
1

2008 1COMP114 – Experimental
Methods in Computing

COMP114
Experimental Methods in

Computing

Selection and Use of
Random Data in

Experiments

2008 2COMP114 – Experimental
Methods in Computing

Review – why use random data?

• The example in Assessment 2 considered
data supplied by a user population as the
basis for comparing two systems.

• The actual users were chosen at random: the
data were not.

• In this case the “typical” behaviour of the
systems being compared was modelled in
terms of the “typical” experience of the
systems’ users.

2

2008 3COMP114 – Experimental
Methods in Computing

Review – why use random data?

• There are a number of measures that
could be used quantitatively to assess
how good a solution is – for example,
“worst-case” run-time with input “size n”

“typical” run-time with input “size n”
“worst” solution found with input “size n”
“best” solution found with input “size n”

“typical” solution found with input “size n”

2008 4COMP114 – Experimental
Methods in Computing

Example setting

• A parcel delivery service has a number of
depots (20 say) and only 1 van to move items
between these. The delivery service is keen
to reduce the total amount of travel involved
(petrol costs, hours worked by drivers, etc.).
The schedule of deliveries needed between
each depot will differ each day.

• This “scheduling problem” is unlikely to have
a “fast program” solution.

3

2008 5COMP114 – Experimental
Methods in Computing

Example – modelling the problem
• For each pair of locations – D(i) and D(j) –

moving items (with no stop) between D(i) and
D(j) will incur some cost – C(i,j) – which
depends on the cost of travelling between the
two locations (this cost is not fixed, since it
varies with the number of items to be moved).

• The main problem is to visit every depot
involved with items to deliver so as to reduce
the total cost involved.

• A software company offers a program, which
it claims will assist in scheduling deliveries.

2008 6COMP114 – Experimental
Methods in Computing

Criteria for Evaluating Solutions
• “worst-case” run-time = the maximum amount

of time taken to produce a schedule.
• “typical” run-time = the “average” time taken

to produce a schedule.
• “best” solution = the lowest cost schedule

found by the program.
• “typical” solution = the “average” cost of

schedules found.
• “worst” solution = the highest cost schedule

found by the program.

4

2008 7COMP114 – Experimental
Methods in Computing

Measuring “typical” behaviour.

• In this example we have the following:
a. A fixed number of depots (but this may

change over time, e.g. if more are added).
b. Varying day-to-day costs of moving from

one depot to another – C(i,j).
• Two measures of “typical” performance –

how long it takes to produce a schedule and
how “cost effective” such a schedule is.

• Randomly generated data provides one
approach to estimating these measures.

2008 8COMP114 – Experimental
Methods in Computing

How would random data be used?
• The experimental assessment could be

constructed as follows:
1. Fix the number of trials (100 say).
2. For each D(i) and D(j) choose a random

numerical value for C(i,j).
3. Run the scheduling program with the

resulting data, noting the time taken to find
a schedule and its cost.

4. Compute the overall average time and cost.

5

2008 9COMP114 – Experimental
Methods in Computing

Some complications
• How do we choose a “random” value for each cost?

Typically we will only have methods for making a
random choice from a range of values?

• The model assumes it is always possible to travel
directly between any two depots. What if this is not
the case? e.g. if the road from D(1) to D(2) is closed
and so all traffic between these must pass through
some alternative location.

• The evaluation considers only a fixed (20) number of
depots. What if we wish to review arbitrarily large
number, e.g. 50, 100, 1000+?

2008 10COMP114 – Experimental
Methods in Computing

Random “Structures”
• The issues raised on the previous slide can be

treated in terms of using random objects with a
particular structure as the basis for an experiment.

• We can think of structures as having a particular size
– e.g. the number of depots in the parcel delivery
case – and as meeting given criteria.

• An example of such structures has already been
used in Assessment 1 together with random methods
for constructing representatives, i.e. permutations of
the n numbers <1,2,3, …, n>.

• In this case: size=n; “structure” = “an ordering, P, of
<1,2,3,…,n> in which each number, k, between 1 and
n appears exactly once”.

6

2008 11COMP114 – Experimental
Methods in Computing

More Examples of Structures I
• This section of the module has 2 aims:
a. To introduce some examples of frequently

used structures in computing applications.
b. To describe some basic approaches that

can be used with each structure type, T say,
in order to generate a “random structure S
of type T whose size is n”.

