〈zi,Cj 〉: zi occurs in Cj

} ∪ {〈¬zi,Cj 〉: ¬zi occurs in Cj

}
Fig. 1 illustrates HΦ for the CNF Φ(z1, z2, z3, z4) = (z1 ∨ z2 ∨ z3)(¬z2 ∨ ¬z3 ∨ ¬z4)(¬z1 ∨ z2 ∨ z4).

Fact 3. (See Dimopoulos and Torres [21].) Let Φ(Zn) be an instance of 3-SAT, i.e. a 3-CNF formula. Then Φ(Zn) is
satisfiable if and only if CA(HΦ(X ,A),Φ).

3.2. The system GΦ

The proof that SA is Π
p

2 -complete from [27] uses a reduction from QSATΠ
2 instances of which may, without loss

of generality, be restricted to 3-CNF formulae,3 Φ(Yn,Zn), accepted if ∀αY ∃βZΦ(αY ,βZ), i.e. for every instantiation
of the propositional variables Yn (αY ) there is some instantiation of Zn (βZ) for which 〈αY ,βZ〉 satisfies Φ .

The system GΦ(W,B) is formed from the system HΦ(X ,A), i.e. X ⊂ W and A ⊂ B, so that

W = {Φ,C1, . . . ,Cm} ∪ {yi,¬yi, zi,¬zi : 1 � i � n} ∪ {b1, b2, b3}
B = {〈Cj ,Φ〉: 1 � j � m

}
∪ {〈yi,¬yi〉, 〈¬yi, yi〉, 〈zi,¬zi〉, 〈¬zi, zi〉: 1 � i � n

}
∪ {〈yi,Cj 〉: yi occurs in Cj

} ∪ {〈¬yi,Cj 〉: ¬yi occurs in Cj

}
∪ {〈zi,Cj 〉: zi occurs in Cj

} ∪ {〈¬zi,Cj 〉: ¬zi occurs in Cj

}
∪ {〈Φ,b1〉, 〈Φ,b2〉, 〈Φ,b3〉, 〈b1, b2〉, 〈b2, b3〉, 〈b3, b1〉

}
∪ {〈b1, zi〉, 〈b1,¬zi〉: 1 � i � n

}
The resulting system is shown in Fig. 2.

Fact 4. (See Dunne and Bench-Capon [27].)

(a) Φ(Yn,Zn) is accepted as an instance of QSATΠ
2 if and only if SA(GΦ,Φ).

(b) Φ(Yn,Zn) is accepted as an instance of QSATΠ
2 if and only if GΦ is coherent.

3 The proof in [27], in fact presents a more general translation from arbitrary propositional formulae over the logical basis {∧,∨,¬}. Exploiting
such translations is a significant motivating device underlying Theorem 12 and, in particular, accounts for the original context of Fig. 8.
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Fig. 2. The argument system GΦ .

Table 2
Complexity-theoretic properties of k-partite argument systems

Decision problem Complexity

(a) CA(2) Polynomial-time
(b) CA(3) NP-complete

(c) CA
(2)
{} NP-complete

(d) SA(2) Polynomial-time

(e) SA(3) Π
p
2 -complete

(f) SA
(2)
{} Polynomial-time

(g) SA
(3)
{} Π

p
2 -complete

(h) COHERENT(2) Trivial

(i) COHERENT(3) Π
p
2 -complete

4. k-partite argument systems

In this section4 we consider the effect on problem complexity of restricting systems to be k-partite. Our results are
summarised in Table 2.

Definition 5. An argument system H(X ,A) is k-partite if there is a partition of X into k sets 〈X1, . . . ,Xk〉 such that

∀〈y, z〉 ∈A y ∈Xi ⇒ z /∈ Xi

The term bipartite will be used for the case k = 2. It should be noted that, since there is no insistence that each of the
partition members be non-empty, any k-partite system is, trivially, also a (k + t)-partite system for every t � 0. We
use the notation Γ (k) for the set of all k-partite argument systems.

The notations CA(k), SA(k), CA
(k)
{} , and SA

(k)
{} will be used to distinguish the various avatars of the decision problems

of interest when instances are required to be k-partite argument systems. Similarly we use COHERENT(k) to denote
the problem of deciding whether a k-partite argument system is coherent. In instances of these problems it is assumed
that H(X ,A) is presented using an appropriate partition of X into k disjoint sets 〈X1, . . . ,Xk〉.5

4 The results presented in Theorems 6, 7, and 8 first appeared in a preliminary version of this paper in [26].
5 Without this, problems arise when checking if an arbitrary argument system, H, is k-partite: for k � 3 the corresponding decision question is

NP-complete.
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1: i := 0; Y0 :=Y ; A0 :=A
2: repeat
3: i := i + 1
4: Yi :=Yi−1 \ {y ∈ Yi−1: ∃z ∈ Z: 〈z, y〉 ∈ Ai−1 and |{y ∈Yi−1: 〈y, z〉 ∈ Ai−1}| = 0}
5: Ai :=Ai−1 \ {〈y, z〉: y /∈ Yi \Yi−1}
6: until Yi = Yi−1
7: return Yi

Algorithm 1. Credulous acceptance in bipartite systems.

We first deal with the case of bipartite argument systems (k = 2). For other values of k it is noted that the classifi-
cations are largely straightforward consequences of the graph-theoretic constructions described in Section 3.6 Notice
that it is straightforward to deal with the claim made in Table 2(h): a bipartite argument system cannot have any odd-
length cycles, and thus coherence is ensured via Fact 2(d). In contrast to undirected graph structures, the absence of
odd-length directed cycles, while necessary, is not a sufficient condition for an argument system to be bipartite; sym-
metric systems, however, are bipartite systems if and only if the associated undirected graph contains no odd-length
cycles. We note that if we consider the class of systems OCF such that H ∈ OCF if H has no odd-length cycles—
bipartite systems being a strict subset of OCF—then CA restricted to instances in OCF remains NP-complete; while SA,
for such instances, is CO-NP-complete: the former is immediate from the system HΦ of Section 3.1 since HΦ ∈ OCF;
the latter is easily derived by introducing an additional argument Ψ into HΦ whose sole attacker is Φ . The resulting
system is in OCF and is such that Ψ is sceptically accepted if and only if Φ(Zn) is unsatisfiable. Membership in CO-NP

follows since it suffices to check that Ψ belongs to every stable extension.
The main idea underlying Algorithm 1 in proving Theorem 6 is as follows: in a bipartite argument system,

B(Y,Z,A) attackers of an argument y ∈ Y can only be arguments z ∈ Z , and defences to such attacks must, them-
selves, also be arguments in Y . It follows, therefore, that those arguments of Y that are attacked by members of Z
upon which no counterattack exists cannot be admissible. Moreover, attacks on Z furnished by such arguments play
no useful function (as counterattacks) and may be eliminated from A, a process that can lead to further arguments
in Z becoming unattacked. By iterating the process of removing indefensible arguments in Y and their associated
attacks on Z , this algorithm identifies an admissible subset of Y .

Theorem 6.

(a) CA(2) is polynomial-time decidable.
(b) SA(2) is polynomial-time decidable.

Proof. For (a), given a bipartite argument system, B(Y,Z,A) and x ∈ Y ∪ Z , without loss of generality assume
that x ∈ Y . Consider the subset, S of Y that is formed by Algorithm 1.

We claim that CA(2)(B, x) holds if and only if x ∈ S.
Suppose first that x ∈ S ⊆ Y . Since B(Y,Z,A) is a bipartite argument system it follows that S is conflict-free.

Now consider any argument z ∈ Z that attacks S: it must be the case that there is some y ∈ S that counterattacks z

for otherwise at least one argument would have been removed from S at Step 4. In total, S is conflict-free and every
argument in S is acceptable with respect to S, i.e. S is an admissible set containing x which is, hence, credulously
accepted.

On the other hand, suppose that x is credulously accepted. Let S be the subset of Y returned and suppose for
the sake of contradiction that x /∈ S: then there must be some iteration of the algorithm during which x ∈ Yi−1 but
x /∈ Yi . In order for this to occur, we must have a sequence of arguments 〈z0, z1, . . . , zi〉 in Z with the property that
|{y ∈ Yj : 〈y, zj 〉 ∈ Aj }| = 0 with 〈zi, x〉 ∈ Ai . Now any argument y′ of Y attacked by z0 cannot be credulously
accepted since there is no counterattack on z0 available. It follows that the attacks 〈y′, z〉 provided by such arguments
cannot play an effective role in defending another argument and thus can be removed. Continuing in this way, it
follows that no argument y′′ that is attacked by z1 is credulously accepted: the only attackers of z1 are arguments of

6 It is noted, however, that some extension of the basic construction in Section 3.2 is needed for the results of Table 2(g) and (i).
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Y that are attacked by z0 and these, we have seen, are indefensible. In total, x /∈ S would imply that x is indefensible,
a conclusion which contradicts the assumption that x was credulously accepted.

The preceding analysis establishes the algorithm’s correctness. The proof of (a) is completed by noting that it
runs in polynomial-time: there are at most |Y| iterations of the main loop each taking only polynomially many (in
|Y ∪Z| + |A|) steps.

Part (b) follows from (a), Table 2(h) and the observation of [40] that, in coherent systems, an argument is sceptically
accepted if and only if none of its attackers are credulously accepted. �

Examining the structure of Algorithm 1 allows the following characterisation of the set of preferred extensions in
bipartite systems.

Corollary 1. Given a bipartite argument system B(Y,Z,A) let SY and SZ be the subsets of Y and Z returned by
Algorithm 1. Let T ⊆ Y ∪ Z and for TY (resp. TZ ) denote T ∩ Y (resp. T ∩ Z). Then T is a preferred extension of
B(Y,Z,A) if and only if

TY ⊆ SY and N+(TY ) = Z \ TZ

TZ ⊆ SZ and N+(TZ ) = Y \ TY

Proof. Suppose that T is a preferred extension of B(Y,Z,A). It is certainly the case that TY ⊆ SY and TZ ⊆ SZ :
each argument in TY is credulously accepted and, from Theorem 6(a), y ∈ Y is so accepted if and only if y ∈ SY .
Furthermore, since T must also be a stable extension any argument not belonging to TY (resp. TZ ) must be attacked
by an argument in TZ (resp. TY ), i.e. N+(TY ) = Z \ TZ and N+(TZ ) = Y \ TY . We deduce that if T is a preferred
extension of B(Y,Z,A) then it has the form required.

Conversely suppose that T satisfies TY ⊆ SY , TZ ⊆ SZ , N+(TY ) = Z \ TZ , and N+(TZ ) = Y \ TY . We claim
that T is a preferred extension. Certainly T is conflict-free: TZ and TY are conflict-free and it cannot be the case that
〈y, z〉 ∈ A or 〈z, y〉 ∈ A for any y ∈ TY and z ∈ TZ : this would contradict N+(TY ) = Z \ TZ or N+(TZ ) = Y \ TZ .
That T must be a stable (and hence preferred) extension now follows by observing that any x /∈ T either is a member
of Y (and thus is attacked by some z ∈ TZ ) or a member of Z (and so attacked by some y ∈ TY ). �

Turning to the problems CA{} and SA{}, [17] note that in many cases decision problems involving sets are “no hard-
er” than the related questions formulated for specific arguments, e.g. for unrestricted argument systems, symmetric
argument systems and DAGs, the upper bounds for CA{} and SA{} are identical to the corresponding upper bounds for
CA and SA. In this light, the next result may appear somewhat surprising: although, as has just been shown, CA(2) is
polynomial-time decidable, CA

(2)
{} is likely to be noticeably harder.

Theorem 7.

(a) CA
(2)
{} is NP-complete, even for sets containing exactly two arguments.

(b) SA
(2)
{} is polynomial-time decidable.

Proof. For (a), that CA
(2)
{} ∈ NP is easily demonstrated via the non-deterministic algorithm that guesses a subset T ,

checks S ⊆ T and that T is admissible.
To show that CA

(2)
{} is NP-hard we use a reduction from the problem Monotone 3-CNF Satisfiability (MCS) [31,

p. 259], instances of which comprise a 3-CNF formula over a set of propositional variables {x1, . . . , xn},

Φ(x1, x2, . . . , xn) =
m∧

i=1

Ci =
m∧

i=1

(yi,1 ∨ yi,2 ∨ yi,3)

and each clause, Ci , is defined using exactly three positive literals or exactly three negated literals, e.g. (x1 ∨ x2 ∨
x3) ∧ (¬x1 ∨ ¬x2 ∨ ¬x4) would define a valid instance of MCS, however (x1 ∨ ¬x2 ∨ x3) would not. An instance Φ

of MCS is accepted if and only if there is an instantiation, α ∈ 〈�,⊥〉n under which Φ(α) = �.
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Given Φ(x1, . . . , xn) an instance of MCS let {C+
1 , . . . ,C+

r } be the subset of its clauses in which only positive
literals occur and {D¬

1 , . . . ,D¬
s } those in which only negated literals are used. Consider the bipartite argument system

BMCS(Y,Z,A) whose arguments we denote by

Y = {Φ¬,C+
1 , . . . ,C+

r ,¬x1, . . . ,¬xn}
Z = {Φ+,D¬

1 , . . . ,D¬
s , x1, . . . , xn}

and whose attack set A contains
{〈xj ,¬xj 〉, 〈¬xj , xj 〉: 1 � j � n

}
∪ {〈C+

i ,Φ+〉: 1 � i � r
} ∪ {〈D¬

i ,Φ¬〉: 1 � i � s
}

∪ {〈¬xj ,D
¬
i 〉: ¬xj occurs in D¬

i

}
∪ {〈xj ,C

+
i 〉: xj occurs in C+

i

}
The instance of CA

(2)
{} is completed by setting S = {Φ+,Φ¬}.

Suppose that there is some preferred extension, T , of BMCS for which {Φ+,Φ¬} ⊆ T , i.e. that 〈BMCS, S〉 defines
a positive instance of CA

(2)
{} . Then, for each C+

i some argument xj with 〈xj ,C
+
i 〉 ∈ A must be in T (otherwise the

attack 〈C+
i ,Φ+〉 is undefended); similarly for each D¬

i some argument ¬xk with 〈¬xk,D
¬
i 〉 ∈ A must be in T . It

cannot be the case, however, that both xj and ¬xj are in T . We can, thus, construct a satisfying instantiation of Φ via
xj := � if xj ∈ T , and xj := ⊥ if ¬xj ∈ T .

On the other hand suppose the instance Φ of MCS is satisfiable, using some instantiation α. In this case the set

{Φ+,Φ¬} ∪ {x+
j : xj = � under α} ∪ {x¬

j : xj = ⊥ under α}
is easily seen to be admissible, so that 〈BMCS, {Φ+,Φ¬}〉 defines a positive instance of CA

(2)
{} .

Part (b) follows easily from Theorem 6(b) since a set of arguments S is sceptically accepted if and only if each of
its constituent members is sceptically accepted. �

The remaining cases in Table 2 are considered in the following theorem.

Theorem 8.

(a) ∀k � 3, CA(k) is NP-complete.
(b) ∀k � 3, SA(k) and COHERENT(k) are Π

p

2 -complete.

Proof. The membership proofs are identical to those that hold for the unrestricted versions of each problem. For
(a), NP-hardness follows by observing that the argument system HΦ given in Section 3.1 is 3-partite: using three
colours—{R,B,G} say—HΦ may be vertex 3-coloured by assigning R to {Φ,z1, . . . , zn}; B to {¬z1, . . . ,¬zn} and
G to {C1, . . . ,Cm}. The proof of (b) requires techniques introduced in Section 5 applied to the construction GΦ of
Section 3.2: details are given in Appendix A. �
5. Bounded degree systems

In contrast to many of the results of Section 4, the restriction considered in this section7 does not lead to improved
algorithmic methods. Our principal interest is in introducing the concept of a given class of argument systems being
capable of “representing” another class. This is of interest for the following reason. Suppose that Π and Θ are prop-
erties of argument systems (where the formal definition of “property” will be clarified subsequently). Furthermore,
suppose that any system with property Θ can be “represented” (in a sense to be made precise) by another system with
property Π . Assuming such a representation can be constructed efficiently, we would be able to exploit algorithmic

7 The presentation here is a revised and expanded treatment of ideas originally outlined in [26].
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methods tailored to systems with property Π also to operate on systems with property Θ : given H (satisfying Θ),
form GH (with property Π ) and use an algorithm operating on this to decide the question posed of H. In a more
precise sense, we have the formalism presented below.

Definition 9. A property, Π of finite argument systems is a (typically infinite) subset of all possible finite argument
systems. We say H has property Π if H ∈ Π .

The argument system H(X ,A) is simulated by the argument system G(X ∪ Y,B) with respect to credulous ad-
missibility (denoted G ∼ca H) if

∀S ⊆ X CA{}
(
G(X ∪Y,B), S

) ⇔ CA{}
(
H(X ,A), S

)
Similarly H is simulated by G w.r.t. sceptical admissibility (G ∼sa H) if

∀S ⊆ X SA{}
(
G(X ∪Y,B), S

) ⇔ SA{}
(
H(X ,A), S

)
For α ∈ {CA, SA}, a property, Π α-represents a property Θ if for every H(X ,A) ∈ Θ there is some G(X ∪Y,B) ∈ Π

such that G ∼α H. We say that Π polynomially α-represents Θ if there is some constant k such that, for every
H(X ,A) ∈ Θ there is some G(X ∪Y,B) ∈ Π such that |X ∪Y| � |X |k and G ∼α H. Finally we say that a property
is (polynomially) α-universal if it (polynomially) α-represents all argument systems.

It will be useful also to view as “polynomially α-universal” those properties that α-represent all but finitely many
argument systems.

The class of argument systems considered in this section are those defined by the property, Δ(p,q) introduced
below,

Definition 10. An argument system H(X ,A) has (p, q)-bounded degree if

∀x ∈ X
∣∣{y ∈X : 〈y, x〉 ∈A

}∣∣ � p and
∣∣{y ∈X : 〈x, y〉 ∈ A

}∣∣ � q

The notation Δ(p,q) will be used for the set of all (p, q)-bounded degree systems.

Our main result in this section is

Theorem 11.

(a) Δ(2,2) is polynomially CA-universal.
(b) Δ(2,2) is polynomially SA-universal.

Proof. We prove part (a) only. An identical construction serves for part (b) with the analysis needed for the conditions
of simulation w.r.t. sceptical admissibility proceeding in a similar style to the case of credulous admissibility.

Let H(X ,A) be any finite argument system. Suppose H /∈ Δ(2,2). Consider any x ∈ X for which{
y: 〈y, x〉 ∈ A

} = {y1, y2, . . . , yk} and k � 3

Consider the system G(k−1)
x (X ∪ {z1, z2},B) formed by introducing new arguments z1 and z2 with

B = A \ {〈yi, x〉: 2 � i � k
} ∪ {〈z1, x〉, 〈z2, z1〉

} ∪ {〈yi, z2〉: 2 � i � k
}

i.e. formed by replacing the attacks on x in Fig. 3 with the system in Fig. 4.
We claim that G(k−1)

x (X ∪ {z1, z2},B) ∼ca H(X ,A).
Consider any T ⊆ X ∪{z1, z2} defining an admissible set in G(k−1)

x and let S = T \{z1, z2}. To see that S is conflict-
free it suffices to observe that the only way in which T can be conflict-free and S fail to be so is if {x, yi} ⊆ T for
some 2 � i � k: but in this case, since z1 attacks x and the only counterattack on z1 is z2, x ∈ T forces z2 ∈ T from
which yi /∈ T , for every 1 � i � k. To see that S also defends itself against any attack if T does so, first suppose that
x ∈ T . In this case, not only must some attacker of y1 be in T (and thus the same attacker is in S) but also since z2 ∈ T

to defend the attack on x by z1, we require that for each attack 〈yi, z2〉, T must contain some attacker of yi : again all
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Fig. 3. Argument x attacked by k � 3 arguments.

Fig. 4. Reducing k attacks to k − 1 attacks.

of these attacks will be members of S. If, on the other hand, x /∈ T , without loss of generality suppose that 〈x,p〉 ∈A
and that p ∈ T . Then either y1 ∈ T (and thus also in S) or z1 ∈ T . The second of these, however, requires that at least
one of {y2, . . . , yk} is in T to counterattack z2. It follows that if x /∈ S and attacks p ∈ S then {y1, . . . , yk} ∩ S �= ∅.

In the reverse direction, suppose that S ⊆ X is admissible in H. If x ∈ S then S ∪{z2} is an admissible set of G(k−1)
x .

If x /∈ S either S is also an admissible set of G(k−1)
x (if y1 ∈ S or x does not attack any argument of S) or S ∪ {z1} is

such a set (whenever S ∩ {y2, . . . , yk} �= ∅). Thus, G(k−1)
x (X ∪ {z1, z2},B) ∼ca H(X ,A).

Noting that the construction does change the number of attacks on arguments other than x, a similar procedure can
be applied to any remaining argument attacked by at least three arguments. A near identical construction (in which
the direction of attacks is reversed) serves when dealing with those arguments that attack more than two others. �

Recalling from Definition 5 that Γ (k) is the set of all k-partite argument systems we obtain

Corollary 2. The property Γ (4) ∩ Δ(2,2) is polynomially CA-universal and polynomially SA-universal.

Proof. Viewed as undirected graphs, via Brooks’ Theorem ([11, Thm 6, Ch. 15, p. 337]), with a single exception,8

every argument system in Δ(2,2) is vertex 4-colourable. It follows that these are 4-partite. �
Corollary 3. Let Q(2,2) denote either of the decision problems {CA, SA} restricted to argument systems with the prop-
erty Δ(2,2).

(a) CA(2,2) is NP-complete.
(b) SA(2,2) is Π

p

2 -complete.

Proof. Apply the construction of Theorem 11 to the systems HΦ and GΦ presented in Section 3. �
8 It is because of this case—the complete graph on 5 vertices—that the “connectivity” assumption mentioned following Definition 1 is needed:

without it there are infinitely many (2,2)-bounded systems which are not vertex 4-colourable.
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Fig. 5. Planar drawing of K4 the complete graph on four vertices.

6. Planar argument systems

We recall that a graph G(V,E) is planar if it can be drawn (in the plane) in such a way that no two edges of the
graph cross each other. Thus, the complete graph on four vertices is planar, e.g. Fig. 5, whilst the complete graph on
five vertices is non-planar.

Several graph-theoretic decision problems whose general versions are NP-hard are known to admit polynomial
time algorithms when instances must be planar graphs. Examples include not only questions that are immediately
resolvable from established properties of planar graphs, e.g. vertex 4-colouring and maximal clique, but also for
questions where it is far from obvious that planarity assists in developing efficient algorithms, e.g. the problem of
determining whether a graph has a bipartite subgraph containing at least some specified number of edges, [31, GT25,
p. 196]. For problems whose complexity status is still open, most notably that of deciding if two given graphs are
isomorphic, linear time methods have been found for planar graphs, e.g. [33]. Planarity, however, does not help in the
construction of efficient decision procedures for the problems of Table 1. The reductions employed to prove this make
use of a device which is of some independent interest: in terms of the formalism introduced in the preceding section
this allows us to argue that planarity is a polynomially CA-universal property.

Prior to presenting our main analyses we make two observations: firstly, from work of Fraenkel [30], it is known that
STAB-EXT restricted to planar instances is NP-complete. This result, however, does not allow us to deduce anything
concerning the complexity of credulous or sceptical acceptance: in particular, the planar systems constructed when
addressing CA are guaranteed to have stable extensions so the existence problem STAB-EXT is trivial for such cases.
As a second point we observe that using the (NP-complete) decision problem PLANAR-3-SAT, whose instances are
3-CNF formulae having planar clause incidence graphs,9 it is not too difficult to show that CA{}(H, S) is NP-complete
when H is required to be a planar graph.10 We do not consider the proof of this result in any further detail, simply
noting that it is subsumed by our proof that CA(H, x) is NP-complete with H restricted to planar graphs.

For Q any of the decision problems of Table 1, we let QP denote the variant in which the argument system forming
part of the instance is planar.

Theorem 12. CAP is NP-complete.

Proof. It suffices to prove that CAP is NP-hard, for which purpose we use a reduction from 3-SAT. Given Φ(Zn) we
first form the system HΦ(X ,A) of Section 3.1 and recall that Φ(Zn) is satisfiable if and only if CA(HΦ,Φ) holds.

The argument system HΦ , however, will not in general be planar, e.g. in Fig. 1 there are eleven distinct points
where edges cross and thus HΦ must be modified to obtain a planar graph, HP

Φ , whilst retaining the property that the
argument Φ is credulously accepted if and only if Φ(Zn) is satisfiable.

9 The clause incidence graph of a CNF Φ(x1, . . . , xn) = ∧m
j=1 Cj , is the bipartite graph with vertex sets {x1, . . . , xn} and {C1, . . . ,Cm} and

edges {xi ,Cj } for each case when ¬xi occurs in Cj or xi occurs in Cj .
10 For readers familiar with the relevant graph-theoretic concepts, the instance of CA{} is formed using a planar embedding of the clause incidence
graph of Φ—an instance of PLANAR-3-SAT—augmenting it with arguments {φ1, φ2, . . . , φr } one for each face of the embedding in which a clause
of Φ occurs. These arguments are then attacked by the individual clauses within the relevant face. Following some minor adjustments to represent
the presence of negated literals in clauses, we can then show that the set {φ1, . . . , φr } is credulously accepted if and only if Φ is satisfiable.
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The system HP
Φ is formed from HΦ in two stages. First for each position where two edges11 cross, e.g. 〈p,q〉

and 〈r, s〉, replace the “crossing point” by an argument which attacks q and s and is attacked by p and r . If the
chosen realisation of HΦ contains r crossings we denote these new arguments Xc = {x1, x2, . . . , xr}. We note that
r = O(|A|2) so the translation is polynomial time computable. Fig. 6 illustrates the outcome of this translation when
applied to the argument system of Fig. 1 after replacing the eleven crossings.

Of course this new system will no longer have the same admissibility properties of the one it replaces: in particular
it is not guaranteed to be the case that an admissible set containing Φ can be built if and only if Φ(Zn) is satisfiable. For
example, for the system shown in Fig. 6, the set {Φ,z1, z2, z3, z4, x3, x8, x9} is admissible, however, the corresponding
instantiation of 〈z1, z2, z3, z4〉 by zi := � gives Φ(�,�,�,�) ≡ ⊥. In order to restore the desired behaviour we
systematically replace each new argument introduced with a planar argument system.

The typical environment in this case is shown in Fig. 7(a). We have arguments (z and y) that (in HΦ ) attacked
arguments q and p: the attacks 〈z, q〉 and 〈y,p〉 crossing in the drawing of HΦ and the crossing point replaced by an
argument (x) so that the attacks present are now 〈z, x〉, 〈y, x〉, 〈x,p〉, and 〈x, q〉. In Fig. 7(b), x in turn is replaced by
a planar system linking arguments z and y with new arguments yb and zd with yb attacking p and zd attacking q . In
order to ensure this replacing system operates correctly it must have the property that in any preferred extension, S,
of the resulting system it holds: z ∈ S if and only if zd ∈ S and y ∈ S if and only if yb ∈ S.

Fig. 6. HΦ after crossings replaced by new arguments xi .

Fig. 7. Crossing edges in HΦ and their replacement.

11 It is not necessary to consider the case of three of more edges having a common crossing point: any graph may be drawn in such a way that this
case does not arise.
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λ(x) := 0∀x ∈ Xc

T := Xc; k := 1
while k � r do

if ∃x ∈ T : x is attacked by two literals then
λ(x) := k; T := T \ {x}

else if ∃x ∈ T : x is attacked by a literal and x′ ∈ Xc \ T then
λ(x) := k; T := T \ {x}

else
Choose any x ∈ T with both attackers of x in Xc \ T

λ(x) := k; T := T \ {x}
end if
k := k + 1

end while

Algorithm 2. Ordering of arguments in Xc .

Before describing the exact design of the replacing system, however, we specify the order in which the Xc are
replaced. We say that the argument y of HΦ is a literal if y ∈ {zi,¬zi1 � i � n} and now observe that the set
of arguments, Xc may be ordered using the labelling approach presented in Algorithm 2 to assign a unique num-
ber λ(x) to each x ∈ Xc with 1 � λ(x) � r . For the example of Fig. 6 an ordering produced by this algorithm is
〈x1, x5, x11, x6, x8, x3, x2, x4, x7, x10, x9〉.

The construction of the planar system HP
Φ is completed by replacing the arguments x ∈ Xc in order of increasing

value of their label λ(x) with a copy of the planar crossover gadget given in Fig. 8.12 We denote by W the arguments
of HP

Φ (noting that X ⊆ W and Xc ∩W = ∅); and its attacks by B (observing that each of the attacks 〈Cj ,Φ〉 ∈A is
also in B).

The resulting system, HP
Φ , is planar: it remains to show that Φ is credulously accepted in HP

Φ if and only if Φ(Zn)

is satisfiable. In HΦ , S is a preferred extension containing Φ if and only if S = {Φ,y1, y2, . . . , yn} with yi ∈ {zi,¬zi}
defining an instantiation satisfying Φ(Zn), i.e. zi = � if yi = zi and zi = ⊥ if yi = ¬zi , it therefore is sufficient
to prove for the crossover gadget of Fig. 8 that whenever S is a preferred extension of HP

Φ , z ∈ S ⇔ zd ∈ S and
y ∈ S ⇔ yb ∈ S. We need only consider the first of these as an identical proof covers the second. To simplify the
analysis, it is useful to note that HΦ and HP

Φ are both coherent: the only cycles are those of length two formed by
the n pairs {zi,¬zi}, i.e. HΦ and HP

Φ contain no odd length cycles and coherence follows from Fact 2(d). Given this,
every preferred extension, S, of HP

Φ is also a stable extension so that any q /∈ S must be attacked by some p ∈ S.
Consider any preferred extension S ⊆ W of HP

Φ and an occurrence of the crossover gadget which, without loss
of generality, we take as labelled in Fig. 8. Suppose z ∈ S and consider the two possibilities y ∈ S and y /∈ S. The
first of these, gives a4 ∈ S: each of {a1, a2, a3} is attacked by {y, z}, however a4 is only attacked by {a2, a3} and so
(from stability) must be in S. From {y, z, a4} ⊆ S it follows that {b1, b2, b3, d1, d2, d3} ∩ S = ∅ and thence, again via
stability, {yb, zd} ⊂ S since no attackers of these can belong to S. For the second possibility, y /∈ S, some attacker of y

(y′ say) must belong to S and we deduce that {z, y′, a3} ⊆ S and a4 /∈ S. In this case, however, it must hold that d1 ∈ S

(this is only attacked by a4 and y) and thence zd ∈ S (since neither of its attackers—d2 and d3 can belong to S). In
summary if z ∈ S then zd ∈ S regardless of the status of y.

On the other hand suppose that z /∈ S so that some attacker of z, z′ is in S. Again we have the two possibilities
y ∈ S and y /∈ S. In the former case, {z′, y, a2} ⊆ S and {a4, d1, d3} ∩ S = ∅. From this we must have d2 ∈ S (since
its only attackers are d1 and a4) from which it follows that zd /∈ S as required. Finally in the second case with y /∈ S,
some attacker y′ of y is in S. From {y, z} ∩ S = ∅ we deduce that {y′, z′, a1, a4} ⊆ S (y and z are the only attackers
of a1), and thence {d1, d2} ∩ S = ∅. In this case, however, it must hold that d3 ∈ S as its only attackers are y and d1:
in consequence zd /∈ S as required. In total we have that z /∈ S implies zd /∈ S, completing the proof that the crossover
gadget has the desired behaviour.

It is now easy to see that Φ is credulously accepted in the planar system HP
Φ if and only if Φ(Zn) is satisfiable. If

{y1, . . . , yn} is a set of literals defining a satisfying instantiation of Φ(Zn) then each clause Cj must contain a literal

12 Readers familiar with research literature on planar realisations of Boolean networks may recognise that the structure of Fig. 8 derives from that
of the planar crossover formed from twelve binary ¬∧-elements, cf. [35] and [25, Ch. 6, pp. 404–405].



P.E. Dunne / Artificial Intelligence 171 (2007) 701–729 715

Fig. 8. Planar crossover gadget.

from this set. Choosing the argument zi in W if yi = zi and the argument ¬zi otherwise, we can build an admissible
subset S of W which attacks each argument Cj (either the literal itself or that propagated via the crossover gadget that
replaced 〈x,Cj 〉), so that Φ can be added to S in forming a preferred extension. On the other hand if Φ is credulously
accepted then from a preferred extension containing Φ and the attacks on each Cj in S we identify a set of literals
that will satisfy Φ(Zn).

We deduce that CAP is NP-complete as claimed. �
In the analysis demonstrating that the crossover gadget of Fig. 8 operated correctly, we relied on the fact that the

system in which it was used was coherent and that thus for any given preferred extension, S, arguments q /∈ S could
be assumed to be attacked by some argument p ∈ S. We cannot, however, rely on this assumption in attempting to
translate arbitrary non-planar argument systems to planar schemes, and thus it is unclear whether directly replacing
crossing points using the crossover gadget would produce a system with similar admissibility properties. It turns out,
however, that it is possible to transform any argument system, H, into a planar system, HP in such a way that questions
regarding credulous admissibility of arguments in H may be posed of corresponding arguments in HP. In order to do
this a rather more indirect construction is needed.

Theorem 13. Planarity is polynomially CA-universal.

Proof. Let H(X ,A) be any finite argument system with X = {x1, x2, . . . , xn}. Consider the propositional formula
ΨH(Xn) defined from H(X ,A) as

ΨH(Xn) =
∧

〈xi ,xj 〉∈A
(¬xi ∨ ¬xj ) ∧

(
¬xj ∨

∨
xk : 〈xk,xi 〉∈A

xk

)

With this system α = 〈a1, . . . , an〉 is a satisfying instantiation of ΨH if and only if the subset S(α) of X chosen via
xi ∈ S ⇔ ai = � is an admissible set in H.

The formula ΨH is in CNF and so we can define another argument system—FH
Ψ simply by using the construction

of Section 3.1. Furthermore we can now apply the planarization method of Theorem 12 (FH
Ψ is coherent irrespective of

whether H is so). Let FH,P
Ψ be the resulting planar argument system. Now although it is not the case that FH,P

Ψ ∼ca H-

every subset of {x1, x2, . . . , xn} describes an admissible set in FH,P
Ψ —it is easily modified to a system HH,P

Ψ which is

planar and satisfies HH,P
Ψ ∼ca H. To achieve this, we add a new argument, u, to the set of arguments forming FH,P

Ψ

together with attacks {〈Ψ,u〉} ∪ {〈u,xi〉, 〈u,¬xi〉: 1 � i � n}.
Notice that a planar realisation of HH,P

Ψ is straightforward to construct from the planar realisation of FH,P
Ψ . Now

let Y consist of the arguments {¬xi : 1 � i � n} together with {u,Ψ }, the arguments representing clauses of ΨH and
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those introduced during the transformation of FH
Ψ to the planar system FH,P

Ψ , i.e. arising by replacing crossing points
with copies of the schema in Fig. 8.

We claim that HH,P
Ψ ∼ca H. Consider any admissible subset T of X ∪ Y , the arguments of HH,P

Ψ . To see that
S = T \Y is an admissible set in H, notice that

(Ψ /∈ T ) and (T is admissible) ⇔ (T = ∅)

since the argument u attacks each y in {xi,¬xi : 1 � i � n} and is only attacked by Ψ , so it is no longer the case that
every non-empty subset of {x1, x2, . . . , xn} describes an admissible set in HH,P

Ψ (as happened with FH,P
Ψ ). So without

loss of generality we may assume Ψ ∈ T . Now the definition of ΨH(Xn) and the properties of FH
Ψ ensure that since

the instantiation xi = � if xi ∈ T , xi = ⊥ if xi /∈ T satisfies ΨH the set {xi : xi ∈ T } is an admissible subset in H:
this, set however, is exactly the set of arguments in S = T \Y .

Similarly, if S ⊆ X is admissible in H, it may be extended to an admissible set in HH,P
Ψ by adding the ar-

guments {Ψ }, {¬xi : xi /∈ S} and those from the crossover elements whose inclusion is forced by the subset of
{xi,¬xi : 1 � i � n} corresponding to the satisfying instantiation of ΨH(Xn). �
Corollary 4. PREF-EXTP is NP-complete.

Proof. Immediate by noting that HP
Φ modified by the addition of the argument u as described in the proof of Theo-

rem 13, has a non-empty preferred extension if and only CA(H P
Φ,Φ). �

Corollary 5. Let P(p,q),k be the class of planar argument systems in the set Δ(p,q) ∩ Γ (k). The property P(2,2),4 is
polynomially CA-universal.

Proof. From Theorem 13 planarity is polynomially CA-universal. The transformation described in Theorem 11 pre-
serves planarity, thus the result follows by combining Theorem 13, Theorem 11 and Corollary 3. �

In fact, analysing the structure of HH,P
Ψ from the proof of Theorem 13 we obtain a stronger result,

Corollary 6. The property P(3) satisfied by 3-partite planar argument systems is polynomially CA-universal.

Proof. Given H(X ,A) form the planar system HH,P
Ψ of Theorem 13. It is straightforward to show that this system is

vertex 3-colourable and hence 3-partite. �
Finally, parallelling the result of Theorem 12 we have,

Theorem 14.

(a) SAP is Π
p

2 -complete.
(b) COHERENTP is Π

p

2 -complete.

Proof. Exactly as the reduction from QSATΠ
2 outlined in Section 3.2, however, with the CNF instance Φ(Yn,Zn)

implemented as the argument system HP
Φ instead of HΦ . �

7. Bounded treewidth

Treewidth, which may be informally understood as a measure of the extent to which a graph differs from a tree, is
known to provide a significant aid in developing efficient algorithmic approaches, particularly in the case of graphs
whose treewidth may be bounded by a constant value k. A useful survey of results concerning graphs with bounded
treewidth is presented in [14]. With some minor differences, we follow the treatment given in Arnborg et al. [3] for
the definition of treewidth in Definition 15 and for the description of the language of monadic second order logic. The
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Fig. 9. H with tw(H) = 2 and its tree decomposition.

second of these admits the use of powerful general tools for synthesising efficient decision algorithms for an extensive
range of NP-hard graph problems when the graphs in question have bounded treewidth.

Definition 15. A tree decomposition of a directed graph H(X,A) is a pair 〈T ,S〉, where T (V,F ) is a tree and
S = {S1, S2, . . . , Sr} is a family of subsets of X with r = |V | for which

(a)
⋃r

i=1 Si = X.
(b) For all 〈x, y〉 ∈ A there is at least one13 Si ∈ S for which {x, y} ⊆ Si .
(c) For each x ∈ X, the subgraph of T (V,F ) induced by the set Vx = {Vi : x ∈ Si} is connected, i.e. a subtree of

T (V,F ).

The width of a tree decomposition 〈T ,S〉 of H(X,A) is maxSi∈S |Si |−1; the treewidth of H(X,A)—denote tw(H)—
is the minimum width over all tree decompositions of H .

Notice that if H(X ,A) is itself a tree, then tw(H) = 1: simply choose the system of subsets S = {S1, . . . , Sr}
with r = |A| so that for each 〈xi, xj 〉 ∈ A there is a set Sk = {xi, xj } ∈ S. The edges, F , in the tree decomposition
〈T (V,F ),S〉, are those pairs {Vi,Vj } for which Si ∩ Sj �= ∅. An example of H(X ,A) for which tw(H) = 2 and an
associated tree decomposition is given in Fig. 9.

We denote by W(k) the class of all argument systems H(X ,A) whose treewidth is at most k. We note that although
given 〈H(X ,A), k〉 deciding if H ∈ W(k) is NP-complete from [4], for constant k there are polynomial-time algo-
rithms: O(nk+2) methods were first presented in [2], while linear time methods are given in [13]. Both return a width
k decomposition, if one exists, although it should be noted that the O(n) method of [13] involves a significant constant
factor (dependent on k) in the O(n) analysis.

Consider structures of the form 〈X ,A〉 where X = {x1, . . . , xn} is a finite set of arguments and A ⊂ X × X an
attack relation. The language, L, of monadic second-order logic (MSOL) for this class of structures contains the
standard propositional connectives—∧, ∨, →, ↔, ¬—individual variable symbols—x, y, z etc.—predicates, and
quantifiers (∃, ∀). In addition, and distinguishing it from first-order logic, L contains set variable symbols, U , V , W ,
etc., the set membership symbol (∈) and allows quantification over set variables.

We note that the scheme presented in [3] is rather more elaborated. The corresponding structure would be
〈D,X ,A,hd, tl〉 where X and A are unary predicates on elements of the set D, i.e. X (d) holds if and only if d is an

13 [3, Definition 3.1, p. 314] requires exactly one, however, the distinction is not significant.
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argument; A(d) if and only if d is an attack. To relate attacks to their constituent arguments, hd and tl are binary pred-
icates defined so that hd(b, c) if b is an attack whose source is the argument c; similarly tl(b, c) holds whenever b is an
attack directed at the argument c: thus 〈x, y〉 ∈ A would be realised as X (x) ∧X (y) ∧ ∃dA(d) ∧ hd(d, x) ∧ tl(d, y).
For reasons of clarity we eschew this level of precision. We note that, where we write, e.g. ∃U ⊆ XP(U) (for some
predicate P ), within the formal style of [3], this could be expressed by ∃U(∀uu ∈ U → X (u)) ∧ P(U); similarly
∀U ⊆ XP(U) is equivalent to ∀U(∀uu ∈ U → X (u)) → P(U).

Now given a well-formed MSOL sentence Φ(X ,A) typically some argument systems, H, will satisfy14 Φ and
others fail to do so, i.e. such sentences provide a mechanism for specifying properties of finite argument systems.
Formally we say an argument system property, Π , is MSOL-definable if there is a well-formed MSOL sentence,
Φ(X ,A) such that

∀H(X ,A)H ∈ Π ⇔ Φ |= H
For example, the property of an argument system being bipartite, H(X ,A) ∈ Γ (2), is MSOL-definable as shown by
the sentence,

BI(X ,A) = ∃U ∃V ∀x(x ∈ U ∨ x ∈ V ) ∧ (¬(x ∈ U) ∨ ¬(x ∈ V )
) ∧ (∀y

(〈x, y〉 ∈A
) → (x ∈ U ↔ y ∈ V )

)
That is the system 〈X ,A〉 is bipartite whenever there are two sets (U and V ) such that: every x belongs to at least
one of these (x ∈ U or x ∈ V ); no x belongs to both; and should 〈x, y〉 be an attack in A, exactly one of x and y is
in U . Thus, the system with X = {x1, x2, x3} and A = {〈x1, x2〉, 〈x2, x3〉, 〈x3, x1〉} fails to satisfy BI(X ,A) whereas
with A′ = {〈x1, x2〉, 〈x2, x3〉, 〈x2, x1〉} BI(X ,A′) is satisfied (choose U = {x1, x3} and V = {x2}).

Although not all graph-theoretic properties are MSOL-definable, for those which are—irrespective of the compu-
tational complexity for instances in general—the following result of Courcelle [18,19] is of significance respecting
decision methods for MSOL-definable properties restricted to graphs with treewidth k.

Fact 16. (Courcelle’s Theorem, see [18,19] also [3].) Let K be a class of graphs for which ∀G ∈ Ktw(G) � k for
some constant k ∈ N and Π be any MSOL-definable property. Given G ∈ K and a width k tree decomposition of G,
G ∈ Π is decidable in linear time.

Recall that W(k) is the class of finite argument systems H(X ,A) for which a tree decomposition of width k exists.

Theorem 17. For all constant k ∈ N, given H(X ,A) ∈ W(k) together with a width k tree decomposition of H(X ,A)

each of the following decision problems are decidable in linear time.

(a) PREF-EXT(H).
(b) STAB-EXT(H).
(c) COHERENT(H).
(d) There is at least one sceptically accepted argument in H.

Proof. Given Fact 16 it suffices to give MSOL sentences expressing each of these properties.

(a) PREF-EXT(X ,A)

∃U ⊆ X (U �= ∅) ∧ ADM(X ,A,U)

where ADM(X ,A,U) is the predicate

∀x ∈ X ∀y ∈X 〈x, y〉 ∈A → (¬(x ∈ U) ∨ ¬(y ∈ U)
) ∧ (

y ∈ U → (∃z(z ∈ U) ∧ 〈z, x〉 ∈A
))

Note that we use the abbreviated form U �= ∅ rather than the more involved ∃u ∈ X (u ∈ U). Thus, the given
expression represents the property of 〈X ,A〉 having a non-empty preferred extension via the conditions that there
is some non-empty subset (U ) of X which is admissible, i.e. U is conflict-free and for any argument x /∈ U

attacking an argument y ∈ U , there is some z ∈ U that counterattacks x.

14 The satisfaction relation Φ |= H is defined in the usual inductive style via the structure of the MSOL sentence Φ .
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(b) STAB-EXT(X ,A)

∃U ⊆ XADM(X ,A,U) ∧ ∀x ∈ X¬(x ∈ U) → (∃z ∈ U 〈z, x〉 ∈ A
)

That is, 〈X ,A〉 has a stable extension if there is a subset U of X which is admissible and attacks any argument
not contained in it.

(c) COHERENT(X ,A)

∀U ⊆ XPREF(X ,A,U) → STABLE(X ,A,U)

where STABLE(X ,A,U) is the predicate,

ADM(X ,A,U) ∧ ∀x ∈X¬(x ∈ U) → (∃z ∈ U 〈z, x〉 ∈A)

and PREF(X ,A,U) the predicate

ADM(X ,A,U) ∧ MAXIMAL(X ,A,U)

with MAXIMAL(X ,A,U) defined as,

∀W ⊆ X ∀Z ⊆ X
(
(Z = U ∪ W) ∧ ADM(X ,A,Z)

) → (W ⊆ U)

Again we use abbreviated forms Z = U ∪ W and W ⊆ U noting,

Z = U ∪ W ≡ ∀x ∈ X (x ∈ Z) ↔ (x ∈ U ∨ x ∈ W)

W ⊆ U ≡ ∀x ∈X (x ∈ W) → (x ∈ U)

In total this expression captures the concept of coherence via: any subset of X which is a preferred extension is
also stable. A subset, U , being a preferred extension if it is both admissible and maximal, i.e. for every W for
which U ∪ W is admissible it holds that W is a subset of U .

(d) There is at least one sceptically accepted argument in H(X ,A).

∃x ∈X∀U ⊆ XPREF(X ,A,U) → (x ∈ U) �
Although Theorem 17 establishes the existence of efficient algorithms for decision problems whose complexities

in general are NP and Π
p

2 -complete, it does not aid with problems concerning the properties of specific arguments
within a given system, e.g. CA(H, x). Suppose, however, we define D(H) as

max
x∈X

∣∣{y: 〈y, x〉 ∈ A or 〈x, y〉 ∈ A
}∣∣

That is, in standard graph-theoretic terminology, D(H) is the maximum degree—number of attacks made on and
by—taken over all arguments x of H. We can obtain algorithms whose run-time is O(f (q)nc) for CA{}(H, S): here f

is some fixed function f : N → N, n = |X |, c is a constant (independent of H) and q is the parameter tw(H) × D(H),
that is, in terms of the framework of fixed-parameter complexity pioneered by Downey and Fellows [22], CA{}(H, S)

is fixed-parameter tractable (FPT) with respect to the parameter q .
In order to prove this we exploit results from Gottlob et al. [32] in which a parameter with to respect which CNF-SAT

is FPT was presented.

Definition 18. Let Φ(Zn) be a CNF formula with clause set {C1,C2, . . . ,Cm}. The primal graph of Φ , denoted
PΦ(Zn,E), is the (undirected) graph with vertices labelled by the propositional variables defining Φ , and whose edge
set, E, is,{{zi, zj }: zi and zj occur as variables in some clause C of Φ

}

Fact 19. (See Gottlob et al. [32].) CNF-SAT is FPT w.r.t. the parameter tw(PΦ).

There have, subsequently, been a number of FPT approaches to CNF-SAT—notably work discussed in Szeider
[38]—that consider alternative graph-theoretic representations of CNF formulae. In principle by adopting approaches
related to the methods we now describe in Theorem 20 these too would lead to (potentially, improved) FPT methods
for CA.
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Theorem 20. CA{} is FPT w.r.t. the parameter tw(H) × D(H).

Proof. Let H(X ,A) have tw(H) = r and consider the CNF formula, ΨH(Xn), as defined in the proof of Theorem 13,
i.e.

ΨH(Xn) =
∧

〈xi ,xj 〉∈A
(¬xi ∨ ¬xj ) ∧

(
¬xj ∨

∨
xk : 〈xk,xi 〉∈A

xk

)

Notice that PHΨ (Xn,E) contains the undirected form of H(X ,A) as a subgraph by virtue of the clause set∧
〈xi ,xj 〉∈A(¬xi ∨ ¬xj ). The additional edges of PHΨ are those arising from the clauses (¬xj ∨ ∨

xk : 〈xk,xi 〉∈A xk).
The edges, E〈xi ,xj 〉 in E contributed by this clause associated with the attack 〈xi, xj 〉 being

E〈xi ,xj 〉 = {{xj , xk}: 〈xi, xj 〉 ∈A and 〈xk, xi〉 ∈A
} ∪ {{xk, xl}: 〈xk, xi〉 ∈ A and 〈xl, xi〉 ∈A

}
For each xi ∈ X define the set of edges Xi by

Xi = {{yj , zk}: 〈yj , xi〉 ∈A and 〈xi, zk〉 ∈ A
}

∪ {{yj , yk}: 〈yj , xi〉 ∈ A and 〈yk, xi〉 ∈A
}

∪ {{zj , zk}: 〈xi, zj 〉 ∈ A and 〈xi, zk〉 ∈A
}

Then if H(X,A) is the undirected form of H(X ,A) then not only is H(X,A) a subgraph of PHΨ (Xn,E), but
PHΨ (Xn,E) is in turn a subgraph of H aug where H aug has vertex set Xn and edge set

F aug = A ∪
⋃
xi∈X

Xi

From these it observations it follows that tw(H) � tw(PHΨ ) � tw(H aug) and thus bounding the width of a tree-
decomposition of H aug gives an upper bound on the treewidth of the primal graph PHΨ (Xn,E) of ΨH(Xn).

