
1

2008 1COMP114 – Experimental
Methods in Computing

COMP114
Experimental Methods in

Computing

Methodologies for
Experimental Design

2008 2COMP114 – Experimental
Methods in Computing

Applications of Experiments in Computing

Testing
(Program Correctness)

Evaluation
(Programs, Algorithms, Systems)

2

2008 3COMP114 – Experimental
Methods in Computing

Applications of Experiments in Computing

• These are different activities –
Different aims

Distinct methodologies
• This module will mainly deal with

experimental issues as arising in “evaluation”.
• For completeness, a brief overview of the

main distinction between “testing” and
“evaluating” is given.

2008 4COMP114 – Experimental
Methods in Computing

Experiment design for Testing

Qn: What does “testing a program” aim
to achieve?

• Consider a ‘typical’ program, P, e.g.
solution to COMP101 exercise.

• Programs are created in order to “do
something”

• This aspect raises several questions.

3

2008 5COMP114 – Experimental
Methods in Computing

Experiment design for Testing

Q: How is it shown that P does what it should?
A: A description (specification) of how the

program should behave has been given. If
the program “meets the specification” then it
is a “correct program”.

• Notice that (unless explicitly indicated in the
specification) performance criteria (run-time,
etc.) are not relevant.

2008 6COMP114 – Experimental
Methods in Computing

Testing Summary

• Program outputs results for all inputs.
• Output returned is what is required by

specification.
• Program treats “extreme” or “incorrect”

data in a “robust” manner.
Ø Describe minimum levels of testing.

4

2008 7COMP114 – Experimental
Methods in Computing

Where do “experiments” come in?

• Input/Output behaviour.
• Checking execution paths.
Ø Reason 1: in “non-trivial” cases it is not feasible to

check that every valid input is treated correctly.
Ø Reason 2: it is not feasible to check every sequence

of steps a program might execute.
Ø One solution: perform a number of experimental tests

with the aim of finding errors.
Ø Note: Testing can prove that errors are present; it

cannot show they are absent.

2008 8COMP114 – Experimental
Methods in Computing

Experiment design for Evaluating

Qn: How do we deal with assertions
such as the following?

a. P is a “better solution” than Q.
b. P produces “good quality” results.
c. Typical users would feel “more

comfortable” using P than Q.

5

2008 9COMP114 – Experimental
Methods in Computing

Examples

a. One program produces results quicker than
another for the same task, e.g. sorting a list
of numbers into order.

b. A program for scheduling deliveries of
packages to widely separated locations
produces schedules whose overall delivery
time is minimised.

c. Users prefer Mozilla as a web browser to
Internet Explorer or Netscape Navigator.

2008 10COMP114 – Experimental
Methods in Computing

Evaluation

• The nature of such assertions is quite
different from that of “P is correct”.

• These make claims about “quality” of
solutions.

• While (a) and (b) may sometimes be dealt
with by formal analysis – e.g. counting
number of operations for (a) – this may be
extremely hard in general.

• Claims such as (c) can not be dealt with by
any type of “rigorous mathematical proof”.

6

2008 11COMP114 – Experimental
Methods in Computing

Experiment to evaluate solutions.

• General approaches
a. Conduct a number of test runs of both programs

using identical data. Monitor “time” taken by each.
b. Examine the delivery schedules produced by the

program when it is tested on cases for which the
“best schedule” is already known.

c. Construct a questionnaire to be completed by users
and analyse the responses from an “unbiased”
sample of these, e.g. standard opinion poll
methods.

2008 12COMP114 – Experimental
Methods in Computing

Experiment to evaluate solutions.

• Notice that the techniques in dealing with (c)
are quite different from those in (a) and (b).

• In Computing fields such as Human-
Computer Interaction, the design of such
experiments is an important area of study.

• In contrast, experimental studies for (a) and
(b) have several features in common.

• We will, in general, deal with experiments
related to such “quantitative” issues.

7

2008 13COMP114 – Experimental
Methods in Computing

Experimental Methodology – Review

• Rationale – reason for experiment?
• Repeatable – similar results each time?
• Data used – is this “realistic”?
• Analysis of outcome – is this “correct”?
• Scalability – outcome for “large” data?

2008 14COMP114 – Experimental
Methods in Computing

Rationale for experiment

• Experimental studies aim to present
evidence supporting hypotheses.

• For example,
That an algorithm is efficient

That its outputs are good solutions
That it “does better” than alternatives

and so on …

8

2008 15COMP114 – Experimental
Methods in Computing

Rationale for experiment

• The reasons for conducting the experiment
must be clearly understood.