• We have already looked at the example of
T=Permutations and ways of generating
random permutations of size n.

2008 12COMP114 – Experimental
Methods in Computing

More Examples of Structures II
• We consider the following –
1. n-bit numbers.
2. Combinations (selections) of a given

number (k, say) of objects from a collection
of objects.

3. Networks (also called graphs).
4. Binary trees.
• It is assumed that we already have

available methods such as those provided
in, e.g. the class Random from java.util

7

2008 13COMP114 – Experimental
Methods in Computing

Informal examples and applications I

• n-bit numbers: in many cases instead
of methods for producing arbitrary
random values there may only be
“reliable” methods for generating
“random bits”, e.g. if a coin lands
Heads=1; Tails=0.

• How can “random bit” methods be
used to construct

a. Random numbers from given range?
b. What about random floats or doubles?

2008 14COMP114 – Experimental
Methods in Computing

Informal examples and applications II

• Combinations: in lotteries such as the
UK National Lottery, we are not so
much interested in the ordering of
outcomes but in the particular choice
of 6 from 49 numbers selected.

• In simulating such processes
techniques for choosing k values from
n possibilities are used.

8

2008 15COMP114 – Experimental
Methods in Computing

Informal examples and applications III

• Networks
• A huge range of problems – such as the

scheduling example described earlier – can
be modelled in terms of networks.

• In assessing how good such methods are
as solutions, techniques for building random
networks are used.

• Network:
Collection of nodes {v(1), v(2), … , v(n)}
Collection of links (edges) <v(i), v(j)> (links
in networks may be directed or undirected)

2008 16COMP114 – Experimental
Methods in Computing

Informal examples and applications IV

• Binary Trees.
• A number of applications can be modelled

in terms of looking at properties of a logical
expression that is built from the problem
data, e.g. developing workable timetables.

• Given a set of variables {v1,v2, … , vk} and
a set of operations, e.g. {+, – , ×, ÷} or
{∧,∨,¬} – a random expression over the
variables and operations can be formed by
building a special type of network called a
(binary) tree.

9

2008 17COMP114 – Experimental
Methods in Computing

Arbitrary Numbers from random bits

• Recall from COMP103 that numerical values
are represented as a sequence of binary
“digits” (or bits).

• So, if we only have a random bit source to
use, we can build a generator of random
integers between 0 and 2k – 1 simply by
using the bit source for each of the k bits in
turn.

• Note that it is not necessary to cast an array
of k Booleans to an integer in order to do this.

2008 18COMP114 – Experimental
Methods in Computing

Arbitrary Numbers from random bits

int x = 0; // x will hold the random int.
for (int i=0; i<k; i++) {

b = Random bit; // b=1 or b=0
x = 2*x + b; };

return x;

10

2008 19COMP114 – Experimental
Methods in Computing

What about floats/doubles?

• The line “x=2*x + b” can be adapted to
generate a k-bit (for suitable k) float or double
value that is at least 0 and less than 1.

double x = 0.0; // x is the random double.
double y;
for (int i=0; i<k; i++) {

b = Random bit; // b=1 or b=0
if (b==1) y=0.5 else y=0.0;
x = x/2.0 + y; };

return x;

2008 20COMP114 – Experimental
Methods in Computing

Combinations – choosing k from n items

• The method is very similar to the more
efficient permutation generator.

• Instead of using “m = the number of
values still to be chosen – m = n,
initially”, for selecting only k items the
starting value of m is set to be k.

11

2008 21COMP114 – Experimental
Methods in Computing

Choosing k random items from n

1. int[] Q = new int [k] // holds the k choices
a. int m = k;
b. int t = n-1;
c. while (m>0) {
d. r = a random integer between 0 and t;
e. Q[m-1] = P[r]; // P is collection of n items.
f. Swap P[r] with P[t]; t-- ; m-- ; };
g. return Q;

2008 22COMP114 – Experimental
Methods in Computing

Graphs and Networks
• A network , H, is a structure defined by two

components:
V = {v(0), v(2), … , v(n-1)}
F = { e(0), e(2), … e(m-1)}

• V is called the set of nodes in H.
• F is the set of links.
• Each link e(k) is specified by a pair <v(i),v(j)>

of nodes from V.
• A link <v(i),v(j)> is not the same as a link

<v(j),v(i)> .