Let 〈T ,S〉 be a width r tree decomposition of H(X ,A), with S = {S1, S2, . . . , Sm}, Si ⊆ X and T (V,F ) the tree
structure linking the family of sets indexed by V = {V1, . . . , Vm}. Form the family of sets Y = {Y1, Y2, . . . , Ym} via

Yi = Si ∪
⋃

xi∈X

{
y, z: 〈y, x〉 ∈A or 〈x, z〉 ∈A

}

With this, 〈T ,Y 〉 is a tree decomposition of H aug(X,F aug). Furthermore, its width is at most (D(H) + 1)(tw(H) +
1) − 1: each Si contains at most tw(H) + 1 members, each of which can contribute at most D(H) new elements to Si

in addition to those already present. It follows that

tw
(

PHΨ
)
� tw(H) + D(H)

(
tw(H) + 1

) = (
D(H) + 1

)(
tw(H) + 1

) − 1

Thus, given an instance 〈H, S〉 of CA{} and a width r tree decomposition of H, we may now apply the methods
described in [32] to test satisfiability of the CNF formula

Φ(Xn) =
(∧

x∈S

x

)
∧ ΨH(Xn)

via a tree decomposition of PΦ having width at most (D(H) + 1)(r + 1) − 1. �
8. Value-based argument frameworks

To conclude we consider the effect that restricting the underlying graph structure has with respect to value-based
argument systems. We recall the following definitions from Bench-Capon [9].

Definition 21. A value-based argumentation framework (VAF), is defined by a triple 〈H(X ,A),V, η〉, where H(X ,A)

is an argument system, V = {v1, v2, . . . , vk} a set of k values, and η :X → V a mapping that associates a value
η(x) ∈ V with each argument x ∈ X .
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Table 3
Decision problems in value-based argument frameworks

Problem Instance Question

Subjective Acceptance (SBA) 〈〈X ,A〉,V, η〉; x ∈ X ∃α: x ∈ P(〈〈X ,A〉,V, η〉, α)?
Objective Acceptance (OBA) 〈〈X ,A〉,V, η〉; x ∈ X ∀α: x ∈ P(〈〈X ,A〉,V, η〉, α)?

An audience for a VAF 〈〈X ,A〉,V, η〉, is a binary relation R⊂ V ×V whose (irreflexive) transitive closure, R∗, is
asymmetric, i.e. at most one of 〈v, v′〉, 〈v′, v〉 are members of R∗ for any distinct v, v′ ∈ V . We say that vi is preferred
to vj in the audience R, denoted vi �R vj , if 〈vi, vj 〉 ∈ R∗. We say that α is a specific audience if α yields a total
ordering of V .

Using VAFs, ideas analogous to those introduced in Definition 1 by relativising the concept of “attack” using that
of successful attack with respect to an audience. Thus,

Definition 22. Let 〈〈X ,A〉,V, η〉 be a VAF and R an audience. For arguments x, y in X , x is a successful attack on y

(or x defeats y) with respect to the audience R if: 〈x, y〉 ∈A and it is not the case that η(y) �R η(x).

Replacing “attack” by “successful attack w.r.t. the audience R”, in Definition 1(b)–(f) yields definitions of
“conflict-free”, “admissible set” etc. relating to value-based systems, e.g. S is conflict—free w.r.t. to the audience
R if for each x, y in S it is not the case that x successfully attacks y w.r.t. R. It may be noted that a conflict-free set in
this sense is not necessarily a conflict-free set in the sense of Definition 1(c): for x and y in S we may have 〈x, y〉 ∈A,
provided that η(y) �R η(x), i.e. the value promoted by y is preferred to that promoted by x for the audience R.

Bench-Capon [9] proves that every specific audience, α, induces a unique preferred extension within its underlying
VAF: we use P(〈〈X ,A〉,V, η〉, α) to denote this extension. Analogous to the concepts of credulous and sceptical
acceptance, in VAFs the ideas of subjective and objective acceptance arise,

Regarding these questions, [10,29] show the former to be NP-complete and the latter co-NP-complete. Our main
result in this section is that, unlike the case of standard argument systems, even within very limited graph classes, both
of these problems remain computationally hard.15 Formally we have,

Theorem 23. Let SBA(T ) and OBA(T ) be the decision problems of Table 3 with instances restricted to those for which
the graph-structure 〈X ,A〉 is a tree.

(a) SBA(T ) is NP-complete.
(b) OBA(T ) is co-NP-complete.

Proof. Membership in NP (for SBA(T )) and co-NP (for OBA(T )) follows from membership in these classes for the
general versions.

For part (a), to show that SBA(T ) is NP-hard we use a reduction from 3-SAT. It will be convenient (although is not
essential to the proof) to restrict instances, Φ(Zn) = ∧m

j=1 Cj , to those in which no variable z of Zn occurs in more

than 3 clauses.16 Notice that given this restriction, without loss of generality, we may assume that for each variable z

the literal ¬z occurs in exactly one clause of Φ; the literal z in at most two (and at least one) clause of Φ .
For each variable zi of Φ let the values f (i), s(i), and n(i) be

f (i) = min{j : zi occurs in Cj }
s(i) = max{j : zi occurs in Cj }
n(i) = j : ¬zi occurs in Cj

Should zi occur exactly once in positive form then f (i) = s(i).

15 Theorem 23 subsumes the result presented in [26, Theorem 4, p. 93] where it was proven that SBA(2) is NP-complete, i.e. when the underlying
system is bipartite.
16 See, e.g. [36, Proposition 9.3] for one proof that this variant of 3-SAT remains NP-hard.
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We can now construct the instance (〈TΦ(X ,A),VΦ,η〉, x) of SBA(T ).
Its argument set X comprises (at most) 6n + m + 1 arguments,

X = {Φ,C1,C2, . . . ,Cm} ∪ {
z1
i , z

2
i , z

3
i : 1 � i � n

} ∪ {¬z1
i ,¬z2

i ,¬z3
i : 1 � i � n

}
(If zi occurs exactly once in positive form then neither z2

i nor ¬z2
i occur in X .)

The set of attacks, A, is formed by

A = {〈Cj ,Φ〉: 1 � j � m
}

∪ {〈¬z1
i , z

1
i

〉
,
〈¬z2

i , z
2
i

〉
: 1 � i � n

}
∪ {〈

z3
i ,¬z3

i

〉
: 1 � i � n

}
∪ {〈

z1
i ,Cf (i)

〉
,
〈
z2
i ,Cs(i)

〉
: 1 � i � n

}
∪ {〈¬z3

i ,Cn(i)

〉
: 1 � i � n

}
The value set, VΦ of the instance contains 2n + 1 members,

VΦ = {c} ∪ {posi ,negi : 1 � i � n}
Finally the mapping, η from X to VΦ is defined via

η(x) =
⎧⎨
⎩

c if x ∈ {Φ,C1, . . . ,Cm}
posi if x ∈ {z1

i , z
2
i , z

3
i }

negi if x ∈ {¬z1
i ,¬z2

i ,¬z3
i }

The construction for the CNF formula Φ(z1, z2, z3, z4) defined by

(z1 ∨ z2 ∨ z3)(¬z2 ∨ ¬z3 ∨ ¬z4)(¬z1 ∨ z2 ∨ z4)

is illustrated in Fig. 10.
It is easy to see that TΦ(X ,A) is a tree. To complete the instance of SBA(T ) we set the argument x to be Φ .

We now claim that (〈TΦ(X ,A),VΦ,η〉,Φ) is accepted as an instance of SBA(T ) if and only if Φ(Zn) is satisfi-
able.

Suppose that Φ(Zn) is satisfied by some instantiation a = 〈a1, a2, . . . , an〉 of Zn. Consider any specific audience
α for which

posi �α negi if ai = �
negi �α posi if ai = ⊥
posi �α c ∀1 � i � n

negi �α c ∀1 � i � n

Consider the subset S(a) of X chosen as

{Φ} ∪ {
z1
i , z

2
i : ai = �} ∪ {¬z3

i : ai = ⊥}
We claim that S(a) is admissible with respect to the audience α. The only attacks on Φ are from the arguments Cj ,
however, since a satisfies Φ , each clause has at least one true literal with this instantiation: thus Cj is successfully
attacked by one of {z1

i , z
2
i } whenever ai = � and j ∈ {f (i), s(i)}; similarly Cj is successfully attacked by ¬z3

i when-
ever ai = ⊥ and j = n(i). Furthermore the attacks on {z1

i , z
2
i : ai = �} by {¬z1

i ,¬z2
i } are not successful on account of

the value ordering posi �α negi . In the same way, the attack on ¬z3
i by z3

i fails whenever ai = ⊥ since negi �α posi .
We deduce that S(a) is admissible and thus Φ subjectively accepted if Φ(Zn) is satisfiable.

On the other hand suppose Φ is subjectively accepted and let α be a specific audience with S ⊆ X an admissible
set w.r.t. α that contains Φ . Noting that η(Φ) = η(Cj ) = c for each Cj it follows that S ∩ {C1, . . . ,Cm} = ∅ and, thus,
each Cj must be successfully attacked by some yi w.r.t. α, with the (unique) attack on this yi , i.e. ¬zk

i if yi = zk
i , z3

i
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Fig. 10. TΦ for Φ = (z1 ∨ z2 ∨ z3)(¬z2 ∨ ¬z3 ∨ ¬z4)(¬z1 ∨ z2 ∨ z4).

if yi = ¬z3
i failing to succeed. Now let {y1, y2, . . . , ym} be the set of arguments for which yj successfully attacks Cj

w.r.t. α and construct the (partial) instantiation 〈a1, . . . , an〉 of Zn with

ai = � if
{
z1
i , z

2
i

} ∩ {y1, . . . , ym} �= ∅
ai = ⊥ if ¬z3

i ∈ {y1, . . . , ym}
It now suffices to observe that this instantiation is well-defined. If both ¬z3

i and zk
i occur in {y1, . . . , ym}, from the

fact that α is a specific audience either posi �α negi or negi �α posi : in the former case, ¬z3
i is successfully attacked

by z3
i (and, hence, could not belong to S); in the latter zk

i is successfully attacked by ¬zk
i and, again could not belong

to S. We deduce that the partial instantiation 〈a1, . . . , an〉 is well-defined and satisfies Φ(Zn).
In total, Φ is subjectively accepted in the system 〈TΦ(X ,A),VΦ,η〉 if and only if Φ(Zn) is satisfiable.
Part (b) uses a similar reduction from UNSAT restricted to 3-CNF instances of the same form as part (a). Given

〈TΦ(X ,A),VΦ,η〉 as described earlier the instance of OBA(T ) is formed by adding one additional argument, Φ ′, to X
whose sole attacker is the argument Φ and with η(Φ ′) = c. In this construction Φ ′ is acceptable w.r.t. to every specific
audience if and only if Φ is not subjectively acceptable. Using an identical argument to (a), the latter holds if and only
if Φ(Zn) is unsatisfiable. �
Corollary 7. SBA(T ) is NP-complete and OBA(T ) is co-NP-complete even if instances are restricted to binary trees.

Proof. Apply the translation of Theorem 11 to the trees constructed in the proof of Theorem 23, assigning the value
c to each new argument introduced. This translation and value allocation affects neither the subjective acceptability
of Φ nor the objective acceptability of Φ ′. With the exception of the root (i.e. the arguments Φ and Φ ′ respectively),
each argument in the trees so formed attacks exactly one other argument. Similarly, with the exception of the leaf
arguments which have no attackers and Φ ′ (which has exactly one attacker), each argument is attacked by exactly two
others. �

One feature of the reduction in Theorem 23 (as, indeed, of the reduction for general VAFs given in [10,29]) is
that the number of values (2n + 1) is of the same order as the number of arguments in the system: in the reduction
4n + m + 1 � |X | � 6n + m + 1, however, given the restrictions on Φ it is easily seen that 2n/3 � m � n and hence,
|V| = Θ(|X |). Our final result indicates that even insisting that |V| = o(|X |) does not lead to tractable cases.

Theorem 24. Let SBA(T ,ε) be the decision problem SBA(T ) in which instances are restricted to those in which
|V| � |X |ε . ∀ε > 0 SBA(T ,ε) is NP-complete.
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Proof. Let (〈TΦ(X ,A),VΦ,η〉,Φ) be the instance of OBA(T ) constructed in the proof of Theorem 23(b). Given ε > 0,
choose Kε ∈ N as Kε = �ε−1�. An instance of SBA(T ,ε) is formed by taking r = |X |Kε−1 copies of TΦ–{T1, T2,

. . . , Tr}. Letting φi denote the argument forming the root of Ti , the instance is completed by adding one further
argument, Φ(ε) with η(Φ(ε)) = c and attacks 〈φi,Φ

(ε)〉 for each 1 � i � r . Recalling that φi is objectively accepted
if and only if Φ is unsatisfiable it is easily seen that Φ(ε) is subjectively accepted if and only if Φ is satisfiable. The
number of values in the constructed instance is |VΦ | = O(|X |), however, the number of arguments is |X |Kε and this
is now a valid instance of SBA(T ,ε). �
9. Conclusions and development

In this paper we have considered how the complexity of a number of important decision questions in both standard
and value-based argument systems is affected under various graph-theoretic restrictions: the system being k-partite;
each argument being attacked by and attacking some maximum number of arguments; planar systems; and systems
with bounded treewidth.

Overall the picture apparent regarding the efficacy of graph-theoretic restrictions in admitting efficient algorithmic
methods is somewhat mixed. For quite general classes—planar and bounded degree systems—the complexity of de-
cision questions remains unchanged from that of the unrestricted case. In contrast, for more limited classes, to the
known examples of DAGs and symmetric frameworks can now be added bipartite systems and those with k-bounded
treewidth. The nature of what characterises “efficient restrictions” from those which offer no gains may seem rather ar-
bitrary, e.g. bipartite systems are tractable however 3-partite systems are not. A partial explanation of such phenomena
is offered by our notions of “polynomial universality”. Thus, although, for example, planarity is not a property of every
finite argument system, by virtue of Theorem 13 there is no loss of generality (with respect to credulous acceptance is-
sues) in assuming planarity since any system is transformable to a related planar system. Notwithstanding the fact that
such translations, in general, do not simplify decision processes, there are potential applications exploiting polynomi-
ally universal properties in representing argument systems. For example, consider multiagent environments dedicated
to maintaining information about admissible and preferred sets within a dynamically evolving system, knowledge
concerning which is distributed over distinct agents. In earlier work, Baroni et al. [6] have shown the graph-theoretic
concept of strongly connected component (SCC) decompositions provides a useful mechanism with which to approach
this environment. One can envisage complementing such techniques by exploiting 4-partiteness and/or planarity as
universal properties: the former suggests a natural partition of arguments over four agents with the set maintained by
each being conflict-free and questions about a specific argument, p say, requiring local resolution via the (at most two)
agents allocated its attackers; similar methods, using properties of planar graphs, e.g. the separator results of Lipton
and Tarjan [34], may also offer useful mechanisms. Such treatments are the subject of current work.

We conclude by raising a select number of interesting open issues.
Potentially the most interesting suite of issues arises from the results on bounded treewidth decision problems

given in Theorems 17 and 20. Although following the algorithm synthesis template of, for example [3], produces
a linear time algorithm via some MSOL sentence and width k tree decomposition, such algorithms are likely to be
rather opaque with the linear time method concealing large constant factors that increase rapidly with the treewidth
bound.17 Given such eventualities it is tempting to view the algorithms guaranteed by Courcelle’s Theorem as “proof
of concept”, i.e. that efficient algorithms exist in principle, rather than as viable solutions in themselves. This interpre-
tation then raises the question of forming practical algorithmic methods. Thus suppose one limits attention to systems
of treewidth 2 or 3, relying on the nature of argument systems as might arise in real settings to be of this form. Rather
than synthesising methods indirectly via Courcelle’s Theorem, one could attempt to develop practical direct methods.
There are several promising indications that this is a realistic objective: the precise characterisation of those graphs
having treewidth 2, e.g. [14, Theorem 42, p. 22]; and the dynamic programming templates discussed in [12]. A similar
issue arises with respect to the methods discussed for determining credulous acceptability in Theorem 20. Although
arguably of a less extreme nature, the algorithm for deciding CA(H, x) in the case tw(H) = r and D(H) = d is rather

17 While the comparison is rather unfair the relationship between the property captured by a complex MSOL expression and the width k algorithm
synthesised is analogous to that of a high-level programming language description and the binary machine code resulting from its compilation. In
addition, we recall that (relative to the full formal description of [3]) the sentences given in the proof of Theorem 17 require further development in
order to eliminate constructs such as U �= ∅, V ⊆ W , etc. prior to applying the algorithm construction process.



P.E. Dunne / Artificial Intelligence 171 (2007) 701–729 725

indirect involving, as it does, a translation into CNF.18 Thus there is, again, the issue of finding direct algorithmic
solutions, i.e not via CNF-SAT formulations, for systems with small treewidth, e.g. tw(H) � 3.

A final group of problems regarding bounded treewidth systems concerns combining dialogue game methods, e.g.
the TPI-disputes studied in [28,40], or the reasoning schema presented in [24], using both the graph-theoretic form
of H and a width k tree decomposition of H. Among the reasons why treewidth decompositions may provide useful
representations for both of these approaches are the following. The pathological examples for which exponential
length TPI-disputes result constructed in [28], cannot occur in width k systems: the mechanism used to form such
cases is via the translation of “provably hard” unsatisfiable CNF instances19: such instances, however, necessarily
have primal graphs with large treewidth. Regarding the application to the dialogue structure promoted in [24], we
observe that one standard design approach for efficient algorithms based on tree decompositions, discussed in [12],
is to construct solutions working from the leaves of the tree decomposition building towards its root: such techniques
mirror the reasoning methods discussed in [24].

The results presented in Section 8 indicate that efficient methods for the central decision questions—SBA and
OBA—are unlikely to come about through simply limiting the underlying directed graph form: binary tree structures
being the most basic non-trivial graph class.20 While Theorem 23 and Corollary 7 seem to offer rather pessimistic
prospects for the possibility of developing tractable variants of SBA, these are in some respect unsurprising: a critical
distinction between the nature of decision problems in VAFs and in standard argument systems concerns the search
space examined.

For SBA this is the set of all specific audiences, i.e. the k! total orderings of V ; in decision problems such as CA, this
space is the set of all subsets of X , Searching over orderings of structures within combinatorial objects (as opposed to
subsets) is known to give rise to decision questions which often remain hard even in restricted instances,21 a notable
example being the bandwidth minimisation problem [31, GT40, p. 200]: this, as with SBA, is NP-hard even when
restricted to binary trees.

It might, therefore, be argued that in order to identify non-trivial tractable variants of SBA, not only is it needed to
restrict the underlying argument graph but also to restrict how the value set V and mapping η :X → V interact with it.
While V defines a parameter w.r.t which SBA is FPT—the procedure described in [9] giving a bound O(k!|A|) via the
brute-force approach of testing each specific audience in turn—an open question is whether alternative approaches
can succeed. One aspect of the hardness proofs in Theorem 23 and those of [26,29] is that there is a single value (c)
associated with “many” arguments, i.e. |η−1(c)| = Θ(|X |), and a large number of values (posi , negi ) associated with
only a few (at most 3 in the proof of Theorem 23) arguments. This suggests two possible approaches with which to
consider alternative restrictions of SBA instances,

(R1) by bounding the minimum and maximum number of occurrences of any given value v ∈ V
(R2) by bounding the number of occurrences of attacks 〈x, y〉 in which η(x) = η(y).

Theorem 24 and the trivial observation that at least one value must be common to |X |/|V| arguments limit, how-
ever, the possible range of interest in trying to exploit R1: if |V| = o(|X |), e.g. the case considered in Theorem 24,
then some value is shared by ω(1) arguments. In trying to limit the number of occurrences of any value to be a
constant—thereby forcing |V| = Θ(|X |)—another difficulty arises. Thus, suppose SBA(V,�k) is the decision problem
SBA restricted to instances for which ∀v ∈ V|η−1(v)| � k, i.e. at most k arguments share a common value, v ∈ V .
Similarly, SBA(T ),(V,�k) is this problem with instances additionally restricted to trees.

18 In addition, the methods of [32] require a further translation from CNF to a CSP problem in order to use an algorithm of Yannakakis [41].
19 The notion of “hardness” is that of proof length within certain weak (but complete) propositional proof systems, see e.g. Cook and Reckhow
[16], Beame and Pitassi [7], and Urquhart [39] for technical background. In [28] the TPI formalism is shown equivalent (in the sense of [16]) to the
CUT-free Gentzen calculus.
20 One could limit structures further to, e.g. systems H, with D(H) � 2. In this case, retaining the connectivity assumption, one has only paths
and simple cyclic structures: both cases are completely characterised in the original presentations of Bench-Capon [8,9].
21 The problem of deciding if an n-vertex graph has a hamiltonian cycle may appear to be an exception to this generalisation, however, one can
sensibly treat the search space in this instance, not as all possible vertex orderings (n!), but rather as n element subsets of the edges: such viewpoints
are exploited in efficient algorithms for testing hamiltonicity of graphs with small treewidth by progressively building “partial solutions” defining
paths between vertex subsets.



726 P.E. Dunne / Artificial Intelligence 171 (2007) 701–729

Theorem 25. SBA(T ),(V,�3) is NP-complete even if instances are binary trees.

Proof. The proof uses the binary tree structure of Corollary 7, with a modification of the definition of V and the
associated mapping η. Details are presented in Appendix B. �

The problem, SBA(V,�1) on the other hand is trivial: any argument, x, is subjectively accepted in such instances
simply by choosing an audience in which η(x) is the most preferred value. Between the extremes of this case and that
of Theorem 25, we conjecture that SBA(V,�2) is polynomial time decidable. Regarding the approach suggested by R2,
suppose we define the following parameter on VAFs:

σ
(〈H(X ,A),V, η〉) = ∣∣{〈x, y〉 ∈A: η(x) = η(y)

}∣∣
Thus, σ(〈H,V, η〉) is the number of attacks in A involving arguments with the same value. We offer as a final
conjecture the claim that SBA is FPT with respect to the parameter σ(〈H,V, η〉). This, again, forms the subject of
current work.

Appendix A. Further properties of GΦ

In this appendix we present the proof of the result stated in Theorem 8(b).

Proof of Theorem 8(b). Recall that this asserts SA(k) and COHERENT(k) are Π
p

2 -complete for k-partite systems
with k � 3.

It suffices to construct a 3-partite argument system G(3)
Φ from the system GΦ of Section 3.2. Noting that Φ is

sceptically accepted in the latter system if and only if Φ(Yn,Zn) is accepted as an instance of QSATΠ
2 , G(3)

Φ is designed

to preserve this property. In order to form G(3)
Φ the subsystem of four arguments {Φ,b1, b2, b3} in GΦ is replaced by

the system of Fig. 11.
From the properties of GΦ , it is still the case that for every satisfying instantiation of the CNF Φ(Yn,Zn) there is a

preferred extension of G(3)
Φ containing Φ . Such preferred extensions additionally contain the argument p2. It follows

easily from this that SA(G(3)
Φ ,Φ) holds if and only if Φ(Yn,Zn) is a positive instance of QSATΠ

2 . We further observe

that the system G(3)
Φ is coherent if and only if Φ is sceptically accepted. To complete the proof it remains to show that

G(3)
Φ is 3-partite. We can construct a three colouring of G(3)

Φ by assigning colour R to {Φ,y1, . . . , yn, z1, . . . , zn}; colour
B to {¬y1, . . . ,¬yn,¬z1, . . . ,¬zn} and G to {C1, . . . ,Cm}. This leaves the arguments {b1, b2, b3.p1.p2} uncoloured,
however, the 3-colouring is completed using G for {p1, b1}; B for {b2,p2}; and R for {b3}. �

Fig. 11. Local modification of the argument system GΦ .
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Fig. 12. Reducing number of occurrences of the value c in TΦ .

Appendix B. Proof of Theorem 25

Recall that Theorem 25 asserts SBA(T ),(V�3) is NP-complete even when instances are restricted to binary trees.
Given an instance, Φ(Zn) of 3-SAT as in the proof of Theorem 23, i.e. in which every variable occurs in at most

three distinct clauses22 of Φ , consider the instance of SBA(T )—〈TΦ(X ,A),VΦ,η〉 constructed. In this instance each
of the values v ∈ {posi ,negi : 1 � i � n} has |η−1(v)| � 3. Renaming the value c to v1, we have |η−1(v1)| = m + 1—
the argument Φ and the m arguments representing clauses. Introduce a new value v2 together with arguments a1,1 and
a1,2 and replace the sub-tree formed by {Φ,C1,C2, . . . ,Cm} with the structure of Fig. 12.

In the resulting tree there are now 3 occurrences of the value v1 and m occurrences of the new value v2. Applying
the same replacement method to the sub-tree with root a1,2 and introducing a further new value v3, TΦ will be modified
to a tree, T

(3)
Φ with additional arguments

{aj,1, aj,2: 1 � j � m − 2}
New attacks,

{〈a1,1,Φ〉, 〈Cm,am−2,2〉
} ∪ {〈aj,1, aj−1,2〉: 2 � j � m − 2

}
∪ {〈aj,2, aj,1〉: 1 � j � m − 2

} ∪ {〈Cj , aj−1,2〉: 2 � j � m − 1
}

and value set

V(3) = VΦ ∪ {v1, v2, . . . , vm−1}
The mapping η as it affects clauses and these new arguments is now,

η(q) =
⎧⎨
⎩

v1 if q ∈ {Φ,C1, a1,1}
vj if q ∈ {aj,1, aj−1,2,Cj } and 2 � j � m − 2

vm−1 if q ∈ {am−2,2,Cm−1,Cm}
This now satisfies |η−1(v)| � 3 for every value in V(3).

The final stage is to replace the sub-trees rooted at each clause argument Cj using binary trees. The typical replace-
ment is shown in Fig. 13.

In forming this final (binary) tree 2m new arguments are introduced, {bj,1, bj,2: 1 � j � m} and a further m values
{wj : 1 � j � m}. The mapping η being extended for these new arguments via η(bj,1) = η(bj,2) = wj .

We now claim that Φ is subjectively accepted in the resulting binary tree if and only if Φ(Zn) is satisfiable.

22 In contrast to Theorem 23 in which this assumption is made for cosmetic purposes of presentational ease, in the current proof this variant of
3-SAT is needed in order to ensure appropriately few occurrences of the values posi and negi .
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Fig. 13. Reducing clause sub-trees to binary trees in T
(3)
Φ .

Suppose first that Φ(Zn) is satisfied using an instantiation a = 〈a1, . . . , an〉. Consider any specific audience, α in
which

posi �α negi if ai = �
negi �α posi if ai = ⊥
posi �α vj ∀1 � i � n,1 � j � m − 1

negi �α vj ∀1 � i � n,1 � j � m − 1

posi �α wj ∀1 � i � n,1 � j � m

negi �α wj ∀1 � i � n,1 � j � m

wj �α vj ∀1 � j � m − 1 and wm �α vm−1

vj �α vj−1 ∀2 � j � m − 1

Since a satisfies Φ(Zn) each clause Cj has at least one literal, assigned the value �: if the corresponding literal in

T
(3)
Φ is the (unique) literal attacking the clause Cj then this attack is successful; otherwise the corresponding literal

(successfully) attacks bj,2 so that bj,1 successfully attacks Cj . It follows that in the unique preferred extension, P(α)

induced by α, we have P(α) ∩ {C1, . . . ,Cm} = ∅. From this, and the ordering vj �α vj−1 we deduce that the attack
by aj,2 on aj,1 succeeds for each 1 � j � m − 2, i.e. {a1,2, . . . , am−2,2} ⊂ P(α) and hence Φ ∈ P(α) as claimed.

On the other hand suppose the audience α is such that Φ ∈ P(α). From the same reasoning as that in the proof of
Theorem 23 we can construct an instantiation, a = 〈a1, . . . , an〉 of Zn via ai = � if and only if posi �α negi . Now
since Φ ∈ P(α) an easy argument establishes aj,1 /∈ P(α) and aj,2 ∈ P(α) for every 1 � j � m − 2. To complete the
proof it suffices to show that this instantiation must satisfy Φ(Zn). Suppose, to the contrary, that Φ(a) = ⊥ and let Cj

be any clause that it is falsified by a. Consider the corresponding argument, Cj within T
(3)
Φ . It cannot be the case that

Cj = C1: for in that case the attack by C1 on Φ succeeds, contradicting the assumption that Φ ∈ P(α). The alternative,
however, is that Cj attacks some argument aj−1,2 or am−2,2 for Cj = Cm. Again Cj falsified by a contradicts the
property aj,2 ∈ P(α) which holds of any preferred extension with respect to α containing Φ . Thus, every clause of
Φ(Zn) must be satisfied by a and it follows that from a specific audience under which Φ is subjectively accepted we
can construct a satisfying instantiation of Φ(Zn).
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Abstract

We examine properties of a model of resource allocation in which several agents ex-
change resources in order to optimise their individual holdings. The schemes discussed re-
late to well-known negotiation protocols proposed in earlier work and we consider a number
of alternative notions of “rationality” covering both quantitative measures, e.g. cooperative
and individual rationality and more qualitative forms, e.g. Pigou-Dalton transfers. While
it is known that imposing particular rationality and structural restrictions may result in
some reallocations of the resource set becoming unrealisable, in this paper we address the
issue of the number of restricted rational deals that may be required to implement a par-
ticular reallocation when it is possible to do so. We construct examples showing that this
number may be exponential (in the number of resources m), even when all of the agent
utility functions are monotonic. We further show that k agents may achieve in a single
deal a reallocation requiring exponentially many rational deals if at most k − 1 agents can
participate, this same reallocation being unrealisable by any sequences of rational deals in
which at most k − 2 agents are involved.

1. Introduction

Mechanisms for negotiating allocation of resources within a group of agents form an im-
portant body of work within the study of multiagent systems. Typical abstract models
derive from game-theoretic perspectives in economics and among the issues that have been
addressed are strategies that agents use to obtain a particular subset of the resources avail-
able, e.g. (Kraus, 2001; Rosenschein & Zlotkin, 1994; Sandholm, 1999), and protocols by
which the process of settling upon some allocation of resources among the agents involved is
agreed, e.g. (Dignum & Greaves, 2000; Dunne, 2003; Dunne & McBurney, 2003; McBurney
et al., 2002).

The setting we are concerned with is encapsulated in the following definition.

Definition 1 A resource allocation setting is defined by a triple 〈A,R,U〉 where

A = {A1,A2, . . . ,An} ; R = {r1, r2, . . . , rm}

are, respectively, a set of (at least two) agents and a collection of (non-shareable) resources.
A utility function, u, is a mapping from subsets of R to rational values. Each agent Ai ∈ A
has associated with it a particular utility function ui , so that U is 〈u1, u2, . . . , un〉. An
allocation P of R to A is a partition 〈P1,P2, . . . ,Pn〉 of R. The value ui(Pi) is called
the utility of the resources assigned to Ai . A utility function, u, is monotone if whenever
S ⊆ T it holds that u(S ) ≤ u(T ), i.e. the value assigned by u to any set of resources, T ,
is never less than the value u attaches to any subset, S of T .

c©2005 AI Access Foundation. All rights reserved.
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Two major applications in which the abstract view of Definition 1 has been exploited are
e-commerce and distributed task realisation. In the first R represents some collection of
commodities offered for sale and individual agents seek to acquire a subset of these, the
“value” an agent attaches to a specific set being described by that agent’s utility function.
In task planning, the “resource” set describes a collection of sub-tasks to be performed in
order to realise some complex task, e.g. the “complex task” may be to transport goods
from a central warehouse to some set of cities. In this example R describes the locations
to which goods must be dispatched and a given allocation defines those places to which an
agent must arrange deliveries. The utility functions in such cases model the cost an agent
associates with carrying out its alloted sub-tasks.

Within the very general context of Definition 1, a number of issues arise stemming from
the observation that it is unlikely that some initial allocation will be seen as satisfactory
either with respect to the views of all agents in the system or with respect to divers global
considerations. Thus, by proposing changes to the initial assignment individual agents
seek to obtain a “better” allocation. This scenario raises two immediate questions: how to
evaluate a given partition and thus have a basis for forming improved or optimal allocations;
and, the issue underlying the main results of this paper, what restrictions should be imposed
on the form that proposed deals may take.

We shall subsequently review some of the more widely studied approaches to defining
conditions under which some allocations are seen as “better” than others. For the purposes
of this introduction we simply observe that such criteria may be either quantitative or
qualitative in nature. As an example of the former we have the approach wherein the
“value” of an allocation P is simply the sum of the values given by the agents’ utility
functions to the subsets of R they have been apportioned within P , i.e.

∑n
i=1 ui(Pi): this

is the so-called utilitarian social welfare, which to avoid repetition we will denote by σu(P).
A natural aim for agents within a commodity trading context is to seek an allocation under
which σu is maximised. One example of a qualitative criterion is “envy freeness”: informally,
an allocation, P , is envy-free if no agent assigns greater utility to the resource set (Pj ) held
by another agent than it does with respect to the resource set (Pi) it has actually been
allocated, i.e. for each distinct pair 〈i , j 〉, ui(Pi) ≥ ui(Pj ).

In very general terms there are two approaches that have been considered in treating the
question of how a finite collection of resources might be distributed among a set of agents
in order to optimise some criterion of interest: “contract-net” based methods, e.g. (Dunne
et al., 2003; Endriss et al., 2003; Endriss & Maudet, 2004b; Sandholm, 1998, 1999) deriving
from the work of Smith (1980); and “combinatorial auctions”, e.g. (Parkes & Ungar, 2000a,
2000b; Sandholm et al., 2001; Sandholm, 2002; Sandholm & Suri, 2003; Tennenholz, 2000;
Yokoo et al., 2004, amongst others). The significant difference between these is in the extent
to which a centralized controlling agent determines the eventual distribution of resources
among agents.

One may view the strategy underlying combinatorial auctions as investing the computa-
tional effort into a “pre-processing” stage following which a given allocation is determined.
Thus a controlling agent (the “auctioneer”) is supplied with a set of bids – pairs 〈Sj , pj 〉
wherein Sj is some subset of the available resources and pj the price agent Aj is prepared
to pay in order to acquire Sj . The problem faced by the auctioneer is to decide which bids
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to accept in order to maximise the overall profit subject to the constraint that each item
can be obtained by at most one agent.

What we shall refer to as “contract-net schemes” typically eschew the precomputation
stage and subordination to a controlling arbiter employed in auction mechanisms, seeking
instead to realise a suitable allocation by an agreed sequence of deals. The contract-net (in
its most general instantiation) for scenarios of m resources distributed among n agents is
the complete directed graph with nm vertices (each of which is associated with a distinct
allocation). In this way a possible deal 〈P ,Q〉 is represented as an edge directed from the
vertex labelled with P to that labelled Q . Viewed thus, identifying a sequence of deals can
be interpreted as a search process which, in principle, individual agents may conduct in an
autonomous fashion.

Centralized schemes can be effective in contexts where the participants cooperate (in
the sense of accepting the auctioneer’s arbritration). In environments within which agents
are highly self-interested to the extent that their aims conflict with the auction process or
in which there is a high degree of “uncertainty” about the outcome, in working towards a
final allocation, the agents involved may only be prepared to proceed “cautiously”: that is,
an agent will only accept a proposed reallocation if satisfied that such would result in an
immediate improvement from its own perspective. In such cases, the process of moving from
the initial allocation, Pinit , to the eventual reallocation Pfin is by a sequence of local rational
deals, e.g. an agent might refuse to accept deals which reduced σu because of the possibility
that it suffers an uncompensated loss in utility. A key issue here is the following: if the deal
protocol allows only moves in which at each stage some agent Aj offers a single resource to
another agent Aj then the rational reallocation 〈Pinit ,Pfin〉 can always be implemented; if,
however, every single move must be “rational” then 〈Pinit ,Pfin〉 may not be realisable.

We may, informally, regard the view of such agents as “myopic”, in the sense that they
are unwilling to accept a “short-term loss” (a deal 〈P ,Q〉 under they might incur a loss of
utility) despite the prospect of a “long-term gain” (assuming σu(Pfin) > σu(Pinit) holds).

There are a number of reasons why an agent may adopt such views, e.g. consider the
following simple protocol for agreeing a reallocation.

A reallocation of resources is agreed over a sequence of stages, each of which
involves communication between two agents, Ai and Aj . This communication
consists of Ai issuing a proposal to Aj of the form (buy , r , p), offering to purchase
r from Aj for a payment of p; or (sell , r , p), offering to transfer r to Aj in return
for a payment p. The response from Aj is simply accept (following which the
deal is implemented) or reject .

This, of course, is a very simple negotiation structure, however consider its operation within
a two agent setting in which one agent, A1 say, wishes to bring about an allocation Pfin

(and thus can devise a plan – sequence of deals – to realise this from an initial allocation
Pinit) while the other agent, A2, does not know Pfin . In addition, assume that A1 is the only
agent that makes proposals and that a final allocation is fixed either when A1 is “satisfied”
or as soon as A2 rejects any offer.

While A2 could be better off if Pfin is realised, it may be the case that the only proposals
A2 will accept are those under which it does not lose, e.g. some agents may be sceptical
about the bona fides of others and will accept only deals from which they can perceive an
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immediate benefit. There are several reasons why an agent may embrace such attitudes
within the schema outlined: once a deal has been implemented A2 may lose utility but no
further proposals are made by A1 so that the loss is “permanent”. We note that even if we
enrich the basic protocol so that A1 can describe Pfin , A2 may still reject offers under which
it suffers a loss, since it is unwilling to rely on the subsequent deals that would ameliorate
its loss actually being proposed. Although the position taken by A2 in the setting just
described may appear unduly cautious, we would claim that it does reflect “real” behaviour
in certain contexts. Outside the arena of automated allocation and negotiation in multiagent
systems, there are many examples of actions by individuals where promised long-term gains
are insufficient to engender the acceptance of short term loss. Consider “chain letter”
schemes (or their more subtle manifestation as “pyramid selling” enterprises): such have
a natural lifetime bounded by the size of the population in which they circulate, but may
break down before this is reached. Faced with a request to “send $10 to the five names at
the head of the list and forward the letter to ten others after adding your name” despite the
possibility of significant gain after a temporary loss of $50, to ignore such blandishments is
not seen as overly sceptical and cautious: there may be reluctance to accept that one will
eventually receive sufficient recompense in return and suspicion that the name order has
been manipulated.

In summary, we can identify two important influences that lead to contexts in which
agents prefer to move towards a reallocation via a sequence of “rational” deals. Firstly,
the agents are self-interested but operating in an unstable environment, e.g. in the “chain
letter” setting, an agent cannot reliably predict the exact point at which the chain will fail.
The second factor is that computational restrictions may limit the decisions an individual
agent can make about whether or not to accept a proposed deal. For example in settings
where all deals involve one resource at a time, A2 may reject a proposal to accept some
resource, r , since r is only “useful” following a further sequence of deals: if this number
of further deals is “small” then A2 could decide to accept the proposed deal since it has
sufficient computational power to determine that there is a context in which r is of value;
if this number is “large” however, then A2 may lack sufficient power to scan the search
space of future possibilities that would allow it to accept r . Notice that in the extreme
case, A2 makes its decision solely on whether r is of immediate use, i.e. A2 is myopic. A
more powerful A2 may be able to consider whether r is useful should up to k further deals
take place: in this case, A2 could still refuse to accept r since, although of use, A2 cannot
determine this with a bounded look ahead.

In total for the scenario we have described, if A1 wishes to bring about an allocation Pfin

then faced with the view adopted by A2 and the limitations imposed by the deal protocol,
the only “effective plan” that A1 could adopt is to find a sequence of rational deals to
propose to A2.

Our aim in this article is to show that combining “structural” restrictions (e.g. only one
resource at a time is involved in a local reallocation) with rationality restrictions can result
in settings in which any sequence to realise a reallocation 〈P ,Q〉 must involve exponentially
many (in |R|) separate stages. We refine these ideas in the next sub-section.
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1.1 Preliminary Definitions

To begin, we first formalise the concepts of deal and contract path.

Definition 2 Let 〈A,R,U〉 be a resource allocation setting. A deal is a pair 〈P ,Q〉 where
P = 〈P1, . . . ,Pn〉 and Q = 〈Q1, . . . ,Qn〉 are distinct partitions of R. The effect of imple-
menting the deal 〈P ,Q〉 is that the allocation of resources specified by P is replaced with that
specified by Q. Following the notation of (Endriss & Maudet, 2004b) for a deal δ = 〈P ,Q〉,
we use Aδ to indicate the subset of A involved, i.e. Ak ∈ Aδ if and only if Pk 6= Qk .

Let δ = 〈P ,Q〉 be a deal. A contract path realising δ is a sequence of allocations

∆ = 〈P (1), P (2) , . . . , P (t−1), P (t)〉

in which P = P (1) and P (t) = Q. The length of ∆, denoted |∆| is t − 1, i.e. the number of
deals in ∆.

There are two methods which we can use to reduce the number of deals that a single
agent may have to consider in seeking to move from some allocation to another, thereby
avoiding the need to choose from exponentially many alternatives: structural and rationality
constraints. Structural constraints limit the permitted deals to those which bound the
number of resources and/or the number of agents involved, but take no consideration of the
view any agent may have as to whether its allocation has improved. In contrast, rationality
constraints restrict deals 〈P ,Q〉 to those in which Q “improves” upon P according to
particular criteria. In this article we consider two classes of structural constraint: O-
contracts, defined and considered in (Sandholm, 1998), and what we shall refer to as M (k)-
contracts.

Definition 3 Let δ = 〈P ,Q〉 be a deal involving a reallocation of R among A.

a. δ is a one contract (O-contract) if

O1. Aδ = {i , j}.
O2. There is a unique resource r ∈ Pi ∪Pj for which Qi = Pi ∪{r} and Qj = Pj \{r}

(with r ∈ Pj ) or Qj = Pj ∪ {r} and Qi = Pi \ {r} (with r ∈ Pi)

b. For a value k ≥ 2, the deal δ = 〈P ,Q〉 is an M (k)-contract if 2 ≤ |Aδ| ≤ k and
∪i∈Aδ Qi = ∪i∈Aδ Pi .

Thus, O-contracts involve the transfer of exactly one resource from a particular agent to
another, resulting in the number of deals compatible with any given allocation being exactly
(n − 1)m: each of the m resources can be reassigned from its current owner to any of the
other n − 1 agents.

Rationality constraints arise in a number of different ways. For example, from the
standpoint of an individual agent Ai a given deal 〈P ,Q〉 may have three different outcomes:
ui(Pi) < ui(Qi), i.e. Ai values the allocation Qi as superior to Pi ; ui(Pi) = ui(Qi), i.e.
Ai is indifferent between Pi and Qi ; and ui(Pi) > ui(Qi), i.e. Ai is worse off after the
deal. When global optima such as utilitarian social welfare are to be maximised, there is
the question of what incentive there is for any agent to accept a deal 〈P ,Q〉 under which it
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is left with a less valuable resource holding. The standard approach to this latter question
is to introduce the notion of a pay-off function, i.e. in order for Ai to accept a deal under
which it suffers a reduction in utility, Ai receives some payment sufficient to compensate
for its loss. Of course such compensation must be made by other agents in the system who
in providing it do not wish to pay in excess of any gain. In defining notions of pay-off the
interpretation is that in any transaction each agent Ai makes a payment, πi : if πi < 0
then Ai is given −πi in return for accepting a deal; if πi > 0 then Ai contributes πi to the
amount to be distributed among those agents whose pay-off is negative.

This notion of “sensible transfer” is captured by the concept of individual rationality,
and is often defined in terms of an appropriate pay-off vector existing. It is not difficult,
however, to show that such definitions are equivalent to the following.

Definition 4 A deal 〈P ,Q〉 is individually rational (IR) if and only if σu(Q) > σu(P).

We shall consider alternative bases for rationality constraints later: these are primarily of
interest within so-called money free settings (so that compensatory payment for a loss in
utility is not an option).

The central issue of interest in this paper concerns the properties of the contract-net
graph when the allowed deals must satisfy both a structural and a rationality constraint.
Thus, if we consider arbitrary predicates Φ on deals 〈P ,Q〉 – where the cases of interest are
Φ combining a structural and rationality condition – we have,

Definition 5 For Φ a predicate over distinct pairs of allocations, a contract path

〈P (1), P (2) , . . . , P (t−1), P (t)〉

realising 〈P ,Q〉 is a Φ-path if for each 1 ≤ i < t, 〈P (i),P (i+1)〉 is a Φ-deal, that is
Φ(P (i),P (i+1)) holds. We say that Φ is complete if any deal δ may be realised by a Φ-path.
We, further, say that Φ is complete with respect to Ψ-deals (where Ψ is a predicate over
distinct pairs of allocations) if any deal δ for which Ψ(δ) holds may be realised by a Φ-path.

The main interest in earlier studies of these ideas has been in areas such as identifying
necessary and/or sufficient conditions on deals to be complete with respect to particular
criteria, e.g. (Sandholm, 1998); and in establishing “convergence” and termination proper-
ties, e.g. Endriss et al. (2003), Endriss and Maudet (2004b) consider deal types, Φ, such
that every maximal1 Φ-path ends in a Pareto optimal allocation, i.e. one in which any
reallocation under which some agent improves its utility will lead to another agent suffering
a loss. Sandholm (1998) examines how restrictions e.g. with Φ(P ,Q) = > if and only if
〈P ,Q〉 is an O-contract, may affect the existence of contract paths to realise deals. Of
particular interest, from the viewpoint of heuristics for exploring the contract-net graph,
are cases where Φ(P ,Q) = > if and only if the deal 〈P ,Q〉 is individually rational. For the
case of O-contracts the following are known:

Theorem 1

a. O-contracts are complete.

1. “Maximal” in the sense that if 〈P (1), . . . ,P (t)〉 is such a path, then for every allocation, Q , Φ(P (t),Q)
does not hold.
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b. IR O-contracts are not complete with respect to IR deals.

In the consideration of algorithmic and complexity issues presented in (Dunne et al., 2003)
one difficulty with attempting to formulate reallocation plans by rational O-contracts is
already apparent, that is:

Theorem 2 Even in the case n = 2 and with monotone utility functions the problem of
deciding if an IR O-contract path exists to realise the IR deal 〈P ,Q〉 is np–hard.

Thus deciding if any rational plan is possible is already computationally hard. In this
article we demonstrate that, even if an appropriate rational plan exists, in extreme cases,
there may be significant problems: the number of deals required could be exponential in
the number of resources, so affecting both the time it will take for the schema outlined to
conclude and the space that an agent will have to dedicate to storing it. Thus in his proof
of Theorem 1 (b), Sandholm observes that when an IR O-contract path exists for a given
IR deal, it may be the case that its length exceeds m, i.e. some agent passes a resource to
another and then accepts the same resource at a later stage.

The typical form of the results that we derive can be summarised as:

For Φ a structural constraint (O-contract or M (k)-contract) and Ψ a rationality
constraint, e.g. Ψ(P ,Q) holds if 〈P ,Q〉 is individually rational, there are re-
source allocation settings 〈An ,Rm ,U〉 in which there is a deal 〈P ,Q〉 satisfying
all of the following.

a. 〈P ,Q〉 is a Ψ-deal.
b. 〈P ,Q〉 can be realised by a contract path on which every deal satisfies the

structural constraint Φ and the rationality constraint Ψ.
c. Every such contract path has length at least g(m).

For example, we show that there are instances for which the shortest IR O-contract path has
length exponential in m.2 In the next section we will be interested in lower bounds on the
values of the following functions: we introduce these in general terms to avoid unnecessary
subsequent repetition.

Definition 6 Let 〈A,R,U〉 be a resource allocation setting. Additionally let Φ and Ψ be
two predicates on deals. For a deal δ = 〈P ,Q〉 the partial function Lopt(δ, 〈A,R,U〉,Φ)
is the length of the shortest Φ-contract path realising 〈P ,Q〉 if such a path exists (and is
undefined if no such path is possible). The partial function Lmax(〈A,R,U〉,Φ,Ψ) is

Lmax(〈A,R,U〉,Φ,Ψ) = max
Ψ-deals δ

Lopt(δ, 〈A,R,U〉,Φ)

Finally, the partial function ρmax(n,m,Φ,Ψ) is

ρmax(n,m,Φ,Ψ) = max
U=〈u1,u2,...,un 〉

Lmax(〈An ,Rm ,U〉,Φ,Ψ)

where consideration is restricted to those Ψ-deals δ = 〈P ,Q〉 for which a realising Φ-path
exists.