• Otherwise,
Its results may be misinterpreted

Data used may be unsuitable
Inappropriate measures may be used

• Careful formulation of the hypothesis being
tested is a key aspect of experiment design.

2008 16COMP114 – Experimental
Methods in Computing

What next? – experimental runs.

• Given a program, P, and hypothesis, H,
about P

• the accuracy of this hypothesis is to
tested by running a set of experiments.

• In doing this, data on which the program
will be assessed must be chosen.

9

2008 17COMP114 – Experimental
Methods in Computing

Choice of experimental data.

• Some options –
Exactly one input case

Many different inputs (but all same ‘size’)
Generate random data
“benchmark” problems

2008 18COMP114 – Experimental
Methods in Computing

Choice of experimental data.

• Little can be concluded about how well
the experiment supports the hypothesis
in the first case.

• The second could be reasonable if the
hypothesis tested deals with exactly
such data.

• The final two methods are often used.

10

2008 19COMP114 – Experimental
Methods in Computing

Experimental data – benchmarks

• So called benchmarks offer collections of
data with which the performance of different
approaches to the same problem can be
compared.

• Benchmark suites often include data sets that
have proven to be particularly challenging.

• This provides a useful standard for assessing
performance of algorithms for “hard”
computational problems.

2008 20COMP114 – Experimental
Methods in Computing

Experimental data – random data

• Motivated by idea that “typical program
behaviour” – i.e behaviour “on average”
– should be estimated using “typical
data sets”.

• “typical data” = “generated randomly”
• Widely used as approach to evaluating

proposed solutions.

11

2008 21COMP114 – Experimental
Methods in Computing

Random data – important issues

• “random” (statistical sense) is not always the
same as “typical” (form most likely to be seen
in practice).

• Constructing random data sets (with various
properties) may be non-trivial.

• Ensuring results obtained are not just
“coincidences” – i.e the notions of
“significance” and “confidence”

• We will look in more depth at these later in
the module.

2008 22COMP114 – Experimental
Methods in Computing

Analysing Results of Experiment

• Key question: do the results support or
conflict with the hypothesis the
experiment was set up to investigate?

• “yes” – how is this justified?, how should
results be presented convincingly?,
were “enough” trials carried out?, etc

• “no” – do the results obtained suggest
an alternative hypothesis to test?

12

2008 23COMP114 – Experimental
Methods in Computing

Presentation of results

• Describe exact hypothesis considered.
• Method used to investigate it.
• Basis for concluding hypothesis is

“reasonable” given the results obtained
by experiment.

2008 24COMP114 – Experimental
Methods in Computing

Presentation of results
• For example –
• Graphical methods

Bar-charts, Plots
e.g. for hypotheses about run-time,
X-axis :– range of data sizes
Y-axis :– run-time (average/worst/best)

• If random data used then full detail needs to discuss
– number of trials, statistical features, how data was
generated, justification that “random generation”
methods are “reasonable”

13

2008 25COMP114 – Experimental
Methods in Computing

An example – random ordering
• Recall from COMP109 that a permutation of

the numbers
<1,2,3,…,n>

is an ordering of these as
<p1,p2,p3,…,pn>

with each number between 1 and n occurring
exactly once. For example,

<3,5,1,4,2,6>
is a permutation of

<1,2,3,4,5,6>

2008 26COMP114 – Experimental
Methods in Computing

Example continued

• One component used often in
experimental studies is a method to
carry out the following task:
Random Permutation
Input: n (a positive integer)
Output: [r1,r2,r3,….,rn] (a random
permutation of [1,2,3,…,n].

14

2008 27COMP114 – Experimental
Methods in Computing

Example

• Suppose we have a method which
(given n) returns a random integer
between 1 and n. For example,

1 + Sequence.nextInt(n)
[where Sequence is an instance of the
class Random() in java.util.Random]

• How can we use this to construct a
method for Random Permutation?

2008 28COMP114 – Experimental
Methods in Computing

Method 1

1. Given an array int[] P = new int[n] with
P[i]=i+1 for each i between 0 and n-1:

a. Choose a random integer k between 0
and n-1;

b. If k was already chosen go back to (a)
c. Otherwise make k the next value in

the permutation and “mark” k as used.
d. Continue from (a) until all values used.

15

2008 29COMP114 – Experimental
Methods in Computing

Method 2

1. Given an array int[] P = new int[n] with
P[i]=i+1 for each i between 0 and n-1:

a. Let m be the number of values still to be
chosen – m = n, initially.

b. Choose a random integer k between 0 and
m-1;

c. Swap P[k] with P[m-1] and decrease m by
1; (m--)

d. If m>0 then repeat from (a).