12

2008 23COMP114 – Experimental
Methods in Computing

Graphs and Networks II

• A graph, G, is a similar structure defined by
two components:

V = {v(0), v(2), … , v(n-1)}
E = { e(0), e(2), … e(m-1)}

• V is again called the set of nodes in G.
• E is now called the set of edges.
• Each edge e(k) is also specified by a pair

{v(i),v(j)} of nodes from V.
• For graphs, however, an edge {v(i),v(j)} is

exactly the same as an edge {v(j),v(i)}.

2008 24COMP114 – Experimental
Methods in Computing

A network with 5 nodes; 7 links;

v(0)

v(4)v(3)

v(2)v(1)

13

2008 25COMP114 – Experimental
Methods in Computing

A graph with 5 nodes; 7 edges;

v(0)

v(4)v(3)

v(2)v(1)

2008 26COMP114 – Experimental
Methods in Computing

Uses of graphs and networks in C.S.

• Map data – e.g. nodes correspond to towns;
links/edges to rail connections.

• Timetable constraints – nodes model lecture
requirements; edges indicate when two
lectures cannot be scheduled at the same
time.

• Program structure – nodes = methods and
statement blocks; links = interaction and
sequencing of these.

• Many other applications are possible.

14

2008 27COMP114 – Experimental
Methods in Computing

Why use “random networks”?

a. It may be difficult to determine exact
behaviour by analytic techniques.

b. Even when performance guarantees can be
given, it is often the case that “typical”
performance is much better, e.g. one may
be able to show an approach always finds a
solution whose value is “at least” 1/3 rd of the
best possible; in practice, the same method
may often find solutions which are ½ the
optimal value.

2008 28COMP114 – Experimental
Methods in Computing

Random networks – possible problems

a) Typical behaviour as determined by
“genuinely random” networks – e.g. if one
considers techniques in which every n node
network is equally likely – may be very
different from “typical instances” seen in
real contexts.

b) For complex structures such as graphs,
networks, trees, construction of random
data and interpretation of results requires
some care to be taken.

15

2008 29COMP114 – Experimental
Methods in Computing

Java Representation

• The simplest (and very widely used)
approach is via 2-dimensional arrays.

• If there are no weights associated with
links/edges then a boolean 2-d array
can be used otherwise an int 2-d array
is adopted (with a suitable convention
for the weight assigned for links/edges
that are not present).

2008 30COMP114 – Experimental
Methods in Computing

Network class (unweighted links) I

• Fields
private boolean H[][]; // The network
private int n; // Number of nodes
private int m; // Number of links

16

2008 31COMP114 – Experimental
Methods in Computing

Network class (unweighted links) II

• Instance Methods
public void AddLink(int i,j);
// Adds a link from node i to node j.
public void RemoveLink(int i,j);
// Removes the link from node i to node j.
public boolean TestLink(int i,j);
// Returns true if there is a link from node i to
node j. Otherwise returns false

2008 32COMP114 – Experimental
Methods in Computing

Network class (unweighted links) III

• Constructor
public void Network(int Nodes)

{
H = new boolean [Nodes][Nodes]
n = Nodes; m = 0;

for (int i=0; i<n; i++)
for (int j=0; j<n; j++)

H[i][j] = false;
};

17

2008 33COMP114 – Experimental
Methods in Computing

Example method realisation

public void AddLink(int i,j)
{
if (!H[i][j]) // Link i to j not present.

m++; // so increase link count.
H[i][j] = true; // Adds link to H
};

2008 34COMP114 – Experimental
Methods in Computing

A network with 5 nodes; 7 links;

v(0)

v(4)v(3)

v(2)v(1)

18

2008 35COMP114 – Experimental
Methods in Computing

Example network

FalseTrueFalseFalseFalse4

FalseFalseFalseTrueFalse3

TrueFalseFalseFalseTrue2

FalseFalseTrueFalseTrue1

FalseTrueFalseFalseFalse0

43210H

2008 36COMP114 – Experimental
Methods in Computing

Representing Graphs

• A Graph class can be defined in a very similar
way to that used for Network.

• We still have the fields n and m as before,
and use boolean[][] G as the structure
containing the graph.

• The main changes are to the methods
AddLink and RemoveLink for which we use
the names AddEdge and RemoveEdge.