2. Sandholm (1998) gives an upper bound on the length of such paths which is also exponential in m, but
does not explicitly state any lower bound other than that already referred to.
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The three measures, Lopt, Lmax and ρmax distinguish different aspects regarding the length
of contract-paths. The function Lopt is concerned with Φ-paths realising a single deal 〈P ,Q〉
in a given resource allocation setting 〈A,R,U〉: the property of interest being the number
of deals in the shortest, i.e. optimal length, Φ-path. We stress that Lopt is a partial function
whose value is undefined in the event that 〈P ,Q〉 cannot be realised by a Φ-path in the
setting 〈A,R,U〉. The function Lmax is defined in terms of Lopt, again in the context of
a specific resource allocation setting. The behaviour of interest for Lmax, however, is not
simply the length of Φ-paths realising a specific 〈P ,Q〉 but the “worst-case” value of Lopt

for deals which are Ψ-deals. We note the qualification that Lmax is defined only for Ψ-deals
that are capable of being realised by Φ-paths, and thus do not consider cases for which no
appropriate contract path exists. Thus, if it should be the case that no Ψ-deal in the setting
〈A,R,U〉 can be realised by a Φ-path then the value Lmax(〈A,R,U〉,Φ,Ψ) is undefined, i.e.
Lmax is also a partial function. We may interpret any upper bound on Lmax in the following
terms: if Lmax(〈A,R,U〉,Φ,Ψ) ≤ K then any Ψ-deal for which a Φ-path exists can be
realised by a Φ-path of length at most K .

Our main interest will centre on ρmax which is concerned with the behaviour of Lmax as
a function of n and m and ranges over all n-tuples of utility functions 〈u : 2R → Q〉n . Our
approach to obtaining lower bounds for this function is constructive, i.e. for each 〈Φ,Ψ〉
that is considered, we show how the utility functions U may be defined in a setting with m
resources so as to yield a lower bound on ρmax(n,m,Φ,Ψ). In contrast to the measures Lopt

and Lmax, the function ρmax is not described in terms of a single fixed resource allocation
setting. It is, however, still a partial function: depending on 〈n,m,Φ,Ψ〉 it may be the case
that in every n agent, m resource allocation setting, regardless of which choice of utility
functions is made, there is no Ψ-deal, 〈P ,Q〉 capable of being realised by Φ-path, and for
such cases the value of ρmax(n,m,Φ,Ψ) will be undefined.3

It is noted, at this point, that the definition of ρmax allows arbitrary utility functions
to be employed in constructing “worst-case” instances. While this is reasonable in terms
of general lower bound results, as will be apparent from the given constructions the utility
functions actually employed are highly artificial (and unlikely to feature in “real” application
settings). We shall attempt to address this objection by further considering bounds on the
following variant of ρmax:

ρmax
mono(n,m,Φ,Ψ) = max

U=〈u1,u2,...,un 〉 : each ui is monotone
Lmax(〈An ,Rm ,U〉,Φ,Ψ)

Thus, ρmax
mono deals with resource allocation settings within which all of the utility functions

must satisfy a monotonicity constraint.
The main results of this article are presented in the next sections. We consider two

general classes of contract path: O-contract paths under various rationality conditions in

3. In recognising the possibility that ρmax(n,m, Φ, Ψ) could be undefined, we are not claiming that such
behaviour arises with any of the instantiations of 〈Φ, Ψ〉 considered subsequently: in fact it will be
clear from the constructions that, denoting by ρmax

Φ,Ψ(n,m) the function ρmax(n,m, Φ, Ψ) for a fixed
instantiation of 〈Φ, Ψ〉, with the restricted deal types and rationality conditions examined, the function
ρmax
Φ,Ψ(n,m) is a total function. Whether it is possible to formulate “sensible” choices of 〈Φ, Ψ〉 with

which ρmax
Φ,Ψ(n,m) is undefined for some values of 〈n,m〉 (and, if so, demonstrating examples of such) is,

primarily, only a question of combinatorial interest, whose development is not central to the concerns of
the current article.
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Section 2; and, similarly, M (k)-contract paths for arbitrary values of k ≥ 2 in Section 3.
Our results are concerned with the construction of resource allocation settings 〈A,Rm ,U〉
for which given some rationality requirement, e.g. that deals be individually rational, there
is some deal 〈P ,Q〉 that satisfies the rationality condition, can be realised by a rational
O-contract path (respectively, M (k)-contract path), but with the number of deals required
by such paths being exponential in m. We additionally obtain slightly weaker (but still
exponential) lower bounds for rational O-contract paths within settings of monotone utility
functions, i.e. for the measure ρmax

mono, outlining how similar results may be derived for
M (k)-contract paths.

In the resource allocation settings constructed for demonstrating these properties with
M (k)-contract paths, the constructed deal 〈P ,Q〉 is realisable with a single M (k + 1)-
contract but unrealisable by any rational M (k −1)-contract path. We discuss related work,
in particular the recent study of (Endriss & Maudet, 2004a) that addresses similar issues
to those considered in the present article, in Section 4. Conclusions and some directions for
further work are presented in the final section.

2. Lower Bounds on Path Length – O-contracts

In this section we consider the issue of contract path length when the structural restriction
requires individual deals to be O-contracts. We first give an overview of the construction
method, with the following subsections analysing the cases of unrestricted utility functions
and, subsequently, monotone utility functions.

2.1 Overview

The strategy employed in proving our results involves two parts: for a given class of re-
stricted contract paths we proceed as follows in obtaining lower bounds on ρmax(n,m,Φ,Ψ).

a. For the contract-net graph partitioning m resources among n agents, construct a
path, ∆m = 〈P (1), P (2) , . . . , P (t)〉 realising a deal 〈P (1),P (t)〉. For the structural
constraint, Φ′ influencing Φ it is then proved that:

a1. The contract path ∆m is a Φ′-path, i.e. for each 1 ≤ i < t , the deal 〈P (i),P (i+1〉
satisfies the structural constraint Φ′.

a2. For any pair of allocations P (i) and P (i+j ) occurring in ∆m , if j ≥ 2 then the
deal 〈P (i),P (i+j )〉 is not a Φ′-deal.

Thus (a1) ensures that ∆m is a suitable contract path, while (a2) will guarantee that
there is exactly one allocation, P (i+1), that can be reached within ∆m from any given
allocation P (i) in ∆m by means of a Φ′-deal.

b. Define utility functions Un = 〈u1, . . . , un〉 with the following properties

b1. The deal 〈P (1),P (t)〉 is a Ψ-deal.

b2. For the rationality constraint, Φ′′ influencing Φ, every deal 〈P (i),P (i+1)〉 is a
Φ′′-deal.
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b3. For every allocation P (i) in the contract path ∆ and every allocation Q other
than P (i+1) the deal 〈P (i),Q〉 is not a Φ-deal, i.e. it violates either the stuctural
constraint Φ′ or the rationality constraint Φ′′.

Thus, (a1) and (b2) ensure that 〈P (1),P (t)〉 has a defined value with respect to the
function Lopt for the Ψ-deal 〈P (1),P (t)〉, i.e. a Φ-path realising the deal is possible.
The properties given by (a2) and (b3) indicate that (within the constructed resource
allocation setting) the path ∆m is the unique Φ-path realising 〈P (1),P (t)〉. It follows
that t −1, the length of this path, gives a lower bound on the value of Lmax and hence
a lower bound on ρmax(n,m,Φ,Ψ).

Before continuing it will be useful to fix some notational details.
We useHm to denote the m-dimensional hypercube. Interpreted as a directed graph, Hm

has 2m vertices each of which is identified with a distinct m-bit label. Using α = a1a2 . . . am

to denote an arbitrary such label, the edges of Hm are formed by

{ 〈α, β〉 : α and β differ in exactly one bit position}

We identify m-bit labels α = a1a2 . . . am with subsets Sα of Rm , via ri ∈ Sα if and only if
ai = 1. Similarly, any subset S of R can be described by a binary word, β(S ), of length m,
i.e. β(S ) = b1b2 . . . bm with bi = 1 if and only if ri ∈ S . For a label α we use |α| to denote
the number of bits with value 1, so that |α| is the size of the subset Sα. If α and β are m-bit
labels, then αβ is a 2m-bit label, so that if Rm and Tm are disjoint sets, then αβ describes
the union of the subset Sα of Rm with the subset Sβ of Tm . Finally if α = a1a2 . . . am

is an m-bit label then α denotes the label formed by changing all 0 values in α to 1 and
vice versa. In this way, if Sα is the subset of Rm described by α then α describes the set
Rm \ Sα. To avoid an excess of superscripts we will, where no ambiguity arises, use α both
to denote the m-bit label and the subset of Rm described by it, e.g. we write α ⊂ β rather
than Sα ⊂ Sβ.

For n = 2 the contract-net graph induced by O-contracts can be viewed as the m-
dimensional hypercube Hm : the m-bit label, α associated with a vertex of Hm describing
the allocation 〈α, α〉 to 〈A1,A2〉. In this way the set of IR O-contracts define a subgraph,
Gm of Hm with any directed path from β(P) to β(Q) in Gm corresponding to a possible IR
O-contract path from the allocation 〈P ,R \ P〉 to the allocation 〈Q ,R \Q〉.

2.2 O-contract Paths – Unrestricted Utility Functions

Our first result clarifies one issue in the presentation of (Sandholm, 1998, Proposition 2):
in this an upper bound that is exponential in m is proved on the length of IR O-contract
paths, i.e. in terms of our notation, (Sandholm, 1998, Proposition 2) establishes an upper
bound on ρmax(n,m,Φ,Ψ). We now prove a similar order lower bound.

Theorem 3 Let Φ(P ,Q) be the predicate which holds whenever 〈P ,Q〉 is an IR O-contract
and Ψ(P ,Q) that which holds whenever 〈P ,Q〉 is IR. For m ≥ 7

ρmax(2,m,Φ,Ψ) ≥
(

77
256

)
2m − 2
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Proof. Consider a path C = 〈α1, α2, . . . , αt〉 in Hm , with the following property4

∀ 1 ≤ i < j ≤ t (j ≥ i + 2) ⇒ (αi and αj differ in at least 2 positions) (SC)

e.g. if m = 4 then

∅, {r1}, {r1, r3}, {r1, r2, r3}, {r2, r3}, {r2, r3, r4}, {r2, r4}, {r1, r2, r4}

is such a path as it corresponds to the sequence 〈0000, 1000, 1010, 1110, 0110, 0111, 0101, 1101〉.
Choose C(m) to be a longest such path with this property that could be formed in Hm ,

letting ∆m = 〈P (1),P (2), . . . ,P (t)〉 be the sequence of allocations with P (i) = 〈αi , αi〉. We
now define the utility functions u1 and u2 so that for γ ⊆ Rm ,

u1(γ) + u2(γ) =

{
k if γ = αk

0 if γ 6∈ {α1, α2, . . . , αt}

With this choice, the contract path ∆m describes the unique IR O-contract path realising
the IR deal 〈P (1),P (t)〉: that ∆m is an IR O-contract path is immediate, since

σu(P (i+1)) = i + 1 > i = σu(P (i))

That it is unique follows from the fact that for all 1 ≤ i ≤ t and i + 2 ≤ j ≤ t , the deal
〈P (i),P (j )〉 is not an O-contract (hence there are no “short-cuts” possible), and for each
P (i) there is exactly one IR O-contract that can follow it, i.e. P (i+1).5

From the preceding argument it follows that any lower bound on the length of C(m),
i.e. a sequence satisfying the condition (SC), is a lower bound on ρmax(2,m,Φ,Ψ). These
paths in Hm were originally studied by Kautz (1958) in the context of coding theory and
the lower bound on their length of (77/256)2m − 2 established in (Abbott & Katchalski,
1991). 2

Example 1 Using the path

C(4) = 〈0000, 1000, 1010, 1110, 0110, 0111, 0101, 1101〉
= 〈α1, α2, α3, α4, α5, α6, α7, α8〉

in the resource allocation setting 〈{a1, a2}, {r1, r2, r3, r4}, 〈u1, u2〉〉, if the utility functions
are specified as in Table 1 below then σu(〈α1, α1〉) = 1 and σu(〈α8, α8〉) = 8. Furthermore,
C(4) describes the unique IR O-contract path realising the reallocation 〈〈α1, α1〉, 〈α8, α8〉〉

There are a number of alternative formulations of “rationality” which can also be considered.
For example

Definition 7 Let δ = 〈P ,Q〉 be a deal.

4. This defines the so-called “snake-in-the-box” codes introduced in (Kautz, 1958).
5. In our example with m = 4, the sequence 〈0000, 1000, 1001, 1101〉, although defining an O-contract path

gives rise to a deal which is not IR, namely that corresponding to 〈1000, 1001〉.
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S R \ S u1(S ) u2(R \ S ) σu S R \ S u1(S ) u2(R \ S ) σu

0000 1111 1 0 1 α1 1000 0111 1 1 2 α2

0001 1110 0 0 0 1001 0110 0 0 0
0010 1101 0 0 0 1010 0101 2 1 3 α3

0011 1100 0 0 0 1011 0100 0 0 0
0100 1011 0 0 0 1100 0011 0 0 0
0101 1010 4 3 7 α7 1101 0010 4 4 8 α8

0110 1001 3 2 5 α5 1110 0001 2 2 4 α4

0111 1000 3 3 6 α6 1111 0000 0 0 0

Table 1: Utility function definitions for m = 4 example.

a. δ is cooperatively rational if for every agent, Ai , ui(Qi) ≥ ui(Pi) and there is at least
one agent, Aj , for whom uj (Qj ) > uj (Pj ).

b. δ is equitable if mini∈Aδ ui(Qi) > mini∈Aδ ui(Pi).

c. δ is a Pigou-Dalton deal if Aδ = {i , j}, ui(Pi) + uj (Pj ) = ui(Qi) + uj (Qj ) and
|ui(Qi)− uj (Qj )| < |ui(Pi)− uj (Pj )| (where | . . . | is absolute value).

There are a number of views we can take concerning the rationality conditions given in Def-
inition 7. One shared feature is that, unlike the concept of individual rationality for which
some provision to compensate agents who suffer a loss in utility is needed, i.e. individual
rationality presumes a “money-based” system, the forms defined in Definition 7 allow con-
cepts of “rationality” to be given in “money-free” enviroments. Thus, in a cooperatively
rational deal, no agent involved suffers a loss in utility and at least one is better off. It may
be noted that given the characterisation of Definition 4 it is immediate that any coopera-
tively rational deal is perforce also individually rational; the converse, however, clearly does
not hold in general. In some settings, an equitable deal may be neither cooperatively nor
individually rational. One may interpret such deals as one method of reducing inequality
between the values agents place on their allocations: for those involved in an equitable deal,
it is ensured that the agent who places least value on their current allocation will obtain a
resource set which is valued more highly. It may, of course, be the case that some agents
suffer a loss of utility: the condition for a deal to be equitable limits how great such a loss
could be. Finally the concept of Pigou-Dalton deal originates from and has been studied in
depth within the theory of exchange economies. This is one of many approaches that have
been proposed, again in order to describe deals which reduce inequality between members
of an agent society, e.g. (Endriss & Maudet, 2004b). In terms of the definition given,
such deals encapsulate the so-called Pigou-Dalton principle in economic theory: that any
transfer of income from a wealthy individual to a poorer one should reduce the disparity
between them. We note that, in principle, we could define related rationality concepts
based on several extensions of this principle that have been suggested, e.g. (Atkinson, 1970;
Chateauneaf et al., 2002; Kolm, 1976).

Using the same O-contract path constructed in Theorem 3, we need only vary the
definitions of the utility functions employed in order to obtain,

Corollary 1 For each of the cases below,
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a. Φ(δ) holds if and only if δ is a cooperatively rational O-contract.
Ψ(δ) holds if and only if δ is cooperatively rational.

b. Φ(δ) holds if and only if δ is an equitable O-contract.
Ψ(δ) holds if and only if δ is equitable.

c. Φ(δ) holds if and only if δ is a Pigou-Dalton O-contract.
Ψ(δ) holds if and only if δ is a Pigou-Dalton deal.

ρmax(2,m,Φ,Ψ) ≥
(

77
256

)
2m − 2

Proof. We employ exactly the same sequence of allocations ∆m described in the proof of
Theorem 3 but modify the utility functions 〈u1, u2〉 for each case.

a. Choose 〈u1, u2〉 with u2(γ) = 0 for all γ ⊆ R and

u1(γ) =

{
k if γ = αk

0 if γ 6∈ {α1, . . . , αt}

The resulting O-contract path is cooperatively rational: the utility enjoyed by A2 re-
mains constant while that enjoyed by A1 increases by 1 with each deal. Any deviation
from this contract path (employing an alternative O-contract) will result in a loss of
utility for A1.

b. Choose 〈u1, u2〉 with u2(γ) = u1(γ) and

u1(γ) =

{
k if γ = αk

0 if γ 6∈ {α1, . . . , αt}

The O-contract path is equitable: both A1 and A2 increase their respective utility
values by 1 with each deal. Again, any O-contract deviating from this will result in
both agents losing some utility.

c. Choose 〈u1, u2〉 as

u1(γ) =

{
k if γ = αk

0 if γ 6∈ {α1, . . . , αt}
; u2(γ) =

{
2m − k if γ = αk

2m if γ 6∈ {α1, . . . , αt}

To see that the O-contract path consists of Pigou-Dalton deals, it suffices to note that
u1(αi) + u2(αi) = 2m for each 1 ≤ i ≤ t . In addition, |u2(αi+1)− u1(αi+1)| = 2m − 2i − 2
which is strictly less than |u2(αi)−u1(αi)| = 2m−2i . Finally, any O-contract 〈P ,Q〉 which
deviates from this sequence will not be a Pigou-Dalton deal since

|u2(Q2)− u1(Q1)| = 2m > |u2(P2)− u1(P1)|

which violates one of the conditions required of Pigou-Dalton deals. 2

The construction for two agent settings, easily extends to larger numbers.
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Corollary 2 For each of the choices of 〈Φ,Ψ〉 considered in Theorem 3 and Corollary 1,
and all n ≥ 2,

ρmax(n,m,Φ,Ψ) ≥
(

77
256

)
2m − 2

Proof. Fix allocations in which A1 is given α1, A2 allocated α1, and Aj assigned ∅ for each
3 ≤ j ≤ n. Using identical utility functions 〈u1, u2〉 as in each of the previous cases, we
employ for uj : uj (∅) = 1, uj (S ) = 0 whenever S 6= ∅ (〈Φ,Ψ〉 as in Theorem 3); uj (S ) = 0 for
all S (Corollary 1(a)); uj (∅) = 2m , uj (S ) = 0 whenever S 6= ∅ (Corollary 1(b)); and, finally,
uj (S ) = 2m for all S , (Corollary 1(c)). Considering a realisation of the Ψ-deal 〈P (1),P (t)〉
the only Φ-contract path admissible is the path ∆m defined in the related proofs. This gives
the lower bound stated. 2

We note, at this point, some other consequences of Corollary 1 with respect to (Endriss &
Maudet, 2004b, Theorems 1, 3), which state

Fact 1 We recall that a Φ-path, 〈P (1), . . . ,P (t)〉 is maximal if for each allocation Q, 〈P (t),Q〉
is not a Φ-deal.

a. If 〈P (1), . . . ,P (t)〉 is any maximal path of cooperatively rational deals then P (t) is
Pareto optimal.

b. If 〈P (1), . . . ,P (t)〉 is any maximal path of equitable deals then P (t) maximises the
value σe(P) = min1≤i≤n ui(Pi), i.e. the so-called egalitarian social welfare.

The sequence of cooperatively rational deals in Corollary 1(a) terminates in the Pareto
optimal allocation P (t): the allocation for A2 always has utility 0 and there is no allocation
to A1 whose utility can exceed t . Similarly, the sequence of equitable deals in Corollary 1(b)
terminates in the allocation P (t), for which σe(P (t)) = t the maximum that can be attained
for the instance defined. In both cases, however, the optima are reached by sequences of
exponentially many (in m) deals: thus, although Fact 1 guarantees convergence of particular
deal sequences to optimal states it may be the case, as illustrated in Corollary 1(a–b), that
the process of convergence takes considerable time.

2.3 O-contract Paths – Monotone Utility Functions

We conclude our results concerning O-contracts by presenting a lower bound on ρmax
mono, i.e.

the length of paths when the utility functions are required to be monotone.
In principle one could attempt to construct appropriate monotone utility functions that

would have the desired properties with respect to the path used in Theorem 3. It is, however,
far from clear whether such a construction is possible. We do not attempt to resolve this
question here. Whether an exact translation could be accomplished is, ultimately, a question
of purely combinatorial interest: since our aim is to demonstrate that exponential length
contract paths are needed with monotone utility functions we are not, primarily, concerned
with obtaining an optimal bound.
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Theorem 4 With Φ(P ,Q) and Ψ(P ,Q) be defined as in Theorem 3 and m ≥ 14

ρmax
mono(2,m,Φ,Ψ) ≥


(

77
128

)
2m/2 − 3 if m is even

(
77
128

)
2(m−1)/2 − 3 if m is odd

Proof. We describe the details only for the case of m being even: the result when m is
odd is obtained by a simple modification which we shall merely provide in outline.
Let m = 2s with s ≥ 7. For any path

∆s = 〈α1, α2, . . . , αt〉

in Hs (where αi describes a subset of Rs by an s-bit label), the path double(∆s) in H2s is
defined by

double(∆s) = 〈 α1α1, α2α2 , . . . , αiαi , αi+1αi+1 , . . . , αtαt 〉
= 〈β1, β3, . . . , β2i−1, β2i+1, . . . , β2t−1〉

(The reason for successive indices of β increasing by 2 will become clear subsequently)
Of course, double(∆s) does not describe an O-contract path6: it is, however, not difficult

to interpolate appropriate allocations, β2i , in order to convert it to such a path. Consider
the subsets β2i (with 1 ≤ i < t) defined as follows:

β2i =

{
αi+1αi if αi ⊂ αi+1

αiαi+1 if αi ⊃ αi+1

If we now consider the path, ext(∆s), within H2s given by

ext(∆s) = 〈β1, β2, β3 , . . . , β2(t−1), β2t−1〉

then this satisfies,

a. If ∆s has property (SC) of Theorem 3 in Hs then ext(∆s) has property (SC) in H2s .

b. If j is odd then |βj | = s.

c. If j is even then |βj | = s + 1.

From (a) and the bounds proved in (Abbott & Katchalski, 1991) we deduce that ext(∆s)
can be chosen so that with P (i) denoting the allocation 〈βi , βi〉

d. ext(∆s) describes an O-contract path from P (1) to P (2t−1).

e. For each pair 〈i , j 〉 with j ≥ i + 2, the deal 〈P (i),P (j )〉 is not an O-contract.

f. If ∆s is chosen as in the proof of Theorem 3 then the number of deals in ext(∆s) is
as given in the statement of the present theorem.

6. In terms of the classification described by Sandholm (1998), it contains only swap deals (S -contracts):
each deal swaps exactly one item in β2i−1 with an item in β2i−1 in order to give β2i+1.
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We therefore fix ∆s as the path from Theorem 3 so that in order to complete the proof
we need to construct utility functions 〈u1, u2〉 that are monotone and with which ext(∆s)
defines the unique IR O-contract path realising the reallocation 〈P (1),P (2t−1)〉.

The choice for u2 is relatively simple. Given S ⊆ R2s ,

u2(S ) =


0 if |S | ≤ s − 2
2t + 1 if |S | = s − 1
2t + 2 if |S | ≥ s

In this t is the number of allocations in ∆s . The behaviour of u2 is clearly monotone.
The construction for u1 is rather more complicated. Its main idea is to make use of

the fact that the size of each set βi occurring in ext(∆s) is very tightly constrained: |βi |
is either s or s + 1 according to whether i is odd or even. We first demonstrate that each
set of size s + 1 can have at most two strict subsets (of size s) occurring within ext(∆s):
thus, every S of size s + 1 has exactly 2 or 1 or 0 subsets of size s on ext(∆s). To see this
suppose the contrary. Let γ, β2i−1, β2j−1, and β2k−1 be such that |γ| = s + 1 with

β2i−1 ⊂ γ ; β2j−1 ⊂ γ ; β2k−1 ⊂ γ

Noting that β2i−1 = αiαi and that ∆s has the property (SC) it must be the case that (at
least) two of the s-bit labels from {αi , αj , αk} differ in at least two positions. Without loss
of generality suppose this is true of αi and αk . As a result we deduce that the sets β2i−1

and β2k−1 have at most s−2 elements in common, i.e. |β2i−1∩β2k−1| ≤ s−2: β2i−1 = αiαi

and β2k−1 = αkαk so in any position at which αi differs from αk , αi differs from αk at
exactly the same position. In total |β2i−1 \β2k−1| ≥ 2, i.e. there are (at least) two elements
of β2i−1 that do not occur in β2k−1; and in the same way |β2k−1 \ β2i−1| ≥ 2, i.e. there are
(at least) two elements of β2k−1 that do not occur in β2i−1. The set γ, however, has only
s + 1 members and so cannot have both β2i−1 and β2k−1 as subsets: this would require

β2i−1 ∩ β2k−1 ∪ β2i−1 \ β2k−1 ∪ β2k−1 \ β2i−1 ⊆ γ

but, as we have just seen,

| β2i−1 ∩ β2k−1 ∪ β2i−1 \ β2k−1 ∪ β2k−1 \ β2i−1 | ≥ s + 2

One immediate consequence of the argument just given is that for any set γ of size s+1 there
are exactly two strict subsets of γ occurring on ext(∆s) if and only if γ = β2i−1∪β2i+1 = β2i

for some value of i with 1 ≤ i < t . We can now characterise each subset of R2s of size s +1
as falling into one of three categories.

C1. Good sets, given by {γ : γ = β2i}.

C2. Digressions, consisting of

{ γ : β2i−1 ⊂ γ, γ 6= β2i and i < t}

C3. Inaccessible sets, consisting of

{ γ : γ is neither Good nor a Digression}
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Good sets are those describing allocations to A1 within the path defined by ext(∆s);
Digressions are the allocations that could be reached using an O-contract from a set of
size s on ext(∆s), i.e. β2i−1, but differ from the set that actually occurs in ext(∆s), i.e.
β2i . Finally, Inaccessible sets are those that do not occur on ext(∆s) and cannot be reached
via an O-contract from any set on ext(∆s). We note that we view any set of size s + 1
that could be reached by an O-contract from β2t−1 as being inaccessible: in principle it is
possible to extend the O-contract path beyond β2t−1, however, we choose not complicate
the construction in this way.

We now define u1 as

u1(γ) =



2i − 1 if γ = β2i−1

2i + 1 if γ = β2i

2i if |γ| = s + 1 and γ is a Digression from β2i−1

0 if |γ| ≤ s − 1
0 if |γ| = s and γ 6∈ ext(∆s)
2t − 1 if γ is Inaccessible or |γ| ≥ s + 2

It remains only to prove for these choices of 〈u1, u2〉 that the O-contract path 〈P (1), . . . ,P (2t−1)〉
defined from ext(∆s) is the unique IR O-contract path realising the IR deal 〈P (1),P (2t−1)〉
and that u1 is monotone.

To show that 〈P (1), . . . ,P (2t−1)〉 is IR we need to demonstrate

∀ 1 ≤ j < 2t − 1 u1(βj ) + u2(βj ) < u1(βj+1) + u2(βj+1)

We have via the definition of 〈u1, u2〉

u1(β2i−1) + u2(β2i−1) = 2(t + i) + 1
< u1(β2i) + u2(β2i)
= 2(t + i) + 2
< u1(β2i+1) + u2(β2i+1)
= 2(t + i) + 3

Thus, via Definition 4, it follows that ext(∆s) gives rise to an IR O-contract path.
To see that this path is the unique IR O-contract path implementing 〈P (1),P (2t−1)〉,

consider any position P (j ) = 〈βj , βj 〉 and allocation Q other than P (j+1) or P (j−1). It may be
assumed that the deal 〈P (j ),Q〉 is an O-contract. If j = 2i−1 then σu(P (2i−1)) = 2(t+i)+1
and |βj | = s. Hence |Q1| ∈ {s−1, s+1}. In the former case, u1(Q1) = 0 and u2(Q2) = 2t+2
from which σu(Q) = 2t + 2 and thus 〈P (j ),Q〉 is not IR. In the latter case u1(Q1) = 2i
since Q1 is a Digression from β2i−1 and u2(Q2) = 2t +1 giving σu(Q) = 2(t + i)+1. Again
〈P (j ),Q〉 fails to be IR since Q fails to give any increase in the value of σu . We are left with
the case j = 2i so that σu(P (2i)) = 2(t + i) + 2 and |βj | = s + 1. Since 〈P (j ),Q〉 is assumed
to be an O-contract this gives |Q1| ∈ {s, s + 2}. For the first possibility Q1 could not be a
set on ext(∆s): β2i−1 and β2i+1 are both subsets of β2i and there can be at most two such
subsets occurring on ext(∆s). It follows, therefore, that u1(Q1) = 0 giving σu(Q) = 2t + 2
so that 〈P (j ),Q〉 is not IR. In the second possibility, u1(Q1) = 2t − 1 but u2(Q2) = 0 as
|Q2| = s − 2 so the deal would result in an overall loss. We deduce that for each P (j ) the
only IR O-contract consistent with it is the deal 〈P (j ),P (j+1)〉.
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The final stage is to prove that the utility function u1 is indeed a monotone function.
Suppose S and T are subsets of R2s with S ⊂ T . We need to show that u1(S ) ≤ u1(T ). We
may assume that |S | = s, that S occurs as some set within ext(∆s), and that |T | = s + 1.
If |S | < s or |S | = s but does not occur on ext(∆s) we have u1(S ) = 0 and the required
inequality holds; if |S | ≥ s + 1 then in order for S ⊂ T to be possible we would need
|T | ≥ s + 2, which would give u1(T ) = 2t − 1 and this is the maximum value that any
subset is assigned by u1. We are left with only |S | = s, |T | = s + 1 and S on ext(∆s) to
consider. It has already been shown that there are at most two subsets of T that can occur
on ext(∆s). Consider the different possibilities:

a. T = β2i so that exactly two subsets of T occur in ext(∆s): β2i−1 and β2i+1. Since
u1(β2i) = 2i + 1 and this is at least max{u1(β2i−1), u1(β2i+1)}, should S be either of
β2i−1 or β2i+1 then u1(S ) ≤ u1(T ) as required.

b. T is a Digression from S = β2i−1, so that u1(T ) = 2i and u1(S ) = 2i − 1 and, again,
u1(S ) ≤ u1(T ).

We deduce that u1 is monotone completing our lower bound proof for ρmax
mono for even values

of m.
We conclude by observing that a similar construction can be used if m = 2s + 1 is odd:

use the path ext(∆s) described above but modifying it so that one resource (rm) is always
held by A2. Only minor modifications to the utility function definitions are needed. 2

Example 2 For s = 3, we can choose ∆3 = 〈000, 001, 101, 111, 110〉 so that t = 5. This
gives double(∆3) as

〈000111, 001110, 101010, 111000, 110001〉

with the O-contract path being defined from ext(∆3) which is

〈000111, 001111, 001110, 101110, 101010, 111010, 111000, 111001, 110001〉
= 〈β1, β2, β3, β4, β5, β6, β7, β8, β9〉

Considering the 15 subsets of size s + 1 = 4, gives

Good = {001111, 101110, 111010, 111001}
Digression = {010111, 100111, 101011, 011110, 111100}
Inaccessible = {011011, 011101, 101101, 110110, 110011, 110101}

Notice that both of the sets in {110011, 110101} are Inaccessible: in principle we could
continue from β9 = 110001 using either, however, in order to simplify the construction the
path is halted at β9.

Following the construction presented in Theorem 4, gives the following utility function
definitions with S ⊆ R = {r1, r2, r3, r4, r5, r6}.

u2(S ) =


0 if |S | ≤ 1
11 if |S | = 2
12 if |S | ≥ 3
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For u1 we obtain

u1(S ) =



0 if |S | ≤ 2
0 if |S | = 3 and S 6∈ {000111, 001110, 101010, 111000, 110001}
1 if S = 000111 (β1)
2 if S = 010111 (digression from β1)
2 if S = 100111 (digression from β1)
3 if S = 001111 (β2)
3 if S = 001110 (β3)
4 if S = 011110 (digression from β3)
5 if S = 101110 (β4)
5 if S = 101010 (β5)
6 if S = 101011 (digression from β5)
7 if S = 111010 (β6)
7 if S = 111000 (β7)
8 if S = 111100 (digression from β7)
9 if S = 111001 (β8)
9 if S = 110001 (β9)
9 if |S | ≥ 5 or S ∈ {011011, 011101, 101101, 110110, 110011, 110101}

The monotone utility functions, 〈u1, u2〉, employed in proving Theorem 4 are defined so that
the path arising from ext(∆s) is IR: in the event of either agent suffering a loss of utility the
gain made by the other is sufficient to provide a compensatory payment. A natural question
that now arises is whether the bound obtained in Theorem 4 can be shown to apply when
the rationality conditions preclude any monetary payment, e.g. for cases where the concept
of rationality is one of those given in Definition 7. Our next result shows that if we set the
rationality condition to enforce cooperatively rational or equitable deals then the bound of
Theorem 4 still holds.

Theorem 5 For each of the cases below and m ≥ 14

a. Φ(δ) holds if and only if δ is a cooperatively rational O-contract.
Ψ(δ) holds if and only if δ is cooperatively rational.

b. Φ(δ) holds if and only if δ is an equitable O-contract.
Ψ(δ) holds if and only if δ is equitable.

ρmax
mono(2,m,Φ,Ψ) ≥


(

77
128

)
2m/2 − 3 if m is even

(
77
128

)
2(m−1)/2 − 3 if m is odd

Proof. We again illustrate the constructions only for the case of m being even, noting the
modification to deal with odd values of m outlined at the end of the proof of Theorem 4.
The path ext(∆s) is used for both cases.
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For (a), we require 〈u1, u2〉 to be defined as monotone functions with which ext(∆s) will
be the unique cooperatively rational O-contract path to realise the cooperatively rational
deal 〈P (1),P (2t−1)〉 where P (j ) = 〈βj , βj 〉. In this case we set 〈u1, u2〉 to be,

〈u1(γ), u2(γ)〉 =



〈i , i〉 if γ = β2i−1

〈i + 1, i〉 if γ = β2i

〈i , i − 1〉 if |γ| = s + 1 and γ is a Digression from β2i−1

〈0, 2t − 1〉 if |γ| ≤ s − 1
〈0, 2t − 1〉 if |γ| = s and γ 6∈ ext(∆s)
〈2t − 1, 0〉 if γ is Inaccessible or |γ| ≥ s + 2

Since,
〈u1(β2i−1), u2(β2i−1)〉 = 〈i , i〉
〈u1(β2i), u2(β2i)〉 = 〈i + 1, i〉
〈u1(β2i+1), u2(β2i+1)〉 = 〈i + 1, i + 1〉

it is certainly the case that 〈P (1),P (2t−1)〉 and all deals on the O-contract path defined
by ext(∆s) are cooperatively rational. Furthermore if Q = 〈γ, γ〉 is any allocation other
than P (j+1) then the deal 〈P (j ),Q〉 will fail to be a cooperatively rational O-contract.
For suppose the contrary letting 〈P (j ),Q〉 without loss of generality be an O-contract,
with Q 6∈ {P (j−1),P (j+1)} – we can rule out the former case since we have already shown
such an deal is not cooperatively rational. If j = 2i − 1 so that 〈u1(βj ), u2(βj )〉 = 〈i , i〉
then |γ| ∈ {s − 1, s + 1}: the former case leads to a loss in utility for A1; the latter,
(since γ is a Digression from β2i−1) a loss in utility for A2. Similarly, if j = 2i so that
〈u1(βj ), u2(βj )〉 = 〈i +1, i〉 then |γ| ∈ {s, s +2}: for the first γ 6∈ ext(∆s) leading to a loss of
utility for A1; the second results in a loss of utility for A2. It follows that the path defined by
ext(∆s) is the unique cooperatively rational O-contract path that realises 〈P (1),P (2t−1)〉.

It remains only to show that these choices for 〈u1, u2〉 define monotone utility functions.
Consider u1 and suppose S and T are subsets of R2s with S ⊂ T . If |S | ≤ s − 1,

or S does not occur on ext(∆s) then u1(S ) = 0. If |T | ≥ s + 2 or is Inaccessible then
u1(T ) = 2t − 1 which is the maximum value attainable by u1. So we may assume that
|S | = s, occurs on ext(∆s), i.e. S = β2i−1, for some i , and that |T | = s + 1 and is either
a Good set or a Digression. From the definition of u1, u1(S ) = i : if T ∈ {β2i , β2i−2} then
u1(T ) ≥ i = u1(S ); if T is a Digression from β2i−1 then u1(T ) = i = u1(S ). We deduce
that if S ⊆ T then u1(S ) ≤ u1(T ), i.e. the utility function is monotone.

Now consider u2 with S and T subsets of R2s having S ⊂ T . If |T | ≥ s + 1 or
R2s \ T does not occur in ext(∆s) then u2(T ) = 2t − 1 its maximal value. If |S | ≤ s − 2
or R2s \ S is Inaccessible then u2(S ) = 0. Thus we may assume that T = β2i−1 giving
u2(T ) = i and |S | = s − 1, so that R2s \ S is either a Digression or one of the Good sets
{β2i , β2i−2}. If R2s \ S is a Digression then u2(S ) = i − 1; if it is the Good set β2i−2 then
u2(S ) = i − 1 < u2(T ); if it is the Good set β2i then u2(S ) = i = u2(T ). It follows that
u2 is monotone completing the proof of part (a).

60



Extremal Behaviour in Multiagent Contract Negotiation

For (b) we use,

〈u1(γ), u2(γ)〉 =



〈2i − 1, 2i〉 if γ = β2i−1

〈2i + 1, 2i〉 if γ = β2i

〈2i , 2i − 1〉 if |γ| = s + 1 and γ is a Digression from β2i−1

〈0, 2t − 1〉 if |γ| ≤ s − 1
〈0, 2t − 1〉 if |γ| = s and γ 6∈ ext(∆s)
〈2t − 1, 0〉 if γ is Inaccessible or |γ| ≥ s + 2

These choices give ext(∆s) as the unique equitable O-contract path to realise the equitable
deal 〈P (1),P (2t−1)〉, since

min{u1(β2i−1), u2(β2i−1)} = 2i − 1
min{u1(β2i), u2(β2i)} = 2i
min{u1(β2i+1), u2(β2i+1)} = 2i + 1

each deal 〈P (j ),P (j+1)〉 is equitable. If Q = 〈γ, γ〉 is any allocation other than P (j+1)

then the deal 〈P (j ),Q〉 is not an equitable O-contract. Assume that 〈P (j ),Q〉 is an O-
contract, and that Q 6∈ {P (j−1),P (j+1)}. If j = 2i − 1, so that P (j ) = 〈β2i−1, β2i−1〉
and min{u1(β2i−1), u2(β2i−1)} = 2i − 1 then |γ| ∈ {s − 1, s + 1}. In the first of these
min{u1(γ), u2(γ)} = 0; in the second min{u1(γ), u2(γ)} = 2i − 1 since γ must be a
Digression. This leaves only j = 2i with P (j ) = 〈β2i , β2i〉 and min{u1(β2i), u2(β2i)} = 2i .
For this, |γ| ∈ {s, s + 2}: if |γ| = s then min{u1(γ), u2(γ)} ≤ 2i − 1 (with equality when
γ = β2i−1); if |γ| = s + 2 then min{u1(γ), u2(γ)} = 0. In total these establish that ext(∆s)
is the unique equitable O-contract path realising the equitable deal 〈P (1),P (2t−1)〉.

That the choices for 〈u1, u2〉 describe monotone utility functions can be shown by a
similar argument to that of part (a). 2

Example 3 For s = 3 using the same O-contract path ext(∆3) as the previous example,
i.e.

〈000111, 001111, 001110, 101110, 101010, 111010, 111000, 111001, 110001〉
= 〈β1, β2, β3, β4, β5, β6, β7, β8, β9〉

For 〈u1, u2〉 in (a) we obtain

〈u1(S), u2(R \ S)〉 =



〈0, 9〉 if |S | ≤ 2
〈0, 9〉 if |S | = 3 and S 6∈ {000111, 001110, 101010, 111000, 110001}
〈1, 1〉 if S = 000111 (β1)
〈1, 0〉 if S = 010111 digression from β1

〈1, 0〉 if S = 100111 digression from β1

〈2, 1〉 if S = 001111 (β2)
〈2, 2〉 if S = 001110 (β3)
〈2, 1〉 if S = 011110 digression from β3

〈3, 2〉 if S = 101110 (β4)
〈3, 3〉 if S = 101010 (β5)
〈3, 2〉 if S = 101011 digression from β5

〈4, 3〉 if S = 111010 (β6)
〈4, 4〉 if S = 111000 (β7)
〈4, 3〉 if S = 111100 digression from β7

〈5, 4〉 if S = 111001 (β8)
〈5, 5〉 if S = 110001 (β9)
〈9, 0〉 if |S | ≥ 5 or S ∈ {011011, 011101, 101101, 110110, 110011, 110101}
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Similarly, in (b)

〈u1(S), u2(R \ S)〉 =



〈0, 9〉 if |S | ≤ 2
〈0, 9〉 if |S | = 3 and S 6∈ {000111, 001110, 101010, 111000, 110001}
〈1, 2〉 if S = 000111 (β1)
〈2, 1〉 if S = 010111 digression from β1

〈2, 1〉 if S = 100111 digression from β1

〈3, 2〉 if S = 001111 (β2)
〈3, 4〉 if S = 001110 (β3)
〈4, 3〉 if S = 011110 digression from β3

〈5, 4〉 if S = 101110 (β4)
〈5, 6〉 if S = 101010 (β5)
〈6, 5〉 if S = 101011 digression from β5

〈7, 6〉 if S = 111010 (β6)
〈7, 8〉 if S = 111000 (β7)
〈8, 7〉 if S = 111100 digression from β7

〈9, 8〉 if S = 111001 (β8)
〈9, 10〉 if S = 110001 (β9)
〈9, 0〉 if |S | ≥ 5 or S ∈ {011011, 011101, 101101, 110110, 110011, 110101}

That we can demonstrate similar extremal behaviours for contract path length with
rationality constraints in both money-based (individual rationality) and money-free (coop-
erative rationality, equitable) settings irrespective of whether monotonicity properties are
assumed, has some interesting parallels with other contexts in which monotonicity is rel-
evant. In particular we can observe that in common with the complexity results already
noted from (Dunne et al., 2003) – deciding if an allocation is Pareto optimal, if an alloca-
tion maximises σu , or if an IR O-contract path exists – requiring utility functions to be
monotone does not result in a setting which is computationally more tractable.

3. M (k)-contract paths

We now turn to similar issues with respect to M (k)-contracts, recalling that in one respect
these offer a form of deal that does not fit into the classification of Sandholm (1998). This
classification defines four forms of contract type: O-contracts, as considered in the previous
section; S -contracts, that involve exactly 2 agents swapping single resources; C -contracts,
in which one agent tranfers at least two of its resources to another; and M -contracts in which
three or more agents reallocate their resource holding amongst themselves. Our definition
of M (k)-contracts permits two agents to exchange resources (thus are not M -contracts in
Sandholm’s (1998) scheme) and the deals permitted are not restricted to O , S , and C -
contracts. In one regard, however, M (k)-contracts are not as general as M -contracts since
a preset bound (k) is specified for the number of agents involved.

Our main result on M (k)-contract paths is the following development of Theorem 3.

Theorem 6 Let Φk (P ,Q) be the predicate which holds whenever 〈P ,Q〉 is an IR M (k)-
contract. For all k ≥ 3, n ≥ k and m ≥

(
k
2

)
, there is a resource allocation setting

〈A,R,U〉 and an IR deal δ = 〈P ,Q〉 for which,

Lopt(δ, 〈A,R,U〉,Φk ) = 1 (a)
Lopt(δ, 〈A,R,U〉,Φk−1) ≥ 2b2m/k(k−1)c − 1 (b)
Lopt(δ, 〈A,R,U〉,Φk−2) is undefined (c)
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Before presenting the proof, we comment about the formulation of the theorem statement
and give an overview of the proof structure.

We first note that the lower bounds (where defined) have been phrased in terms of
the function Lopt as opposed to ρmax used in the various results on O-contract paths in
Section 2.2. It is, of course, the case that the bound claimed for Lopt(δ, 〈A,R,U〉,Φk−1)
will also be a lower bound on ρmax(n,m,Φk−1,Ψ) when n ≥ k and Ψ(P ,Q) holds whenever
the deal 〈P ,Q〉 is IR. The statement of Theorem 6, however, claims rather more than this,
namely that a specific resource allocation setting 〈A,R,U〉 can be defined for each n ≥ k
and each m, together with an IR deal 〈P ,Q〉 in such a way that: 〈P ,Q〉 can be achieved by
a single M (k)-contract and cannot be realised by an IR M (k − 2)-contract path. Recalling
that Lopt is a partial function, the latter property is equivalent to the claim made in part
(c) for the deal 〈P ,Q〉 of the theorem statement. Furthermore, this same deal although
achievable by an IR M (k − 1)-contract path can be so realised only by one whose length is
as given in part (b) of the theorem statement.

Regarding the proof itself, there are a number of notational complexities which we have
attempted to ameliorate by making some simplifying assumptions concerning the relation-
ship between m – the size of the resource set R – and k – the number of agents which are
needed to realise 〈P ,Q〉 in a single IR deal. In particular, we shall assume that m is an
exact multiple of

(
k
2

)
. We observe that by employing a similar device to that used in

the proof of Theorem 4 we can deal with cases for which m does not have this property: if
m = s

(
k
2

)
+ q for integer values s ≥ 1 and 1 ≤ q <

(
k
2

)
, we simply employ exactly the

same construction using m−q resources with the “missing” q resources from Rm being allo-
cated to A1 and never being reallocated within the M (k − 1)-contract path. This approach
accounts for the rounding operation (b. . .c) in the exponent term of the lower bound. We
shall also assume that the number of agents in A is exactly k . Within the proof we use a
running example for which k = 4 and m = 18 = 3× 6 to illustrate specific features.

We first give an outline of its structure.
Given 〈A,R,U〉 a resource allocation setting involving k agents and m resources, our

aim is to define an IR M (k − 1)-contract path

∆ = 〈P (1),P (2), . . . ,P (t)〉

that realises the IR M (k) deal 〈P (1),P (t)〉. We will use d to index particular allocations
within ∆, so that 1 ≤ d ≤ t .

In order to simplify the presentation we employ a setting in which the k agents are
A = {A0,A1, . . . ,Ak−1}. Recalling that m = s

(
k
2

)
, the resource set Rm is formed by

the union of
(

k
2

)
pairwise disjoint sets of size s. Given distinct values i and j with

0 ≤ i < j ≤ k−1, we use Ri ,j to denote one of these subsets with {r{i ,j}1 , r{i ,j}2 , . . . , r{i ,j}s }
the s resources that form R{i ,j}.

There are two main ideas underpinning the structure of each M (k − 1)-contract in ∆.
Firstly, in the initial and subsequent allocations, the resource set R{i ,j} is partitioned

between Ai and Aj and any reallocation of resources between Ai and Aj that takes place
within the deal 〈P (d),P (d+1)〉 will involve only resources in this set. Thus, for every al-
location P (d) and each pair {i , j}, if h 6∈ {i , j} then P (d)

h ∩ R{i ,j} = ∅. Furthermore, for

63



Dunne

δ = 〈P (d),P (d+1)〉 should both Ai and Aj be involved, i.e. {Ai ,Aj } ⊆ Aδ, then this real-
location of R{i ,j} between Ai and Aj will be an O-contract. That is, either exactly one
element of R{i ,j} will be moved from P (d)

i to become a member of the allocation P (d+1)
j or

exactly one element of R{i ,j} will be moved from P (d)
j to become a member of the allocation

P (d+1)
i . In total, every M (k − 1)-contract δ in ∆ consists of a simultaneous implementation

of
(

k − 1
2

)
O-contracts: a single O-contract for each of the distinct pairs {Ai ,Aj } of agents

from the k − 1 agents in Aδ.
The second key idea is to exploit one well-known property of the s-dimensional hyper-

cube network: for every s ≥ 2, Hs contains a Hamiltonian cycle, i.e. a simple directed cycle
formed using only the edges of Hs and containing all 2s vertices.7 Now, suppose

S(v) = v (0), v (1), . . . , v (i), . . . , v (2s−1), v (0)

is a Hamiltonian cycle in the hypercube Hs and

S(w) = w (0),w (1), . . . ,w (i), . . . ,w (2s−1),w (0)

the Hamiltonian cycle in which w (i) is obtained by complementing each bit in v (i). As we
have described in the overview of Section 2.1 we can interpret the s-bit label v = v1v2 . . . vs

as describing a particular subset ofR{i ,j}, i.e. that subset in which r{i ,j}k occurs if and only if
vk = 1. Similarly from any subset of R{i ,j} we may define a unique s-bit word. Now suppose
that P (d)

i is the allocation held by Ai in the allocation P (d) of ∆. The deal δ = 〈P (d),P (d+1)〉
will affect P (d)

i ∩ R{i ,j} in the following way: if i 6∈ Aδ or j 6∈ Aδ then P (d+1)
i ∩ R{i ,j} =

P (d)
i ∩ R{i ,j} and P (d+1)

j ∩ R{i ,j} = P (d)
j ∩ R{i ,j}. Otherwise we have {i , j} ⊆ Aδ and

the (complementary) holdings P (d)
i ∩R{i ,j} and P (d)

j ∩R{i ,j} define (complementary) s-bit
labels of vertices in Hs : if these correspond to places 〈v (h),w (h)〉 in the Hamiltonian cycles,
then in P (d+1)

i and P (d+1)
j the s-bit labels defined from P (d+1)

i ∩R{i ,j} and P (d+1)
j ∩R{i ,j}

produce the s-bit labels v (h+1) and w (h+1), i.e. the vertices that succeed v (h) and w (h) in
the Hamiltonian cycles. In total, for each j , Ai initially holds either the subset of R{i ,j} that
maps to v (0) or that maps to w (0) and, at the conclusion of the M (k − 1)-path, holds the
subset that maps to v (2s−1) (or w (2s−1)). The final detail is that the progression through the
Hamiltonian cycles is conducted over a series of rounds each round comprising k M (k − 1)-
deals.