• Similarly, TestLink is now called TestEdge

19

2008 37COMP114 – Experimental
Methods in Computing

Adding an edge to G

public void AddEdge(int i,j)
{
if (!G[i][j]) // Edge {i,j} not present.

m++; // so increase edge count.
G[i][j] = true; // Adds edge to G
G[j][i] = true; // but also need this in G
};

2008 38COMP114 – Experimental
Methods in Computing

A graph with 5 nodes; 7 edges;

v(0)

v(4)v(3)

v(2)v(1)

20

2008 39COMP114 – Experimental
Methods in Computing

Example graph

FalseTrueTrueFalseTrue4

TrueFalseTrueTrueFalse3

TrueTrueFalseFalseTrue2

FalseTrueFalseFalseTrue1

TrueFalseTrueTrueFalse0

43210G

G[i][j]=G[j][i]

2008 40COMP114 – Experimental
Methods in Computing

Random Networks and Graphs

• The basic methods are very similar.
• A “naïve” approach uses the following:

“In a typical (i.e random) network, a link from i
to j has exactly the same chance of being
present as it has of being absent.”

∴ For each possible link H[i][j] choose a
random value, x, between 0 and 1: if x<0.5
set H[i][j]=true; else set H[i][j]=false

21

2008 41COMP114 – Experimental
Methods in Computing

Random Network Method I

public Network RandomNetwork(int n) {
Random S = new Random();
Network H = new Network(n);
for (int i=0; i<n; i++)

for (int j=0; j<n; j++)
if ((S.nextDouble()<0.5) && (i != j))
H.AddLink(i,j);

return H; };

2008 42COMP114 – Experimental
Methods in Computing

Random Graph Method I

public Graph RandomGraph(int n) {
Random S = new Random();
Graph G = new Graph(n);
for (int i=0; i<n; i++)

for (int j= i+1; j<n; j++)
if (S.nextDouble()<0.5)

G.AddEdge(i,j);
return G; };

22

2008 43COMP114 – Experimental
Methods in Computing

RandomNetwork and RandomGraph

• The main distinction is the form of the
inner for loop: this is

(j=i+1; j<n; j++)
in the RandomGraph method but

(j=0; j<n; j++)
in RandomNetwork.

• This ensures each edge {i,j} is looked at
exactly once by RandomGraph.

2008 44COMP114 – Experimental
Methods in Computing

Properties

• Let N=n*n-n (for networks) and (n*n-n)/2 (for
graphs).

• The methods RandomGraph and
RandomNetwork have

2 × 2 × 2 … × 2 × 2
N times

ways of producing a network or graph.
• Each possibility is equally likely.

23

2008 45COMP114 – Experimental
Methods in Computing

Problems with these methods

• A “typical” structure output by these methods will
have roughly N/2 links (edges).

• Networks and graphs arising in applications,
however, are rarely this “dense” – around N0.5 is more
likely. For example –

• Consider the network associated with all direct flights
between airports in which a particular airline
operates, e.g. EasyJet use ca. 90-95 locations. Do
EasyJet offer 4000+ direct flights (that is 45+ from
each airport)? Only 20 destinations are available from
Liverpool (one of the main bases).

2008 46COMP114 – Experimental
Methods in Computing

Possible Solutions I

A. Fix the number of links (edges) in
advance and develop a method that
produces only n-node, m-link (edge)
random networks (graphs).

B. Allow the probability that a link (edge)
appears to be specified as a
parameter (instead of assuming it is
always ½).

24

2008 47COMP114 – Experimental
Methods in Computing

Possible Solutions II

• Solution A could be realised as a
“special case” of generating a random
combination of m items from N possible.

• While this is a reasonable approach, if
solutions with “roughly” m links (rather
than exactly m) are acceptable, there is
an easy way of achieving this by
adopting Solution B.

2008 48COMP114 – Experimental
Methods in Computing

Random Network Method II

public Network RandNet(int n , double p) {
Random S = new Random();
Network H = new Network(n);
for (int i=0; i<n; i++)

for (int j=0; j<n; j++)
if ((S.nextDouble()<p) && (i != j))
H.AddLink(i,j);

return H; };

25

2008 49COMP114 – Experimental
Methods in Computing

Random Graph Method II

public Graph RandGraph(int n, double p) {
Random S = new Random();
Graph G = new Graph(n);
for (int i=0; i<n; i++)

for (int j= i+1; j<n; j++)
if (S.nextDouble()<p)

G.AddEdge(i,j);
return G; };

2008 50COMP114 – Experimental
Methods in Computing

RandNet and RandGraph Properties

• For these methods a link (edge) is included
with probability p.