We have noted that each M (k−1)-contract, 〈P (d),P (d+1)〉 that occurs in this path ∆ can
be interpreted as a set of

(
k − 1

2

)
distinct O-contracts. An important property of the utility

functions employed is that unless p ≥ k − 1 there will be no individually rational M (p)-
contract path that realises the deal 〈P (d),P (d+1)〉, i.e. the

(
k − 1

2

)
O-contract deals must

occur simultaneously in order for the progression from P (d) to P (d+1) to be IR. Although
the required deal could be realised by a sequence of O-contracts (or, more generally, any
suitable M (k − 2)-contract path), such realisations will not describe an IR contract path.

7. This can be shown by an easy inductive argument. For s = 2, the sequence 〈00, 01, 11, 10, 00〉 defines a
Hamiltonian cycle in H2. Inductively assume that 〈α1, α2, . . . , αp , α1〉 (with p = 2s) is such a cycle in
Hs then 〈0α1, 1α1, 1αp , 1αp−1, . . . , 1α2, 0α2 . . . , 0αp , 0α1〉 defines a Hamiltonian cycle in Hs+1.
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The construction of utility functions to guarantee such behaviour provides the principal
component in showing that the IR deal 〈P (1),P (t)〉 cannot be realised with an IR M (k−2)-
contract path: if Q is any allocation for which 〈P (1),Q〉 is an M (k − 2)-contract then
〈P (1),Q〉 is not IR.

We now proceed with the proof of Theorem 6.

Proof. (of Theorem 6) Fix A = {A0,A1, . . . ,Ak−1}. R consists of
(

k
2

)
pairwise disjoint

sets of s resources
R{i ,j} = {r{i ,j}1 , r{i ,j}2 , . . . , r{i ,j}s }

For k = 4 and s = 3 these yield A = {A0,A1,A2,A3} and

R{0,1} = {r{0,1}
1 , r{0,1}

2 , r{0,1}
3 }

R{0,2} = {r{0,2}
1 , r{0,2}

2 , r{0,2}
3 }

R{0,3} = {r{0,3}
1 , r{0,3}

2 , r{0,3}
3 }

R{1,2} = {r{1,2}
1 , r{1,2}

2 , r{1,2}
3 }

R{1,3} = {r{1,3}
1 , r{1,3}

2 , r{1,3}
3 }

R{2,3} = {r{2,3}
1 , r{2,3}

2 , r{2,3}
3 }

We use two ordering structures in defining the M (k − 1)-contract path.
a.

S(v) = v (0), v (1), . . . , v (i), . . . , v (2s−1), v (0)

a Hamiltonian cycle in Hs , where without loss of generality, v (0) = 111 . . . 11.

b.

S(w) = w (0),w (1), . . . ,w (i), . . . ,w (2s−1),w (0)

the complementary Hamiltonian cycle to this, so that w (0) = 000 . . . 00.

Thus for k = 4 and s = 3 we obtain

a. S(v) = 〈111, 110, 010, 011, 001, 000, 100, 101〉
b. S(w) = 〈000, 001, 101, 100, 110, 111, 011, 010〉

We can now describe the M (k − 1)-contract path.

∆ = 〈P (1),P (2), . . . ,P (t)〉

Initial Allocation: P (1).
Define the k × k Boolean matrix, B = [bi ,j ] (with 0 ≤ i , j ≤ k − 1) by

bi ,j =


⊥ if i = j
¬bj ,i if i > j
¬bi ,j−1 if i < j
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We then have for each 1 ≤ i ≤ k ,

P (1)
i =

i−1⋃
j=0

{ R{j ,i} : bi ,j = >} ∪
k−1⋃

j=i+1

{ R{i ,j} : bi ,j = >}

Thus, in our example,

B =


⊥ > ⊥ >
⊥ ⊥ > ⊥
> ⊥ ⊥ >
⊥ > ⊥ ⊥


Yielding the starting allocation

P (1)
0 = R{0,1} ∪R{0,3} = 〈111, 000, 111〉 ⊆ R{0,1} ∪R{0,2} ∪R{0,3}

P (1)
1 = R{1,2} = 〈000, 111, 000〉 ⊆ R{0,1} ∪R{1,2} ∪R{1,3}

P (1)
2 = R{0,2} ∪R{2,3} = 〈111, 000, 111〉 ⊆ R{0,2} ∪R{1,2} ∪R{2,3}

P (1)
3 = R{1,3} = 〈000, 111, 000〉 ⊆ R{0,3} ∪R{1,3} ∪R{2,3}

The third column in P (1)
i indicating the 3-bit labels characterising each of the subsets of

R{i ,j} for the three values that j can assume.

Rounds: The initial allocation is changed over a series of rounds

Q1,Q2, . . . ,Qz

each of which involves exactly k distinct M (k − 1)-contracts. We use Qx ,p to indicate the
allocation resulting after stage p in round x where 0 ≤ p ≤ k − 1. We note the following:

a. The initial allocation, P (1) will be denoted by Q0,k−1.

b. Qx ,0 is obtained using a single M (k − 1)-contract from Qx−1,k−1 (when x ≥ 1).

c. Qx ,p is obtained using a single M (k − 1)-contract from Qx ,p−1 (when 0 < p ≤ k − 1).

Our final item of notation is that of the cube position of i with respect to j in an allocation
P , denoted χ(i , j ,P). Letting u be the s-bit string describing Pi ∩R{i ,j} in some allocation
P , χ(i , j ,P) is the index of u in the Hamiltonian cycle S (v) (when R{i ,j} ⊆ P (1)

i ) or the
Hamiltonian cycle S (w) (when R{i ,j} ⊆ P (1)

j ). When P = Qx ,p for some allocation in the
sequence under construction we employ the notation χ(i , j , x , p), noting that one invariant
of our path will be χ(i , j , x , p) = χ(j , i , x , p), a property that certainly holds true of P (1) =
Q0,k−1 since χ(i , j , 0, k − 1) = χ(j , i , 0, k − 1) = 0.

The sequence of allocations in ∆ is built as follows. Since Q1,0 is the immediate successor
of the initial allocation Q0,k−1, it suffices to describe how Qx ,p is formed from Qx ,p−1 (when
p > 0) and Qx+1,0 from Qx ,k−1. Let Qy,q be the allocation to be formed from Qx ,p . The
deal δ = 〈Qx ,p ,Qy,q〉 will be an M (k − 1) contract in which Aδ = A \ {Aq}. For each pair
{i , j} ⊆ Aδ we have χ(i , j , x , p) = χ(j , i , x , p) in the allocation Qx ,p . In moving to Qy,q

exactly one element of R{i ,j} is reallocated between Ai and Aj in such a way that in Qy,q ,
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χ(i , j , y , q) = χ(i , j , x , p)+1, since Ai and Aj are tracing complementary Hamiltonian cycles
with respect to R{i ,j} this ensures that χ(j , i , y , q) = χ(j , i , x , p) + 1, thereby maintaining
the invariant property.

Noting that for each distinct pair 〈i , j 〉, we either have R{i ,j} allocated to Ai in P (1)

or R{i ,j} allocated to Aj in P (1), the description just outlined indicates that the allocation
P (d) = Qx ,p is completely specified as follows.

The cube position, χ(i , j , x , p), satisfies,

χ(i , j , x , p) =



0 if x = 0 and p = k − 1
1 + χ(i , j , x − 1, k − 1) if x ≥ 1, p = 0, and p 6∈ {i , j}
χ(i , j , x − 1, k − 1) if x ≥ 1, p = 0, and p ∈ {i , j}
1 + χ(i , j , x , p − 1) if 1 ≤ p ≤ k − 1, and p 6∈ {i , j}
χ(i , j , x , p − 1) if 1 ≤ p ≤ k − 1, and p ∈ {i , j}

For each i , the subset of R{i ,j} that is held by Ai in the allocation Qx ,p is,

v (χ(i ,j ,x ,p)) if R{i ,j} ⊆ P (1)
i

w (χ(i ,j ,x ,p)) if R{i ,j} ⊆ P (1)
j

(where we recall that s-bit labels in the hypercube Hs are identified with subsets
of R{i ,j}.)

The tables below illustrates this process for our example.

A0 A1 A2 A3

i j i j i j i j i j i j i j i j i j i j i j i j A〈P(d−1),P(d)〉

d x p 0 1 0 2 0 3 1 0 1 2 1 3 2 0 2 1 2 3 3 0 3 1 3 2
1 0 3 111 000 111 000 111 000 111 000 111 000 111 000 –
2 1 0 111 000 111 000 110 001 111 001 110 000 110 001 {A1,A2,A3}
3 1 1 111 001 110 000 110 001 110 001 010 001 110 101 {A0,A2,A3}
4 1 2 110 001 010 001 110 101 110 001 010 101 010 101 {A0,A1,A3}
5 1 3 010 101 010 101 010 101 010 101 010 101 010 101 {A0,A1,A2}
6 2 0 010 101 011 101 011 100 010 100 011 101 011 100 {A1,A2,A3}
7 2 1 010 100 001 101 011 100 011 100 001 100 011 110 {A0,A2,A3}
8 2 2 011 100 001 100 011 110 011 100 001 110 001 110 {A0,A1,A3}
9 2 3 001 110 001 110 001 110 001 110 001 110 001 110 {A0,A1,A2}
...

...
...

...
...

...
...

...
Subsets of R{i,j} held by Ai in Qx ,p (k = 4, s = 3)
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A0 A1 A2 A3

i j i j i j i j i j i j i j i j i j i j i j i j A〈P(d−1),P(d)〉

d x p 0 1 0 2 0 3 1 0 1 2 1 3 2 0 2 1 2 3 3 0 3 1 3 2
1 0 3 0 0 0 0 0 0 0 0 0 0 0 0 –
2 1 0 0 0 0 0 1 1 0 1 1 0 1 1 {A1,A2,A3}
3 1 1 0 1 1 0 1 1 1 1 2 1 1 2 {A0,A2,A3}
4 1 2 1 1 2 1 1 2 1 1 2 2 2 2 {A0,A1,A3}
5 1 3 2 2 2 2 2 2 2 2 2 2 2 2 {A0,A1,A2}
6 2 0 2 2 2 2 3 3 2 3 3 2 3 3 {A1,A2,A3}
7 2 1 2 3 3 2 3 3 3 3 4 3 3 4 {A0,A2,A3}
8 2 2 3 3 4 3 3 4 3 3 4 4 4 4 {A0,A1,A3}
9 2 3 4 4 4 4 4 4 4 4 4 4 4 4 {A0,A1,A2}
...

...
...

...
...

...
...

...
Cube Positions χ(i , j , x , p) (k = 4, s = 3)

It is certainly the case that this process of applying successive rounds of k deals could be
continued, however, we wish to do this only so long as it is not possible to go from some
allocation P (d) in the sequence to another P (d+r) for some r ≥ 2 via an M (k − 1)-contract.

Now if Qx ,p and Qy,q are distinct allocations generated by the process above then the
deal δ = 〈Qx ,p ,Qy,q〉 is an M (k − 1)-contract if and only if for some Ai , Qx ,p

i = Qy,q
i . It

follows that if 〈P (d),P (d+r)〉 is an M (k − 1)-contract for some r > 1, then for some i and
all j 6= i , P (d+r)

i ∩R{i ,j} = P (d)
i ∩R{i ,j}.

To determine the minimum value of r > 1 with which P (d+r)
i = P (d)

i , we observe that
without loss of generality we need consider only the case d = i = 0, i.e. we determine
the minimum number of deals before P (1)

0 reappears. First note that in each round, Qx , if
χ(0, j , x − 1, k − 1) = p then χ(0, j , x , k − 1) = p + k − 2, i.e. each round advances the cube
position k − 2 places: χ(0, j , x − 1, k − 1) = χ(0, j , x , 0) and χ(0, j , x , j ) = χ(0, j , x , j − 1).
We can also observe that P (1)

0 = Q0,k−1
0 6= Qx ,p

0 for any p with 0 < p < k − 1, since

χ(0, 1, x , p) = χ(0, 2, x , p) = . . . = χ(0, k − 1, x , p)

only in the cases p = 0 and p = k − 1. It follows that our value r > 1 must be of the form
qk where q must be such that q(k − 2) is an exact multiple of 2s . From this observation we
see that,

min{ r > 1 : P (1)
0 = P (1+r)

0 } = min{ qk : q(k − 2) is a multiple of 2s}

Now, if k is odd then q = 2s is the minimal such value, so that r = k2s . If k is even then
it may be uniquely written in the form z2l + 2 where z is odd so giving q as 1 (if l ≥ s) or
2s−l (if l ≤ s), so that these give r = k and r = z2s + 2s−l+1, e.g. for k = 4 and s = 3, we
get k = 1 × 21 + 2 so that r = 23 + 23−1+1 = 16 and in our example P (1)

0 = P (17)
0 may be

easily verified. In total,

r ≥


k2s if k is odd
k if k = z2l + 2, z is odd, and l ≥ s
2s if k = z2l + 2, z is odd and l ≤ s

68



Extremal Behaviour in Multiagent Contract Negotiation

All of which immediately give r ≥ 2s (in the second case k ≥ 2s , so the inequality holds
trivially), and thus we can continue the chain of M (k − 1) contracts for at least 2s moves.
Recalling that m = s

(
k
2

)
, this gives the length of the M (k − 1)-contract path

∆ = 〈P (1),P (2), . . . ,P (t)〉

written in terms of m and k as at least8

2
m/

(
k
2

)
− 1 = 2

2m
k(k−1) − 1

It remains to define appropriate utility functions U = 〈u0, . . . , uk−1〉 in order to ensure that
∆ is the unique IR M (k − 1)-contract path realising the IR M (k)-deal 〈P (1),P (t)〉. In
defining U it will be convenient to denote ∆ as the path

∆ = 〈Q0,k−1,Q1,0,Q1,1, . . . ,Q1,k−1, . . . ,Qx ,p , . . . ,Qr ,k−1〉

and, since rk ≥ 2s , we may without loss of generality, focus on the first 2s allocations in
this contract path.

Recalling that χ(i , j , x , p) is the index of the s-bit label u corresponding to Qx ,p
i ∩R{i ,j}

in the relevant Hamiltonian cycle – i.e. S(v) if R{i ,j} ⊆ Q0,k
i , S(w) if R{i ,j} ⊆ Q0,k−1

j – we
note the following properties of the sequence of allocations defined by ∆ that hold for each
distinct i and j .

P1. ∀ x , p χ(i , j , x , p) = χ(j , i , x , p)

P2. If Qy,q is the immediate successor of Qx ,p in ∆ then χ(i , j , y , q) ≤ χ(i , j , x , p) + 1
with equality if and only if q 6∈ {i , j}.

P3. ∀ i ′, j ′ with 0 ≤ i ′, j ′ ≤ k − 1, χ(i , j , x , k − 1) = χ(i ′, j ′, x , k − 1).

The first two properties have already been established in our description of ∆. The third
follows from the observation that within each round Qx , each cube position is advanced by
exactly k − 2 in progressing from Qx−1,0 to Qx ,k−1.

The utility function ui is now given, for S ⊆ Rm , by

ui(S ) =

{ ∑
j 6=i χ(i , j , x , p) if S = Qx ,p

i for some 0 ≤ x ≤ r , 0 ≤ p ≤ k − 1
−2km otherwise

We claim that, with these choices,

∆ = 〈Q0,k−1,Q1,0,Q1,1, . . . ,Q1,k−1, . . . ,Qx ,p , . . . ,Qr ,k−1〉

is the unique IR M (k − 1)-contract path realising the IR M (k)-deal 〈Q0,k−1,Qr ,k−1〉. Cer-
tainly, ∆ is an IR M (k − 1)-contract path: each deal δ = 〈Qx ,p ,Qy,q〉 on this path has
|Aδ| = k − 1 and since for each agent Ai in Aδ = A\ {Aq} the utility of Qy,q

i has increased

8. We omit the rounding operation b. . .c in the exponent, which is significant only if m is not an exact

multiple of
(

k
2

)
, in which event the device described in our overview of the proof is applied.
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by exactly k − 2, i.e. each cube position of i with respect to j whenever q 6∈ {i , j} has
increased, it follows that σu(Qy,q) > σu(Qx ,p) and hence 〈Qx ,p ,Qy,q〉 is IR.

We now show that ∆ is the unique IR M (k − 1)-contract path continuation of Q0,k−1

Suppose δ = 〈Qx ,p ,P〉 is a deal that deviates from the contract path ∆ (having followed
it through to the allocation Qx ,p). Certainly both of the following must hold of P : for
each i , Pi ⊆ ∪j 6=iR{i ,j}; and there is a k -tuple of pairs 〈(x0, p0), . . . , (xk−1, pk−1)〉 with
which Pi = Qxi ,pi

i , for if either fail to be the case for some i , then ui(Pi) = −2km with the
consequent effect that σu(P) < 0 and thence not IR. Now, if Qy,q is the allocation that
would succeed Qx ,p in ∆ then P 6= Qy,q , and thus for at least one agent, Qxi ,pi

i 6= Qy,q
i .

It cannot be the case that Qxi ,pi
i corresponds to an allocation occurring strictly later than

Qy,q
i in ∆ since such allocations could not be realised by an M (k−1)-contract. In addition,

since Pi = Qxi ,pi
i it must be the case that |Aδ| = k − 1 since exactly k − 1 cube positions in

the holding of Ai must change. It follows that there are only two possibilities for (yi , pi):
Pi reverts to the allocation immediately preceding Qx ,p

i or advances to the holding Qy,q
i .

It now suffices to observe that a deal in which some agents satisfy the first of these while
the remainder proceed in accordance with the second either does not give rise to a valid
allocation or cannot be realised by an M (k−1)-contract. On the other hand if P corresponds
to the allocation preceding Qx ,p then δ is not IR. We deduce, therefore, that the only IR
M (k − 1) deal that is consistent with Qx ,p is that prescribed by Qy,q .

This completes the analysis needed for the proof of part (b) of the theorem. It is
clear that since the system contains only k agents, any deal 〈P ,Q〉 can be effected with
a single M (k)-contract, thereby establishing part (a). For part (c) – that the IR deal
〈P (1),P (t)〉 cannot be realised using an individually rational M (k − 2)-contract path, it
suffices to observe that since the class of IR M (k − 2)-contracts are a subset of the class
of IR M (k − 1)-contracts, were it the case that an IR M (k − 2)-contract path existed to
implement 〈P (1),P (t)〉, this would imply that ∆ was not the unique IR M (k − 1)-contract
path. We have, however, proved that ∆ is unique, and part (c) of the theorem follows. 2

We obtain a similar development of Corollary 1 in

Corollary 3 For all k ≥ 3, n ≥ k, m ≥
(

k
2

)
and each of the cases below,

a. Φk (δ) holds if and only if δ is a cooperatively rational M (k)-contract.
Ψ(δ) holds if and only if δ is cooperatively rational.

b. Φk (δ) holds if and only if δ is δ is an equitable M (k)-contract.
Ψ(δ) holds if and only if δ is is equitable.

there is a resource allocation setting 〈A,R,U〉 and a Ψ-deal δ = 〈P ,Q〉 for which

Lopt(δ, 〈A,R,U〉,Φk ) = 1 (a)
Lopt(δ, 〈A,R,U〉,Φk−1) ≥ 2b2m/k(k−1)c − 1 (b)
Lopt(δ, 〈A,R,U〉,Φk−2) is undefined (c)

Proof. As with the proof of Corollary 1 in relation to Theorem 3, in each case we employ
the contract path from the proof of Theorem 6, varying the definition of U = 〈u1, u2, . . . , uk 〉
in order to establish each result. Thus let

∆m = 〈P (1),P (2), . . . ,P (r), . . . ,P (t)〉
= 〈Q0,k−1,Q1,0, . . . ,Qx ,p , . . . ,Qz ,r 〉
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be the M (k − 1)-contract path realising the M (k)-deal 〈P (1),P (t)〉 described in the proof
of Theorem 6, this path having length t ≥ 2b2m/k(k − 1) − 1.

a. The utility functions U = 〈u0, . . . , uk−1〉 of Theorem 6 ensure that 〈P (1),P (t)〉 is
cooperatively rational and that ∆m is a cooperatively rational M (k − 1)-contract
path realising 〈P (1),P (t)〉: the utility held by Ai never decreases in value and there is
at least one agent (in fact exactly k −1) whose utility increases in value. Furthermore
∆m is the unique cooperatively rational M (k − 1)-contract path realising 〈P (1),P (t)〉
since, by the same argument used in Theorem 6, any deviation will result in some
agent suffering a loss of utility.

b. Set the utility functions U = 〈u0, . . . , uk−1〉 as,

ui(S ) =



−1 if S 6= Qx ,p
i for any Qx ,p ∈ ∆m

xk2 + k − i if S = Qx ,k−1
i

(x − 1)k2 + k + p if S = Qx ,p
0 , p < k − 1 and i = 0

(x − 1)k2 + k − i + p + 1 if S = Qx ,p
i , p < i − 1 and i 6= 0.

xk2 + 1 if S = Qx ,i−1
i = Qx ,i

i and i 6= 0.
xk2 + 1 + p − i if S = Qx ,p

i , p > i and i 6= 0

To see that these choices admit ∆m as an equitable M (k − 1)-contract path realising
the equitable deal 〈Q0,k−1,Qz ,r 〉, we first note that

min
0≤i≤k−1

{ui(Q
z ,r
i )} > 1 = min

0≤i≤k−1
{ui(Q

0,k−1
i )}

thus, 〈Q0,k−1,Qz ,r 〉 is indeed equitable. Consider any deal δ = 〈Qx ,p ,Qy,q〉 occurring
within ∆m . It suffices to show that

min
0≤i≤k−1

{ui(Q
x ,p
i )} 6= uq(Qx ,p

q )

since Aq 6∈ Aδ, and for all other agents ui(Q
y,q
i ) > ui(Q

x ,p
i ). We have two possibilities:

q = 0 (in which case p = k − 1 and y = x + 1); q > 0 (in which case p = q − 1).
Consider the first of these: u0(Q

x ,k−1
0 ) = xk2 + k , however,

min{ui(Q
x ,k−1
i )} = xk2 + 1 = uk−1(Q

x ,k−1
k−1 )

and hence every deal 〈Qx ,k−1,Qx+1,0〉 forming part of ∆m is equitable.

In the remaining case, uq(Qx ,q−1
q ) = xk2 + 1 and

min{ui(Q
x ,q−1
i )} ≤ u0(Q

x ,q−1
0 )

= (x − 1)k2 + k + q − 1
< xk2 − (k2 − 2k + 1)
= xk2 − (k − 1)2

< xk2 + 1
= uq(Qx ,q−1

q )

and thus the remaining deals 〈Qx ,q−1,Qx ,q〉 within ∆m are equitable. By a similar
argument to that employed in Theorem 6 it follows that ∆m is the unique equitable
M (k − 1)-contract path realising 〈Q0,k−1,Qz ,r 〉.

2
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Monotone Utility Functions and M (k)-contract paths

The device used to develop Theorem 3 to obtain the path of Theorem 4 can be applied
to the rather more intricate construction of Theorem 6, thereby allowing exponential lower
bounds on ρmax

mono(n,m,Φk ,Ψ) to be derived. We will merely outline the approach rather than
present a detailed technical exposition. We recall that it became relatively straightforward
to define suitable monotone utility functions once it was ensured that the subset sizes of
interest – i.e. those for allocations arising in the O-contract path – were forced to fall into
a quite restricted range. The main difficulty that arises in applying similar methods to the
path ∆ of Theorem 6 is the following: in the proof of Theorem 4 we consider two agents
so that converting ∆s from a setting with s resources in Theorem 3 to ext(∆s) with 2s
resources in Theorem 4 is achieved by combining “complementary” allocations, i.e. α ⊆ Rs

with α ⊆ Ts . We can exploit two facts, however, to develop a path multi(∆) for which
monotone utility functions could be defined: the resource set Rm in Theorem 6 consists of(

k
2

)
disjoint sets of size s; and any deal δ on the path ∆ involves a reallocation of R{i ,j}

between Ai and Aj when {i , j} ⊆ Aδ. Thus letting Tm be formed by
(

k
2

)
disjoint sets,

T {i ,j} each of size s, suppose that P (d)
i is described by

α
(d)
i ,0 α

(d)
i ,1 · · · α

(d)
i ,i−1 α

(d)
i ,i+1 · · · α

(d)
i ,k−1

with α
(d)
i ,j the s-bit label corresponding to the subset of R{i ,j} that is held by Ai in P (d).

Consider the sequence of allocations,

multi(∆) = 〈C (1),C (2), . . . ,C (t)〉

in a resource allocation setting have k agents and 2m resources – Rm ∪ Tm for which C (d)
i

is characterised by
β

(d)
i ,0 β

(d)
i ,1 · · · β

(d)
i ,i−1 β

(d)
i ,i+1 · · · β

(d)
i ,k−1

In this, β
(d)
i ,j , indicates the subset of R{i ,j} ∪ T {i ,j} described by the 2s-bit label,

β
(d)
i ,j = α

(d)
i ,j α

(d)
i ,j

i.e. α
(d)
i ,j selects a subset of R{i ,j} while α

(d)
i ,j a subset of T {i ,j}.

It is immediate from this construction that for each allocation C (d) in multi(∆) and each
Ai , it is always the case that |C (d)

i | = (k − 1)s. It follows, therefore, that the only subsets
that are relevant to the definition of monotone utility functions with which an analogous
result to Theorem 6 for the path multi(∆) could be derived, are those of size (k − 1)s: if
S ⊆ Rm∪Tm has |S | < (k−1)s, we can fix ui(S ) as a small enough negative value; similarly
if |S | > (k − 1)s then ui(S ) can be set to a large enough positive value.9

Our description in the preceding paragraphs, can be summarised in the following re-
sult, whose proof is omitted: extending the outline given above to a formal lower bound

9. It is worth noting that the “interpolation” stage used in Theorem 4 is not needed in forming multi(∆):
the deal 〈C (d),C (d+1)〉 is an M (k−1)-contract. We recall that in going from ∆s of Theorem 3 to ext(∆s)
the intermediate stage – double(∆s) – was not an O-contract path.
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proof, is largely a technical exercise employing much of the analysis already introduced, and
since nothing signifcantly new is required for such an analysis we shall not give a detailed
presentation of it.

Theorem 7 Let Φk (P ,Q) be the predicate which holds whenever 〈P ,Q〉 is an IR M (k)-
contract. For all k ≥ 3, n ≥ k and m ≥ 2

(
k
2

)
, there is a resource allocation setting

〈A,R,U〉 in which every u ∈ U is monotone, and an IR deal δ = 〈P ,Q〉 for which,

Lopt(δ, 〈A,R,U〉,Φk ) = 1 (a)
Lopt(δ, 〈A,R,U〉,Φk−1) ≥ 2bm/k(k−1)c − 1 (b)
Lopt(δ, 〈A,R,U〉,Φk−2) is undefined (c)

4. Related Work

The principal focus of this article has considered a property of contract paths realising ratio-
nal reallocations 〈P ,Q〉 when the constituent deals are required to conform to a structural
restriction and satisfy a rationality constraint. In Section 2 the structural restriction limited
deals to those involving a single resource, i.e. O-contracts. For the rationality constraint
forcing deals strictly to improve utilitarian social welfare, i.e. to be individually rational
(IR) we have the following properties.

a. There are resource allocation settings 〈A,R,U〉 within which there are IR reallocations
〈P ,Q〉 that cannot be realised by a sequence of IR O-contracts. (Sandholm, 1998,
Proposition 2)

b. Every IR reallocation, 〈P ,Q〉, that can be realised by an IR O-contract path, can be
realised by an IR O-contract path of length at most nm−(n−1)m. (Sandholm, 1998,
Proposition 2)

c. Given 〈A,R,U〉 together with an IR reallocation 〈P ,Q〉 the problem of deciding if
〈P ,Q〉 can be implemented by an IR O-contract path is np–hard, even if |A| = 2 and
both utility functions are monotone. (Dunne et al., 2003, Theorem 11).

d. There are resource allocation settings 〈A,R,U〉 within which there are IR reallocations
〈P ,Q〉 that can be realised by an IR O-contract path, but with any such path having
length exponential in m. This holds even in the case |A| = 2 and both utility functions
are monotone. (Theorem 3 and Theorem 4 of Section 2)

In a recent article Endriss and Maudet (2004a) analyse contract path length also considering
O-contracts with various rationality constraints. Although the approach is from a rather
different perspective, the central question addressed – “How many rational deals are required
to reach an optimal allocation?”, (Endriss & Maudet, 2004a, Table 1, p. 629) – is closely
related to the issues discussed above. One significant difference in the analysis of rational O-
contracts from Sandholm’s (1998) treatment and the results in Section 2 is that in (Endriss
& Maudet, 2004a) the utility functions are restricted so that every rational reallocation
〈P ,Q〉 can be realised by a rational O-contract path. The two main restrictions examined
are requiring utility functions to be additive, i.e. for every S ⊆ R, u(S ) =

∑
r∈S u(r);
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and, requiring the value returned to be either 0 or 1, so-called 0 − 1 utility functions.
Additive utility functions are considered in the case of IR O-contracts (Endriss & Maudet,
2004a, Theorems 3, 9), whereas 0−1 utility functions for cooperatively rational O-contracts
(Endriss & Maudet, 2004a, Theorems 4, 11). Using ρmax

add (n,m,Φ,Ψ) and ρmax
0−1(n,m,Φ,Ψ)

to denote the functions introduced in Definition 6 where all utility functions are additive
(respectively 0−1), cf. the definition of ρmax

mono, then with Φ1(P ,Q) holding if 〈P ,Q〉 is an IR
O-contract; Φ2(P ,Q) holding if 〈P ,Q〉 is a cooperatively rational O-contract and Ψ(P ,Q)
true when 〈P ,Q〉 is IR, we may formulate Theorems 9 and 11 of (Endriss & Maudet, 2004a)
in terms of the framework used in Definition 6, as

ρmax
add (n,m,Φ1,Ψ) = m (Endriss & Maudet , 2004a,Theorem 9)

ρmax
0−1(n,m,Φ2,Ψ) = m (Endriss & Maudet , 2004a,Theorem 11)

We can, of course, equally couch Theorems 3 and 4 of Section 2 in terms of the “shortest-
path” convention adopted in (Endriss & Maudet, 2004a), provided that the domains of
utility and reallocation instances are restricted to those for which an appropriate O-contract
path exists. Thus, we can obtain the following development of (Endriss & Maudet, 2004a,
Table 1) in the case of O-contracts.

Utility Functions Additive 0-1 Unrestricted Monotone Unrestricted Monotone
Rationality IR CR IR IR CR CR

Shortest Path m m Ω(2m ) Ω(2m/2) Ω(2m ) Ω(2m/2)
Complete Yes Yes No No No No

Table 2: How many O-contract rational deals are required to reach an allocation?
Extension of Table 1 from (Endriss & Maudet, 2004a, p. 629)

5. Conclusions and Further Work

Our aim in this article has been to develop the earlier studies of Sandholm (1998) concerning
the scope and limits of particular “practical” contract forms. While Sandholm (1998) has
established that insisting on individual rationality in addition to the structural restriction
prescribed by O-contracts leads to scenarios which are incomplete (in the sense that there
are individually rational deals that cannot be realised by individually rational O-contracts)
our focus has been with respect to deals which can be realised by restricted contract paths,
with the intention of determining to what extent the combination of structural and rational-
ity conditions increases the number of deals required. We have shown that, using a number
of natural definitions of rationality, for settings involving m resources, rational O-contract
paths of length Ω(2m) are needed, whereas without the rationality restriction on individual
deals, at most m O-contracts suffice to realise any deal. We have also considered a class
of deals – M (k)-contracts – that were not examined in (Sandholm, 1998), establishing for
these cases that, when particular rationality conditions are imposed, M (k − 1)-contract
paths of length Ω(22m/k2

) are needed to realise a deal that can be achieved by a single
M (k)-contract.

We note that our analyses have primarily been focused on worst-case lower bounds
on path length when appropriate paths exist, and as such there are several questions of
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practical interest that merit further discussion. It may be noted that the path structures
and associated utility functions are rather artificial, being directed to attaining a path of a
specific length meeting a given rationality criterion. We have seen, however, in Theorems 4
and 5 as outlined in our discussion concluding Section 3 that the issue of exponential length
contract paths continues to arise even when we require the utility functions to satisfy a
monotonicity condition. We can identify two classes of open question that arise from these
results.

Firstly, focusing on IR O-contract paths, it would be of interest to identify “natural”
restrictions on utility functions which would ensure that, if a deal 〈P ,Q〉 can be implemented
by an IR O-contract path, then it can be realised by one whose length is polynomially
bounded in m, e.g. such as additivity mentioned in the preceding section. We can interpret
Theorem 4, as indicating that monotonicity does not guarantee “short” IR contract paths.
We note, however, that there are some restrictions that suffice. To use a rather trivial
example, if the number of distinct values that σu can assume is at most mp for some
constant p then no IR O-contract path can have length exceeding mp : successive deals
must strictly increase σu and if this can take at most K different values then no IR contract
path can have length exceeding K . As well as being of practical interest, classes of utility
function with the property being considered would also be of some interest regarding one
complexity issue. The result proved in (Dunne et al., 2003) establishing that deciding if an
IR O-contract path exists is np-hard, gives a lower bound on the computational complexity
of this problem. At present, no (non-trivial) upper bound on this problem’s complexity
has been demonstrated. Our results in Theorems 3 and 4 indicate that if this decision
problem is in np (thus its complexity would be np–complete rather than np–hard) then
the required polynomial length existence certificate may have to be something other than
the path itself.10 We note that the proof of np–hardness in (Dunne et al., 2003) constructs
an instance in which σu can take at most O(m) distinct values: thus, from our example of
a restriction ensuring that if such are present then IR O-contract paths are “short”, this
result of (Dunne et al., 2003) indicates that the question of deciding their existence might
remain computationally hard.

Considering restrictions on the form of utility functions is one approach that could be
taken regarding finding “tractable” cases. An alternative would be to gain some insight
into what the “average” path length is likely to be. In attempting to address this question,
however, a number of challenging issues arise. The most immediate of these concerns,
of course, the notion of modeling a distribution on utility function given our definitions
of rationality in terms of the value agents attach to their resource holdings. In principle
an average-case analysis of scenarios involving exactly two agents could be carried out in
purely graph-theoretic terms, i.e. without the complication of considering utility functions
directly. It is unclear, however, whether such a graph-theoretic analysis obviating the need
for consideration of literal utility functions, can be extended beyond settings involving
exactly two agents. One difficulty arising with three or more agents is that our utility

10. The use of “may” rather than “must” is needed because of the convention for representing utility functions
employed in (Dunne et al., 2003).
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functions have no allocative externalities, i.e. given an allocation 〈X ,Y ,Z 〉 to three agents,
u1(X ) is unchanged should Y ∪ Z be redistributed among A2 and A3.11

As one final set of issues that may merit further study we raise the following. In
our constructions, the individual deals on a contract path must satisfy both a structural
condition (be an O-contract or involve at most k agents), and a rationality constraint.
Focusing on O-contracts we have the following extremes: from (Sandholm, 1998), at most
m O-contracts suffice to realise any rational deal; from our results above, Ω(2m) rational
O-contracts are needed to realise some rational deals. There are a number of mechanisms
we can employ to relax the condition that every single deal be an O-contract and be
rational. For example, allow a path to contain some number of deals which are not O-
contracts (but must still be IR) or insist that all deals are O-contracts but allow some to
be irrational. Thus, in the latter case, if we go to the extent of allowing up to m irrational
O-contracts, then any rational deal can be realised efficiently. It would be of some interest
to examine issues such as the effect of allowing a constant number, t , of irrational deals
and questions such as whether there are situations in which t irrational contracts yield
a ‘short’ contract path but t − 1 force one of exponential length. Of particular interest,
from an application viewpoint, is the following: define a (γ(m),O)-path as an O-contract
path containing at most γ(m) O-contracts which are not individually rational. We know
that if γ(m) = 0 then individually rational (0,O)-paths are not complete with respect to
individually rational deals; similarly if γ(m) = m then (m,O)-paths are complete with
respect to individually rational deals. A question of some interest would be to establish
if there is some γ(m) = o(m) for which (γ(m),O)-paths are complete with respect to
individually rational deals and with the maximum length of such a contract path bounded
by a polynomial function of m.
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ABSTRACT
Dialogue protocols have been the subject of considerable attention
with respect to their potential applications in multiagent system en-
vironments. Formalisations of such protocols define classes of dia-
logue locutions, concepts of a dialogue state, and rules under which
a dialogue proceeds. One important consideration in implementing
a protocol concerns the criteria an agent should apply in choosing
which utterance will constitute its next contribution to a discussion
in progress: ideally, an agent should select a locution that (by some
measure) “optimises” the outcome. The precise interpretation of
‘optimise’ is, however, something that may vary greatly depending
on the nature and intent of a dialogue area. If we consider ‘persua-
sion’ protocols, where one agent’s intention is to convince others of
the validity or invalidity of a specific proposition, then optimality
might be regarded in the sense of “choice of locution that results in
a ‘minimal length’ debate”: thus the agent defending a hypothesis
tries to select utterances that will convince other participants of the
validity of this hypothesis after ‘as few locutions as possible’. We
present a formal setting for considering the problem of deciding if
a particular utterance in the context of a persuasion dialogue is op-
timal in this sense. We show that, in general, this decision problem
is both NP–hard and CO-NP–hard.
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1. INTRODUCTION
Methods for modeling discussion and dialogue processes have

proved to be of great importance in describing multiagent interac-
tions. The study of dialogue protocols ranges from perspectives
such as argumentation theory, e.g., [23, 26], taxonomies of types
of dialogue such as [26, 28], and formalisms for describing and
reasoning about protocols, e.g. [19, 21, 22]. Among the many ap-
plications that have been considered are bargaining and negotiation
processes, e.g. [14, 23, 17]; legal reasoning, e.g. [13, 16, 1, 2,
25], persuasion in argumentation and other systems, e.g. [27, 11, 3,
8], and inquiry and information-discovery, e.g. [18, 20]. The col-
lection of articles presented in [7] gives an an overview of various
perspectives relating to multiagent discourse.

While we present a general formal model for dialogue protocols
below, informally we may view the core elements of such as com-
prising a description of the ‘locution types’ for the protocol (“what
participants can say”); the topics of discussion (“what participants
talk about”); and how discussions may start, evolve, and finish.

Despite the divers demands of protocols imposing special con-
siderations of interest with particular applications, there are some
properties that might be considered desirable irrespective of the
protocol’s specific domain, cf. [22]. Among such properties are
termination; the capability to validate that a discussion is being
conducted according to the protocol; and the ability for partici-
pants to determine “sensible” contributions. In [21] frameworks
for uniform comparison of protocols are proposed that are defined
independently of the application domain. In principle, if two dis-
tinct protocols can be shown ‘equivalent’ in the senses defined by
[21], then termination and other properties need only be proved for
one of them.

In this paper our concern is with the following problem: in real-
ising a particular discussion protocol within a multiagent environ-
ment, one problem that must be addressed by each participant can,
informally, be phrased as “what do/should I say next?” In other
words, each agent must “be aware of” its permitted (under the pro-
tocol rules) utterances given the progress of the discussion so far,
and following specific criteria, either choose to say nothing or con-
tribute one of these. While the extent to which a protocol admits a
‘reasonable’ decision-making process is, of course, a property that
is of domain-independent interest, one crucial feature distinguish-
ing different types of discussion protocol is the criteria that apply
when an agent makes its choice. More precisely, in making a con-
tribution an agent may be seen as “optimising” the outcome. A
clear distinction between protocol applications is that the sense of
“optimality” in one protocol may be quite different from “optimal-
ity” in another. For example, in multiagent bidding and bargaining
protocols, a widely-used concept of “optimal utterance” is based
on the view that any utterance has the force of affording a par-

608



ticular “utility value” to the agent invoking it that may affect the
utility enjoyed by other agents. In such settings, the policy (often
modeled as a probability distribution) is “optimal” if no agent can
improve its (expected) utility by unilaterally deviating. This – Nash
equilibrium – has been the subject of intensive research and there
is strong evidence of its computational intractability [4]. While
valid as a criterion for utterances in multiagent bargaining proto-
cols, such a model of “optimality” is less well-suited to fields such
as persuasion, information-gathering, etc. We may treat a “persua-
sion protocol” as one in which an agent seeks to convince others of
the validity of a given proposition, and interpreting such persuasion
protocols as proof mechanisms – a view used in, among others, [27,
11] – we contend that a more appropriate sense of an utterance be-
ing “optimal”, is that it allows the discussion to be concluded “as
quickly as possible”.1 There are several reasons why such a mea-
sure is appropriate with respect to persuasion protocols. In prac-
tice, discussions in which one agent attempts to persuade another to
carry out some action cannot (reasonably) be allowed to continue
indefinitely; an agent may be unable to continue with other tasks
which are time-constrained in some sense until other agents in the
system have been persuaded through some reasoned discussion to
accept particular propositions. It is, of course, the case that de-
scribing optimality in terms of length of discussion provides only
one measure. We discuss alternative notions of optimality in the
concluding sections.

Concentrating on persuasion protocols we formulate the “opti-
mal utterance problem” and establish lower bounds on its com-
plexity. In the next section we outline an abstract computational
framework for dialogue protocols and introduce two variants of the
optimal utterance decision problem. In Section 3 we present a set-
ting in which this problem is proved to be both NP–hard and CO-
NP–hard. Conclusions and further work are presented in the final
section.

2. DEFINITIONS

DEFINITION 1. Let � be the (infinite) set of all well-formed
formulae (wff) in some propositional language (where we assume
an enumerable set of propositional variables ��� ��� � � �).

A dialogue arena, denoted �, is a (typically infinite) set of finite
subsets of � . For a dialogue arena,

� � ������� � � � ���� � � � � � �� � �

the set of wff in�� � ���� ��� � � � � ��� is called a dialogue context
from the dialogue arena �.

DEFINITION 2. A dialogue schema is a triple �������, where
� � ��� 	� 
 � 
 �� is a finite set of locution types, � is a
dialogue protocol as defined below, and � is a dialogue context.

We are interested in reasoning about properties of protocols operat-
ing in given dialogue arenas. In the following,� � ������� � � � � �
is a dialogue arena, with � � ���� � � � � ��� a (recall, finite) set of
wff constituting a single dialogue context of this arena.

DEFINITION 3. Let � � ��� 	� 
 � 
 �� be a set of locution
types. A dialogue fragment over the dialogue context � is a (finite)
sequence,

�� � �� � � � ��

�An alternative view is proposed in [10], where it is argued that
utterances which prolong discussions can, in certain settings, be
seen as “optimal”.

where �� � �������� is the instantiated locution or utterance (with
�� � �� at time 	. The commitment represented by a dialogue
fragment Æ – denoted ��Æ� – is a subset of the context �.

The notation 
�
��� is used to denote the set of all dialogue frag-

ments involving instantiated locutions from �; Æ to denote an arbi-
trary member of this set, and 	Æ	 to indicate the length (number of
utterances) in Æ.

In order to represent dialogues of interest we need to describe
mechanisms by which dialogue fragments and their associated com-
mitments evolve.

DEFINITION 4. A dialogue protocol for the discussion of the
context � using locution set � – is a pair � � ����� defined by:

a. A possible dialogue continuation function –

� � 
�
��� 
 ���� �� � ���

The subset of dialogue fragments Æ in 
�
��� having ��Æ� ��

� is called the set of legal dialogues over ����� in the pro-
tocol �, this subset being denoted �� . It is required that the
empty dialogue fragment, 
 containing no locutions is a le-
gal dialogue, i.e. ��
� �� �, and we call the set ��
� the
legal commencement locutions.2 We further require that �
satisfies the following condition:

�Æ �
�
��� ���Æ� � �� � �� � � ����� ��Æ � �� � ��

i.e. if Æ is not a legal dialogue then no dialogue fragment
starting with Æ is a legal dialogue.

b. A commitment function – � � �� 
 ���� associating each
legal dialogue with a subset of the dialogue context �.

This definition abstracts away ideas concerning commencement,
combination and termination rules into the pair ����� through
which the possible dialogues of a protocol and the associated states
(subsets of �) are defined. Informally, given a legal dialogue, Æ,
��Æ� delineates all of the utterances that may be used to continue
the discussion.

A dialogue, Æ, is terminated if��Æ� � � and partial if��Æ� �� �.
We now describe mechanisms for assessing dialogue protocols in

terms of the length of a dialogue. The following notation is used.

� � ���� � ����� � ����������

is a (sequence of) dialogue schemata for an arena

� � ���� � � � ���� � � ��

Although one can introduce concepts of dialogue length predicated
on the number of utterances needed to attain a particular state 	,
the decision problem we consider will focus on the concept of
“minimal length terminated continuation of a dialogue fragment
Æ”. Formally

DEFINITION 5. Let ���� � ��������� be a dialogue schema
�� instantiated with the context �� of �. Let Æ � 
�

������
be a

dialogue fragment. The completion length of Æ under � for the
context �� , denoted ��Æ������, is,


���	�	 : � � �� , � � Æ � �, ���� � ��

if such a dialogue fragment exists, and undefined otherwise.

�Note that we allow ��
� � �, although the dialogues that result
from this case are unlikely to be of significant interest.
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Thus the completion length of a (legal) dialogue, Æ, is the least
number of utterances in a terminated dialogue that starts with Æ.
We note that if Æ is not a legal dialogue then ��Æ������ is always
undefined.

The decision problem whose properties we are concerned with
is called the Generic Optimal Utterance Problem.

DEFINITION 6. An instance of the Generic Optimal Utterance
Problem (GOUP) comprises,

� � ��� Æ� ��

where � � ������� is a dialogue schema with locution set �,
protocol � � �����, and dialogue context �; Æ � 
�

����� is a
dialogue fragment, and � � � � � is an utterance.

An instance � is accepted if there exists a dialogue fragment
� �
�

����� for which all of the following hold

1. � � Æ � � � � � �� .

2. ���� � �.

3. 	�	 � ��Æ�����.

If any of these fail to hold, the instance is rejected.

Thus, given representations of a dialogue schema together with a
partial dialogue, Æ and utterance �, an instance is accepted if there
is a terminated dialogue (�) which commences with the dialogue
fragment Æ �� and whose length is the completion length of Æ under
� for the context �. In other words, the utterance � is such that it
is a legal continuation of Æ leading to a shortest length terminated
dialogue.

Our formulation of GOUP, as given in Definition 6, raises a num-
ber of questions. The most immediate of these concerns how the
schema � is to be represented, specifically the protocol �����.
Noting that we have (so far) viewed ����� in abstract terms as
mappings from dialogue fragments to sets of utterances (subsets of
the context), one potential difficulty is that in “most” cases these
will not be computable.3 We can go some way to addressing this
problem by representing ����� through (encodings of) Turing ma-
chine programs �
��
�� with the following characteristics: 
�

takes as its input a pair �Æ� ��, where Æ �
�
����� and � � � � �,

accepting if Æ � � is a legal dialogue and rejecting otherwise; sim-
ilarly 
� takes as its input a pair �Æ�
� with 
 � � accepting if
Æ is a legal dialogue having 
 � ��Æ�, rejecting otherwise. There
remain, however, problems with this approach: it is not possible,
in general, to validate that a given input is an instance of GOUP,
cf. Rice’s Theorem for Recursive Index Sets in e.g., [9, Chap-
ter 5, pp. 58–61]; secondly, even in those cases where one can inter-
pret the encoding of ����� “appropriately” the definition places no
time-bound on how long the computation of these programs need
take. There are two methods we can use to overcome these difficul-
ties: one is to employ ‘clocked’ Turing machine programs, so that,
for example, if no decision has been reached for an instance �Æ� ��
on 
� after, say 	Æ � �	 steps, then the instance is rejected. The
second is to consider specific instantiations of GOUP with protocols
that can be established “independently” to have desirable efficient
decision procedures. More formally,

DEFINITION 7. Instances of the Optimal Utterance Problem in
� – OUP��� – where ��� � ����� � ���������� is a sequence
of dialogue schema over the arena � � ��� � � � ��, comprise

� � ���� Æ� ��
�For example, it is easy to show that the set of distinct protocols
that could be defined using only two locutions and a single element
context is not enumerable.

where Æ � 
�
������

is a dialogue fragment, and � � ���� is an
utterance.

An instance � is accepted if there exists a dialogue fragment
� � 
�

������
for which all of the following hold

1. � � Æ � � � � � �� .

2. ���� � �.

3. 	�	 � ��Æ������.

If any of these fail to hold, the instance is rejected.

The crucial difference between the problems GOUP and OUP���

is that we can consider the latter in the context of specific protocols
without being concerned about how these are represented – the pro-
tocol description does not form part of an instance of OUP��� (only
the specific context ��). In particular, should we wish to consider
some ‘sense of complexity’ for a given schema, we could use the
device of employing an ‘oracle’ Turing machine, 
�, to report (at
unit-cost) whether properties (1–2) hold of any given �. With such
an approach, should � be such that the set of legal dialogues for a
specific context is finite, then the decision problem OUP��� is de-
cidable (relative to the oracle machine 
�). A further advantage
is that any lower bound that can be demonstrated for a specific in-
carnation of OUP��� gives a lower bound on the “computable frag-
ment” of GOUP. In the next section, we describe a (sequence of)
dialogue schemata, ������

� � for which the following computa-
tional properties are provable.

1. The set of legal dialogues for �����
� is finite: thus every

continuation of any legal partial dialogue will result in a legal
terminated dialogue.

2. Given �Æ� ����� with Æ a dialogue fragment, � an utterance,
and �� the dialogue context for �����

� , there is a deter-
ministic algorithm that decides if Æ � � is a legal dialogue
using time linear in the number of bits needed to encode the
instance.

3. Given �Æ�
���� with Æ a legal dialogue and 
 an element
of the context �� , there is a deterministic algorithm deciding
if 
 � ��Æ� using time linear in the number of bits needed
to encode the instance.

We will show that the Optimal Utterance Problem for �����
� is

both NP–hard and CO-NP–hard.

3. THE OPTIMAL UTTERANCE PROBLEM
Prior to defining the schema used as the basis of our results, we

introduce the dialogue arena, �	
� upon which it operates.
Let 	��� (� � �) denote the set of all CNF formulae formed

from propositional variables ���� � � � � ��� (so that 		���	 � ��
�

).
For 
 � 	��� with


 �


�

�	�

���

�	�

���� ���� � ������� � � 
 � 
 ��

we use �� to denote the clause ����	����� . Let 
��� be the set of
wff given by,


��� � �
� ��� � � � � �
� ��� � � � � ������� � � � �����

The dialogue arena of formulae in CNF is

�CNF �

��

�	�

�


�����

��
�����
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Thus, each different CNF,
 gives rise to the dialogue context whose
elements are defined by 
���.

We note that � � �	
� may be encoded as a word, ����, over
alphabet ���� �� ��

���� � ���� with � � ���� �� ���


where the �’th clause is described by the sub-word

���������� � � � ����

so that

��������� � �� if ��� � ��

��������� � � if �� � ��

��������� � � if ��� �� �� and �� �� ��

It is thus immediate that given any word � � ���� �� ��� there is
an algorithm that accepts � if and only if � � ���� for some CNF

� and this algorithm runs in ��	�	� steps.
The basis for the dialogue schema we now define is found in

the classic DPLL procedure for determining whether a well-formed
propositional formula is satisfiable or not [5, 6]. Our protocol –
the DPLL-dialogue protocol – is derived from the realisation of the
DPLL-procedure on CNF formulae.

In describing this we assume some ordering

������� � � � ���� � � ��

of the contexts in the arena �	
� .

DPLL-Dialogue Schema
The sequence of DPLL-Dialogue Schema – ����� � ������

� �
– is defined with contexts from the arena �	
� as

�����
� � ������������ � �����������������

where

����� � �ASSERT,REBUT,PROPOSE,DENY,MONO,UNIT�

and the set �� from �	
� is,

�

�

�	�

��� ��� � � � � �
� ��� � � � � ������� � � � �����

Recall that 
� denotes the formula
�

�	� ��, and �� is the clause

����	����� from the context �� . It will be convenient to regard a
clause � both as a disjunction of literals and as a set of literals, so
that we write � � � when � has the form � � �.

The protocol ������������� is defined through the follow-
ing cases.

At any stage the commitment state – ������Æ� consists of a
(possibly empty) subset of the clauses of
� and a (possibly empty)
subset of the literals, subject to the condition that � and �� are
never simultaneously members of ������Æ�. With the exception
of �ASSERT,REBUT� the instantiated form of any locution involves
a literal �.
Case 1: Æ � 
 the empty dialogue fragment.

������
� � �ASSERT�
���
������
� � �
������ASSERT�
��� � ��� : � 
 � 
 ��

In the subsequent development, � is a literal and

�����Æ� � ��� : �� � ������Æ��
��	��Æ� � �� : � � ������Æ��
��� ���Æ� � �� : �� �� ��	��Æ� and �� � �����Æ� s.t.

� � � and �! � �"��� �! � ��	��Æ��
#�$%��Æ� � �� : �� �� ��	��Æ� and

�� � �����Æ� �� �� � and
�� � �����Æ� with � � ��

�$&�Æ� � ��� : �� � �����Æ� and
�� � � �� � ��	��Æ��

Informally, �����Æ� indicates clauses of 
� that have yet to
be satisfied and ��	��Æ� the set of literals that have been commit-
ted to in trying to construct a satisfying assignment to 
�. Over
the progress of a dialogue the literals in ��	��Æ� may, if instanti-
ated to true, result in some clauses being reduced to a single literal
– ��� ���Æ� is the set of such literals. Similarly, either initially
or following an instantantiation of the literals in ��	��Æ� to true,
the set of clauses in �����Æ� may be such that some variables
occurs only positively among these clauses or only negated. The
corresponding literals form the set #�$%��Æ�. Finally, the course
of committing to various literals may result in a set that contra-
dicts all of the literals in some clause: thus this set cannot consti-
tute a satisfying instantiation: the set of clauses in �$&�Æ� if non-
empty indicate that this has occurred. Notice that the definition
of ��� ���Æ� admits the possibility of a literal � and its negation
being in this set: a case which cannot lead to the set of literals in
��	��Æ� being extended to a satisfying set. Thus we say that the
literal set ��	��Æ� is a failing set if either �$&�Æ� �� � or for some
�, ������ � ��� ���Æ�.

Recognising that ������Æ� � �����Æ� � ��	��Æ� it suffices
to describe changes to ������Æ� in terms of changes to �����Æ�
and ��	��Æ�.
Case 2: Æ �� 
, �����Æ� � �

��Æ� � �

Case 3: Æ �� 
, �����Æ� �� �, ��	��Æ� is not a failing set.
There are a number of sub-cases depending on ������Æ�
Case 3.1: ��� ���Æ� �� �.

������Æ� � �UNIT��� : � � ��� ���Æ��
�����Æ � UNIT���� � �����Æ�"�� : � � ��
��	��Æ � UNIT���� � ��	��Æ� � ���

Case 3.2: ��� ���Æ� � �, #�$%��Æ� �� �

������Æ� � �MONO��� : � � #�$%��Æ��
�����Æ � MONO���� � �����Æ�"�� : � � ��
��	��Æ � MONO���� � ��	��Æ� � ���

Case 3.3: ��� ���Æ� � #�$%��Æ� � �
Since �$&�Æ� � � and �����Æ� �� �, instantiating the literals in
��	��Æ� will neither falsify nor satisfy 
�. It follows that the set

'(���Æ� � �� : � �� ��	��Æ�� �� �� ��	��Æ� and
�� � �����Æ� with � � ��

is non-empty. We note that since #�$%��Æ� � �, � � '(���Æ� if
and only if �� � '(���Æ�. This gives,

������Æ� � �PROPOSE��� : � � '(���Æ��
�����Æ � PROPOSE���� � �����Æ�"�� : � � ��
��	��Æ � PROPOSE���� � ��	��Æ� � ���

611



This completes the possibilities for Case 3. We are left with,
Case 4: Æ �� 
, ��	��Æ� is a failing set.
Let Æ � ASSERT�
�� � � ���

Given the cases above, there are only three utterances that ��
could be:

�� � �ASSERT�
��� PROPOSE���� DENY����

Case 4.1: �� � �� � ASSERT�
��
Sinces ��	��ASSERT�
��� � �,
� either contains an empty clause
(one containing no literals), or for some � both ��� and ���� are
clauses in 
�.4 In either case 
� is “trivially” unsatisfiable, giving

������ASSERT�
��� � �REBUT�
���
������ASSERT�
�� � REBUT�
��� � �
������ASSERT�
�� � REBUT�
��� � �

Case 4.2: �� � PROPOSE���

������Æ� � �DENY����
�����Æ � DENY���� � ������� � � ������"�� : �� � ��
��	��Æ � DENY���� � ��	���� � � � ����� � ����

Notice this corresponds to a ‘back-tracking’ move under which
having failed to complete a satisfying set by employing the literal
�, its negation �� is tried instead.
Case 4.3: �� � DENY���
Consider the sequence of utterances given by

� � �� � �� � � ����� � �� � DENY���

We say that � is unbalanced if there is a position � such that �� �
PROPOSE�!� with DENY�!� �� ���� � � ��� and balanced other-
wise. If � is unbalanced let ��&����� be the highest such position
for which this holds (so that � ) 	).

We now obtain the final cases in our description.
Case 4.3(a): � is unbalanced with ��&����� equal to �.

������Æ� � �DENY��� : �� � PROPOSE����
�����Æ � DENY���� � ������� � � � �����"�� : �� � ��
��	��Æ � DENY���� � ��	���� � � ������ � ����

Thus this case corresponds to a ‘back-tracking’ move continuing
from the “most recent” position at which a literal �� instead of �
can be tested.

Finally,
Case 4.3(b): � is balanced.

������Æ� � �REBUT�
���
������Æ � REBUT�
��� � �
������Æ � REBUT�
��� � �

We state the following without proof.

THEOREM 1. In the following, Æ is a dialogue fragment from

�
����������

; �� is a context from �	
� , and *�Æ���� is the
number of bits used to encode Æ and �� under some reasonable
encoding scheme.

1. The problem of determining whether Æ is a legal dialogue
for the protocol ����� in context �� can be decided in
��*�Æ����� steps.

2. The problem of determining whether Æ is a terminated legal
dialogue for the protocol ����� in context �� is decidable
in ��*�Æ����� steps.


Note that we distinguish the wff � (a literal used in 
�) and ���
(a clause containing the single literal �) within the context �� .

3. For any � � �� , the problem of determining whether � �
������Æ� is decidable in ��*�Æ����� steps.

4. For all contexts �� � �	
� , the set of legal dialogues over
�� in the protocol ����� is finite.

5. If Æ is a terminated dialogue of ����� in context �� then
������Æ� �� � if and only if
� is satisfiable. Furthermore,
instantiating the set of literals in ��	��Æ� to true, yields a
satisfying assignment for 
�.

Before analysing this protocol we review how it derives from the
basic DPLL-procedure. Consider the description of this below.

DPLL-Procedure
Input: Set of clauses �

Set of Literals �

if � � � return true. (SAT)
if any clause of � is empty

or � contains clauses ��� and ���� (for some literal �)
return false. (UNSAT)

if � contains a clause containing a single literal �
return DPLL�� ��� � � ���� (U)

if there is a literal � such that �� does not occur in any
clause (and � occurs in some clause)

return DPLL�� ��� � � ���� (M)
choose a literal �. (B)
if DPLL�� ��� � � ����
then return true
else return DPLL�� �	�� � � ����� (FAIL).

For a set of clauses and literal, �, the set of clauses ��� is formed
by removing all clauses, �� for which � � �� and deleting the
literal �� from all clauses �� having �� � �� .

To test if 
 � �
�	��� is satisfiable, the procedure is called with
input � � ���� � � � � �
� and � � �.

Lines (U) and (M) are the “unit-clause” and “monotone literal”
rules which improve the run-time of the procedure: these are sim-
ulated by the UNIT and MONO locutions. Otherwise a literal is se-
lected – at line (B) – to “branch” on: the PROPOSE locution; should
the choice of branching literal FAIL to lead to a satisfying assign-
ment, its negation is tested – the DENY locution. Each time a literal
is set to true, clauses containing it can be deleted from the current
set – the �����Æ� of the protocol; clauses containing its negation
contain one fewer literal. Either all clauses will be eliminated (� is
satisfiable) or an empty clause will result (the current set of literals
chosen is not a satisfying assignment). When all choices have been
exhausted the method will conclude that � is unsatisfiable.

The motivation for the form of the dialogue protocol �����
� is

the connection between terminated dialogues in ����� and search
trees in the DPLL-procedure above.

DEFINITION 8. Given a set of clauses �, a DPLL–search tree
for � is a binary tree, �, recursively defined as follows: if � � �
or � conforms to the condition specified by UNSAT in the DPLL-
procedure, then � is the empty tree, i.e. � contains no nodes. If � is
a monotone literal or defines a unit-clause in �, then � comprises
a root labelled � whose sole child is a DPLL-search tree for the set
��� . If none of these four cases apply, � consists of a root labelled
with the branching literal � chosen in line (B) with at most two
children – one comprising a DPLL-search tree for the set ��� , the
other child – if the case (FAIL) arises – a DPLL-search tree for the
set ��	�.
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A DPLL-search tree is full if no further expansion of it can take
place (under the procedure above).

The size of a DPLL-search tree, � – +��� – is the total number
of edges5 in �. A full DPLL-search tree, �, is minimum for the set
of clauses �, if given any full DPLL-search tree, , for �, +��� 

+�,�. Finally, a literal � is an optimal branching literal for a clause
set �, if there is a minimum DPLL-search tree for � whose root is
labelled �.

We say a set of clauses, �, is non-trivial if � �� �. Without
loss of generality we consider only CNF-formulae,
, whose clause
set is non-trivial. Of course, during the evolution of the DPLL-
procedure and the dialogue protocol ����� sets of clauses which
are trivial may result (this will certainly be the case is 
 is satisfi-
able): our assumption refers only to the initial instance set.

THEOREM 2. Let 
 � �
�	��� be a CNF-formula over propo-
sitional variables ���� � � � � ���. Let ��
� and �� be respectively
the set of clauses in 
 and the dialogue context from the arena
�	
� corresponding to 
, i.e. the set 
��� above.

1. Given any full DPLL-search tree, �, for ��
� there is a legal
terminated dialogue, Æ� � ����� for which,

Æ� � ASSERT�
�� � �� � �

and 	�� 	 � +���, with � being one of the locution types in
�PROPOSE,UNIT,MONO,REBUT�.

2. Given any terminated legal dialogue Æ � ASSERT�
�� � � �
�, with

� � �REBUT�
��� PROPOSE���� MONO���� UNIT����

there is a full DPLL-search tree, �Æ having +��Æ� � 	�	.

PROOF. (Outline) We present the proof of Part 1 only. Let 
,
��
�, and �� be as in the Theorem statement. For Part 1, let � be
any full DPLL-search tree for the clause set ��
�. We obtain the
result by induction on +��� � �.

For the inductive base, +��� � �, either � is the empty tree or �
contains a single node labelled �. In the former instance, since 

is non-trivial it must be the case that 
 is unsatisfiable (by reason
of containing an empty clause or opposite polarity unit clauses).
Choosing

Æ� � ASSERT�
�� � �� � REBUT�
��

with �� � 
 is a legal terminated dialogue (Case 4.1) and 	�� 	 �
� � +���.

When � contains a single node, so that +��� � �, let � be the
literal labelling this. It must be the case that ��
� is satisfiable –
it cannot hold that ��
��� and ��
��	� both yield empty search
trees, since this would imply the presence of unit-clauses ��� and
���� in ��
�.6 Thus the literal � occurs in every clause of ��
�.
If � is a unit-clause, the dialogue fragment,

Æ� � ASSERT�
�� � UNIT���

is legal (Case 3.1) and terminated (Case 2). Fixing �� � 
 and
� � UNIT��� gives 	�� 	 � � � +��� and Æ � ASSERT�
�� ��� ��
a legal terminated dialogue. If � is not a unit clause, we obtain an

�The usual definition of size is as the number of nodes in �, how-
ever, since � is a tree this value is exactly +��� � �.
�It should be remembered that at most one of ������ occurs in
any clause.

identical conclusion using �� � 
 and � � MONO��� via Case 3.2
and Case 2.

Now, inductively assume, for some 
 , that if �� is a DPLL-
search tree for a set of clauses ��
�, with +���� ) 
 then there
is a terminated legal dialogue, Æ�� , over the corresponding con-
text, �, with Æ�� � ASSERT�
� � ��� � � and 	��� 	 � +����.

Let � be a DPLL-search tree for ��
� with +��� � 
 � �.
Consider the literal, �, labelling the root of �. Since +��� � �, the
set ��
��� is non-empty. If ��
�� contains a unit-clause, then
��� must be one such, thus � comprises the root labelled � and
a single child, ��� forming a full DPLL-search tree for the (non-
empty) clause set ��
���. It is obvious that +����� ) +��� 


 , so from the Inductive Hypothesis, there is a legal terminated
dialogue, Æ�� in the context formed by the CNF 


��
� . Hence,

Æ�� � ASSERT�

��
� � � �

�� � �

and 	���	 � +�����. From Case(3.1), the dialogue fragment

Æ� � ASSERT�
�� � UNIT��� � ��� � �

is legal and is terminated. Setting �� � UNIT��� � ��� , we obtain

	�� 	 � � � 	���	 � � � +����� � +���

A similar construction applies in those cases where � is a mono-
tone literal – substituting the utterance MONO��� for UNIT(y) –
and when � is a branching literal with exactly one child ��� – in
this case, substituting the utterance PROPOSE��� for UNIT���.

The remaining case is when � comprises a root node labelled �
with two children – ��� and ��	� – the former a full DPLL-search
tree for the clause set ��
���, the latter a full DPLL-search tree for
the set ��
��	�. We use ��� and ��	� to denote the contexts in
�	
� corresponding to these CNF-formulae. As in the previous
case, +����� ) +��� � 
 and +���	�� ) +��� � 
 . Invoking
the Inductive Hypothesis, we identify legal terminated dialogues,
over the respective contexts ��� and ��	�

Æ�� � ASSERT�
��� � ��� � ���

Æ�	� � ASSERT�
�	�� � ��	� � ��	�

with 	���	 � +����� and 	��	�	 � +���	��.
We first note that the set ��
��� cannot be satisfiable – if it were

the search-tree ��	� would not occur. We can thus deduce that
��� � REBUT�
���. Now consider the dialogue fragment, Æ� ,
from the context ��

ASSERT�
�� � PROPOSE��� � ��� � DENY��� � ��	� � ��	�

Certainly this is a legal terminated dialogue via the Inductive hy-
pothesis and Cases 4.2, 4.3(a–b). In addition, with

�� � PROPOSE��� � ��� � DENY��� � ��	�

we have

	�� 	 � � � 	���	� 	��	�	 � � � +����� � +���	�� � +���

so completing the Inductive proof of Part 1.
Part 2 can be demonstrated by a straightforward inductive argu-

ment on 	�	 � �.

COROLLARY 1. An instance,

# � ���� ASSERT�
��� PROPOSE����

of the Optimal Utterance Problem for ����� is accepted if and
only if � is neither a unit-clause nor a monotone literal and � is an
optimal branching literal for the clause set ��
��.
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PROOF. If � defines a unit-clause or monotone literal in
� then
PROPOSE��� is not a legal continuation of ASSERT�
��. The corol-
lary is now an easy consequence of Theorem 2: suppose that

Æ � ASSERT�
�� � PROPOSE��� � � � ��

is a minimum length completion of ASSERT�
��, then Part 2 of
Theorem 2 yields a full DPLL-search tree, ,, for ��
�� of size
� � 	�	 whose root is labelled �. If , is not minimum then there
is smaller full DPLL-search tree, �. From Part 1 of Theorem 2 this
yields a legal terminated dialogue

ASSERT�
�� � �� � �� � �

with

+��� � 	�� � �� � �	 � � ) 	PROPOSE��� � � � ��	 � � � +�,�

which contradicts the assumption that Æ is a minimum length com-
pletion.

We now obtain a lower bound on the complexity of OUP��� via
the following result of Liberatore [15].

FACT 1. Liberatore ([15]) Given an instance ��� �� where � is
a set of clauses and � a literal in these, the problem of deciding
whether � is an optimal branching literal for the set � is NP–hard
and CO-NP–hard.

THEOREM 3. The Optimal Utterance in� Problem is NP–hard
and CO-NP–hard.

PROOF. Choose� as the sequence of schema ������
� �. From

Corollary 1 an instance ���� ASSERT�
��� PROPOSE���� is acc-
epted in OUP��� if and only if � does not form a unit-clause of

�, is not a monotone literal, and is an optimal branching literal
for the clause set ��
��. We may assume, (since these are easily
tested) that the first two conditions do not hold, whence it follows
that decision methods for such instances of OUP��� yield decision
methods for determining if � is an optimal branching literal for
��
��. The complexity lower bounds now follow directly from
Liberatore’s results stated in Fact 1.

4. CONCLUSION
The principal contentions of this paper are three-fold: firstly, in

order for a dialogue protocol to be realised effectively in a mul-
tiagent setting, each agent must have the capability to determine
what contribution(s) it must or should or can make to the discus-
sion as it develops; secondly, in deciding which (if any) utterance
to make, an agent should (ideally) take cognisance of the extent to
which its utterance is ‘optimal’; and, finally, the criteria by which
an utterance is judged to be ‘optimal’ are application dependent.
In effect, the factors that contributors take into consideration when
participating in one style of dialogue, e.g. bargaining protocols, are
not necessarily those that would be relevant in another style, e.g.
persuasion protocols.

We have proposed one possible interpretation of “optimal utter-
ance in persuasion protocols”: that which leads to the debate ter-
minating ‘as quickly as possible’. There are, however, a number of
“length-related” alternatives that may merit further study. We have
already mentioned in passing the view explored in [10]. One draw-
back to the concept of “optimal utterance” as we have considered
it, is that it presumes the protocol is “well-behaved” in a rather
special sense: taking the aim of an agent in a persuasion process
as “to convince others that a particular proposition is valid”, the

extent to which an agent is successful may depend on the ‘final’
commitment state attained. In the DPLL-protocol this final state is
either always empty (if 
� is not satisfiable) or always non-empty:
the protocol is “sound” in the sense that conflicting interpretations
of the final state are not possible. Suppose we consider persua-
sion protocols where there is an ‘external’ interpretation of final
state, e.g. using a method of defining some (sequence) of map-
pings - � �����
 �true� false���, so that a terminated dialogue,
Æ, with - ���Æ�� � true indicates that the persuading agent has
successful demonstrated its desired hypothesis; - ���Æ�� � false
indicates that its hypothesis is not valid; -���Æ�� � � indicates
that no conclusion can be drawn.7 There are good reasons why we
may wish to implement ‘seemingly contradictory’ protocols, i.e. in
which the persuasion process for a given context � can terminate in
any (or all) of true, false or� states, e.g. to model concepts of cau-
tious, credulous, and sceptical agent belief, cf. [24]. In such cases
defining “optimal utterance” as that which can lead to a shortest
terminated dialogue may not be ideal: the persuading agent’s view
of “optimal” is not simply to terminate discussion but to terminate
in a true state; in contrast, “sceptical” agents may seek utterances
that (at worst) terminate in the inconclusive � state. We note that,
in such settings, there is potentially an “asymmetry” in the objec-
tives of individual agents – we conjecture that in suitably defined
protocols and contexts with appropriately defined concepts of “op-
timal utterance” the decision problems arising are likely to prove
at least as intractable as those for the basic variant we consider in
Theorem 3.

A natural objection to the use of length-related measures to as-
sess persuasion processes is that these do not provide any sense of
how convincing a given discourse might be, i.e. that an argument
can be presented concisely does not necessarily render it effective
in persuading those to whom it is addressed. One problem with
trying formally to capture concepts of persuasiveness is that, unlike
measures based on length, this is a subjective measure: a reason-
ing process felt to be extremely convincing by one party may fail
to move another. One interesting problem in this respect concerns
modeling the following scenario. Suppose we have a collection of
agents with differing knowledge and ‘prejudices’ each of whom an
external agent wishes to persuade to accept some proposition, e.g.
election candidates seeking to persuade a cross-section of voters
to vote in their favour. In such settings one might typically expect
contributions by the persuading party to affect the degree of convic-
tion felt by members of the audience in different ways. As such the
concept of an ‘optimal’ utterance might be better assessed in terms
of proportionate increase in acceptance that the individual audience
members hold after the utterance is made.

We conclude by mentioning two open questions of interest within
the context of persuasion protocols and the optimal utterance prob-
lem in these. In practical terms, one problem of interest is, in-
formally, phrased as follows: can one define “non-trivial” persua-
sion protocols for a “broad” collection of dialogue contexts within
which the optimal utterance problem is tractable? We note that,
it is unlikely that dialogue arenas encompassing the totality of all
propositional formulae will admit such protocols, however, for those
subsets which have efficient decision procedures e.g. Horn clauses,
2-CNF formulae, appropriate methods may be available. A second
issue is to consider complexity-bounds for other persuasion proto-
cols: e.g. one may develop schema for the arena�	
� defined via
the TPI–dispute mechanism of [27], the complexity (lower and up-
per bounds) of the optimal utterance problem in this setting is open,

�For example, game theorists in economics have considered the
situation where two advocates try to convince an impartial judge of
the truth or otherwise of some claim, e.g. [12].
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although in view of our results concerning ����� it is plausible
to conjecture that the optimal utterance problem for���� will also
prove intractable.
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Abstract

The use of software agents for automatic contract negotiation in e-commerce and e-trading en-
vironments has been the subject of considerable recent interest. A widely studied abstract model
considers the setting in which a set of agents have some collection of resources shared out between
them and attempt to construct a mutually beneficial optimal reallocation of these by trading re-
sources. The simplest such trades are those in which a single agent transfers exactly one resource
to another—so-called ‘one-resource-at-a-time’ or ‘O-contracts’. In this research note we consider
the computational complexity of a number of natural decision problems in this setting.
 2005 Elsevier B.V. All rights reserved.
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1. Introduction

Mechanisms for automatically negotiating the allocation of resources in a group of
agents form an important body of work within the multiagent systems field. Typical ab-
stract models derive from game-theoretic perspectives in economics and among the issues
that have been addressed are strategies that agents may use to negotiate, e.g., [9,12,14], and
protocols for negotiation in agent societies, e.g., [2,10].

In this paper, we investigate the computational complexity of one of the most fundamen-
tal questions that may be asked of such a negotiation setting: that of whether a particular
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outcome is feasible under the assumption that negotiation participants will act rationally.
The particular negotiation setting we consider—introduced by Sandholm [13]—relates to
the reallocation of resources amongst agents. The idea is that, starting from some initial
allocation, agents can negotiate to transfer resources between themselves to their mutual
benefit. At each stage of negotiation, agents make deals by transferring resources to other
agents, and receiving resources in return. The feasibility question in this setting may be
informally understood as follows.

Given some initial allocation P s of resources to agents, and some potential final alloca-
tion P t , is there a sequence of deals that will be individual rational to all involved, such
that at the end of this sequence of deals, the allocation P t will be realised?

It could be argued that a positive answer to this question does not imply that negotiation
will be successful, as it merely implies the existence of an individual rational sequence of
deals to get from P s to P t . The agents in question may have their own (perhaps irrational)
reasons for rejecting some deals in this sequence. Moreover, unless the feasibility checking
process is constructive, the agents may not be able to find the desired sequence of deals.
A negative answer, however, surely rules out any chance of getting from P s to P t : for
every possible sequence of deals realising this reallocation, some agent would suffer in the
course of its implementation, and would therefore reject it.

Our main result is to show that this problem—and a number of natural variations of
it—is NP-hard. We also investigate the complexity of a number of related problems: for
example, we show that the problem of determining whether a particular allocation is Pareto
Optimal is co-NP-complete.

2. Preliminary definitions

The scenario that we are concerned with is encapsulated in the following definition.

Definition 1. A resource allocation setting is defined by a triple 〈A,R,U〉 where

A = {A1,A2, . . . ,An}; R= {r1, r2, . . . , rm}
are, respectively, a set of (at least two) agents and a collection of (non-shareable) resources.
A utility function, u, is a mapping from subsets of R to rational values. Each agent Ai ∈A
has associated with it a particular utility function ui , so that U is 〈u1, u2, . . . , un〉. An
allocation P of R to A is a partition 〈P1,P2, . . . ,Pn〉 of R. The utility function, ui , is
monotone if ui(S) � ui(T ) whenever S ⊆ T . The value ui(Pi) is called the utility of the
resources assigned to Ai .

Starting from some initial allocation—P0—individual agents negotiate in an attempt to
improve the utility of their holding. A number of interpretations have been proposed in
order to define what constitutes a ‘sensible’ transfer of resource from both an individual
agent’s viewpoint and from the perspective of the overall allocation. Thus in negotiating a
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change from an allocation Pi to Qi (with Pi,Qi ⊆ R and Pi �= Qi ) there are three possible
outcomes for the agent Ai :

– ui(Pi) < ui(Qi) Ai values the allocation Qi as superior to Pi ;
– ui(Pi) = ui(Qi) Ai is indifferent between Pi and Qi ; and
– ui(Pi) > ui(Qi) Ai is worse off after the exchange.

In a setting in which agents are self-interested, in order for an agent to accept an exchange
with the last outcome, the notion of a pay-off function is used: in order to accept the new
allocation, Ai receives some payment sufficient to compensate for the resulting loss in
utility. Of course, such compensation must be made by other agents in the system who in
providing it do not wish to pay in excess of any gain in resource. In defining notions of
‘pay-off’, the interpretation is that in any transaction each agent Ai makes a payment, πi : if
πi < 0 then Ai is given −πi in return for accepting a contract; if πi > 0 then Ai contributes
πi to the amount to be distributed among those agents whose pay-off is negative. Formally,
such a notion of ‘sensible transfer’ is captured by the concept of individual rationality.

Definition 2. Let 〈A,R,U〉 be a resource allocation setting. A deal is a pair 〈P,Q〉 where
P = 〈P1, . . . ,Pn〉 and Q = 〈Q1, . . . ,Qn〉 are distinct partitions of R. We use δ to denote an
arbitrary deal. The effect of implementing the deal 〈P,Q〉 is that the allocation of resources
specified by P is replaced with that specified by Q.

A deal 〈P,Q〉 is said to be individually rational (IR) if there is a pay-off vector π =
〈π1,π2, . . . , πn〉 satisfying,

(a)
∑n

i=1 πi = 0.
(b) ui(Qi) − ui(Pi) > πi , for each agent Ai , except that πi is allowed to be 0 if Pi = Qi ,

i.e., should the deal (P,Q) leave the agent Ai with no change in its resource then it is
not required that Ai be rewarded (have πi < 0).

Definition 2 captures one view of a deal being ‘sensible’ with respect to the perspec-
tive of single agents. We require also concepts of ‘global’ optimality. We consider two
commonly used versions of this: Pareto Optimality and (Utilitarian) Social Welfare.

Definition 3. Let P be an allocation of R among A. The utilitarian social welfare resulting
from P , denoted σu(P ), is given by

∑n
i=1 ui(Pi).

The allocation P is Pareto optimal if for all allocations Q differing from P , it holds(
n∨

i=1

[
ui(Qi) > ui(Pi)

]) ⇒
(

n∨
i=1

[
ui(Qi) < ui(Pi)

])
. (1)

Thus a Pareto optimal allocation is one in which no agent can attain better than its
current utility except at the cost of leaving some agent worse off.

We make frequent use of the following result throughout the remainder of the paper.

Fact 4 [7]. A deal 〈P,Q〉 is IR if and only if σu(Q) > σu(P ).
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In a typical application it is unlikely that an initial allocation P0 to A will either max-
imise social welfare or be Pareto optimal, thus the agents involved seek to find a sequence
of deals that will terminate in an optimal allocation. Given the setting it is clearly the case
that there are allocations Popt and Qopt with the properties that σu(Popt) maximises social
welfare and for which Qopt is Pareto optimal—of course, Popt and Qopt may not be unique.
If the object is to maximise social welfare then clearly the deal 〈P0,Popt〉 will achieve this
in a single round. It is unreasonable, however, to view such a deal as a viable solution:
although always IR (if it represents a strict increase of social welfare) it is questionable
whether it could be identified as the first and only deal required. The total number of pos-
sible allocations is nm, and so for moderately large numbers of resources (m) there are
too many feasibly to enumerate (even when n = 2). In addition, it may not be possible to
implement the optimising contract in a single transaction even if only two agents are in-
volved: the environment in which the trading process is implemented may not be suited to
handling transactions in which large numbers of resources are involved; similarly, the pro-
tocol used for negotiation and contract description may not allow arbitrarily large numbers
of resources to be dealt with.

In order to develop a realistic framework for negotiation, Sandholm [13] (using Smith’s
Contract-Net model [16]), presents a number of classes of contract type. In this article we
are concerned with the following of these.

Definition 5 [13]. Let δ = 〈P,Q〉 be a deal involving an allocation of R among A. We say
that δ is a cluster contract (C-contract) if there are distinct agents Ai and Aj for which,

(C1) Pk = Qk if and only if k /∈ {i, j}.
(C2) There is a unique (non-empty) set S for which Qi = Pi ∪ S and Qj = Pj \ S (with

S ⊆ Pj ) or Qj = Pj ∪ S and Qi = Pi \ S (with S ⊆ Pi ).

Thus a C-contract involves one agent transferring a subset of its allocation to another agent
(without receiving any subset of resources in return).

The definition of C-contract permits an arbitrarily large number of resources to be trans-
ferred from one agent to another in a single deal. For the class of contracts of interest in
our subsequent results, we wish to impose a bound on the maximum number of resources
that can be moved in one deal. We thus introduce the notion of C(k)-contracts.

Definition 6. For a resource allocation setting 〈A,R,U〉 and value k � m = |R|, we say
that δ is a k-bounded cluster contract, (C(k)-contract) if δ is a C-contract in which S—the
set of resources transferred—contains at most k elements. When k = 1, we use the term
one contract (O-contract): the name given to such deals in [13].

We recall that a C(k)-contract 〈P,Q〉 will be IR if and only if σu(Q) > σu(P ).
A sequence of deals ∆ = 〈δ1, δ2, . . . , δt 〉 for which δi = 〈Qi−1,Qi〉 is called a contract

path realising the deal 〈Q0,Qt 〉. The length of a contract path is the total number of deals
comprising it. Given a predicate Φ over deals, we say that a contract path ∆ is a Φ-path if
Φ(δi) is true of every deal δi within ∆.
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Our main results concern Φ-paths where Φ(δ) is the predicate which is true if and only
if δ is an individually rational C(k)-contract. In the case of k = 1, i.e., IR O-contracts, such
paths are attractive from an implementation viewpoint since these only involve agent-to-
agent negotiation concerning a single resource at a time. In addition, starting from a given
allocation, the number of O-contracts that are consistent with it is exactly m(n − 1), as
opposed to nm possible allocations. Thus heuristic methods may be able to find improved
allocations by exploring the search space through O-contracts alone.

Appealing as the latter approach is, there are, nevertheless, problems associated with it.
The following results were established by Sandholm [13].

Fact 7. Let P0 be any initial allocation of R to A and Pt be any other allocation.

(a) The deal 〈P0,Pt 〉 can always be realised by a contract path in which every deal is an
O-contract.

(b) There are resource allocation settings, 〈A,R,U〉 within which there are IR deals
〈P0,Pt 〉 that cannot be realised by any IR C-contract path.

We note that Fact 7(b) holds even if we are concerned with settings involving only two
agents and the allocation Pt concerned is one that maximises social welfare.

In total, IR C-contracts (and thereby also the more restricted IR C(k) and IR O-
contracts) in themselves may not suffice to form an IR contract-path realising a specific
deal.

In this paper we are concerned with the following decision problem:

Definition 8. The decision problem IR-k-path (IRk) is given by
Instance: A 5-tuple 〈A,R,U,P s,P t 〉 in which 〈A,R,U〉 is a resource allocation setting,
P (s) and P (t) are allocations of R to A in which σu(P

(t)) > σu(P
(s)).

Question: Is there an IR C(k)-contract path that realises the deal (P s,P t )?

It is important to note that the value k (which restricts the number of resources in a
cluster contract), does not form part of an instance of IRk .

In keeping with the use of the term O-contract for C(1)-contract, we denote the decision
problem IR1 by IRO.

The main results of this article concern IRk when k is constant and IRk when the cluster
size (k) is a predefined function of the number of resources. Specifically we prove the
following:

(a) IRk is NP-hard for all constant values of k. This holds even when 〈A,R,U〉 is a set-
ting comprising two agents. The special case IRO remains NP-hard when both utility
functions are monotone.

(b) For k : N → N, satisfying k(m) � m/3, IRk(m) is NP-hard, again even in the case of
resource allocation settings involving exactly two agents.

(c) IRm/2 is NP-hard, again even in the case of resource allocation settings involving ex-
actly two agents.
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Our proofs of these results are given in Theorems 12–15.
We first note that the result of Theorem 15 does not imply (from the proof presented)

either of the preceding theorems. It may seem to be the case that, when h < k, a lower
bound on the complexity of IRk implies a similar lower bound on the complexity of IRh by
virtue of the fact that within any resource allocation setting, all IR C(h)-contracts are also
IR C(k)-contracts. As we shall, however, illustrate in proving (c), it is not necessarily the
case that we can deduce IRh to be NP-hard from a proof that IRh+k is so: in order for this
to hold, the construction used in demonstrating the latter must be such that any positive
instances formed by the reduction to IRh+k admit IR C(h)-contract paths. In the case of
Theorem 14, while it is the case that our proof subsumes the result of Theorem 12, the
construction for the latter case is rather less involved and has the additional advantage that
the extension to monotone utility functions with IRO follows easily. For this reason, we
have presented separate proofs of these results.

Before proceeding, we address one issue that is raised by Fact 7. Consider the following
argument deriving from this fact.

(a) Every deal 〈P0,Pt 〉 can be realised by a sequence of O-contracts.
(b) There are IR deals which cannot be realised by a sequence of IR C-contracts.
(c) Therefore, to implement any IR deal 〈P0,Pt 〉 why not use an O-contract path some of

whose constituent deals may fail to be IR?

In other words, why might it be necessary for every deal to be IR?
One answer to this question is offered by the scenario, outlined in [4], that we now

describe. We observe that the issue underlying this argument is relevant with respect to
any class of restricted contract types, i.e., the fact that O-contracts are referred to is purely
for illustrative purposes. For simplicity, let us assume that we have a resource allocation
setting 〈A,R,U〉 involving exactly two agents {A1,A2}. These negotiate an allocation of
R working with the following protocol.

A reallocation of resources is agreed over a sequence of stages. Each stage consists
of A1 issuing a proposal to A2 of the form (buy, r,p), offering to purchase r from A2
for a payment of p; or (sell, r,p), offering to transfer r to A2 in return for a payment p.
The response from A2 is simply accept (following which the exchange is implemented)
or reject. A final allocation is fixed either when A1 is ‘satisfied’ or as soon as A2 rejects
any offer.

This is, of course, a very simple negotiation setting; however, consider its operation
when A1 wishes to bring about an allocation Pt and can thus devise a plan—a sequence of
O-contracts—to realise this from an initial allocation P0.

While A2 could be better off if Pt is realised, it may be the case that the only propos-
als A2 will accept are those under which it does not lose, i.e., A2 is not prepared to suffer
a short-term loss even if it is suggested that a long-term gain will result. Thus if some
agents are sceptical about the bona fides of others then they will be inclined to accept only
deals from which they can perceive an immediate benefit, i.e., those which are individually
rational.
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There are several reasons why an agent may embrace such attitudes within the schema
outlined: once a deal has been implemented A2 may lose utility but no further proposals are
made by A1 so that its loss is ‘permanent’. We note that even if we enrich the basic protocol
so that A1 can describe Pt to A2 before any formal exchange of resources takes place, if
〈P0,Pt 〉 is implemented by an O-contract path (via the sequence of stages outlined), A2

may still reject offers under which it suffers a loss, since it is unwilling to rely on the
subsequent O-contracts that would ameliorate its loss actually being proposed.1

Although the position taken by A2 in the setting just described may appear unduly cau-
tious, we would claim that it clearly reflects actual behaviour in certain arenas. In contexts
other than automated allocation and negotiation models in multiagent systems, there are
many examples of actions by individuals where promised long-term gains are insufficient
to engender the acceptance of short term loss, e.g., ‘chain letter’ schemes although having
a natural lifetime bounded by the size of the population in which they circulate, typically
break down before this is reached. Despite the possibility of significant gain after a tem-
porary loss, recipients may be disinclined to invest the expense requested to propagate the
chain: such behaviour is not seen as overly sceptical and cautious. In the same way, the
‘rational’ response to the widespread e-mail fraud by which one is asked to furnish bank
account details and working capital in order to facilitate the release of significant funds in
return for a percentage of these, is to ignore the request. As a final example, it is considered
standard practice to delete without reading, unexpected e-mail attachments regardless of
what incentives to open such may be promised by the accompanying message text.

In summary, the critical question underpinning such views is this: in a reallocation of
resources conducted over a sequence of stages, should either agent suffer a loss in utility
why should they have any ‘confidence’ that this loss will eventually be reversed? It is
inevitable, in view of Fact 7(b) that there will sometimes be IR deals which, if implemented
by a sequence of unrestricted O-contracts, will lead to such a loss for one agent.

In the scenario we have described, an agent A1 wishing to realise an IR deal 〈P0,Pt 〉
with an extremely cautious agent A2 faces the following dilemma: whether to formulate a
plan to realise 〈P0,Pt 〉, e.g., an O-contract path, regardless of whether this path is IR; or
whether to try and realise 〈P0,Pt 〉 by an IR O-contract path. In favour of the first option
is the fact that such a plan can always be formulated; a problem will be, however, that
the plan may never be implemented in full: A2 may reject deals under which it suffers a
loss or A1 may suffer a loss which is never put right. The second alternative—construct
an IR O-contract path—has in its favour the fact that neither agent has a rational motive
to refrain from making or accepting offers until the allocation Pt has been effected. The
drawback, however, is that it may not be possible to construct such a plan.

Nevertheless, it would seem reasonable for A1, before resorting to adopting an arbitrary
O-contract path, at least to determine if some IR O-contract path (or, more generally, some
IR C(k)-contract path) does exist. One consequence of our results is that such an approach
is unlikely to be computationally feasible.

1 We note that even if A1 attempts to construct an ordering under which any ‘irrational’ deal reduces the value
of its own holding, there is one problem: A2 may reject subsequent offers after the ‘irrational’ deals so that A1 is
worse off.
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The next section of this article presents these results with conclusions and open ques-
tions raised in the final section.

3. Complexity results

Before proceeding with our results we describe our representation for typical instances
in which resource allocation settings 〈A,R,U〉 feature. The key issue here concerns the
collection of utility functions U and how these should be encoded. A form in which the
value attached to each subset of R is explicitly provided will result in an instance occu-
pying space exponential in |R| and would not be considered reasonable in practice. On
the other hand, using some encoding of U as a set of Turing machine programs, M say, it
becomes necessary to assume certain properties in interpreting their computational behav-
iour, e.g., that the value of ui(S) as returned by the program Mi is defined from the content
of Mi ’s tape after exactly some specified number of moves such as |R| since without such
it would not be possible to establish membership in NP (or, indeed, any other complexity
class).

Ideally, we wish a representation, ρ(u), of the utility function u : 2R → Q to satisfy the
following informally phrased criteria:

(a) ρ(u) is ‘concise’ in the sense that the length, e.g., number of bits, used by ρ(u) to
describe the utility function u within an instance is ‘comparable’ with the time taken
by an optimal program that computes the value of u(S).

(b) ρ(u) is ‘verifiable’, i.e., given some binary word, w, there is an efficient algorithm that
can check whether w corresponds to ρ(u) for some u.

(c) ρ(u) is ‘effective’, i.e., given S ⊆ R, the value u(S) can be efficiently computed from
the description ρ(u).

It is, in fact, possible to identify a representation form that satisfies all three of these criteria:
we represent each member of U in a manner that does not require explicit enumeration
of each subset of R and allows (a) to be met; uses a ‘program’ form whose syntactic
correctness can be efficiently verified, hence satisfying (b); and for which termination in
time linear in the program length is guaranteed, so meeting the condition set by (c). The
class of programs employed are the so-called straight-line programs, which have a natural
correspondence with combinational logic networks [3].

Definition 9. An (m, s)-combinational network C is a directed acyclic graph in which there
are m input nodes, Zm, labelled 〈z1, z2, . . . , zm〉 all of which have in-degree 0. In addition,
C has s output nodes, called the result vector. These are labelled 〈ts−1, ts−2, . . . , t0〉, and
have out-degree 0. Every other node of C has in-degree at most 2 and out-degree at least 1.
Each non-input node (gate) is associated with a Boolean operation of at most two argu-
ments.2 We use |C| to denote the number of gate nodes in C. Any Boolean instantiation

2 In practice, we can restrict the Boolean operations employed to those of binary conjunction (∧), binary dis-
junction (∨) and unary negation (¬).
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of the input nodes to α ∈ 〈0,1〉m naturally induces a Boolean value at each gate of C: if
h is a gate associated with the operation θ , and 〈g1, h〉, 〈g2, h〉 are edges of C then the
value h(α) is g1(α)θg2(α). Hence α induces some s-tuple 〈ts−1(α), . . . , t0(α)〉 ∈ 〈0,1〉s at
the result vector. For the (m, s)-combinational network C and α ∈ 〈0,1〉m, this s-tuple is
denoted by C(α).

Although often considered as a model of parallel computation, (m, s)-combinational
networks yield a simple form of sequential program—straight-line programs—as follows.
Let C be an (m, s)-combinational network to be transformed to a straight-line program,
SLP(C), that will contain exactly m + |C| lines. Since C is directed and acyclic it may be
topologically sorted, i.e., each gate, g, given a unique integer label τ(g) with 1 � τ(g) �
|C| so that if 〈g,h〉 is an edge of C then τ(g) < τ(h). The line li of SLP(C) evaluates the
input zi if 1 � i � m and the gate for which τ(g) = i − m if i > m. The gate labelling
means that when g with inputs g1 and g2 is evaluated at lm+τ(g) since gi is either an input
node or another gate its value will have been determined at lj with j < m + τ(g).

Definition 10. Let R be as previously with |R| = m, and u a mapping from subsets of
R to rational values, i.e., a utility function. The (m, s)-network Cu is said to realise the
utility function u if: for every S ⊆ R with αS the instantiation of Zm by zi = 1 if and only
if ri ∈ S, it holds

u(S) = val(C(αS))

m

where for β = 〈βs−1, βs−2, . . . , β0〉 ∈ 〈0,1〉s , val(β) is the whole number3 whose s-bit
binary expansion is β , i.e.,

val(β) =
s−1∑
i=0

βi ∗ 2i ,

where βi is treated as the appropriate integer value from {0,1}.

These ideas allow any utility function ui in U to be encoded using an appropriate
(m, si)-combinational network, C(i) in such a way that ui(S) can be evaluated in time
linear in the number of nodes in C(i) by determining the value of each gate under the
related instantiation αS and then dividing this value by m.

We give some concrete examples of this approach in the proof of Theorem 11. These
are primarily intended to illustrate its feasibility and, having presented these, we will not
complicate subsequent proofs with similarly detailed constructions. Regarding such con-
structions with respect to (a) of the representation criteria given, we note as a consequence
of the simulations presented in [8,15] (see, e.g., Dunne [3, pp. 28–36]), that any deter-
ministic algorithm with worst-case run-tine, T (n) can be translated into a combinational

3 Although this definition assumes utility functions to have non-negative values, were it the case that some
function with u(S) < 0 was to be represented we can achieve this by using an additional output bit, t± to flag
whether val(C(α)) should be treated as positive (t± = 0) or negative (t± = 1).
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network of size T (n) logT (n). It follows that from a high-level algorithmic description of
how ui is computed, an appropriate combinational network can be built.

The decision problem IRk concerns the existence of a suitable contract path from one
allocation to another having greater social welfare. For completeness, it is useful to present
three results concerning the existence of resource allocations meeting particular criteria.
These problems are respectively,

Welfare Improvement (WI)
Instance: A tuple 〈A,R,U,P 〉 where A, R, and U are as before, and P is an allocation.
Question: Is there an allocation Q for which σu(Q) > σu(P )?

Welfare Optimisation (WO)
Instance: A tuple 〈A,R,U,K〉 where A, R, and U are as before, and K is a rational
number.
Question: Is there an allocation P for which σu(P ) � K?

Pareto Optimal (PO)
Instance: A tuple 〈A,R,U,P 〉 as for WI.
Question: Is the allocation P Pareto optimal?

Kraus [9, p. 43] proves NP-hardness of a weaker form of the problem WO, whereby in
addition to the total social welfare having to attain some specified value the allocation must
be such that each agent accrues some designated guaranteed utility.

Theorem 11. Even if |A| = 2 and the utility functions are monotone

(a) WI is NP-complete.
(b) WO is NP-complete.
(c) PO is CO-NP-complete.

Proof. We first demonstrate that the three problems are in the classes stated, recalling that
the utility functions U are encoded by (m, si)-combinational networks C(i) as described in
Definition 10. For (a), given an instance 〈A,R,U,P 〉 of WI simply non-deterministically
guess an allocation Q = 〈Q1, . . . ,Qn〉 and compute

σu(Q) =
n∑

i=1

val(C(i)(αQi
))

|R|
accepting if this exceeds σu(P ). For (b) a similar approach is used with an instance ac-
cepted if the guessed allocation Q has σu(Q) � K . Finally, for (c) we may use a CO-NP

algorithm to check that for all allocations Q the Pareto Optimality condition given in Def-
inition 3(1) holds.

We now prove NP-hardness for WI, WO and CO-NP-hardness for PO.
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For part (a) we use a reduction from 3-SAT, instances of which are propositional for-
mulae Φ(Xn) in conjunctive normal form with each clause of Φ defined by exactly three
literals. Let

Φ(Xn) =
m∧

i=1

Ci =
n∧

i=1

(yi,1 ∨ yi,2 ∨ yi,3)

be an instance of this problem, where yi,j is some literal xk or ¬xk .
Given Φ(Xn) we construct an instance 〈{A1,A2},R, 〈u1, u2〉,P 〉 in which

(a) R= {x1, x2, . . . , xn,¬x1, . . . ,¬xn,C1, . . . ,Cm},
(b) P = 〈∅;R〉.

For W a set of literals, i.e.,

W ⊆ {x1, x2, . . . , xn,¬x1,¬x2, . . . ,¬xn}
we say that W is useful for Φ(Xn) if it satisfies both of the conditions below

(1) For each 1 � k � n, W contains at most one of the literals xk , ¬xk .
(2) The partial instantiation of Xn under which each y ∈ W is assigned true, i.e.,

xi :=
{

1 if and only if xi ∈ W ,

0 if and only if ¬xi ∈ W ,

satisfies Φ(Xn). Note that if neither xi ∈ W nor ¬xi ∈ W then this partial instantiation
does not assign any value to xi .

Now with S ⊆ R, let Lits(S) be the set

Lits(S) = S ∩ {x1, x2, . . . , xn,¬x1, . . . ,¬xn}.
The utility functions 〈u1, u2〉 are now given by,

u1(S) =




0 if S = ∅,
|S|+1
2n+m

if Lits(S) is useful,
|S|

2n+m
if Lits(S) is not useful,

u2(S) =




2 if S = R,

1 + |S|
2n+m

if Lits(R \ S) is useful,

1 + |S|−1
2n+m

if Lits(R \ S) is not useful.

Both of these are monotone. Furthermore given Φ(Xn) we may construct the com-
binational networks C(1) and C(2) as follows. Let the inputs for each network be
〈z1, . . . , z2n+m〉 with zi set to represent the presence of xi (if i � n), the presence of ¬xi−n

(if n < i � 2n) and the presence of Ci−2n if (2n < i � 2n + m).
For C(1) we simply use a combinational network that computes the binary representa-

tion of Useful(Z2n) + ∑2n+m
i=1 zi where

Useful(Z2n) =
n∧

i=1

(¬zi ∨ ¬zn+i ) ∧
m∧

i=1

(zi,1 ∨ zi,2 ∨ zi,3).
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Here, zi,j is the variable from {z1, . . . , z2n} matching the literal yi,j of clause Ci . Thus,
given S a subset of the literals over Xn, the term (¬zi ∨ ¬zn+i ) in the corresponding
instantiation induced over Z2n will evaluate to � if and only if at most one of the literals
{xi,¬xi} occurs in S. Similarly, for each clause Ci = (yi,1 ∨ yi,2 ∨ yi,3) defining Φ(Xn) S

contains at least one literal from Ci if and only if the term (zi,1 ∨ zi,2 ∨ zi,3) evaluates to �
for the instantiation of Z2n defined from S.

The summation to compute the binary representation of the number of bits set to 1
within Z2n+m can be carried out using the using the schema of Muller and Preparata [11],
see, e.g., [3, pp. 112–114]. The whole number val(C1(αS)) computed will be |S|, i.e., the
number of variables set to 1 in αS , if S is empty or not useful; and |S| + 1 if S is useful.

For C(2), a combinational network computes the binary representation of

2n+m−1∑
i=1

1 +
2n+m∧
i=1

zi +
2n+m∑
i=1

zi + Useful(¬z1, . . . ,¬zn,¬zn+1, . . . ,¬z2n).

For S ⊆ R, this will return val(C(2)(αS)) as

4n + 2m = 2n + m − 1 + 1 + 2n + m + 0 when S = R,

2n + m + |S| = 2n + m − 1 + 0 + |S| + 1 when Lits(R \ S) is useful,

2n + m + |S| − 1 = 2n + m − 1 + 0 + |S| + 0 when Lits(R \ S) is not useful.

It is clearly the case that these descriptions can be constructed in polynomial-time from the
formula Φ(Xn).

Now, noting that σu(〈∅;R〉) = 2, we claim that there is an allocation, Q, having
σu(Q) > 2 if and only if Φ(Xn) is satisfiable. To see this consider any non-empty S ⊆ R
and the allocation 〈S,R \ S〉 to 〈A1,A2〉. We have,

σu

(〈
S,R \ S

〉) =
{ |S|+1

2n+m
+ 1 + |R\S|

2n+m
if Lits(S) is useful,

|S|
2n+m

+ 1 + |R\S|−1
2n+m

otherwise.

In the former case we get, σu(〈S,R \ S〉) = 2 + 1/(2n + m) and, in the latter, σu(〈S,

R \ S〉) = 2 − 1/(2n + m). Thus the allocation 〈∅,R〉 is welfare improvable if and only if
there is an allocation S to A1 for which Lits(S) is useful: a condition that requires Lits(S)

to induce a satisfying instantiation of Φ(Xn), completing the proof that WI is NP-hard.
For part (b) we simply form the instance, 〈{A1,A2},R, 〈u1, u2〉,K〉 with R, 〈u1, u2〉

as in part (a) and K = 2 + 1/(2n + m).
For part (c), although continuing to employ a reduction from 3-SAT, we restrict in-

stances of this to formulae that contain exactly n clauses, a variant shown to be NP-
complete in [5, Theorem 2(b)]. We use R and 〈u1, u2〉 as previously, but set P =
〈P1,P2〉 = 〈{C1, . . . ,Cn}, {x1, . . . , xn,¬x1, . . . ,¬xn}〉. In this case we have u1(P1) = 1/3
and u2(P2) = 1+ (2n−1)/(3n), so that σu(P ) = 2−1/(3n). We claim that this allocation
is Pareto optimal if and only if Φ(Xn) is unsatisfiable. First suppose Φ(Xn) is unsatisfi-
able. Certainly for any allocation Q = 〈S,R \ S〉 differing from 〈P1,P2〉, it must be the
case that S = ∅ or Lits(S) is not useful. In the former case,

u1(∅) = 0 < u1(P1) = 1

3
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so that the Pareto Optimality condition of Definition 3(1) holds for 〈P1,P2〉 with respect
to 〈∅,R〉.

If S is non-empty then

σu

(〈S,R \ S〉) = u1(S) + u2(R \ S) = 2 − 1

3n

and so does not increase social welfare. It follows that, in this case,([
u1(S) > u1(P1)

] ∨ [
u2(R \ S) > u2(P2)

])
⇒([

u1(S) < u1(P1)
] ∨ [

u2(R \ S) < u2(P2)
])

.

Hence if Φ(Xn) is unsatisfiable then P is Pareto optimal. On the other hand suppose
Φ(Xn) is satisfiable. We can then demonstrate that P is not Pareto optimal by consid-
ering any set of literals {y1, . . . , yn} whose instantiation to true satisfies Φ . With such a set
consider the allocation

Q = 〈Q1,Q2〉 = 〈{y1, . . . , yn}, {¬y1, . . . ,¬yn,C1, . . . ,Cn}
〉
.

Certainly Lits(Q1) is useful, therefore

u1(Q1) = n + 1

3n
> u1(P1),

u2(Q2) = 1 + 2

3
> u2(P2).

We deduce that the allocation P is Pareto optimal if and only if Φ(Xn) is unsatisfiable. �
We now proceed with the main results of this paper, showing that deciding if an individ-

ually rational C(k)-contract path exists between two allocations, is NP-hard for all constant
values of k and when k can be a predefined function of the size of the resource set. In all
cases the results hold in setting involving exactly two agents.

Theorem 12. For all constant, k, IRk is NP-hard.

Corollary 13. IRO is NP-hard in resource allocation settings for which all utility functions
are monotone.

Theorem 14. For k : N → N satisfying k(m) � m/3, IRk(m) is NP-hard.

Theorem 15. IRm/2 is NP-hard.

We have commented earlier on the relationship between these results and our reasons
for presenting the proofs separately.

Before continuing it is noted that, in contrast to the complexity classifications for the
three problems reviewed in Theorem 11, we do not present upper bounds for any of the
cases considered: we prove NP-hardness but not NP-completeness, i.e., do not present al-
gorithms establishing membership in NP.
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Some comments on this point are in order, particularly since there may appear to be
an ‘obvious’ NP algorithm available, namely: guess a sequence of C(k)-contracts to re-
alise 〈P s,P t 〉 and check whether this defines an IR C(k)-contract path. This algorithm,
however, may not be implementable4 with an NP computation. For example, in the case
of O-contracts, there may be a unique IR O-contract path realising the deal 〈P s,P t 〉 but
containing exponentially many (in m) O-contracts: such paths fail to provide the polyno-
mial length certificate required for membership in NP. Constructions, in instances where
only two agents are involved, are given in [4, Theorems 3, 4], for both unrestricted and
monotone utility functions. Although not presented explicitly in [4], it is easy to extend
these to IR C(k)-contracts for any constant k. Of course the ‘obvious’ algorithm we have
outlined will be realisable in NP for resource allocation settings that satisfy certain cri-
teria. One such criterion is that the number of distinct values which σu(P ) can take is
polynomially-bounded in m: i.e., if |{w: ∃ an allocation P for which σu(P ) = w}| � mp .
In such settings, no IR contract-path can contain more than mp deals. Thus, if instances of
IRk are restricted to those for which σu has this property, then the corresponding decision
problem is in NP. While this may seem to be a rather trivial example, we mention it since,
as will be clear from the constructions presented in the proofs, the resource allocation set-
tings formed have precisely this property: the number of distinct values that σu(P ) may
take is O(m). We can therefore deduce that, with such a restriction applying, the resulting
decision problem is NP-complete. The question of upper bounds on the complexity of IRk

when arbitrary resource allocation settings may form part of an instance, remains, however,
an open issue.

We now proceed with the proofs of Theorems 12 and 14.

Proof of Theorem 12. Given an instance Φ(Xn) of 3-SAT, we form an instance TΦ =
〈A,R,U,P s,P t 〉 of IRk for which there is an IR C(k)-contract path realising 〈P s,P t 〉 if
and only if Φ(Xn) is satisfiable. Without loss of generality, it may be assumed that n � 2k

(recalling that k is constant). We use

A = {A1,A2},
R = {x1, x2, . . . , xn,¬x1, . . . ,¬xn},
P s = 〈∅; {x1, . . . , xn,¬x1, . . . ,¬xn}

〉
,

P t = 〈{x1, . . . , xn,¬x1, . . . ,¬xn}; ∅
〉
,

u2(S) = |S|.
In order to define the utility function, u1 we need to extend our definition of a set of
literals S being useful. We say that S is an effective set of literals for Φ(Xn) if both of the
following hold.

(a) For each 1 � i � n, S contains at most one of the literals xi , ¬xi .

4 Our use of ‘may not’, as opposed to the more emphatic ‘cannot’, is intended: there is a rather subtle (and,
at present, unresolved) technical complication that precludes the latter form. We discuss this issue further in
Section 4.1 below.
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(b) If ΨS is the sub-formula (defined on at most n−|S| variables) that results from Φ(Xn)

by applying the partial instantiation of Xn under which each y ∈ S is assigned true5

then ΨS is satisfiable.

We note that every useful set S for Φ(Xn) is also an effective set, however, the converse
does not hold in general.

Given the definition of an effective set of literals, we now define

u1(S) =



2|S| if |S| � n − k or |S| > n,

2|S| if n − k < |S| � n and S is effective for Φ(Xn),

|S| if n − k < |S| � n and S is not effective for Φ(Xn).

The key feature of this definition concerns how efficiently u1(S) can be represented: cer-
tainly whenever |S| � n−k or |S| > n this is easy. Similarly, for |S| outside this range, it is
straightforward to determine whether S contains a literal y and its negation ¬y. This leaves
the case: n − k < |S| � n where for each y, S contains at most one of the literals {y,¬y}.
For this, whether u1(S) is 2|S| or |S| depends on the induced subformula ΨS from Φ and
whether this is satisfiable. From our definition, ΨS is defined over at most k − 1 variables,
and was induced from an instance of 3-SAT. It follows therefore that ΨS is a CNF formula
on k − 1 variables each of whose distinct clauses contains between 0 and 3 literals. Since
k is constant, we can construct a suitable combinational network to recognise satisfiable
CNF of this form and with the size of this network being constant (albeit a constant value
which may be exponential in k). For example with k = 2, the unsatisfiable CNF formulae
on a single variable z are those containing an empty clause or containing both (z) and (¬z)

as clauses.
This technical detail dealt with, we can proceed with the argument that Φ(Xn) is satis-

fiable if and only if TΦ is a positive instance of IRk .
First suppose that Φ(Xn) is satisfiable and let {y1, . . . , yn} be a set of n literals the

instantiation of each to true will satisfy Φ(Xn). Consider the sequence of 2n O-contracts,
∆ = 〈δ1, δ2, . . . , δ2n〉, in which δi = 〈P (i−1),P (i)〉, P (0) = P s and P (r) is{ 〈{y1, . . . , yr};R \ {y1, . . . , yr}〉 if r � n,

〈{y1, . . . , yn,¬y1, . . . ,¬yr−n}; R \ {y1, . . . , yn,¬y1, . . . ,¬yr−n}〉 if r > n.

The O-contract path described by ∆ realises 〈P s,P t 〉. Furthermore each δi is IR:

σu(P
(i−1)) = 2(i − 1) + (2n − i + 1) = 2n + i − 1,

σu(P
(i)) = 2i + (2n − i) = 2n + i,

and for each n − k + 1 � i � n, the set of literals P
(i)
1 held by A1 is effective from the fact

that {y1, . . . , yn} induces a satisfying instantiation for Φ(Xn).
On the other hand, suppose that ∆ = 〈δ1, δ2, . . . , δr 〉 with δi = 〈P (i−1),P (i)〉, P (0) = P s

and P (r) = P t is an IR C(k)-contract path. Since at most k literals feature in any deal, in
order to progress from P (s), in which A1 holds no literals, to P (t) in which A1 holds 2n

5 I.e., ΨS is formed from the set of clauses in Φ by removing any clause C = y ∨D and replacing C = ¬y ∨D

with D when y ∈ S.
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literals, it must be the case that at some point, δi = 〈P (i−1),P (i)〉 we have |P (i−1)
1 | � n− k

and n − k < |P (i)
1 | � n. Letting d(less) denote the value |P (i−1)

1 | − (n − k) and d(more) the

value n − k − |P (i)
1 | so that 0 � d(less) < d(more) � k for this deal δi ,

σu(P
(i−1)) = 3n − k − d(less),

σu(P
(i)) =

{
3n − k + d(more) if P

(i)
1 is effective,

2n if P
(i)
1 is not effective.

Thus if P
(i)
1 is not an effective set then the deal δi is not IR: δ(less) � k − 1, and so,

σu(P
(i−1)) � 3n − 2k + 1 > 2n. We deduce that the existence of an IR C(k)-contract

path implies that Φ(Xn) is satisfiable. �
In the special case when k = 1, i.e., the decision problem IRO, we have the result of

Corollary 13.

Proof of Corollary 13. Using the reduction from 3-SAT to IRk from the proof of Theo-
rem 12 the utility function u2 is clearly monotone but the function u1 is not. If, however,
we modify the definition of u1 to become

u1(S) =



2|S| if |S| �= n,

2n if |S| = n and S is useful,

2n − 1 if |S| = n and S is not useful,

then not only does the argument of Theorem 12 continue to hold but the utility function u1
is now monotone. �

Our final result deals with the case of IR C(k(m))-contract paths. Thus the number of re-
sources that could be transferred in a single deal is not bounded by some constant value, as
in the case of O-contracts or C(k)-contracts in general, but is now limited by some function
of the total number of resources within the setting. For example, suppose k(m) = �√m�:
given A = {A1,A2}, U = 〈u1, u2〉, in the resource allocation setting 〈A, {r1, r2, r3, r4},U〉,
a C(k(m))-contract can move up to two resources between agents in a single deal. In the
same setting, but with |R| = 16, C(k(m))-contracts can now transfer up to 4 resources in
a single deal.

The fact that the bound on the number of resources allowed to feature in a single deal is
no longer constant, means that the reduction employed in proving Theorem 12 cannot be
applied in general: we need to be able to specify the utility function u1 in such a way that
from a given instance of 3-SAT an appropriate polynomial-size representation of u1 can be
built. In these proofs, we used the fact that k is constant to demonstrate that testing if a set
of literals is effective for Φ(Xn) can be carried out by testing satisfiability of CNF formulae
defined on at most k − 1 variables, and thus a ‘compact’ description of u1 was possible.
Although this construction can be effected by a polynomial-time reduction provided that
k(m) = O(logm)—since u1 need recognise only polynomially many (in m) cases—the
same device, however, cannot be used for functions such as k(m) = �√m� since testing if
S is effective requires testing satisfiability of CNF formulae defined on

√
n variables.
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In order to deal with this complication we need to modify our construction.

Proof of Theorem 14. We employ a reduction from 3-SAT restricted to instances in which
the number of clauses is exactly n as in the proof of Theorem 11(c). Let

Φ(Xn) =
n∧

i=1

Ci =
n∧

i=1

(yi,1 ∨ yi,2 ∨ yi,3).

We construct TΦ = 〈A,R,U,P s,P t 〉 an instance of IRn as follows.

A = {Alits,Aclse},
R = {x1, . . . , xn,¬x1, . . . ,¬xn,C1, . . . ,Cn},
P s = 〈{C1, . . . ,Cn}; {x1, . . . , xn,¬x1, . . . ,¬xn}

〉
,

P t = 〈{x1, . . . , xn,¬x1, . . . ,¬xn}; {C1, . . . ,Cn}
〉
.

It remains to define the utility functions ulits and uclse for each agent. If we consider any
subset S of R, then this consists of a subset of {x1, . . . , xn,¬x1, . . . ,¬xn} (literals) together
with a subset of {C1, . . . ,Cn} (clauses). For a given allocation we use Ylits to denote the
subset of literals held by Alits. Similarly Yclse, Clits, Cclse will describe respectively: the
set of literals held by Aclse, of clauses held by Alits and clauses held by Aclse. The idea
underlying the construction of these is that moving literals from Aclse to Alits by C(n)-
contracts, will only be IR if at some stage those literals held by Alits define a satisfying
instantiation of Φ(Xn) (by choosing values for the variables which make the corresponding
literals true).

ulits(Ylits ∪ Clits) =




0 if |Ylits| < n and Ylits is not useful for
∧

Cj ∈Cclse
Cj ,

0 if |Ylits| = n and Ylits is not useful for Φ(Xn),

0 if |Ylits| > n and Clits �= ∅,

|Ylits| otherwise,

uclse(Yclse ∪ Cclse) =




0 if |Ylits| < n and Ylits is not useful
for

∧
Cj ∈Cclse

Cj ,

0 if |Ylits| = n and Ylits is not useful for Φ(Xn),

0 if |Ylits| > n and Clits �= ∅,

|Cclse| otherwise.

We note that |R| = 3n so our bound on cluster size allows at most n elements from R to
feature in a single deal.

We claim that Φ(Xn) is satisfiable if and only if there is an IR C(n)-contract path
realising the deal 〈P s,P t 〉.

First suppose that Φ(Xn) is satisfiable and let 〈y1, . . . , yn〉 be a set of literals the instanti-
ation of each to true satisfies Φ(Xn). Consider the sequence of O-contracts, 〈δ1, . . . , δr 〉 in
which δi = 〈P (i−1),P (i)〉 and P (0) = P s , P (r) = P t , resulting from the algorithm below.

(1) i := 1; j := 1.
(2) P (j) is formed by moving the literal yi from Yclse (in P (j−1)) to Ylits.
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(3) j := j + 1;
(3.1) Let {D1, . . . ,Dp} be the clauses currently in Clits in which yi occurs.
(3.2) The next p O-contracts move each D ∈ {D1, . . . ,Dp} from Clits to Cclse.
(3.3) j := j + p; i := i + 1;

(4) If i � n repeat from step (2).
(5) The final n O-contracts transfer each literal ¬yi from Yclse to Ylits.

To see that this procedure constructs an IR O-contract path realising 〈P s,P t 〉 it suffices to
note that in the allocation P (j),

ulits(Y
(j)

lits ∪ C
(j)

lits ) = |Y (j)

lits |,
uclse(Y

(j)

clse ∪ C
(j)

clse) = |C(j)

clse|.
Furthermore with each deal either the number of literals in Ylits increases by exactly one or
the number of clauses in Cclse increases by exactly one.

Thus, if Φ(Xn) is satisfiable then this instance TΦ of IRn is accepted.
For the converse implication, suppose ∆ is a IR C(n)-contract path realising the deal

〈P s,P t 〉: ∆ = 〈δ1, δ2, . . . , δi, . . . , δr 〉 with δi = 〈P (i−1),P (i)〉, P (0) = P s , P (r) = P t , and
P (i) = 〈Y (i)

lits ∪ C
(i)
lits, Y

(i)
clse ∪ C

(i)
clse〉.

Noting that σu(P
s) = 0, consider the first deal δi = 〈P (i−1),P (i)〉 in ∆ for which the

following are true: C
(i−1)
lits �= ∅ and C

(i)
lits = ∅. Certainly there must be such a deal since the

first condition is true of P s while the second holds for P t . Consider the various possibili-
ties:

(a) |Y (i−1)
lits | > n.

If such a case were to occur then ulits(Y
(i−1)
lits ∪C

(i−1)
lits ) = 0 and uclse(Y

(i−1)
clse ∪C

(i−1)
clse ) =

0: in P (i−1), Alits holds a non-empty set to clauses together with more than n literals.
This contradicts the assumption that ∆ is IR since it leads to σu(P

(0)) = σu(P
(i−1) =

0. We note that we cannot have i = 1 because of the premise |Y (i−1)
lits | > n.

(b) |Y (i−1)
lits | � n.

Since δi is a transfer of resources from Alits to Aclse, we have Y
(i)
lits ⊆ Y

(i−1)
lits : if the set

Y
(i−1)
lits is not useful for Φ(Xn) then this would give σu(P

(i)) = σu(P
s) (since both

contributing utilities would be 0). This contradicts the assumption that ∆ is IR, hence
in this case Y

(i−1)
lits must be useful and thus Φ is satisfiable. �

In our final result we show that the bound on cluster size may be increased to m/2.
The argument used in the proof differs in one significant aspect from those presented in
Theorem 12 and Theorem 14: it does not allow a lower bound on the complexity of IRm/2−d

(d > 0) to be deduced.

Proof of Theorem 15. We again use a reduction from 3-SAT, but without the restrictions
on the number of clauses in instances employed in Theorem 14. Given Φ(Xn) an instance
of 3-SAT, the instance TΦ of IRm/2 has,
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A = {A1,A2},
R = {x1, . . . , xn,¬x1, . . . ,¬xn},
P s = 〈∅; {x1, . . . , xn,¬x1, . . . ,¬xn}

〉
,

P t = 〈{x1, . . . , xn,¬x1, . . . ,¬xn}; ∅
〉
.

The utility functions, 〈u1, u2〉 being

u1(S) =




0 if |S| < n,

0 if |S| = n and S is not useful for Φ(Xn),

n if |S| = n and S is useful for Φ(Xn),

|S| if |S| > n,

u2(S) = 0.

Noting that |R| = 2n, we claim that Φ(Xn) is satisfiable if and only if there is an IR
C(n)-contract path realising 〈P s,P t 〉, i.e., TΦ is a positive instance of IRn.

Suppose that Φ(Xn) is satisfiable. Let {y1, y2, . . . , yn} be a set of n literals the instanti-
ation of each to true will satisfy Φ(Xn). Consider the sequence of C(n)-contracts, 〈δ1, δ2〉
below in which Y i

j is the subset of R held by Aj after δi .

i Y i
1 Y i

2 u1(Y i
1) u2(Y i

2)

0 ∅ {y1, . . . , yn,¬y1, . . . ,¬yn} 0 0
1 {y1, . . . , yn} {¬y1, . . . ,¬yn} n 0
2 {y1, . . . , yn,¬y1, . . . ,¬yn} ∅ 2n 0

This sequence is IR and realises the deal 〈P s,P t 〉 as required.
Conversely, suppose that ∆ is a IR C(n)-contract path realising the deal 〈P s,P t 〉:

∆ = 〈δ1, δ2, . . . , δi , . . . , δr 〉 with δi = 〈P (i−1),P (i)〉, P (0) = P s , P (r) = P t . Noting that
σu(P

(0)) = 0, in order for δ1 to be IR, we must have σu(P
(1)) > 0. This, however, can only

happen if |Y 1
1 | � n, and since δ1 is a C(n)-contract, it therefore follows that |Y 1

1 | = n. Such
an allocation to A1, however, will only yield u1(Y

1
1 ) > 0 if the set Y 1

1 is useful for Φ(Xn),
i.e., if Φ(Xn) is satisfiable. �

4. Further work and development

Our results presented over Theorems 12–15 above, have been concentrated on lower
bounds on computational complexity. In total for a range of values of cluster size, the
problem of deciding whether a particular resource allocation setting admits a rational
C(k)-contract path between two specified allocations appears unlikely to admits a feasible
algorithmic solution, even if the settings of interest comprise only two agents.

In this section we briefly consider approaches and open problems directed towards more
positive results. Our review comprises two subsections, the first of which deals with a
somewhat abstruse technical point alluded to earlier; the second outlining algorithmic ap-
proaches that might be used in tackling formulations of IRO as an ‘optimisation’ problem.
Readers who are more interested in the algorithmic aspects may wish to proceed directly
to the second subsection.
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4.1. Upper bounds on IRO

We first consider the issue raised earlier, namely whether IRk ∈ NP. The results of [4,
Theorems 3, 4], whereby positive instances of IRO in two agent settings are constructed in
which the unique witnessing IR O-contract path has length exponential in m, may appear
to disqualify the obvious ‘guess and verify’ algorithm from being realisable in NP. This
reasoning, however, does not take into account the fact that an instance of IRO contains not
only the elements 〈A,R,P s,P t 〉 but also an encoding of the collection of utility functions
U . While the constructions from [4] are exponentially long in terms of the former, it is far
from clear whether these paths are also exponential in the length of an optimal straight-
line programs for U . It is this issue that raises the principal difficulty in inferring that the
obvious algorithm cannot be realised in NP as a consequence of [4]. The concerns of [4]
are in establishing ‘extremal’ properties, thus the utility functions constructed to these ends
are highly artificial in nature: in particular, the question of optimal straight-line programs
is not addressed (since this is not relevant in the context). In total, the following question
is unresolved:

Question 1. Is there a polynomial-bound, q() with which: if T = 〈A,R,U,P s,P t 〉 is
a positive instance of IRO encoded, using the approach described above, in |T | bits, then
there is always some IR O-contract path realising 〈P s,P t 〉 whose length is at most q(|T |)?

A negative answer would indicate that the obvious algorithm could not be implemented
in NP: a result that would not rule out the possibility of IRO ∈ NP, but it would indicate that
such an upper bound requires a structure other than a witnessing contract-path to serve as
the polynomial-length certificate.

A positive answer to Question 1 is likely to be extremely hard to obtain: although we
have remarked on the ‘artificial’ nature of the utility functions in [4] these are, nonetheless,
well-defined. In consequence, a positive answer would imply that any straight-line program
realising these functions has exponential length: to date the largest lower bound proved for
a n-argument function within this model is 3n given in [1], [3, pp. 91–99].

4.2. Formulating IRO as an optimisation problem

We have considered properties of C(k)-contract paths from the perspective of deciding
if paths meeting particular criteria exist: in these terms our results indicate that feasible al-
gorithms are unlikely to be found. One possibility is to identify ‘special cases’ which admit
tractable decision processes, e.g., recent work reported in [6] considers a class of resource
allocation settings motivated from a ‘task allocation’ context: the resource set is viewed as
a set of m locations, C with di,j describing the ‘cost’ of moving between ci and cj ; the
utility that each agent assigns to any subset S of C is the total cost of a minimal spanning
tree of S. There are also a number of related problems for which possible approximation
techniques may be constructed. We consider one such problems in this section and outline
a ‘greedy’ approach for it.
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We begin by observing that if P s and P t are distinct allocations with σu(P
t ) > σu(P

s)

then the length of any O-contract (whether or not such is individually rational) is at least

Diff (P s,P t ) =
∑

Ai∈A

∣∣{r ∈ R: r ∈ P s
i and r /∈ P t

i }∣∣.
That is, the total number of resources in R which have to reallocated from their original
owner in P s to a new owner in P t . Recognising that it may not be possible to identify
an IR O-contract path of length Diff (P s,P t ) to realise 〈P s,P t 〉 motivates the problem of
finding an O-contract path that achieves this minimal length and has the fewest number of
irrational deals among such paths. More formally,

Definition 16. The problem Minimal Irrationality (MI) takes as an instance a resource
allocation setting 〈A,R,U〉 and allocations P s , P t of R to A. The value returned by
MI(A,R,U,P s,P t ) is

min
{
k: ∃ an O-contract path, ∆ = 〈δ1, . . . , δr 〉, of length Diff (P s,P t )

realising 〈P s,P t 〉 and on which there are at most k deals, δi,

that are not individually rational
}
.

It is, of course, an immediate consequence of Theorem 12 and Corollary 13 that the de-
cision problem form of MI (in which the upper bound on the number of permitted irrational
deals, k, occurs as part of an instance) is NP-complete: use the bound k = 0 and the reduc-
tion of Corollary 13 noting that if the deal 〈P s,P t 〉 can be realised by an IR O-contract
path of length Diff (P s,P t ) if and only if the CNF from which the instance is formed is
satisfiable.

Suppose we regard MI as a (partial) function6 whose domain comprises resource allo-
cation settings T = 〈A,R,U〉 and pairs of allocations 〈P s,P t 〉 as given in Definition 16,
and whose range is N. We may re-interpret the result of [13] given in Fact 7 as indicat-
ing: MI(T , 〈P s,P t 〉) � Diff (P s,P t ), i.e., there is always some O-contract path of length
Diff (P s,P t ) available; and, there are instances for which MI(T , 〈P s,P t 〉) > 0, i.e., there
deals which cannot be realised by any IR O-contract path. In total, [13] gives

∀〈T ,P s,P t 〉: MI
(
T , 〈P s,P t 〉) � Diff (P s,P t ),

∃〈T ,P s,P t 〉: MI
(
T , 〈P s,P t 〉) � 1.

It is a trivial matter to obtain exact bounds improving these to

∀〈T ,P s,P t 〉: MI
(
T , 〈P s,P t 〉) � Diff (P s,P t ) − 1,

∃〈T ,P s,P t 〉: MI
(
T , 〈P s,P t 〉) � Diff (P s,P t ) − 1.

For the upper bound simply note that since σu(P
t ) > σ(P s) there must be at least one

IR O-contract on any O-contract path of minimal length realising 〈P s,P t 〉. For the lower

6 ‘Partial’ since it is convenient to regard its value as undefined when σu(P t ) � σu(P s).
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bound, use any 〈T ,P s,P t 〉 under which σu(P
t ) = 1 and σu(P ) = 0 for all allocations P

differing from P t .
While the behaviour of MI(T , 〈P s,P t 〉) from a general perspective is of some interest,

e.g., studies of its value ‘on average’, such investigations are outside the scope of this note.
Our main interest here will be to outline a heuristic aimed at constructing O-contract paths
which attain the optimal value.

To simplify the presentation we shall assume that exactly two agents are involved, not-
ing that the development to more than two is straightforward. We present the algorithm and
then discuss the thinking underpinning it

Input: 〈{A1,A2},R, {u1, u2},P s,P t 〉
returns O-contract path of length Diff (P s,P t ) realising 〈P s,P t 〉
Q := P s ; i := 1;
while Q �= P t loop

Choose p ∈ Q1 \ P t
1 ∪ Q2 \ P t

2 such that the allocation V formed by moving p from
A1 to A2 (if p ∈ Q1) or from A2 to A1 (if p ∈ Q2) has the following properties:

P1 σu(V ) > σu(Q).
P2 σu(V ) − σu(Q) is minimal among possible choices that satisfy P1.
P3 If no choice of p ∈ Q1 \ P t

1 ∪ Q2 \ P t
2 that satisfies P1 is possible, i.e.,

∀V σu(V ) � σu(Q) then choose any V for which the value σu(Q) − σu(V ) is
maximised.

δi := 〈Q,V 〉;
output δi ;
Q := V ; i := i + 1;

end loop

It is not difficult to see that the sequence, 〈δ1, . . . , δr 〉, that is output by this algorithm de-
scribes an O-contract path of length r = Diff (P s,P t ): some deal is chosen via (P1–P3);
this deal is an O-contract; and, since the choice made is in terms of the current alloca-
tion (Q) with respect to the final allocation (P t ), it follows that r = Diff (P s,P t ).

The motivation for the algorithm is the following: given that σu(P
t ) > σu(P

s) and that
the O-contract path to be formed must have minimal length, i.e., Diff (P s,P t ), the aim
is to implement as many ‘small increases’ in σu within a minimal length path. Of course
it may happen that a point, Q, is reached where every successor O-contract will result
in σu not being increased. Rather than attempt to minimise any loss, the algorithm does
the opposite: P3 implements the deal which maximises the loss of welfare. The idea being
that the remaining O-contracts (particularly as the subsequent increments in σu are kept
minimal) will be ‘more likely’ to be IR as a result.

We outline this approach merely to indicate that there may be reasonable approxima-
tion techniques for the class of problems which have been our principal interest. We will
not present a detailed analysis of this algorithm’s performance: such studies—both exper-
imental and analytic—of this method and several variations are the topic of continuing
work.
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5. Conclusion

We have considered a number of decision problems that naturally arise from the mul-
tiagent contract negotiation models promoted by (among others) [7,13]. In summary, if
contracts are restricted to those in which a limited number of resources can be transferred
from one agent to another and are required to be rational (in the sense of strictly improving
overall worth of an allocation), then not only is it the case that a suitable contract-path to an
optimal allocation may fail to exist (as already shown in [13]), but even deciding if a path
from a given allocation to a specified more beneficial allocation is possible, is intractable.
There are a number of directions in which the results above could be developed. The re-
quirement for individuals deals in a contract-path to be IR could be relaxed so that a limited
number of ‘irrational’ deals are permitted, provided that the allocation eventually reached
improves upon the initial allocation. Alternatively, we could consider contracts in which
deals permitting an exchange of resources between two agents are allowed—the so-called
swap or S-contracts of [13]. We conjecture, however, that even these degrees of freedom
will continue to yield decision questions that are intractable.
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Abstract

Distributed negotiation schemes offer one approach to agreeing an allocation of resources among a set of individual agents.
Such schemes attempt to agree a distribution via a sequence of locally agreed ‘deals’ – reallocations of resources among the agents
– ending when the result satisfies some accepted criteria. Our aim in this article is to demonstrate that some natural decision
questions arising in such settings can be computationally significantly harder than questions related to optimal clearing strategies
in combinatorial auctions. In particular we prove that the problem of deciding whether it is possible to progress from a given initial
allocation to some desired final allocation via a sequence of “rational” steps is PSPACE-complete.
c© 2008 Elsevier B.V. All rights reserved.

Keywords: Distributed negotiation; Multiagent resource allocation; Computational complexity; PSPACE-completeness; Straight-line program

1. Introduction

The abstraction wherein a triple 〈A,R,U〉 represents sets of agents, resources, and “utility” functions by which
individual agents associate values with resource subsets, has proven to be a useful mechanism in which to consider
problems concerning how best to distribute a finite collection of items among a group of agents. In very informal
terms, two general approaches have been the basis of algorithmic studies concerning how to organise the allocation
of resources to agents. Centralised mechanisms of which combinatorial auction techniques are possibly the best-
known exemplar. In addition, distributed methods deriving from the contract-net model formulated by Smith [19]
whose properties are the subject of the present article. In Combinatorial Auction schemes, e.g. [15,16,20,21,11,
12], a centralised controlling agent (the “auctioneer”) assumes responsibility for determining which agents receive
which resources, basing its decisions on the bids submitted by individual agents. Bidding protocols vary in expressive
complexity from those that simply allow an agent to submit a single bid of the form 〈S, p〉 expressing the fact that
the agent is prepared to pay some price p in return for the subset S of R. More complex methods allow a number
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of different subsets to be described in separate bids, e.g. the so-called XOR language discussed in [15]. A typical aim
of the auctioneer is to decide which bids to accept so as to maximise the overall price paid subject to at most one
agent being granted any resource. This scheme gives rise to the Winner Determination Problem of deciding which
bids among those submitted are successful. In its most general form Winner Determination is NP-hard, but there are a
number of powerful heuristic approaches and winner determination can be efficiently carried out albeit if the bidding
language is of very limited expressiveness. Despite the practical effectiveness of these approaches, there has, however,
been a recent revival of interest in autonomous distributed negotiation schemes building on the pioneering study of
these by Sandholm [13]. It is not difficult to identify motivations underpinning this renewed interest. For example,
the implementation overheads in schema where significant numbers of bids (possibly having complex structures) are
communicated to a single controlling agent; the potential difficulties that might arise in persuading an individual
agent to assume the rôle and responsibilities of auctioneer and the need to ensure that bidding agents comply with
the decisions made by the auctioneer. There are, in addition, the issues raised in deciding on a bidding protocol given
the extremes from languages that are highly expressive to those which have very rigid and simple structures. The
former are typically computationally hard for winner determination. The latter, while tractable, face the problem of no
allocation at all being compatible with the bids received. Finally, aside from the computational problems with which
the auctioneer is faced, there is the highly non-trivial issue for the agents bidding as regards selecting and pricing
resource sets so as to optimise the likelihood of their “most preferred” bid being accepted.

Faced with such computational issues, notwithstanding the advances in combinatorial auction technology,
environments whereby allocations are settled following a process of local improvements negotiated by agents agreeing
changes, appear attractive. This is particularly so when the protocols for proposing and implementing resource
transfers between agents limit the number of possibilities that individual agents may have to review.

The principal results of this paper establish that, far from resulting in a computationally more tractable regime or,
indeed, even one that exhibits complexity “no worse” than the NP-hard status of winner determination, a number of
natural decision questions concerning simple distributed negotiation protocols, have significantly greater complexity.
In particular, we show that given a description of a resource allocation setting – 〈A,R,U〉 – together with some initial
and desired allocations 〈P(s), P(t)〉 deciding if the desired allocation can be realised by a sequence of rational “local”
reallocations is PSPACE-complete. Thus, deciding if a particular type of negotiation will be effective in bringing
about a reallocation is at a similar level of complexity to classical AI planning problems, e.g. as considered in
the work of Bylander [1]. We, further, note one of our results resolves a question left open from Dunne et al. [6]:
specifically we show the problem, of deciding if there is a rational sequence of “one-resource-at-a-time” reallocations
to progress between given starting and final allocations, to be PSPACE-complete, improving upon the earlier NP-
hardness classification.

In the next section we introduce the formal structures of contract-net derived distributed negotiation reviewing
the components of this presented by [13] together with the terminology and notation that will be used subsequently.
Section 3 describes the decision questions that are considered, summarises related work concerning these, and presents
a formal statement of the results subsequently proved in Section 5. Separating these two sections, we give a high-level,
informal overview of the proof mechanisms in Section 4.

The problems analysed in Section 5 are concerned with what might be called “local” properties of a given
allocation setting, specifically whether it is possible to progress from a given starting point to a desired allocation
via a restricted class of negotiation primitives. In Section 6 we address “global” properties of such schemes which
we term Convergence and Accessibility. The convergence problem, also studied in work of [7,2], considers a property
of resource allocation settings using only a restricted class of deals. Namely, is the setting such that no matter what
starting allocation is used and whichever sequence of allowed deals is followed, an optimal allocation will always
be reached? Perhaps surprisingly, for the restricted deal classes under which the questions considered in Section 5
turn out to be PSPACE-complete, deciding convergence properties is “only” coNP-complete. Accessibility, considers
whether from a given starting point there is at least one sequence of permitted deals that reaches an optimal outcome.
This, too, turns out to be PSPACE-complete. We present concluding comments and discuss further developments in
Section 7.

2. Resource allocation settings and local negotiation

The principal structure we consider in this paper is presented in the following definition.
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Definition 1. A resource allocation setting is defined by a triple 〈A,R,U〉 where

A = {A1, A2, . . . , An}; R = {r1, r2, . . . , rm}

are, respectively, a set of (at least two) agents and a collection of (non-shareable) resources. A utility function, u, is a
mapping from subsets of R to rational values. Each agent Ai ∈ A has associated with it a particular utility function
ui , so that U is 〈u1, u2, . . . , un〉. An allocation P of R to A is a partition 〈P1, P2, . . . , Pn〉 of R. The value ui (Pi ) is
called the utility of the resources assigned to Ai . We use Πn,m to denote the set of all partitions of m resources among
n agents: it is easy to see that |Πn,m | = nm , there being n different choices for the owner of each of the m resources.

Given some starting allocation, P ∈ Πn,m , individual agents may wish to “improve” this: for the purposes of
this paper, the concept of an allocation Q improving upon an allocation P will be defined in purely quantitative
terms. Even within these limits there are, of course, many different methods by which an allocation P may be
quantitatively rated. For the settings considered in this paper we concentrate on the measure utilitarian social welfare,
denoted σu(P), which is simply the sum of the agents’ utility functions for their allocated resources under P , i.e.
σu(P) =

∑n
i=1 ui (Pi ).

We next formalise the concepts of deal and contract path.

Definition 2. Let 〈A,R,U〉 be a resource allocation setting. A deal is a pair 〈P, Q〉 where P = 〈P1, . . . , Pn〉 and
Q = 〈Q1, . . . , Qn〉 are distinct partitions of R. The effect of implementing the deal 〈P, Q〉 is that the allocation of
resources specified by P is replaced with that specified by Q. For a deal δ = 〈P, Q〉, we useAδ to indicate the subset
of A involved, i.e. Ak ∈ Aδ if and only if Pk 6= Qk .

Let δ = 〈P, Q〉 be a deal. A contract path for δ is a sequence of allocations

∆ = 〈P(0); P(1); . . . ; P(d−1)
; P(d)〉

in which P = P(0) and P(d) = Q. The length of ∆, denoted |∆| is d, i.e. the number of deals in ∆.

Sandholm [13] presents a number of restrictions on the form that deals may take, one motivation for such being to limit
the number of deals that a single agent may have to consider. The class of restricted deals presented in the following
definition includes those analysed in [13,14].

Definition 3. Let δ = 〈P, Q〉 be a deal involving a reallocation of R among A.

a. δ is bilateral if |Aδ| = 2.
b. δ is t-bounded if δ is bilateral and the number of resources whose ownership changes after implementing δ is at

most t .
c. δ is a t-swap if δ is bilateral and for some s ≤ t , Q is formed by exactly s resources in Pi being assigned to A j

and replaced, in turn, by exactly s resources of Pj .

The class of t-bounded and t-swap deals are simple extensions of the classes of O-contracts and S-contracts in [13]:
O-contracts being 1-bounded deals and, similarly, S-contracts are 1-swap deals. We note that t-swap deals are a
special case of (2t)-bounded deals.

We introduce the concept of a deal being rational in the following definition. It will be useful to consider two
forms: one linked to the particular quantitative measure of utilitarian social welfare; and, more generally, one which
is expressed in terms of arbitrary quantitative measures.

Definition 4. A deal 〈P, Q〉 is individually rational (IR) if and only if σu(Q) > σu(P).
The deal 〈P, Q〉 is said to cooperatively rational if for every i , ui (Qi ) ≥ ui (Pi ) and there is at least one j for

which u j (Q j ) > u j (Pj ).
For 〈A,R〉 as before, an evaluation measure is a (total) mapping σ : Πn,m → Q. A deal 〈P, Q〉 is σ -rational if

and only if σ(Q) > σ(P).

We note that δ is individually rational if and only if δ is σu-rational. Where there is no ambiguity we will simply refer
to a deal being rational without specifying σ .

Almost all of our development is in terms of individually rational deals. As we argue in Section 7, our results are
easily modified to hold in the case of cooperatively rational deals.
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It should be noted that the terms “individually rational” and “cooperatively rational” predate the current article,
e.g. Sandholm [13], Endriss et al. [8,9]. The definition of “individually rational” is sometimes presented in terms of
the existence of so-called payment functions with particular properties, e.g. [9, Defn. 13, p. 323]. Informally, such
a function specifies an amount, p(i) that ai ∈ Aδ pays (p(i) > 0) or receives (−p(i) when p(i) < 0) if the
deal is implemented. Thus, δ = 〈P, Q〉 is defined to be individually rational (in terms of payments), if there is a
payment function for which

∑
ai ∈Aδ p(i) = 0 and for each ai ∈ Aδ , ui (Qi ) − ui (Pi ) > p(i). With this sense of

individually rational should an agent fail to increase its utility – ui (Qi ) ≤ ui (Pi ) – there would still be an incentive
for it to participate: the payment, −p(i), received would compensate. Similarly when ai increases its utility, although
a positive payment will have to be contributed, this will be sufficiently small to leave ai with some profit. The utility
gained, i.e. ui (Qi )−ui (Pi ) exceeds p(i) the payment made. Although this definition of individually rational (in terms
of payments) superficially appears rather different from that in Definition 4, it is well-known and easily shown that
the two are equivalent. A deal 〈P, Q〉 is individually rational (in terms of payments) if and only if σu(Q) > σu(P)
(the form used in Definition 4), see e.g. [9, Lemma 1, p. 324].

The notions of rationality introduced above are now extended in order to introduce the structures that form the
main object of study in this paper: σ -rational paths.

Definition 5. For 〈A,R〉 and an evaluation measure, σ , a sequence of allocations

∆ = 〈P(0); P(1); . . . ; P(d)〉

is a σ -rational contract path for the (σ -rational) deal 〈P(0), P(d)〉 if for all 1 ≤ i ≤ d, 〈P(i−1), P(i)〉 is σ -rational.
More generally, if Φ : Πn,m × Πn,m → {>,⊥}, is some predicate on deals, we say that ∆ is a Φ-path if

Φ(P(i−1), P(i)) holds for each 1 ≤ i ≤ d . We say that Φ-deals are complete for σ -rationality if

∀〈P, Q〉 ∈ Πn,m × Πn,m : (〈P, Q〉 is σ -rational) ⇒ (∃ ∆ : ∆ is a Φ-path for 〈P, Q〉).

3. Decision problems in localised negotiation

The ideas introduced in Definitions 3 and 4 combine to focus on deals that not only restrict their structure (in the
sense of limiting the number of agents and the number of resources involved) but also add the further condition that
a deal must result in a better allocation. It is as a result of such rationality conditions that significant difficulties arise
within local negotiation approaches.

Notice that Definition 5 imposes a monotonicity condition on the sequence of allocations within, for example, 1-
bounded σ -rational paths 〈P(0); . . . ; P(d)〉: not only must 〈P(i), P(i+1)

〉 be realisable by moving exactly one resource,
but also σ(P(i+1)) > σ(P(i)). Given that an agent is seeking to maximise its utility, why might such a monotonicity
constraint be important? In other words, why would an agent be unprepared to accept a “short-term” loss when this
will, eventually, be ameliorated? The detailed discussion of this question from [6, pp. 28–30] may be summarised
as follows: the insistence on monotonically increasing σ(P(i)) allows cautious agents to participate in negotiation.
That is to say, without this constraint, an agent may reject a proposed deal under which it suffers a loss1 (even though
subsequent deals will change this) because it is uncertain whether any future proposal will make good its loss, or even
be made at all.2

The effects of combining structural and rationality conditions are already apparent in the following result from
[13].

Fact 6.

a. 1-bounded deals are complete for σ -rationality.
b. IR 1-bounded deals are not complete for individual rationality.
c. If |A| ≥ 3, then IR bilateral deals are not complete for individual rationality.

1 That is, the agent’s utility decreases and (in terms of payment functions) it is offered inadequate compensation.
2 In [6] so-called “chain-letters” are given as an example where such uncertainty is reasonable. Significant gains would be obtained if the chain

continued long enough: owing to doubts that such a profitable outcome will result, individuals may decline to incur the “short-term” loss needed to
propagate the chain.
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Fact 6 motivates a number of natural questions:

Q1. Are there “reasonable” conditions that can be imposed on collections of utility functions, U , so that in settings
〈A,R,U〉 where these hold, IR 1-bounded deals are complete for individual rationality?

Q2. Given 〈〈A,R,U〉, P(s), P(t)〉 with 〈P(s), P(t)〉 being IR, how efficiently can one determine whether there is a
rational 1-bounded contract path for 〈P(s), P(t)〉?

Q3. When such a path does exist what can be proven regarding its properties, e.g. number of deals involved, etc.?

The first has been considered in [7,2] and while these offer some positive results, the initial analyses regarding the
other two questions presented in [4,6] are rather less encouraging.

Fact 7.

a. Given 〈〈A,R,U〉, P(s), P(t)〉 with 〈P(s), P(t)〉 being IR, the problem of deciding if there is a rational 1-bounded
contract path for 〈P(s), P(t)〉 is NP-hard. (Dunne et al. [6, Thm. 12])

b. For every m = |R| ≥ 7 there are choices of 〈〈A,R,U〉, P(s), P(t)〉 for which: there is a unique IR 1-bounded
contract path, ∆, for the IR deal 〈P(s), P(t)〉 and |∆| = Ω(2m). (Dunne [4, Thm. 3].)

c. For every m = |R| ≥ 6 there are choices of 〈〈A,R,U〉, P(s), P(t)〉 with |A| = 3 and for which: there is a unique
IR bilateral contract path, ∆, for the IR deal 〈P(s), P(t)〉 and |∆| = Ω(2m/3). (Dunne [4, Thm. 6].)

Slightly weaker exponential lower bounds for contract path length than those given in Fact 7(b) and (c), continue to
hold even if each agent’s utility function must be monotone, i.e. satisfy for all subsets S and T of R the condition
S ⊆ T ⇒ u(S) ≤ u(T ).

Although the analysis leading to the proof of Fact 7(a) is couched in terms of IR 1-bounded deals, it is
straightforward to adapt it to establish NP-hardness for IR 1-swap deals. The principal contribution of the present
article is in obtaining tight complexity classifications for these decision problems: Theorem 14 proving both to be
PSPACE-complete.

We consider two general forms of decision problems in Section 5 where Φ in the description below is a predicate
on deals.
Φ-PATHE

Instance: 〈〈A,R〉, σ, P(s), P(t)〉 with σ(P(t)) > σ(P(s)).
Question: Is there a Φ-path ∆ for the deal 〈P(s), P(t)〉?
Φ-PATHU

Instance: 〈〈A,R,U〉, P(s), P(t)〉 with σu(P(t)) > σu(P(s)).
Question: Is there a Φ-path ∆ for the deal 〈P(s), P(t)〉?

Although, superficially, these are similar problems, the significant distinction that should be noted is that Φ-PATHU

is a restricted special case of Φ-PATHE. We elaborate further on the differences in our overview of Section 4.
The particular instantiations of Φ that we consider are the following.

(1) ΦE
1-bd,σ -R

(P, Q): the predicate which holds if and only if 〈P, Q〉 is a σ -rational 1-bounded deal. We

subsequently denote the resulting specialisation of Φ-PATHE by 1-PATH.
(2) ΦU1-sw,IR

(P, Q): the predicate which holds if and only if 〈P, Q〉 is an IR 1-swap deal. We use 1-SWAP to denote

the corresponding special case of Φ-PATHU .
(3) ΦU1-bd,IR

(P, Q): the predicate which holds if and only if 〈P, Q〉 is an IR 1-bounded deal. Following the form

used in [6] (in which an NP-hardness lower bound was obtained), we denote this special case of Φ-PATHU by
IRO-PATH.

Of the three decision problems considered, those defined by IRO-PATH and 1-SWAP have been considered in a number
of practical settings. Thus, Sandholm [14] considers so-called “hill-climbing” heuristics built on 1-bounded contracts
to identify optimal task allocations.3 In Dunne et al. [5] t-bounded deals are used in modelling task allocation where
the context is that of assigning sets of locations to be covered by individual agents in solving transportation problems.

We will show that each of the resulting decision problems is PSPACE-complete.

3 The problem of allocating a collection of tasks between a group of cooperating agents with the intention of minimising the overall workload
can, clearly, be treated in a similar manner to that of distributing resources.
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4. Overview of proof methods

This section has three aims: firstly, to address the technical question of how instances of the decision problems
introduced at the conclusion of Section 3 are encoded; secondly, to elaborate on the differences between the forms
Φ-PATHE and Φ-PATHU ; and, finally, to outline the organisation and structure of the proofs presented in Section 5.

4.1. Representing instances

In order to describe instances of Φ-PATHE or Φ-PATHU the problem of encoding functions whose domain is
exponentially large in |R|, i.e. σ : Πn,m → Q; ui : 2R → Q must be addressed. Of course, one approach would be
simply to enumerate values using some ordering of the relevant domain. There are, however, at least two objections
that can be made to such solutions: since the domains are exponentially large – nm and 2m – exhaustive enumeration
would in practical terms be infeasible even in the case of very simple functions, e.g. u(S) = 1 if |S| is even; u(S) = 2
otherwise. The second objection is that exhaustive enumeration schemes are liable to give misleading assessments of
run-time complexity: an algorithm that is polynomial-time in the length of such an encoding, is actually of exponential
complexity in terms of the numbers of agents and resources.

In [6] the following desiderata are proposed for encoding a utility function, u, as a sequence of bits ρ(u):

a. ρ(u) is ‘concise’ in the sense that the length, e.g. number of bits, used by ρ(u) to describe the utility function u
within an instance is “comparable” with the time taken by an optimal program that computes the value of u(S).

b. ρ(u) is ‘verifiable’, i.e. given some binary word, w, there is an efficient algorithm that can check whether w
corresponds to ρ(u) for some u.

c. ρ(u) is ‘effective’, i.e. given S ⊆ R, the value u(S) can be efficiently computed from the description ρ(u).

It is, in fact, possible to identify a representation form that satisfies all three of these criteria: we represent each
member of U in a manner that does not require explicit enumeration of each subset ofR and allows (a) to be met; uses a
‘program’ form whose syntactic correctness can be efficiently verified, hence satisfying (b); and for which termination
in time linear in the program length is guaranteed, so meeting the condition set by (c). The class of programs
employed are the so-called straight-line programs (SLP) which have a natural correspondence with combinational
logic networks [3].

Definition 8. An (m, s)-combinational network C is a directed acylic graph in which there are m input nodes,
Zm , labelled 〈z1, z2, . . . , zm〉 all of which have in-degree 0. In addition, C has s output nodes, called the result
vector. These are labelled 〈ts−1, ts−2, . . . , t0〉, and have out-degree 0. Every other node of C has in-degree at most
2 and out-degree at least 1. Each non-input node (gate) is associated with a Boolean operation of at most two
arguments.4 We use |C | to denote the number of gate nodes in C . Any Boolean instantiation of the input nodes
to a = 〈a1, a2, . . . , am〉 ∈ 〈0, 1〉

m naturally induces a Boolean value, h(a) at each node h of C . If h is an input node
associated with zi then h(a) = ai ; if h is associated with the operation ¬ and has as its single input a node g, i.e.
〈g, h〉 is an edge of C , then h(a) = ¬g(a). Finally if h is a gate associated with the operation θ whose inputs are
nodes g1 and g2 (that is, 〈g1, h〉, 〈g2, h〉 are edges of C) then the value h(a) is g1(a)θg2(a). Hence a induces some
s-tuple 〈ts−1(a), . . . , t0(a)〉 ∈ 〈0, 1〉

s at the result vector. For the (m, s)-combinational network C and a ∈ 〈0, 1〉
m ,

this s-tuple is denoted by C(a).

Although often considered as a model of parallel computation, (m, s)-combinational networks yield a simple form of
sequential program – straight-line programs – as follows. Let C be an (m, s)-combinational network to be transformed
to a straight-line program, SLP(C), that will contain exactly m + |C | lines. Since C is directed and acyclic it may be
topologically sorted, i.e. each gate, g, given a unique integer label τ(g)with 1 ≤ τ(g) ≤ |C | so that if 〈g, h〉 is an edge
of C then τ(g) < τ(h). The line li of SLP(C) evaluates the input zi if 1 ≤ i ≤ m and the gate for which τ(g) = i − m
if i > m. The gate labelling means that when g with inputs g1 and g2 is evaluated at lm+τ(g) since gi is either an input
node or another gate its value will have been determined at l j with j < m + τ(g).

4 In practice, we can restrict the Boolean operations employed to those of binary conjunction (∧), binary disjunction (∨) and unary negation (¬).
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Definition 9. LetR be as previously with |R| = m, and u a mapping from subsets ofR to whole numbers, i.e. a utility
function. The (m, s)-network Cu is said to realise the utility function u if: for every S ⊆ R with s the instantiation of
Zm given by zi = 1 if and only if ri ∈ S, it holds

u(S) = val(C(s))

where for b = 〈bs−1, bs−2, . . . , b0〉 ∈ 〈0, 1〉
s , val(b) is the whole number whose s-bit binary expansion is b, i.e.

val(b) =
∑s−1

i=0 bi ∗ 2i , where bi is treated as the appropriate integer value from {0, 1}.

Definition 9 provides a method of encoding utility functions u : 2R → N ∪ {0} in instances of Φ-PATHU :
each ui ∈ U is represented by a straight-line program, SLP(Cui ) derived from a suitable combinational network. For
instances of Φ-PATHE, the function σ : Πn,m → N ∪ {0} can be encoded in a similar fashion. For example, via a
(mn, s + 1)-combinational network, C , whose input zi, j indicates if r j ∈ Pi ; val(C(α)) is again an s-bit value: the
additional output bit being used to flag if the instantiation α is not a valid partition, e.g. if zi, j = 1 and zk, j = 1 for
some r j and i 6= k.5

A key property of encodings via SLPs is the following result of [10,18].

Fact 10. If f : {0, 1}
m

→ {0, 1}
s is computable by a deterministic Turing Machine program in time T , then f may

be realised by an SLP containing O(T log T ) lines.

It should be noted that the proof of Fact 10 is constructive, i.e. the translation is not merely an existence argument
and, in addition, a suitable SLP can be built in time polynomial in T . Thus a further consequence is our subsequent
reductions do not need to give explicit detailed constructions of SLPs.6 It will suffice to specify σ or U for it to be
apparent that these may be computed efficiently: Fact 10 then ensures suitable representations can be formed.

4.2. Distinctions between Φ-PATHE and Φ-PATHU

We recall that Φ-PATHE concerns the existence of σ -rational Φ-paths with the evaluation measure, σ , forming part
of the instance whereas Φ-PATHU focuses on the particular choice σ = σu with the collection of utility functions
forming part of the instance. Given that our primary interest is in the measure σu , it may seem that there is some
redundancy in considering Φ-PATHE, e.g. if we introduce utility functions for which u2 = u3 = · · · un = 0,
defining u1(S) as σ(〈S, P2, P3, . . . , Pn〉), where Pi is the particular subset of R held by Ai in a specific case of A1
holding S, then one has σu(P) (in the “new” setting) equal to σ(P) (in the original form). The main objection to
such an approach is that the utility function, u1, is likely to have allocative externalities, i.e. its value is dependent
not only on the actual resources held by A1 but also upon how the other resources are distributed. It has tended to be
the normal assumption, often not even mentioned directly,7 that utility functions do not have such externalities, e.g.
[4,6,8,13]. While the complexity classification of Φ-PATHE has some interest in itself, our main concern is with the
decision problem relating to Φ-PATHU , which focuses on a single measure of how good an allocation is – σu – and,
in keeping with standard approaches, assumes utility functions to be free from externalities.

One point of some importance in our proofs concerning the variant of Φ-PATHE given in Section 5, is that
the evaluation measure, σ , constructed in the instance 〈A,R, σ, P(s), P(t)〉 does not admit a direct translation to
〈A,R,U, P(s), P(t)〉 in which U is externality-free and is such that σu(P) = σ(P). We introduce a “coding trick”
by means of which a general translation from any 〈A,R, σ 〉 to a setting 〈{A1, A2},R′, {u1, u2}〉 results. In particular
this translation provides the means by which two special cases of Φ-PATHU can be proven PSPACE-hard, i.e. the
problems 1-SWAP and IRO-path.

Of course, in principle, our proofs that the special cases of Φ-PATHU are PSPACE-hard could be presented directly,
i.e. without reference to Φ-PATHE and the coding device used. There are, however, a number of reasons why we avoid
such an approach. The first of these is the technical complexity of the proofs themselves: although the translation

5 Although we describe the range of σ and u to be whole numbers using SLP encodings, it is a trivial matter to extend to integers, e.g. use
an additional output bit to indicate whether a value is positive or negative; and to rationals, e.g. treat one section of the output bits as defining a
numerator, the remaining section as a denominator.

6 Some illustrative constructions of SLPs in specific polynomial-time reductions are presented in [6, pp. 33–4].
7 One of the few exceptions is [21] which explicitly states that the valuation functions considered are assumed to be free of allocative externalities.
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from Φ-PATHE to Φ-PATHU turns out to be relatively straightforward; the central result that 1-PATH is PSPACE-
hard on which our subsequent classifications build, is rather more involved. We note that notwithstanding the use of
arbitrary evaluation measures, the problem 1-PATH is a “natural” decision question whose properties, we contend,
merit consideration in their own right.

4.3. Proof structure

We begin by recalling the decision problems considered.

1-PATH (special case of Φ-PATHE)
Instance: 〈A,R, σ, P(s), P(t)〉 with σ(P(t)) > σ(P(s)).
Question: Is there a σ -rational 1-bounded path for 〈P(s), P(t)〉?

1-SWAP (special case of Φ-PATHU )
Instance: 〈A,R,U, P(s), P(t)〉 with σu(P(t)) > σu(P(s)).
Question: Is there an IR 1-swap path for 〈P(s), P(t)〉?

IRO-PATH (special case of Φ-PATHU )
Instance: 〈A,R,U, P(s), P(t)〉 with σu(P(t)) > σu(P(s)).
Question: Is there an IR 1-bounded path for 〈P(s), P(t)〉?

Subject to Φ(P, Q) being decidable in PSPACE it is straightforward to show that Φ-PATHE
∈ PSPACE. For each of

the problems listed, the corresponding Φ(P, Q) is decidable in (deterministic) polynomial-time.
On first inspection the approach taken to proving PSPACE-hardness may seen rather indirect: an “auxiliary problem”

– Achievable Circuit Sequence (ACS) – is defined independently of the arena of multiagent negotiation contexts. The
assertion “1-PATH is PSPACE-complete”, is justified by showing “ACS is PSPACE-complete” (Theorem 12) and then
ACS ≤p 1-PATH (Theorem 13). This auxiliary problem has, however, two important properties. Firstly, it is “easy” to
prove that ACS is PSPACE-complete using standard generic reduction techniques.8 The second property of ACS is that
its formal structure is very similar to that of 1-PATH.

Thus, ACS is concerned with deciding a property of a given (N , N )-combinational logic network, C , with respect
to two distinct binary N -tuples. The N inputs of C are interpreted as a sequence of n data bits 〈x1, x2, . . . , xn〉 coupled
with a sequence of m value bits 〈y0, y1, . . . , ym−1〉; the N outputs are viewed in a similar fashion. Now, suppose that
a = 〈data(a), value(a)〉 and b = 〈data(b), value(b)〉 are the binary N -tuples given with C to form an instance of
ACS.

Recall that val(y) is the whole number represented by the m value bits of C , i.e. val(y) =
∑m−1

i=0 (2i ) ∗ yi , and
define

〈datak(a), valuek(a)〉 =

{
〈data(a), value(a)〉 if k = 0
C(〈datak−1(a), valuek−1(a)〉) if k > 0.

Since the output of any (N , N )-combinational logic network on a given instantiation of its inputs is uniquely
determined, the sequence [〈datak(a), valuek(a)〉]k≥0 is well-defined and unique.

Informally, ACS asks of its instance 〈C, a, b〉 if there is some value t ≥ 1 with which:

a. 〈datat (a), valuet (a)〉 = 〈data(b), value(b)〉
b. For each 1 ≤ i ≤ t , val(valuei (a)) > val(valuei−1(a)).

Although the formal technical argument that ACS ≤p 1-PATH given in Section 5.2 involves a number of notational
complexities, its basic strategy is not difficult to describe. Recalling that an instance of ACS consists of an
(n+m, n+m)-combinational logic network, C , together with instantiations 〈x, y〉, 〈z, w〉 from 〈0, 1〉

n+m , the instance

〈AC ,RC , σ, P(s), P(t)〉 of 1-PATH that is formed uses 5 agents. The resource set RC contains disjoint sets each of

8 That is to say, “easy” pace the notational overheads inherent in most generic simulations of resource-bounded Turing machine classes: the
elegant casting of Turing machine behaviour in terms of planning operators presented in [1] being a notable exception.
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size 2(n +m) –RV andRW – with “appropriate” subsets ofRX (for X ∈ {V,W }) mapping to elements of 〈0, 1〉
n+m .

In the initial allocation, P(s), A1 holds the subset ofRV and the subset ofRW that maps to 〈x, y〉 ∈ 〈0, 1〉
n+m . In the

final allocation, P(t), A1 should hold the subsets of RV and RW that map to 〈z, w〉. For the agents A2 and A3: the
former should hold subsets of RV while the latter holds subsets of RW . The evaluation measure, σ , is constructed so
that any allocation, Q, for which Q2 6⊆ RV or Q3 6⊆ RW has σ(Q) < 0.

The main idea is to simulate the witnessing sequence {〈x i , y
i
〉}0≤i≤t for a positive instance of ACS by a sequence

of allocations to A1, i.e. from the initial allocation to A1 which we recall mapped to 〈x0, y
0
〉 ∈ 〈0, 1〉

n+m subsequent

allocations to A1 will be those subsets of RV and RW which map to 〈x i , y
i
〉 ∈ 〈0, 1〉

n+m . The problem that arises

in this simulation is that if Q(i) is the allocation in which A1’s holding reflects 〈x i , y
i
〉 then the deal 〈Q(i), Q(i+1)

〉

although σ -rational for the evaluation measure constructed, will not be 1-bounded. In order to effect this deal, a
sequence of 1-bounded σ -rational deals is used which involve the following stages:

1. a subset of RV is transferred one resource at a time from A2 to A4;
2. a subset of RV is transferred one resource at a time from A1 to A2;
3. the resources moved into A4 in stage (1) are transferred to A1.

The subset of RV held by A1 on completion will map to 〈x i+1, y
i+1

〉, while the subset of RW continues to map to

〈x i , y
i
〉. These three stages are then repeated, but now with resources fromRW and the agent A3 involved, so that the

subset of RW held by A1 will, on completion, map to 〈x i+1, y
i+1

〉.
In order to track whether resources should be moved out of A4 into A1, a “marker” resource, µ, initially held by

A5 is used: µ is reallocated to A4 at the end of the second phase and returned to A5 once the third stage is complete.
The notational overhead in the proof stems from specifying the evaluation measure, σ , in such a way that a σ -

rational 1-bounded sequence of deals to go from P(s) to P(t) is possible if and only if the source instance of ACS

should be accepted.

5. PSPACE-complete negotiation questions

We begin with the relatively straightforward proof that the decision problems we consider are all decidable by
PSPACE algorithms. Since all of these are specialisations of Φ-PATHE and the predicate Φ(P, Q) is polynomial-time
decidable for each, it suffices to prove,

Theorem 11. For predicates Φ : Πn,m × Πn,m → {>,⊥} such that Φ(P, Q) is polynomial-time decidable,
Φ-PATHE

∈ PSPACE.

Proof. Given an instance 〈A,R, σ, P(s), P(t)〉 of Φ-PATHE in which σ : Πn,m → Q is described in the form of a
straight-line program, use a non-deterministic algorithm which proceeds as follows:

P := P(s)

loop
Non-deterministically choose an allocation Q ∈ Πn,m
if ¬Φ(P, Q) then reject
else if Q = P(t) then accept
else P := Q

end loop

If a Φ-path realising 〈P(s), P(t)〉 exists then this non-deterministic algorithm has a computation that will successfully
identify it. The algorithm need only record the allocations P and Q occurring in the loop body and thus can be
implemented in NPSPACE. The theorem now follows from Savitch’s Theorem: NPSPACE = PSPACE, [17]. �

5.1. The achievable circuit sequence problem (ACS)

The following decision problem is central to our subsequent argument.
Achievable Circuit Sequence (ACS)
Instance: (N , N )-combinational logic network, C , with N = n + m inputs 〈Xn, Ym〉 and n + m outputs, 〈Zn,Wm〉;
〈x, y〉, 〈z, w〉 ∈ 〈0, 1〉

n+m .
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Question: Is there a sequence

Γ = 〈〈x0, y
0
〉, 〈x1, y

1
〉, . . . , 〈xk, y

k
〉〉

such that

a. 〈x0, y
0
〉 = 〈x, y〉,

b. 〈xk, y
k
〉 = 〈z, w〉,

c. ∀1 ≤ i ≤ k, C(x i−1, y
i−1
) = 〈x i , y

i
〉 and val(y

i
) > val(y

i−1
)?

Theorem 12. ACS is PSPACE-complete.

Proof. An instance 〈C, x, y, z, w〉 of ACS can be decided by a (deterministic) polynomial-space computation that
iterates evaluating

〈x i+1, y
i+1

〉 = C(x i , y
i
)

(starting with 〈x, y〉).
This computation terminates either when val(y

i+1
) ≤ val(y

i
) (the instance is rejected) or when 〈z, w〉 occurs

with the former condition taking precedence when 〈x i+1, y
i+1

〉 = 〈z, w〉. Since there are only 2n+m possible cases,
eventually one of these two termination conditions must arise. The whole computation can be accomplished in
polynomial-space since only the current 〈x i , y

i
〉 need be remembered.

For PSPACE-hardness we use a generic reduction, i.e. given a Turing machine program, M , input s, and space-
bound S = |s|c we form an instance of ACS that is accepted if and only if s is accepted by M within an S-space
bounded computation. We may assume that M has a unique accepting configuration u. It suffices to note that from the
description of M we can build a (t, t)-combinational logic network CM whose input bits encode configurations of M
on exactly S tape-cells. For such a configuration, χ , CM (χ) = π if and only if the configuration π follows in exactly
one move of M from the configuration χ . Note we may use the convention that CM (u) = u for the unique accepting
configuration. Combine CM with a p-bit counter, D, i.e. val(D(v)) = val(v)+ 1 with p chosen large enough so that
the total number of configurations of S-tape bounded configurations of M can be represented in p bits.9 Now let s be
the instantiation of the inputs of CM corresponding to the initial configuration of M on input s: s is accepted by M if
and only if 〈(CM , D), 〈s, 0p

〉, 〈u, 1p
〉〉 is accepted as an instance of ACS. �

5.2. ACS is polynomially-reducible to 1-PATH

It will be convenient to introduce the following notation and definitions.
For V = {v1, v2, . . . , vn+m} and W = {w1, w2, . . . , wn+m} disjoint sets of n + m propositional variables, we

define sets

RV
= {v1, v2 , . . . , vn+m, ¬v1 , . . . , ¬vn+m}

RW
= {w1, w2 , . . . , wn+m, ¬w1 , . . . , ¬wn+m}

R = RV
∪ RW .

In our subsequent notation, in order to avoid repetition, X refers to either of V or W .
Given S ⊆ R, the subset SX is defined via SX

= S ∩RX . We define a partial mapping, β : 2R → 〈0, 1〉
n+m as

follows.
For all of the cases below, β(S) is undefined, i.e. β(S) = ⊥ whenever

SV
6= ∅ and SW

6= ∅

or
S ⊆ RX and |S| 6= n + m
or
S ⊆ RX and there is some i for which {xi ,¬xi } ⊂ S.

9 It is easy to show that p = O(S).
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For the remaining cases,

β(S) = 〈a1a2 . . . an+m〉 where ai =

{
0 if ¬xi ∈ S
1 if xi ∈ S.

Given a = 〈a1a2 . . . an+m〉 ∈ 〈0, 1〉
n+m , there is a uniquely defined set S ⊆ RX for which β(S) = a. Thus we can

introduce β−1
X as a total mapping from 〈0, 1〉

n+m to subsets from RX , as

β−1
X (a) = S ⊆ RX such that β(S) = a.

For a ∈ 〈0, 1〉
n+m , we denote by valm(a) the whole number whose m bit binary representation is an+1an+2 · · · an+m ,

i.e the value
∑n+m

i=n+1 (ai ) ∗ 2n+m−i .
Let S and T be subsets of RX that satisfy all the conditions (CS1)–(CS4).

CS1. S ∩ T = ∅

CS2. For each i (1 ≤ i ≤ n + m) either xi 6∈ S or ¬xi 6∈ S
CS3. For each i (1 ≤ i ≤ n + m) either xi 6∈ T or ¬xi 6∈ T
CS4. For each i (1 ≤ i ≤ n + m) if (xi 6∈ S) and (¬xi 6∈ S) then (xi ∈ T ) or (¬xi ∈ T ).

For such sets S, T the composite set, S ⊗ T , is the subset of RX given by

S ⊗ T = S \ ({x : ¬x ∈ T } ∪ {¬x : x ∈ T })
⋃

T .

Now suppose that C is an (N , N )-combinational logic network with N = n + m, a ∈ 〈0, 1〉
n+m , and S ⊆ RX , is such

that for each i , either xi 6∈ S or ¬xi 6∈ S. The difference set for S with respect to a is the subset of RX ,

DIFFX (S, a) = β−1
X (a) \ S.

The following lemma establishes some useful relationships between the composite set operation, ⊗, and difference
sets.

Lemma 1. Let C be an (n+m, n+m)-combinational logic network, a ∈ 〈0, 1〉
n+m , and, as in the notation introduced

above, let RX denote {x1, . . . , xn+m,¬x1, . . . ,¬xn+m}.
For every D ⊆ β−1

X (a) \ β−1
X (C(a)), the sets S and T defined by

S = β−1
X (a) ∩ β−1

X (C(a)) ∪ D
T = DIFFX (S,C(a))

have the following properties,

a. T = β−1
X (C(a)) \ β−1

X (a)
b. S ⊗ T = β−1

X (C(a)).

Proof. For (a), from the definition of DIFFX ,

T = DIFFX (S,C(a))
= β−1

X (C(a)) \ (β−1
X (a) ∩ β−1

X (C(a)) ∪ D)
= β−1

X (C(a)) \ β−1
X (a).

The final line following as D ⊆ β−1
X (a) \ β−1

X (C(a)) and thus D ∩ β−1
X (C(a)) = ∅.

For (b), consider the set S ⊗ T . This is formed by first removing from S all elements in

F = {x ∈ S : ¬x ∈ T }

⋃
{¬x ∈ S : x ∈ T }.

We claim that this set comprises exactly those elements of the set D. To see this, first observe that F cannot contain
any member of the set β−1

X (a) ∩ β−1
X (C(a)): if x ∈ β−1

X (a) ∩ β−1
X (C(a)) then x ∈ β−1

X (C(a)) and from the fact
that T ⊆ β−1

X (C(a)) this precludes ¬x ∈ T . Without loss of generality, suppose for the sake of contradiction, that
x ∈ D\ F – a similar argument applies if we assume instead ¬x ∈ D\ F . From the fact that D ⊆ β−1

X (a)\β−1
X (C(a))
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we have x ∈ β−1
X (a) and x 6∈ β−1

X (C(a)). Since exactly one of x and ¬x must appear in β−1
X (C(a)) we deduce that

¬x ∈ β−1
X (C(a)). We now have

x ∈ D ⊆ β−1
X (a) \ β−1

X (C(a)) ⊆ S
and
¬x ∈ β−1

X (C(a)) \ β−1
X (a) = T

and thus x ∈ F contradicting our assumption that x ∈ D \ F . It follows, therefore, that D ⊆ F and thus, recalling
that F ∩ β−1

X (a) ∩ β−1
X (C(a)) = ∅,

S \ F = (β−1
X (a) ∩ β−1

X (C(a)) ∪ D) \ F
= β−1

X (a) ∩ β−1
X (C(a)).

Having formed S \ F , the construction of S ⊗ T is completed by adding all elements in T , so that

S ⊗ T = (S \ F) ∪ T
= β−1

X (a) ∩ β−1
X (C(a)) ∪ β−1

X (C(a)) \ β−1
X (a)

= β−1
X (C(a))

as was claimed. �

We now prove,

Theorem 13. 1-PATH is PSPACE-complete.

Proof. Noting that 1-PATH ∈ PSPACE the result will follow via Theorem 12 by showing ACS≤p1-PATH.
Thus given, 〈C, 〈x, y〉, 〈z, w〉〉 an instance of ACS we form 〈AC ,RC , σ, P(s), P(t)〉 for which

〈C, 〈x, y〉, 〈z, w〉〉 ∈ LACS ⇔ 〈AC ,RC , σ, P(s), P(t)〉 ∈ L1-PATH.

AC contains five agents,

AC = {A1, A2, A3, A4, A5}.

Fix sets V = {v1, v2, . . . , vn+m} and W = {w1, w2, . . . , wn+m} so that the resource set in the instance of 1-PATH is,

RC = RV
⋃
RW

⋃
{µ}.

Here µ is a “new” resource distinct from those in RV
∪RW .

For the source and destination allocations – P(s) and P(t) – we use,

P(s)1 = β−1
V (〈x, y〉) ∪ β−1

W (〈x, y〉)

P(s)2 = RV
\ P(s)1

P(s)3 = RW
\ P(s)1

P(s)4 = ∅

P(s)5 = {µ}

P(t)1 = β−1
V (〈z, w〉) ∪ β−1

W (〈z, w〉)

P(t)2 = RV
\ P(t)1

P(t)3 = RW
\ P(t)1

P(t)4 = ∅

P(t)5 = {µ}.

To complete the construction, we need to specify σ .
Given Q ∈ Π5,4(n+m)+1, we will have σ(Q) ≥ 0 only if Q satisfies all of the following requirements:

B1. Q1 ⊆ RV
∪RW .

B2. Q2 ⊆ RV .
B3. Q3 ⊆ RW .
B4. QV

4 = ∅ or QW
4 = ∅.

B5. Q5 ⊆ {µ}, i.e. either Q5 = ∅ or Q5 = {µ}.
B6. For X ∈ {V,W }, if Q X

i 6= ∅ then for all j , {x j ,¬x j } 6⊆ Q X
i .
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Assuming that (B1) through (B6) hold, then σ(Q) ≥ 0 if and only if (at least) one of the following six conditions
holds true10 of Q.

C1. β(QV
1 ) = β(QW

1 ) and Q4 ⊆ DIFFV (QV
1 ,C(β(QW

1 ))).

C2. β(QV
1 ⊗ QV

4 ) = C(β(QW
1 )) and Q4 = DIFFV (QV

1 ,C(β(QW
1 ))).

C3. β(QV
1 ∪ QV

4 ) = C(β(QW
1 )) and µ ∈ Q4.

C4. β(QV
1 ) = C(β(QW

1 )) and Q4 ⊆ DIFFW (QW
1 , β(Q

V
1 )).

C5. β(QV
1 ) = β(QW

1 ⊗ QW
4 ) and Q4 = DIFFW (QW

1 , β(Q
V
1 )).

C6. β(QV
1 ) = β(QW

1 ∪ QW
4 ) and µ ∈ Q4.

One further requirement relating to (C3) is the following. Let f and g be the instantiations in 〈0, 1〉
n+m defined as

f = β(PW
1 )

g = C(β(PW
1 ))

then, in addition valm(g) > valm( f ).11

We write, C1(Q), C2(Q), etc. if Q satisfies C1, C2, and so on.
In the specification of σ given below, Kmn ∈ N is a suitably large integer value depending on n + m.12

For an allocation Q satisfying at least one13 of these conditions, σ(Q) is

C1 2 Kmnvalm(β(QW
1 )) +|Q4|

C2 2 Kmnvalm(β(QW
1 )) +|Q4| +n + m − |QV

1 |

C3 Kmnvalm(β(QW
1 ))+ Kmnvalm(C(β(QW

1 ))) −|Q4|

C4 2 Kmnvalm(β(QV
1 )) +|Q4| − 2 −3|DIFFW (QW

1 , β(Q
V
1 ))|

C5 2 Kmnvalm(β(QV
1 )) −2|Q4| − 2 +n + m − |QW

1 |

C6 2 Kmnvalm(β(QV
1 )) −|Q4|.

For any allocation, Q, in which none of these conditions holds, we set σ(Q) = −1.
We note, at this juncture, that σ(Q) can be evaluated in time polynomial in the number of bits required to encode the

instance of ACS: firstly, given C , the relationship between QV
1 , QW

1 and Q4 characterising each of the six conditions
is easily checked, and the evaluation of σ(Q), given that one of these is satisfied, involves basic arithmetic operations,
e.g. multiplication and addition, on values represented in O(m) bits. It follows, via Fact 10, that an appropriate SLP

defining σ can be efficiently constructed.
We claim that 〈C, x, y, z, w〉 is accepted as an instance of ACS if and only if 〈AC ,RC , σ, P(s), P(t)〉 is accepted

as an instance of 1-PATH.
Suppose that 〈C, x, y, z, w〉 ∈ LACS and let

Γ = 〈x0, y
0
〉 , . . . , 〈x i , y

i
〉 , . . . , 〈x p, y

p
〉

be the sequence of instantiations in 〈0, 1〉
n+m witnessing this. Consider the sequence of allocations

〈Q(0), Q(1) , . . . , Q(p)
〉

10 To avoid excessive repetition, when, for S ⊆ RV
∪RW , we refer to β(S) in specifying any of these six conditions, it should be taken that

β(S) 6= ⊥: should this fail to be the case then the condition in question is not satisfied.
11 By imposing this condition, which is not strictly necessary for the subsequent argument, we can simplify the analysis of one particular case in

proving the correctness of the reduction.
12 Choosing Kmn = 3(m + n) + 2 suffices for σ to have the properties needed in the subsequent proof and since this value is represented in

O(log mn)-bits the polynomial-time computability of the reduction from ACS is unaffected.
13 Although, it is possible for Q to satisfy both of C1 and C2 or both of C4 and C5 in the cases where this arises the value that results for σ(Q)

applying C1 (resp. C4) is the same as the value that results using C2 (resp. C5).
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in which

Q(i)
1 = β−1

V (〈x i , y
i
〉) ∪ β−1

W (〈x i , y
i
〉)

Q(i)
2 = RV

\ Q(i)
1

Q(i)
3 = RW

\ Q(i)
1

Q(i)
4 = ∅

Q(i)
5 = {µ}.

For each of these, C1(Q(i)) holds: when Q = Q(i) we have

β(QV
1 ) = β(QW

1 ) = 〈x i , y
i
〉

Q4 = ∅ ⊆ DIFFV (QV
1 ,C(β(QW

1 ))).

In addition,

σ(Q(i)) = 2Kmnvalm(〈x i , y
i
〉) = 2Kmnval(y

i
)

< 2Kmnval(y
i+1
) = 2Kmnvalm(〈x i+1, y

i+1
〉)

= σ(Q(i+1)).

So that the sequence of allocations 〈Q(0), Q(1) , . . . , Q(p)
〉 is σ -rational. This sequence, however, is not 1-bounded,

and so to complete the argument that positive instances of ACS yield positive instances of 1-PATH with the reduction
described, we need to construct a 1-bounded, σ -rational sequence for each of the deals 〈Q(i), Q(i+1)

〉.
Consider any Q(i) for some 0 ≤ i < p and the following sequences of 1-bounded deals starting with Q(i).

S1. Using 1-bounded deals, transfer the set DIFFV (Q
(i),V
1 ,C(β(Q(i),W

1 ))) from A2 to A4, giving the allocation S(i),1.
Let T ( j) be the allocation resulting after exactly j resources have been moved from A2 to A4, so that

T (0) = Q(i) and T (d) = S(i),1, (with d = |DIFFV (Q
(i),V
1 ,C(β(Q(i),W

1 )))|).
Since the resources held by A1 are unchanged by the deal 〈T ( j−1), T ( j)

〉 it follows that each of the allocations
T ( j) satisfies C1. In addition, T (d) also satisfies C2. Each of these deals is σ -rational, since for 0 ≤ j ≤ d:
σ(T ( j)) = σ(T (0))+ j . We observe that using C2 to evaluate T (d) returns,

σ(T (d)) = σ(T (0))+ d + (n + m)− |Q(i),V
1 | = σ(T (0))+ d

since, from the fact that C1 holds, β(Q(i),V
1 ) 6= ⊥ and this requires |Q(i),V

1 | = n + m.
S2. Using 1-bounded deals, transfer the set

D = {v ∈ S(i),1,V1 : ¬v ∈ S(i),14 }

⋃
{¬v ∈ S(i),1,V1 : v ∈ S(i),14 }

from A1 to A2, to give the allocation S(i),2.
Again denote by T ( j) the allocation resulting after exactly j resources have been moved from A1 to A2, with

T (0) = S(i),1, T (d) = S(i),2 and d = |D|. Notice that

d = |S(i),14 | = |DIFFV (β
−1
V (〈x i , y

i
〉),C(〈x i , y

i
〉))|.

Each of these allocations satisfies C2. To see this, first observe that the resources held by A4 are unchanged by
any of the deals 〈T ( j−1), T ( j)

〉: throughout this stage A4 holds

β−1
V (C(〈x i , y

i
〉)) \ β−1

V (〈x i , y
i
〉).

The subset of RV held by A1, initially β−1
V (〈x i , y

i
〉), is altered by transferring D to A2. This set of resources,

however, is exactly β−1
V (〈x i , y

i
〉)\β−1

V (C(〈x i , y
i
〉)), so that from Lemma 1(a), in the allocation T ( j), the subsets

of RV held by A1 and A4 have the respective forms,

G = β−1
V (〈x i , y

i
〉) ∩ β−1

V (C(〈x i , y
i
〉)) ∪ D j

H = DIFFV (G,C(〈x i , y
i
〉)).
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Applying Lemma 1(b), β(G⊗H) = C(〈x i , y
i
〉), i.e. each of the allocations T ( j) satisfies the conditions specified

in C2. Finally we have

σ(T ( j)) = σ(T (0))+ n + m − (n + m − j) = σ(T (0))+ j

so that each of the deals 〈T ( j−1), T ( j)
〉 is σ -rational.

It should be noted that, in S(i),2 we have

|S(i),2,V1 | = n + m − |S(i),24 | = n + m − |β−1
V (C(〈x i , y

i
〉)) \ β−1

V (〈x i , y
i
〉)|

so that,

σ(S(i),2) = 2Kmnval(y
i
)+ 2|β−1

V (C(〈x i , y
i
〉)) \ β−1

V (〈x i , y
i
〉)|.

S3. Transfer the resource µ from A5 to A4 to give the allocation S(i),3.
The allocation satisfies S(i),3 satisfies C3, and has

S(i),3,W1 = β−1
W (〈x i , y

i
〉).

Furthermore,

|S(i),34 | = 1 + |β−1
V (C(〈x i , y

i
〉)) \ β−1

V (〈x i , y
i
〉)|.

With the evaluation measure σ

σ(S(i),2) = 2Kmnval(y
i
)+ 2|β−1

V (C(〈x i , y
i
〉)) \ β−1

V (〈x i , y
i
〉)|

< Kmnval(y
i
)+ Kmnval(y

i+1
)− |β−1

V (C(〈x i , y
i
〉)) \ β−1

V (〈x i , y
i
〉)| − 1

= σ(S(i),3).

The deal 〈S(i),2, S(i),3〉 is σ -rational since with val(y
i+1
) ≥ val(y

i
)+ 1 and Kmn large enough,

σ(S(i),3)− σ(S(i),2) ≥ Kmn − 3|β−1
V (〈x i+1, y

i+1
〉) \ β−1

V (〈x i , y
i
〉)| − 1

≥ Kmn − 3(n + m)− 1
> 0.

S4. Using 1-bounded deals, transfer the set S(i),3,V4 from A4 to A1, giving S(i),4.
Let T ( j) be the allocation resulting after exactly j resources have been moved from A4 to A1, with

T (0) = S(i),3 and T (d) = S(i),4 with

d = |S(i),3,V4 | − 1 = |β−1
V (〈x i+1, y

i+1
〉) \ β−1

V (〈x i , y
i
〉)|.

Noting that

S(i),3,V1 = β−1
V (〈x i+1, y

i+1
〉) ∩ β−1

V (〈x i , y
i
〉)

S(i),3,V4 = β−1
V (〈x i+1, y

i+1
〉) \ β−1

V (〈x i , y
i
〉)

we see that each of the allocations, T ( j) satisfies C3: β(T ( j),V
1 ∪ T ( j),V

4 ) = C(β(T ( j),W
1 )). In addition

σ(T ( j)) = σ(T (0))+ j

so each deal 〈T ( j−1), T ( j)
〉 is σ -rational. For the allocation, S(i),4 we have

σ(S(i),4) = Kmnval(y
i
)+ Kmnval(y

i+1
)− 1.

S5. Transfer the resource µ from A4 to A5 giving S(i),5.
The allocation S(i),5 satisfies C4:

S(i),54 = ∅ ⊆ DIFFW (S
(i),5,W
1 , 〈x i+1, y

i+1
〉)

β(S(i),5,V1 ) = 〈x i+1, y
i+1

〉 = C(β(S(i),5,W1 )).
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The deal 〈S(i),4, S(i),5〉 is σ -rational since

σ(S(i),4) = Kmnval(y
i
)+ Kmnval(y

i+1
)− 1

σ(S(i),5) = 2Kmnval(y
i+1
)− 2 − 3|DIFFW (S

(i),5,W
1 , 〈x i+1, y

i+1
〉)|

so that, since val(y
i+1
) ≥ val(y

i
)+ 1,

σ(S(i),5)− σ(S(i),4) ≥ Kmn − 1 − 3(n + m) > 0.

S6. Using 1-bounded deals, transfer the set DIFFW (S
(i),5,W
1 , β(S(i),5,V1 )) from A3 to A4, to give the allocation S(i),6.

Let T ( j) be the allocation in place after exactly j resources have been transferred from A3 to A4, so that
T (0) = S(i),5 and T (d) = S(i),6 with

d = |DIFFW (S
(i),5,W
1 , β(S(i),5,V1 ))|.

By similar arguments to those used when considering S1 above, we see that each of the allocations T ( j) satisfies
C4. The allocation T (d) in addition satisfies C5. The deal 〈T ( j−1), T ( j)

〉 is σ -rational since,

σ(T ( j)) = σ(T (0))+ |T ( j)
4 | = σ(T (0))+ j.

We, further note, that σ(T (d)) when evaluated by using C4 is,

2Kmnval(y
i+1
)− 2 − 2|DIFFW (S

(i),5,W
1 , 〈x i+1, y

i+1
〉)|

(since |T (d)4 | = |DIFFW (S
(i),5,W
1 , 〈x i+1, y

i+1
〉)|), and if evaluated using C5,

σ(T (d)) = 2Kmnval(y
i+1
)− 2 − 2|DIFFW (S

(i),5,W
1 , 〈x i+1, y

i+1
〉)| + n + m − |T (d),W1 )

= 2Kmnval(y
i+1
)− 2 − 2|DIFFW (S

(i),5,W
1 , 〈x i+1, y

i+1
〉)|.

S7. Using 1-bounded deals, transfer the set

D = {w ∈ S(i),6,W1 : ¬w ∈ S(i),64 }

⋃
{¬w ∈ S(i),6,W1 : w ∈ S(i),64 }

from A1 to A3 to give S(i),7.
Let T ( j) denote the allocation after exactly j resources have been transferred from A1 to A3, so that

T (0) = S(i),6 and T (d) = S(i),7 with d = |D|. By a similar argument to that in S2,

d = |S(i),64 | = |DIFFW (β
−1
W (〈x i , y

i
〉), 〈x i+1, y

i+1
〉)|.

Again via Lemma 1 and the analysis of S2 it follows that each allocation T ( j) satisfies C5. The deal
〈T ( j−1), T ( j)

〉 is σ -rational by virtue of the fact that σ(T ( j)) = σ(T (0))+ j , so that

σ(S(i),7) = 2Kmnval(yi+1)− 2 − 2|DIFFW (β
−1
W (〈x i , y

i
〉), 〈x i+1, y

i+1
〉)| + n + m − |S(i),7,W1 |

= 2Kmnval(yi+1)− 2 − |DIFFW (β
−1
W (〈x i , y

i
〉), 〈x i+1, y

i+1
〉)|.

The last line following from the fact that

S(i),7,W1 = β−1
W (〈x i , y

i
〉) ∩ β−1

W (〈x i+1, y
i+1

〉).

S8. Transfer µ from A5 to A4 to give S(i),8.
The allocation S(i),8 satisfies C6 with the deal 〈S(i),7, S(i),8〉 being σ -rational:

σ(S(i),8) = 2Kmnval(yi+1)− 1 − |S(i),74 |

> 2Kmnval(yi+1)− 2 − |S(i),74 |

= σ(S(i),7).
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S9. Using 1-bounded deals, transfer the set S(i),8,W4 from A4 to A1, giving S(i),9.

Letting T ( j) be the allocation after exactly j resources have been moved so that T (0) = S(i),8 and
T (d) = S(i),9 with d = |S(i),8,W4 |, each T ( j) satisfies C6 and the deal 〈T ( j−1), T ( j)

〉 is σ -rational since

σ(T ( j)) = σ(T (0))+ j . The allocation S(i),9 has S(i),94 = {µ} so that, σ(S(i),9) = 2Kmnval(y
i+1
)− 1.

Furthermore, S(i),9 has

β(S(i),9,V1 ) = β(S(i),9,W1 ) = 〈x i+1, y
i+1

〉.

S10. Transfer the resource µ from A4 to A5 giving S(i),10. This allocation satisfies C1 and, since σ(S(i),10) =

2Kmnval(y
i+1
) the deal 〈S(i),9, S(i),10

〉 is σ -rational.

To complete the argument that positive instances of ACS induce positive instances of 1-PATH in the reduction
described, it suffices to note that the allocation S(i),10 is exactly that described by Q(i+1).

It remains only to prove that should 〈AC ,RC , σ, P(s), P(t)〉 describe a positive instance of 1-PATH then the instance
〈C, 〈x, y〉, 〈z, w〉〉 from which it arose described a positive instance of ACS.

Thus, let

Γ = 〈Q(0)
; Q(1)

; · · · ; Q(i)
; · · · ; Q(p)

〉

be a sequence of allocations for which

a. Q(0)
= P(s)

b. Q(p)
= P(t)

c. ∀1 ≤ i ≤ p 〈Q(i−1), Q(i)
〉 is 1-bounded and σ -rational.

Given an allocation Q ∈ Π5,4(n+m)+1 we say that Q has the assignment property if

(C1(Q) holds and Q4 = ∅) OR (C3(Q) holds and Q4 = {µ}).

Consider the sub-sequence of Γ ,

∆ = 〈S(0); S(1); · · · ; S(d)〉

such that every S( j) in ∆ has the assignment property and if 〈S( j), S( j+1)
〉 correspond to allocations 〈Q(i), Q(i+k)

〉

in Γ then for every 1 ≤ t < k, the allocation Q(i+t) does not have the assignment property. Noting that P(s) and
P(t) both have the assignment property, it is certainly the case that ∆ can be formed and will have S(0) = P(s)

and S(d) = P(t). Our aim is to use ∆ to extract the witnessing sequence of instantiations from 〈0, 1〉
n+m certifying

〈C, 〈x, y〉, 〈z, w〉〉 as a positive instance of ACS.

From ∆ we may define a sequence of pairs – 〈ai , bi 〉 ∈ 〈0, 1〉
n+m

× 〈0, 1〉
n+m – via ai = β(S(i),V1 ) and

bi = β(S(i),W1 ). Since any allocation, Q, with the assignment property must satisfy either C1 or C3 it follows that
β(QV

1 ) and β(QW
1 ) are both well-defined: if C1(Q) this is immediate from the specification of C1; if C3(Q) then

since Q4 must contain only the element µ it follows that QV
4 = ∅ and, again, that β(QV

1 ) is well-defined follows from
the defining conditions for C3.

In order to extract the appropriate witnessing sequence for 〈C, 〈x, y〉, 〈z, w〉〉 ∈ LACS it suffices to show that
〈ai , bi 〉 behaves as follows:

〈ai , bi 〉 =


〈〈x, y〉, 〈x, y〉〉 if i = 0
〈C(ai−1), bi−1〉 if i > 0 and i is odd
〈ai−1,C(bi−1)〉 if i > 0 and i is even.

For the sequence {〈ai , bi 〉 : 0 ≤ i ≤ d} defined from Γ = 〈S(0); · · · S(d)〉 consider the sequence of 1-bounded,
σ -rational deals that realise the (σ -rational) deal 〈S(0), S(1)〉.
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First observe that this must comprise three sequences — 〈S(0), T (1)〉, 〈T (1), T (2)〉, and 〈T (2), T (3)〉 of 1-bounded,
σ -rational deals implementing

〈S(0), T (1)〉 with C1(T (1)), C2(T (1)), and T (1)4 = DIFFV (S
(0),V
1 ,C(b0))

〈T (1), T (2)〉 with C3(T (2)) and |T (2),V1 | = n + m − |T (2)4 |

〈T (2), S(1)〉 with C3(S(1)) and S(1),V4 = ∅.

To see this14 consider the allocations, P , such that 〈S(0), P〉 is 1-bounded and σ -rational. Given that P must satisfy
at least one of the conditions (C1) through (C6), and that C1(S(0)) holds, we must have P1 = S(0)1 , P3 = S(0)3

and P5 = S(0)5 , i.e. 〈S(0), P〉 involves transferring some resource held by A2 to A4. Any such resource, however,

must belong to the set DIFFV (S
(0),V
1 ,C(b0)) or C1(P) will fail to hold. By similar arguments any 1-bounded, σ -

rational continuation of P will eventually reach the allocation T (1). In the same way, considering any allocation P for
which 〈T (1), P〉 is 1-bounded and σ -rational, it follows that T (1)3 = P3, T (1)4 = P4 and T (1)5 = P5 so that 〈T (1), P〉

transfers some resource between A1 and A2: the only choices for such transfers which preserve condition C2 are those
v ∈ T (1),V1 for which ¬v ∈ T (1)4 or ¬v ∈ T (1),V1 for which v ∈ T (1)4 . Eventually such transfers lead to the allocation
T (2) described and, in the same way from T (2) to the allocation S(1).

From C1(T (1)) and C2(T (1)) we have

β(T (1),V1 ) = a0 = b0 = β(T (1),W1 ).

From C3(T (2)) we have

β(T (2),V1 ∪ T (2),V4 ) = C(b0) = C(a0).

So that, in total, from C3(S(1)) and S(1),V4 = ∅ we obtain

a1 = C(a0) ; b1 = b0

as required.
In the same way, noting that 〈C(a0), b0〉 6= 〈〈z, w〉, 〈z, w〉〉, it cannot be the case that S(1) = S(d). Thus, by similar

arguments to those given above, we may identify further sequences – 〈S(1), T (3)〉, 〈T (3), T (4)〉 and 〈T (4), S(2)〉 – of
σ -rational, 1-bounded deals that realise 〈S(1), S(2)〉. These have the form

〈S(1), T (3)〉 with C4(T (3)), C5(T (3)), and T (3)4 = DIFFW (S
(1),W
1 , a1)

〈T (3), T (4)〉 with C6(T (4)) and |T (4),W1 | = n + m − |T (4)4 |

〈T (4), S(2)〉 with C1(S(2)) and S(1)4 = ∅.

From C4(T (3)) and C5(T (3)) we have

β(T (3),V1 ) = a1 = C(a0)

β(T (3),W1 ) = b1 = b0.

From C6(T (4)) we obtain,

β(T (4),W1 ∪ T (4),W4 ) = β(T (4),V1 ) = a1.

Finally, C1(S(2)) and S(2)4 = ∅ give

a2 = β(S(2),V1 ) = a1

b2 = β(S(2),W1 ) = a1 = C(b1) = C(b0).

Thus, a2 = a1 and b2 = C(b1).

14 For ease of presentation we give only a brief outline of the argument here. The (somewhat tedious) fuller expansion of individual cases is
provided in Appendix.
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Thus the assertion regarding {〈ai , bi 〉}0≤i≤d follows by an identical analysis of the cases

〈a2, b2〉 , . . . , 〈a2 j , b2 j 〉 , . . . .

We now easily obtain the witnessing sequence that 〈C, 〈x, y〉, 〈z, w〉〉 is a positive instance of ACS simply by using,

〈a0, a2 , . . . , a2 j , . . . , a2k〉

where d = 2k. We have already seen that this satisfies

a0 = 〈x, y〉

a2k = 〈z, w〉

∀1 ≤ i ≤ k a2i = C(a2(i−1)).

This sequence, however, must also satisfy valm(a2i ) > valm(a2(i−1)): the deal 〈S(2(i−1)), S(2i)
〉 is σ -rational as it

is realised during the 1-bounded, σ -rational implementation of 〈P(s), P(t)〉. From the definition of σ , recalling that
C1(S(2i)) and S(2i)

4 = ∅ we have

σ(S(2(i−1))) = 2Kmnvalm(β(S
(2(i−1)),W
1 ))

= 2Kmnvalm(β(S
(2(i−1)),V
1 ))

= 2Kmnvalm(a2(i−1))

σ (S(2i)) = 2Kmnvalm(β(S
(2i),W
1 ))

= 2Kmnvalm(β(S
(2i),V
1 ))

= 2Kmnvalm(a2i )

and hence σ(S(2i)) > σ(S(2(i−1))) gives valm(a2i ) > valm(a2(i−1)) as required.

In summary we deduce that 〈C, 〈x, y〉, 〈z, w〉〉 is a positive instance of ACS if and only if 〈AC ,RC , σ, P(s), P(t)〉
is a positive instance of 1-PATH, thereby completing the argument that 1-PATH is PSPACE-complete. �

5.3. Translating from evaluation measures to utilities

In this section we show how settings 〈A,R, σ 〉 involving arbitrary evaluation measures, σ , may be translated in a
general way to settings 〈A,R′,U〉 with utility functions so that utilitarian social welfare (σu) in the translated context
mirrors the evaluation measure (σ ) in the original setting.

Consider any 〈A,R, σ 〉 with |A| = n, |R| = m and σ : Πn,m → Q, where it is assumed that for all P ∈ Πn,m ,
σ(P) ≥ −1. The resource translation

τ(A,R) = Rτ

has Rτ = R×A. We define a partial mapping π : 2Rτ → Πn,m as follows
If either ∪〈r,Ai 〉∈S {r} 6= R or there exists r , Ai , A j (i 6= j) with {〈r, Ai 〉, 〈r, A j 〉} ⊆ S, then π(S) = ⊥, i.e.

undefined. Otherwise

π(S) =

〈 ⋃
〈r,A1〉∈S

{r};

⋃
〈r,A2〉∈S

{r}; · · · ;

⋃
〈r,An〉∈S

{r}

〉
.

We note that for any P ∈ Πn,m there is a uniquely defined S ⊆ Rτ for which π(S) = P: we employ the notation
π−1(P) to refer to this S.

The concept of resource translation now allows us to prove.

Theorem 14.

a. 1-SWAP is PSPACE-complete.
b. IRO-PATH is PSPACE-complete.
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Proof. In both results we use a reduction from 1-PATH.
For (a), given 〈A,R, σ, P(s), P(t)〉 an instance of 1-PATH, consider the instance of 1-SWAP, 〈B,Rτ ,U, Q(s), Q(t)

〉

in which B = {B1, B2}, u2(S) = 0 for all S ⊆ Rτ and

u1(S) =

{
−2 if π(S) = ⊥

σ(π(S)) if π(S) 6= ⊥.

Since the instance of 1-SWAP has exactly two agents, any allocation 〈Q1, Q2〉 is completely determined by the subset
of Rτ allocated to B1. Thus, to complete the reduction we set Q(s)

1 = π−1(P(s)) and, similarly, Q(t)
1 = π−1(P(t)).

We claim that 〈A,R, σ, P(s), P(t)〉 is accepted as an instance of 1-PATH if and only if 〈B,Rτ ,U, Q(s), Q(t)
〉 is

accepted as an instance of 1-SWAP.
Suppose the former is the case and let

∆ = 〈P(0), P(1) , . . . , P(d)〉

be a witnessing rational 1-bounded path. First notice that, as u2(S) = 0 for all S ⊆ Rτ , so σu(Q) = u1(Q1). It
follows, therefore that

∀1 ≤ k ≤ d u1(π
−1(P(i−1))) < u1(π

−1(P(i))).

That is to say, the sequence of successive allocations, 〈Q(0)
1 , . . . , Q(d)

1 〉 to B1 given by

〈π−1(P(0)), π−1(P(1)), . . . , π−1(P(d))〉

yields an IR path.
It is also the case, however, that the deal defined from 〈π−1(P(i−1)), π−1(P(i))〉 is a 1-SWAP. To see this, recall

that 〈P(i−1), P(i)〉 is 1-bounded. Let {A j , Ak} be the agents involved and r ∈ R be the resource transferred, without
loss of generality, from A j to Ak . Then,

〈r, A j 〉 ∈ π−1(P(i−1)); 〈r, Ak〉 ∈ Rτ \ π−1(P(i−1))

〈r, Ak〉 ∈ π−1(P(i)); 〈r, A j 〉 ∈ Rτ \ π−1(P(i))

so that the deal corresponding to 〈π−1(P(i−1)), π−1(P(i))〉 is realised by exchanging 〈r, A j 〉 ∈ Q(i−1)
1 for 〈r, Ak〉 ∈

Q(i−1)
2 . We deduce that if 〈A,R, σ, P(s), P(t)〉 is accepted as an instance of 1-PATH then 〈B,Rτ ,U, Q(s), Q(t)

〉 is
accepted as an instance of 1-SWAP.

Now suppose that 〈B,Rτ ,U, Q(s), Q(t)
〉 is accepted as an instance of 1-SWAP, letting

〈Q(0)
1 , Q(1)

1 , . . . , Q(d)
1 〉

be the sequence of successive allocations to B1 witnessing this. Consider the sequence of allocations,

〈π(Q(0)
1 ), π(Q(1)

1 ) , . . . , π(Q(d)
1 )〉

ofR amongA. It is certainly the case that for each Q(i), π(Q(i)
1 ) 6= ⊥ and σ(π(Q(i−1)

1 )) < σ(π(Q(i)
1 )), so it remains

to show that each of the deals 〈π(Q(i−1)
1 ), π(Q(i)

1 )〉 is 1–bounded. Let 〈r, A j 〉 ∈ Q(i−1)
1 and 〈r ′, Ak〉 ∈ Q(i−1)

2 be the
resources featuring in the IR 1-SWAP deal 〈Q(i−1), Q(i)

〉 so that

Q(i)
1 = Q(i−1)

1 \ {〈r, A j 〉} ∪ {〈r ′, Ak〉}

Q(i)
2 = Q(i−1)

2 \ {〈r ′, Ak〉} ∪ {〈r, A j 〉}.

Since π(Q(i)
1 ) 6= ⊥, we must have ∪

〈r,A〉∈Q(i)
1

r = R, and thus r = r ′. It follows that the deal 〈π(Q(i−1)), π(Q(i))〉

corresponds to a single resource, r , being transferred from A j to Ak , i.e. this deal is 1-bounded. In consequence, if
〈B,Rτ ,U, Q(s), Q(t)

〉 is accepted as an instance of 1-SWAP then 〈A,R, σ, P(s), P(t)〉 is accepted as an instance of
1-PATH, completing the proof that 1-SWAP is PSPACE-complete.
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For (b), we employ a similar approach: given an instance 〈A,R, σ, P(s), P(t)〉 of 1-PATH we form an instance
〈B,Rτ ,U, Q(s), Q(t)

〉 of IRO–PATH in which B = {B1, B2}, u2(S) = 0 for all S ⊆ Rτ and u1(S) is now,

u1(S) =


−2 if |S| < |R|

−2 if |S| = |R| and π(S) = ⊥

2σ(π(S)) if |S| = |R| and π(S) 6= ⊥

−2 if |S| > |R| + 1
−2 if |S| = |R| + 1 and for all 〈r, A j 〉 ∈ S, π(S \ {r, A j }) = ⊥.

The only unspecified case is that of, |S| = |R| and with π(S \ {〈r, A j 〉}) 6= ⊥ for some 〈r, A j 〉 ∈ S. In this case,
u1(S) is

2 min
〈r,A j 〉∈S : π(S\{〈r,A j 〉})6=⊥

σ(π(S \ {r, A j }))+ 1.

To complete the construction we fix Q(s)
1 = π−1(P(s)) and Q(t)

1 = π−1(P(t)). As before suppose that

∆ = 〈P(0), P(1) , . . . , P(d)〉

witnesses to 〈A,R, σ, P(s), P(t)〉 as a positive instance of 1-PATH. The sequence of allocations to B1,
〈Q(0)

1 , . . . , Q(d)
1 〉 with Q(i)

1 = π−1(P(i)) is IR by the argument used in part (a). Although this sequence is not 1-
bounded we can, however, modify it as follows. From the proof of part (a), we know that the deal 〈Q(i−1)), Q(i)

〉

is a 1-SWAP: let 〈r, A j 〉 ∈ Q(i−1)
1 and 〈r, Ak〉 ∈ Q(i−1)

2 be the resources swapped in order to form Q(i). The deal
〈Q(i−1)), Q(i)

〉 may be implemented by,

Q(i−1),0
1 = Q(i−1)

1
Q(i−1),1

1 = Q(i−1),0
1 ∪ {〈r, Ak〉}

Q(i−1),2
1 = Q(i−1),1

1 \ {〈r, A j 〉}

Q(i)
1 = Q(i−1),2

1 .

This defines a sequence of 1-bounded deals implementing 〈Q(i−1), Q(i)
〉. In addition

u1(Q
(i−1),0
1 ) = 2σ(π(Q(i−1)

1 ))

< 2σ(π(Q(i−1)
1 ))+ 1

= u1(Q
(i−1),1
1 )

< 2σ(π(Q(i)
1 ))

= u1(Q(i−1),2) = u1(Q
(i)
1 ).

Notice that u1(Q
(i−1),1
1 ) = 2σ(π(Q(i−1)

1 )) + 1, follows from the fact that there are exactly two choices of

〈r, A〉 ∈ Q(i−1),1
1 for which π(Q(i−1),1

1 \ {〈r, A〉}) 6= ⊥: one of these is 〈r, Ak〉; the other being 〈r, A j 〉. From the
premise that we have a positive instance of 1–PATH, it follows σ(P(i−1)) < σ(P(i)) so that

σ(P(i−1)) = σ(π(Q(i−1)
1 )) = σ(π(Q(i−1),1

\ {〈r, Ak〉}))

σ (P(i)) = σ(π(Q(i)
1 )) = σ(π(Q(i−1),1

\ {〈r, A j 〉})).

Thus, if 〈A,R, σ, P(s), P(t)〉 is a positive instance of 1–PATH then we can construct an IR 1-bounded path in the
instance 〈B,Rτ ,U, Q(s), Q(t)

〉 of IRO–PATH.
For the converse, given

〈Q(0), Q(1) , . . . , Q(d)
〉

establishing that 〈B,Rτ ,U, Q(s), Q(t)
〉 is accepted as an instance of IRO–PATH, it is easy to see that |Q(i)

1 | = |R| if

and only if i is even, with |Q(i)
1 | = |R| + 1 whenever i is odd. Furthermore, π(Q(2 j)

1 ) 6= ⊥, and

σ(π(Q(2( j−1))
1 )) = u1(Q

(2( j−1))
1 )/2 < u1(Q

(2 j)
1 )/2 = σ(π(Q(2 j)

1 )).
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By similar arguments used to those in part (a), from the fact that the deal 〈Q2( j−1), Q(2 j)
〉 must be an IR 1-SWAP we

deduce that 〈π(Q(2( j−1))
1 ), π(Q(2 j)

1 )〉 is a σ -rational 1-bounded deal. Hence if 〈B,Rτ ,U, Q(s), Q(t)
〉 is accepted as

an instance of IRO–PATH then 〈A,R, σ, P(s), P(t)〉 is a positive instance of 1–PATH, thus establishing that IRO-path
is PSPACE-complete. �

6. Convergence and accessibility

Our analyses of the preceding sections consider one effect of restricting agent negotiation methods. The main
focus being on the complexity of deciding whether a particular reallocation may be achieved. As we noted in the
introduction, such issues can be seen as addressing a rather localised property. In this section our aim is to consider
two different questions, one – Convergence – of a rather more “global” nature, the other – Accessibility – falling in
between the extremes represented by Convergence and the variants of Φ-PATH examined in Section 5. To clarify this
point we now give formal definitions of the problems Φ-Convergence and Φ-Accessibility. In the same style used in
defining Φ-PATH we give a version (for Φ-Accessibility) both in terms of evaluation measures and social welfare via
specific utility functions. For the decision problem Φ-Convergence, however, only the utility form is used, it being
possible to determine complexity bounds for this in a straightforward manner, i.e. without recourse to devices such as
those used in the proof of Theorem 14.

Recall that Φ(P, Q) is a predicate on deals and that a sequence of allocations

∆ = 〈P(0); P(1); . . . ; P(d−1)
; P(d)〉

is said to be a Φ-path for the deal 〈P(0), P(d)〉 if Φ(P(i−1), P(i)) holds for each 1 ≤ i ≤ d. We say that ∆ is a maximal
Φ-path if

∆ = 〈P(0); P(1); . . . ; P(d−1)
; P(d)〉 and ∀Q ∈ Πn,m ¬Φ(P(d), Q).

It is, of course, possible to choose Φ(P, Q) in such a way that maximal Φ-paths are not well-defined, e.g. consider
Φ1-bd(P, Q) the predicate which is true if and only if 〈P, Q〉 is 1-bounded. In this case, if Φ1-bd(P, Q) = > then
Φ1-bd(Q, P) = > so that 〈P; Q; P; Q; P; . . .〉 is a (non-terminating) Φ1-bd-path. For the instantiations of Φ(P, Q)
we consider – specifically ΦE

1-bd,σ -R and ΦU1-bd,IR
– infinite length paths cannot occur. More generally, if Φ satisfies

∀P, Q Φ(P, Q) ⇒ σ(Q) > σ(P) then there are no infinite Φ-paths.
For a maximal Φ-path ∆ we use last(∆) to denote the final allocation of R that results, i.e. P(d) in the notation

above.
Finally, for P ∈ Πn,m we denote by maxΦ(P) the set

maxΦ(P) = {∆ : ∆ is a maximal Φ-path starting from P}.

For Φ ∈ {ΦU1-bd,IR
,ΦE

1-bd,σ -R} we note that maxΦ(P) is never empty. If there is no allocation Q for which

Φ(P, Q) holds then maxΦ(P) = {〈P〉}, the path containing exactly one allocation. It is also the case, as shown in [4,
Thm. 3, p. 50], that there are example in which maxΦU

1-bd,IR
(P) contains exactly one path ∆ with |∆| = Ω(2m).

Φ-Convergence (denoted by Φ-CONV)
Instance: 〈A,R,U〉.
Question: Is it the case that

∀P ∈ Πn,m ∀∆ ∈ maxΦ(P) ∀Q ∈ Πn,m σu(last(∆)) ≥ σu(Q) ?

Less formally, Φ-CONV asks whether an instance 〈A,R,U〉 has the following property. Given any initial allocation
(P ∈ Πn,m), is it the case that regardless of which Φ-path ∆ is followed, one will always reach an allocation last(∆)
that maximises σu?
Φ-AccessibleE (denoted by Φ-ACCE)
Instance: 〈A,R, σ 〉 and P ∈ Πn,m
Question: Is it the case that

∃ ∆ ∈ maxΦ(P) such that ∀Q ∈ Πn,m σ(last(∆)) ≥ σ(Q) ?
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Φ-AccessibleU (denoted by Φ-ACCU )
Instance: 〈A,R,U〉 and P ∈ Πn,m
Question: Is it the case that

∃ ∆ ∈ maxΦ(P) such that ∀Q ∈ Πn,m σu(last(∆)) ≥ σu(Q) ?

We consider the special cases defined from the predicates ΦE
1-bd,σ -R and ΦU1-bd,IR

introduced at the end of Section 3.

In the specific cases of 1-bounded IR deals, both of these problems are of some practical interest: in settings yielding
positive instances of ΦU1-bd,IR

-CONV, it is guaranteed that starting from any allocation and following any sequence of

1-bounded IR deals from this will eventually end with an optimal allocation. Similarly, in the case of positive instances
of ΦU1-bd,IR

-ACCU , it will be known that some sequence of rational 1-bounded deals will lead to an optimal allocation.

Theorem 15. ΦU1-bd,IR
-CONV is coNP-complete.

Proof. To show ΦU1-bd,IR
-CONV is in coNP, given 〈A,R,U〉 it suffices to test whether the following predicate is true

of all pairs of allocations P , Q in Πn,m :

χ(P, Q) = (σu(P) < σu(Q)) ⇒ (∃ R such that ΦU1-bd,IR
(P, R)).

Certainly χ(P, Q) can be evaluated in deterministic polynomial-time since there are exactly m(n−1) 1-bounded deals
consistent with P . To see this algorithm correctly decides instances of ΦU1-bd,IR

-CONV, suppose 〈A,R,U〉 should be

accepted: then any allocation P ∈ Πn,m is either optimal (so χ(P, Q) always holds since the premise σu(P) < σu(Q)
is always false) or (if sub-optimal) cannot be last(∆) on any maximal ΦU1-bd,IR

-path, i.e. there is at least one IR

1-bounded deal 〈P, R〉 available.
On the other hand, suppose the instance 〈A,R,U〉 should not be accepted. Then there is some maximal ΦU1-bd,IR

-

path ∆, whose final allocation, last(∆) is sub-optimal. Since last(∆) is sub-optimal there is an allocation Q with
σu(last(∆)) < σu(Q): as a result χ(last(∆), Q) = ⊥ and such instances would fail to be accepted.

To prove coNP-hardness we use a reduction from UNSAT, an instance of which is a 3-CNF formula

ψ(x1, x2, . . . , xn) =

t∧
i=1

(yi,1 ∨ yi,2 ∨ yi,3)

where

yi, j ∈ {x1, x2, . . . , xn, ¬x1,¬x2, . . . ,¬xn}.

We say that a subset

S ⊆ {x1, x2, . . . , xn, ¬x1,¬x2, . . . ,¬xn}

is useful for ψ if |S| = n, S contains exactly one of each of the literals {xi ,¬xi }, and the instantiation formed by
setting each literal in S to > satisfies ψ .

Given ψ(x1, x2, . . . , xn), the instance 〈Aψ ,Rψ ,Uψ 〉 of ΦU1-bd,IR
-CONV has

Aψ = {a1, a2}

Rψ = {x1, x2, . . . , xn, ¬x1,¬x2, . . . ,¬xn}

Uψ = 〈u1, u2〉

with

u1(S) =

{
2n + 1 if S is useful for ψ
2|S| otherwise

u2(S) = |S|.
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We claim that ψ(x1, . . . , xn) is unsatisfiable if and only if 〈Aψ ,Rψ ,Uψ 〉 is accepted as an instance of ΦU1-bd,IR
-

CONV.
First observe that the allocation Popt

= 〈Rψ ; ∅〉 has σu(Popt ) = 4n, and every other allocation, Q, has
σu(Q) < 4n. Thus to complete the proof, it suffices to show that ψ is unsatisfiable if and only if every maximal
ΦU1-bd,IR

-path, ∆ within 〈Aψ ,Rψ ,Uψ 〉 has last(∆) = Popt .

Suppose ψ is unsatisfiable and consider any allocation 〈S,Rψ \ S〉. Since ψ is unsatisfiable, it follows that
u1(S) = 2|S| for every S ⊆ Rψ (since there are no subsets that are useful for ψ). Thus, the only IR 1-bounded
deals possible must involve a transfer of a single literal held by a2 to a1: any transfer from a1 to a2 reduces u1 by
exactly 2 while increasing u2 by exactly one. It follows that any maximal ΦU1-bd,IR

-path, ∆, from 〈S,Rψ \ S〉 has

last(∆) = 〈Rψ ,∅〉, i.e. if ψ is unsatisfiable then 〈Aψ ,Rψ ,Uψ 〉 is accepted as an instance of ΦU1-bd,IR
-CONV.

On the other hand, suppose that 〈Aψ ,Rψ ,Uψ 〉 is accepted as an instance of ΦU1-bd,IR
-CONV. We show that ψ

must be unsatisfiable. Assume the contrary, letting {y1, . . . , yn−1, yn} be a set of n literals whose instantiation to >

satisfies ψ . Now consider the allocation

P = 〈{y1, . . . , yn−1};Rψ \ {y1, . . . , yn−1}〉.

We have σu(P) = 2n−2+n+1 = 3n−1. Consider the 1-bounded deal 〈P, Q〉 under which yn is transferred from a2
to a1. For this, since the set {y1, . . . , yn−1, yn} is useful we get σu(Q) = 2n+1+n = 3n+1, so that 〈P, Q〉 is IR. Any
subsequent 1-bounded deal 〈Q, Q′

〉, will not, however, be IR: we have seen that this must involve a single resource
transfer from a2 to a1, but then σu(Q′) = 2n + 2 + n − 1 = 3n + 1 with no increase in welfare, contradicting the
premise that 〈Aψ ,Rψ ,Uψ 〉 is accepted as an instance of ΦU1-bd,IR

-CONV. We deduce that the assumption that ψ is

satisfiable cannot hold, i.e. if 〈Aψ ,Rψ ,Uψ 〉 is accepted as an instance of ΦU1-bd,IR
-CONV. thenψ is unsatisfiable. �

Thus, in contrast to IRO-PATH considered in Theorem 14(b), whose complexity is PSPACE-complete, the (superficially)
more difficult question represented by ΦU1-bd,IR

-CONV. is coNP-complete, i.e. under the usual assumptions

significantly easier. This reduced complexity is easily accounted for by the properties of the predicate χ(P, Q) used
in the proof. We note that χ(P, Q) is polynomial-time decidable by virtue of there being only a “small” (polynomially
many) number of cases to consider, i.e. 1-bounded deals compatible with the allocation P . If, however, we consider Φ-
CONV when Φ(P, Q) is such that there may be superpolynomially many Φ-deals compatible with any given P , then
although we cannot guarantee coNP as an upper bound, provided that Φ(P, Q) itself is polynomial-time decidable,
Φ-CONV is (“at worst”) in Π p

2 , i.e. still somewhat easier than Φ-PATH. To see this, it suffices to note that the following
predicate, χ ′(P, Q) is decidable by an NP algorithm:

χ ′(P, Q) ≡ (σu(P) < σu(Q)) ⇒ ∃ R ∈ Πn,m : Φ(P, R) ∧ (σu(R) > σu(P)).

Turning to the problem, Φ-ACCU , notice that we have the following progression

Problem Number of allocations in Instance Complexity
ΦU1-bd,IR

-PATH 2 PSPACE-complete

ΦU1-bd,IR
-ACCU 1 See below

ΦU1-bd,IR
-CONV 0 coNP-complete

Thus, in principle, we could hope that the classification of ΦU1-bd,IR
− ACCU is “closer” to that of ΦU1-bd,IR

-CONV In

practice, as demonstrated in the following results, such hopes turn out to be ill-founded.

Theorem 16. ΦE
1-bd,σ -R-ACCE is PSPACE-complete.

Proof. For membership in PSPACE, given 〈〈A,R, σ 〉, P〉 we may use an NPSPACE algorithm, similar to that of
Theorem 11, to choose last(∆), for some ∆ ∈ maxΦ(P). We may then test, in PSPACE, whether σ(last(∆)) ≥ σ(Q)
for every Q ∈ Πn,m accepting if and only if this is the case. Noting that NPSPACE = PSPACE completes the argument.

To establish ΦE
1-bd,σ -R-ACCE is PSPACE-hard, we show that ACS ≤p ΦE

1-bd,σ -R-ACCE. Given an instance

〈C, 〈x, y〉, 〈z, w〉〉 of ACS we form an instance 〈〈AC ,RC , σ
′
〉, P(C)〉 of ΦE

1-bd,σ -R-ACCE. This instance is identical
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to that described in the proof of Theorem 13 except for the following details: P(C) = P(s) the source allocation in the
construction of Theorem 13; σ ′ is defined via

σ ′(Q) =

{
−2 if σ(Q) > σ(P(t)) or σ(Q) = σ(P(t)) and Q 6= P(t).
σ(Q) otherwise.

This modification ensures that the allocation, P(t), in the proof of Theorem 13 is the unique allocation which
maximises σ ′. We now have, by exactly the same argument, that an optimal allocation is accessible from P(C) if
and only if 〈C, 〈x, y〉, 〈z, w〉〉 is a positive instance of ACS. �

Corollary 17. ΦU1-bd,IR
− ACCU is PSPACE-complete.

Proof. Immediate by applying the translation of Theorem 14(b) to instances of ΦE
1-bd,σ -R-ACCE. �

7. Conclusions

The negotiation questions analysed in Theorem 14, consider environments in which agents may independently
assess their resource holdings and attempt to obtain a “better” resource set by agreeing reallocations with other agents.
In the most basic case, where only two agents are involved, extremely simple protocols15 are sufficiently expressive
to agree a partition of the resource set. Such schemes, even when limited to one resource at a time deals, are capable
of achieving optimal (in the sense of maximising social welfare) allocations, provided that neither agent insists that
given deals be IR. As we observed in the discussion opening Section 3, it is in the extreme case where rationality
constraints are introduced, that significant problems arise with simple negotiation regimes. Some reallocations may
be unrealisable, as demonstrated by [13]. Even if a particular reallocation can be realised by a sequence of 1-bounded
rational deals, the number of deals involved may be exponentially larger than the number of 1-bounded deals required
without the rationality condition imposed. Finally, deciding if such a sequence exists at all, a problem already known
to be NP-hard from [6], is, in fact, (under the standard assumptions) unlikely even to belong to NP: Theorem 14 (b)
proving this decision problem to be PSPACE-complete. Although we do not develop the proofs in detail here, it is
straightforward to demonstrate that this level of complexity is not a property limited to negotiations attempting to
improve social welfare. For example, when the notion of 〈P, Q〉 being “rational” is that of “cooperative rationality”,
then deciding if 〈P(s), P(t)〉 is realisable by a sequence of 1-bounded, cooperatively rational deals is also PSPACE-
complete.16

To conclude we raise some open questions relating to the computational complexity of the decision problems
addressed when alternative formalisms are used for representing utility functions. We have noted that the SLP

representation is general enough to describe any set of utility functions and can do so via a program of length
comparable to the run-time of an optimal algorithm to compute the function’s value. A number of alternative
representation approaches have been proposed. While these are not being completely general they are of interest
as compact representations. In particular, [7,2] introduced the class of k-additive functions as such a mechanism
(Table 1).

A function f : 2R → Q is said to k-additive if there are constants

{αT : T ⊆ R, |T | ≤ k}

for which

∀S ⊆ R f (S) =

∑
T ⊆R : |T |≤k

αT · IT (S)

where IT (S) is the indicator function whose value is 1 if T ⊆ S and 0 otherwise.
When k = O(1), i.e. a constant, k-additive functions may be represented by the O(mk) values defining the

characterising set of constants {αT }. It is, of course, the case that for any constant value of k, there will be functions

15 For example, allowing an agent to make offers to buy/sell a single resource for a given price; to accept offers; and to decline these.
16 This is a trivial consequence of the fact that u2(S) = 0 in the reduction presented in Theorem 14 (b).
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Table 1
Complexity of negotiation properties for
2-additive utility functions

Problem Proven complexity

ΦU1-bd,IR
-CONV coNP-complete

ΦU1-bd,IR
-ACCU NP-hard

ΦU1-bd,IR
-PATH Open

that cannot be expressed in k-additive form. In the special case of k = 1, it is shown in [2], that ΦU1-bd,IR
-CONV is

trivial: every system 〈A,R,U〉 in which each ui is 1-additive, is a priori a positive instance of ΦU1-bd,IR
-CONV. For

k ≥ 2, however, the status of other decision problems is less clear. Thus, for k = 2, determining exact bounds for the
accessibility and reachability problems when utility functions are 2-additive is likely to present significant problems.
In particular, we have one unresolved issue which affects whether ΦU1-bd,IR

-PATH belongs to NP for this case. Thus,

Dunne [4], introduces the following measures related to Φ-paths.

• Lopt (P, Q): the length of the shortest Φ-path realising 〈P, Q〉.
• Lmax(A,R,U): the maximum value of Lopt (P, Q) over those deals for which a Φ-path exists.
• ρmax(n,m): The maximum value (taken over all choices of utility function) of Lmax(A,R,U).
• ρmax

C (n,m): As ρmax, but with the maximisation taken over utility functions belonging to some class C .

In the case of ΦU1-bd,IR
(P, Q), the function ρmax(2,m) is shown to be exponential in m, a result which provides

indications – justified by Theorem 14(b) – that ΦU1-bd,IR
-PATH 6∈NP. It is open, however, as to whether ρmax

2-add(2,m) is

superpolynomial in m. A proof to the contrary, i.e that ρmax
2-add(2,m) = O(m p) with p = O(1) would in the light of

Theorem 14(b) have some consequences of interest: both the accessibility and reachability problems for such utility
functions would belong to NP. This contrasts with the PSPACE-hardness lower bounds for the general case that have
been the basis of the main results of this paper.
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Appendix. σ -rational, 1-bounded deals in the proof of Theorem 13

For completeness we present in this appendix the case analysis concerning one aspect of the proof of Theorem 13.
This arises in the argument that

〈AC ,RC , σ, P(s), P(t)〉 ∈ L1-PATH ⇒ 〈C, 〈x, y〉, 〈z, w〉〉 ∈ LACS.

In particular, given P ∈ Π5,4(n+m)+1 satisfying at least one of the conditions (C1) through (C6) listed above, we
precisely characterise those allocations, Q, for which 〈P, Q〉 is σ -rational and 1-bounded.

We first note that P satisfies exactly one of the following:

a. C1(P) ∧ ¬C2(P) d. C4(P) ∧ ¬C5(P)
b. C2(P) e. C5(P)
c. C3(P) f. C6(P).

(1)

As a second point, although AC has five agents and thus there are 20 possible choices for the combination of agent
from whom a resource is transferred and to whom this resource is reallocated, in practice the 8 choices arising from〈A2, A3〉, 〈A3, A2〉,

〈A1, A5〉, 〈A2, A5〉, 〈A3, A5〉

〈A5, A1〉, 〈A5, A2〉, 〈A5, A3〉

 , (2)
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Table 2
1-bounded, rational successors of P

Line P satisfies From To Q satisfies Conditions

1 C1(P) ∧ ¬C2(P) A2 A4 C1(Q) ∧ ¬C2(Q) Q4 ⊂ DIFFV (Q
V
1 ,C(β(QW

1 )))

2 C1(P) ∧ ¬C2(P) A2 A4 C2(Q) Q4 = DIFFV (Q
V
1 ,C(β(QW

1 )))

3 C2(P) A1 A2 C2(Q) |PV
1 | > n + m − |P4|

4 C2(P) A5 A4 C3(Q) |PV
1 | = n + m − |P4|

5 C3(P) A4 A1 C3(Q) |PV
1 | < n + m

6 C3(P) A4 A5 C4(Q) |PV
1 | = n + m

7 C4(P) ∧ ¬C5(P) A3 A4 C4(Q) ∧ ¬C5(Q) Q4 ⊂ DIFFW (Q
W
1 , β(Q

V
1 ))

8 C4(P) ∧ ¬C5(P) A3 A4 C5(Q) Q4 = DIFFW (Q
W
1 , β(Q

V
1 ))

9 C5(P) A1 A3 C5(Q) |PW
1 | > n + m − |P4|

10 C5(P) A5 A4 C6(Q) |PW
1 | = n + m − |P4|

11 C6(P) A4 A1 C6(Q) |PW
1 | < n + m

12 C6(P) A4 A5 C1(Q) |PW
1 | = n + m

need not be considered. If P satisfies the conditions described in (1) then a 1-bounded deal transferring a resource
from Ai to A j with 〈Ai , A j 〉 defined by (2), results in an allocation that fails at least one of the conditions (B1)–(B6)
presented in the proof17 of Theorem 13.

Given P satisfying (1), Table 2 characterises possible choices for Q such that 〈P, Q〉 is σ -rational and 1-bounded.
We wish to show that if the instance of 1-PATH constructed from 〈C, 〈x, y〉, 〈z, w〉〉 is accepted then every 1-

bounded, σ -rational path witnessing this must progress (from P = P(s)) according to the sequence specified in
Table 2, where we note that P(s) satisfies C1(P(s)) ∧ ¬C2(P(s)).

For ease of reference we recall the conditions (B1)–(B6) and (C1)–(C6) which must be satisfied in order for P to
have σ(P) ≥ 0

B1. Q1 ⊆ RV
∪RW .

B2. Q2 ⊆ RV .
B3. Q3 ⊆ RW .
B4. QV

4 = ∅ or QW
4 = ∅.

B5. Q5 ⊆ {µ}, i.e. either Q5 = ∅ or Q5 = {µ}.
B6. For X ∈ {V,W }, if Q X

i 6= ∅ then for all j , {x j ,¬x j } 6⊆ Q X
i .

C1. β(QV
1 ) = β(QW

1 ) and Q4 ⊆ DIFFV (QV
1 ,C(β(QW

1 ))).
C2. β(QV

1 ⊗ QV
4 ) = C(β(QW

1 )) and Q4 = DIFFV (QV
1 ,C(β(QW

1 ))).
C3. β(QV

1 ∪ QV
4 ) = C(β(QW

1 )) and µ ∈ Q4.
C4. β(QV

1 ) = C(β(QW
1 )) and Q4 ⊆ DIFFW (QW

1 , β(Q
V
1 )).

C5. β(QV
1 ) = β(QW

1 ⊗ QW
4 ) and Q4 = DIFFW (QW

1 , β(Q
V
1 )).

C6. β(QV
1 ) = β(QW

1 ∪ QW
4 ) and µ ∈ Q4.

Similarly, we recall that σ(Q) is given as,

C1 2 Kmnvalm(β(QW
1 )) +|Q4|

C2 2 Kmnvalm(β(QW
1 )) +|Q4| +n + m − |QV

1 |

C3 Kmnvalm(β(QW
1 ))+ Kmnvalm(C(β(QW

1 ))) −|Q4|

C4 2 Kmnvalm(β(QV
1 )) +|Q4| − 2 −3|DIFFW (QW

1 , β(Q
V
1 ))|

C5 2 Kmnvalm(β(QV
1 )) −2|Q4| − 2 +n + m − |QW

1 |

C6 2 Kmnvalm(β(QV
1 )) −|Q4|

with all other allocations having σ(Q) = −1.

17 We recall that σ(Q) ≥ 0 only if Q satisfies these six conditions.
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We proceed by a case analysis of the different possibilities, where we use from(P) to denote the agent from which
a resource is transferred, to(Q) for the agent receiving this resource in the 1-bounded deal 〈P, Q〉, and rP ∈ RC to
denote the featured resource. We note that it suffices to present the analysis with respect to lines (1)–(6) of Table 2:
lines (7) through (12) follow through a near identical argument.

Let 〈P, Q〉 be 1-bounded. Given the cases identified already in (2) we have the following.

Case 1: C1(P) ∧ ¬C2(P)

1(a) from(P) = A1; to(Q) = A2
If rP ∈ RW then Q fails to satisfy (B2), so we may assume rP = v ∈ PV

1 . Since C1(P) ∧ ¬C2(P) holds, such
a transfer will result in β(QV

1 ) being ill-defined, a situation which is only allowed in (C2) and (C3): C3(Q) is
ruled out since µ 6∈ Q4; C2(Q) requires β(QV

1 ⊗ Q4) to be well-defined and equal to C(β(QW
1 )), but where this

is the case then ¬v ∈ Q4 = P4 and hence P4 = DIFFV (PV
1 ,C(β(PW

1 ))), contradicting the assumption ¬C2(P).

1(b) from(P) = A2; to(Q) = A1
In this case Q fails to satisfy (B6) with respect to the subset QV

1 .

1(c) from(P) = A1; to(Q) = A3
If rP ∈ PV

1 then Q fails (B3). If rP ∈ PW
1 then β(QW

1 ) is ill-defined, a state only allowed with C6(Q) or C5(Q).
The first cannot hold since µ 6∈ P4. The second is impossible also: Q4 = P4 and therefore QW

4 = ∅ ensuring
that QW

1 ⊗ QW
4 is ill-defined.

1(d) from(P) = A3; to(Q) = A1
For this case, Q fails to satisfy (B6) with respect to the subset QW

1 .

1(e) from(P) = A1; to(Q) = A4
If rP ∈ PV

1 then β(QV
1 ) will be ill-defined and since µ 6∈ Q4 by virtue of the fact that C1(P) ∧ ¬C2(P), the

only possible condition that Q could satisfy is (C2), i.e. Q4 = DIFFV (QV
1 ,C(β(QW

1 ))) and β(QV
1 ⊗ Q4) =

C(β(QW
1 )). Let v = rP . If ¬v ∈ Q4 then Q fails to meet condition (B6). It now follows, from C2(Q) that

QV
1 ⊗ Q4 = PV

1 ⊗ P4, i.e. P4 = DIFFV (PV
1 ,C(β(PW

1 ))) contradicting the assumption ¬C2(P).

If rP ∈ PW
1 then from the fact that C1(P) ∧ ¬C2(P), β(QW

1 ) will be ill-defined, and since µ 6∈ P4 the only
possibility is that C5(Q) holds, and thus Q4 = {rP } = DIFFW (QW

1 , β(Q
V
1 ): notice that P4 must be empty (as

is implied by Q4 = {rP }), for otherwise Q would breach condition (B4) on account of QV
4 6= ∅ and QW

4 6= ∅.
Comparing σ(P) with σ(Q) in this case, however, it is easily seen that 〈P, Q〉 cannot be σ -rational. Noting that
PV

1 = QV
1 and β(PV

1 ) = β(PW
1 ) we have,

σ(P) = 2Kmnvalm(β(PV
1 ))

σ (Q) = 2Kmnvalm(β(PV
1 ))− 2|Q4| − 2 + (n + m − |QW

1 |)

= 2Kmnvalm(β(PV
1 ))− 3.

1(f) from(P) = A4; to(Q) = A1
In this case noting that P4 ⊂ DIFFV (PV

1 ,C(β(PW
1 ))), via Lemma 1(a) and C1(P) the resulting allocation would

fail to satisfy (B6) with respect to the set QV
1 .

1(g) from(P) = A2; to(Q) = A4
Discussed at the end of Case 1.

1(h) from(P) = A4; to(Q) = A2
Given C1(P) ∧ ¬C2(P), C1(Q) can hold, however, 〈P, Q〉 cannot be σ -rational:

σ(P) = 2Kmnvalm(β(PV
1 ))+ |P4|

σ(Q) = 2Kmnvalm(β(PV
1 ))+ |Q4|

= 2Kmnvalm(β(PV
1 ))+ |P4| − 1.
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1(i) from(P) = A3; to(Q) = A4
If P4 6= ∅ then from C1(P), Q will fail condition (B4). Again, from C1(P) both β(PV

1 ) and β(PW
1 ) are well

defined and, thus, the only option open for Q is that C4(Q). In this case, however, 〈P, Q〉 cannot be σ -rational:

σ(P) = 2Kmnvalm(β(PV
1 ))

σ (Q) ≤ 2Kmnvalm(β(PV
1 ))+ |Q4| − 2

≤ 2Kmnvalm(β(PV
1 ))− 1.

1(j) from(P) = A4; to(Q) = A3
In this case, Q fails to satisfy (B3).

1(k) from(P) = A4; to(Q) = A5
From the fact that µ 6∈ P4, Q would breach (B5).

1(l) from(P) = A5; to(Q) = A4
The only options allowing µ ∈ Q4 are C3(Q) and C6(Q). In the first of these it must be the case that QV

4 = ∅

for otherwise β(QV
1 ∪ QV

4 ) is ill-defined. In this case, however, since Q1 = P1, we get from C1(P) that
β(PV

1 ) = β(PW
1 ) = C(β(PW

1 )). It now follows that 〈P, Q〉 is not σ -rational

σ(P) = 2Kmnvalm(β(PW
1 ))

σ (Q) = Kmnvalm(β(PW
1 ))+ Kmnvalm(C(β(PW

1 )))− |Q4|

= 2Kmnvalm(β(PW
1 ))− 1.

We are left only with Case 1(g) – from(P) = A2 and to(Q) = A4 – corresponding to the first two lines of Table 2 – and
in order to preserve σ(Q) ≥ 0 the only choice available for rP is to as a member of the set DIFFV (PV

1 ,C(β(PW
1 )))\P4.

Notice that, from ¬C2(P) this set is non-empty. We now have two possibilities for Q: C1(Q)∧¬C2(Q), arising when

rP ∪ P4 = Q4 ⊂ DIFFV (P
V
1 ,C(β(PW

1 ))) = DIFFV (Q
V
1 ,C(β(QW

1 )))

and

rP ∪ P4 = Q4 = DIFFV (P
V
1 ,C(β(PW

1 ))) = DIFFV (Q
V
1 ,C(β(QW

1 ))).

The first is line (1) of Table 2; the second corresponds to line (2).

Case 2: C2(P)

2(a) from(P) = A1; to(Q) = A2
This is discussed at the end of Case 2.

2(b) from(P) = A2; to(Q) = A1
Although Q could satisfy (C2), the resulting deal would not be σ -rational: |QV

1 | > |PV
1 and |Q4| = |P4|.

2(c) from(P) = A1; to(Q) = A3
If rP ∈ PV

1 then Q fails condition (B3). If rP ∈ PW
1 , then β(QW

1 ) is ill-defined. In this case, however, C6(Q)
cannot hold (since µ 6∈ P4), and C5(Q) cannot hold: from C2(P), we have QW

4 = ∅ and thus QW
1 ⊗ QW

4 is
ill-defined also.

2(d) from(P) = A3; to(Q) = A1
From C2(P) is follows that β(PW

1 ) is well-defined, but this would fail to be the case for QW
1 which would have

size n + m + 1.
2(e) from(P) = A1; to(Q) = A4

From C2(P) we have P4 = DIFFV (PV
1 ,C(β(PW

1 ))), thus to retain B6(Q) (with respect to Q4) and B4(Q),
would require

rP ∈ β−1
V (β(PW

1 )) ∩ β−1
V (C(β(PW

1 ))).

The resulting allocation, however, satisfies neither (C5) (µ 6∈ Q4) nor (C2) as Q4 6= DIFFV (QV
1 ,C(β(QW

1 ))): Q
must satisfy one of these as β(QV

1 ), is ill-defined.
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2(f) from(P) = A4; to(Q) = A1
Similarly to 2(b), although Q could satisfy (C2), the resulting deal would not be σ -rational: |QV

1 | > |PV
1 and

|Q4| < |P4|.
2(g) from(P) = A2; to(Q) = A4

From C2(P), P4 = DIFFV (PV
1 ,C(β(PW

1 ))): since Q4 6= DIFFV (QV
1 ,C(β(QW

1 ))), Q cannot satisfy any of (C1)
through (C6).

2(h) from(P) = A4; to(Q) = A2
The resulting allocation could satisfy C1(Q) ∧ ¬C2(Q) (if |PV

1 | = n + m), however, 〈P, Q〉 would not be
σ -rational: σ(Q) = σ(P)− 1.

2(i) from(P) = A3; to(Q) = A4
If P4 6= ∅ then Q fails to satisfy (B4). Otherwise, from C2(P) we have DIFFV (PV

1 ,C(β(PW
1 ))) = ∅, i.e.

β(PV
1 ) = C(β(PW

1 )) = β(PW
1 ).

In this case, however, PV
1 = QV

1 , PW
1 = QW

1 and both β(PV
1 ) and β(PW

1 ) are well-defined and from

β(PV
1 ) = C(β(PW

1 )) = β(PW
1 )

it follows that DIFFW (QW
1 , β(Q

V
1 )) = ∅ so that C4(Q) cannot hold.

2(j) from(P) = A4; to(Q) = A3
If P4 6= ∅ then C2(P) would lead to Q failing to satisfy (B3). If P4 = ∅ then no transfer from A4 to A3 is
possible.

2(k) from(P) = A4; to(Q) = A5 Since µ 6∈ P4 as a consequence of C2(P), any such transfer would result in Q
failing to satisfy (B5).

2(l) from(P) = A5; to(Q) = A4
Dealt with below.

With the exception of Cases 2(a) and 2(l) each of the possible 1-bounded deals from P results in an allocation Q such
that the deal 〈P, Q〉 fails to be σ -rational. For 2(a) – in which from(P) = A1 and to(Q) = A2 – we need only note
that rP ∈ PV

1 (in order that (B2) is satisfied) and, for the conditions governing (C2) to continue to be true of Q, it
must be the case that

rP ∈ PV
1 \ β−1

V (C(β(PW
1 ))).

Such a choice of rP is possible if and only if C2(P) with |PV
1 | > n + m −|P4

1 |, i.e. exactly the preconditions relevant
for line (3) of Table 2. Case 2(l), with from(P) = A5 and to(Q) = A4, has only rP = µ as an option. The resulting
allocation, Q, given that C2(P) holds, will satisfy C3(Q) if and only if β(QV

1 ∪ QV
4 ) is well-defined and equal to

C(β(QW
1 )): this is possible only in the conditions prescribed by line (4) or Table 2.

Case 3: C3(P)

We first recall the additional condition imposed in order that C3(P) holds. For

f = β(PW
1 )

g = C(β(PW
1 ))

valm(g) > valm( f ). This is useful for dealing with Case 3(k).

3(a) from(P) = A1; to(Q) = A2
As with previous cases, we must have rP ∈ PV

1 or B2(Q) fails. From C3(P), however, we still have
µ ∈ Q4 leaving only the option C3(Q): this, however, cannot hold since β(PV

1 ∪ PV
4 ) is well-defined but

β(QV
1 ∪ QV

4 ) = β(PV
1 \ {rP } ∪ PV

4 ) is not.
3(b) from(P) = A2; to(Q) = A1 In the same way as the previous case, fromµ ∈ Q4, β(QV

1 ∪QV
4 )will be ill-defined.
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3(c) from(P) = A1; to(Q) = A3 We may assume rP ∈ PW
1 (otherwise (B3) fails to hold). As a result we have

µ ∈ Q4 and β(QW
1 ) ill-defined. From C3(P), QW

4 = ∅, and so the resulting allocation is unable to satisfy (C6)
the only option open.

3(d) from(P) = A3; to(Q) = A1 Again from C3(P), the instantiation β(PW
1 ) is well-defined: this will not be the

case, however, for β(PW
1 ∪ {rP }), i.e. β(QW

1 ).

3(e) from(P) = A1; to(Q) = A4
Although C3(Q) will hold, provided that rP ∈ PV

1 , the deal 〈P, Q〉 will not be σ -rational: |P4| < |Q4| thus
σ(P) = σ(Q)+ 1 using the evaluation condition for (C3).

3(f) from(P) = A4; to(Q) = A1
Considered at the end of Case 3.

3(g) from(P) = A2; to(Q) = A4 Such a transfer will result in β(QV
1 ∪ QV

4 ) being ill-defined.

3(h) from(P) = A4; to(Q) = A2 Similarly, such a transfer results in β(QV
1 ∪ QV

4 ) being ill-defined.

3(i) from(P) = A3; to(Q) = A4
From C3(P) it holds that µ ∈ Q4: if Q4 6= {µ} then (B6) fails to hold with respect to Q4; on the other hand,
if QV

4 = ∅, then β(QW
1 ∪ QW

4 ) is ill-defined thereby preventing the option C6(Q) from the fact that β(PW
1 ) is

well-defined.
3(j) from(P) = A4; to(Q) = A3

Any choice of rP ∈ P4 results in Q3 not satisfying (B3).
3(k) from(P) = A4; to(Q) = A5

Considered below.
3(l) from(P) = A5; to(Q) = A4

Given C3(P) we have P5 = ∅ and thus no such transfer is possible.

The remaining two cases are 3(f) (from(P) = A4, to(Q) = A1) and 3(k) (from(P) = A4; to(Q) = A5). In the first
of these, given that rP 6= µ (condition (B1) must hold for Q), we have the case described by line (5) of Table 2. In
the second, from (B5) the only choice is rP = µ. If it is the case that Q4 6= ∅, then the resulting allocation, Q, would
satisfy (C2): now recalling that C3(P) enforces,

valm(C(β(P
W
1 ))) > valm(β(P

W
1 ))

were it the case that Q4 6= ∅ and C2(Q) the deal 〈P, Q〉 would not be σ -rational,

σ(Q) ≤ 2Kmnvalm(β(QW
1 ))+ |Q4| + n + m

= 2Kmnvalm(β(PW
1 ))+ |P4| − 1 + n + m

< Kmnvalm(β(PW
1 ))+ Kmnvalm(C(β(PW

1 )))− |P4|

= σ(P).
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