• This means that if N is the maximum possible
number of links (edges) in an n-node network
(graph) –

• a typical network produced by RandNet(n,p)
will have about m=N×p links.

• a typical graph produced by RandGraph(n,p)
will have about m=N×p edges.

26

2008 51COMP114 – Experimental
Methods in Computing

What value of p should be used?

• If n-node networks (graphs) with roughly m
links (edges) are being considered, then a
value of p = n/N will have the effect required –
recall that N=(n*n-n) for networks; N=(n*n-
n)/2 for graphs.

• For experimental evaluations where “sparse”
networks arise in practice, ranges of p as
multiples of 1/n or log(n)/n are often used:

2/n, 3/n, …, k/n
2×log(n)/n, 3×log(n)/n, …, k×log(n)/n

2008 52COMP114 – Experimental
Methods in Computing

Binary Trees I

• Although binary can be treated as a special
type of network, it is more useful to represent
their structure using techniques which reflect
how binary trees are defined.

• A binary tree contains two distinct types of
node – leaf nodes and internal nodes.

• An n-leaf binary tree has exactly n–1 internal
nodes: the total number of nodes
(leaves+internal) is always an odd number.

27

2008 53COMP114 – Experimental
Methods in Computing

Binary Trees II
• n-leaf binary trees are defined recursively, that is in

terms of smaller (number of leaf nodes) binary
trees:

A. A single node is a 1-leaf binary tree.
B. An n-leaf binary tree, T, has three separate parts:

An internal node called the tree root – r(T)
A Left binary tree with k leaf nodes – L

A Right binary tree with n-k leaf nodes – R
• There are links from r(T) to r(L) and r(T) to r(R).
• The number of leaf nodes in L (and in R) is at least

1 and at most n–1

2008 54COMP114 – Experimental
Methods in Computing

Some Examples I

i(0)

i(1)

l(2)

i(3)l(0)

i(2)

l(3) l(4)

l(1)

Root RIGHT
LEFT

2 leaf nodes
3 leaf
nodes

28

2008 55COMP114 – Experimental
Methods in Computing

Some applications in Computing

a. Representing arithmetic and logic
expressions.

b. Maintaining ordered collections of
information, e.g. Telephone directories
and other “look-up” tables.

• In (b) a tree node is structured as

Right tree
“pointer”

Data for
key

Look-up
key

Left Tree
“pointer”

Node “content””

2008 56COMP114 – Experimental
Methods in Computing

÷

– 3

17

+

812

Binary Tree for expression

(12+8)-17)÷3

29

2008 57COMP114 – Experimental
Methods in Computing

Summary of binary tree use

• For data having “Key-Value” structure,
where “Keys” can be ordered.

• Store “key-value” pairs in a binary tree.
• The “middle” key in the ordering is

stored in the tree root.
• All keys before this are in the Left Tree.
• All keys after it are in the Right tree.

2008 58COMP114 – Experimental
Methods in Computing

CymbelineCloten

OthelloEmilia

Troilus and CressidaDiomedes

MacbethBanquo

Titus
Andronicus

Aaron

The Winter’s
Tale

Florizel

HamletGertrude

Data
(appears in)

Key
(Character)

Right > in alphabet than
Diomedes

Left < in alphabet than
Diomedes

30

2008 59COMP114 – Experimental
Methods in Computing

A Binary Tree Class in Java I

Problem: How do we model the
“recursive” structure of binary trees?
Solution: If the class name is, for
example, BinaryTree (with the “node”
content being, say, an int, then the
same class name (BinaryTree)
describes the type of the Left and Right
components.

2008 60COMP114 – Experimental
Methods in Computing

A Binary Tree Class in Java

• BinaryTree class – Fields
public class BinaryTree {

protected int TreeRoot;
protected BinaryTree LeftTree;
protected BinaryTree RightTree;

};
• TreeRoot can be any Object (not just int).

31

2008 61COMP114 – Experimental
Methods in Computing

A Binary Tree Class in Java

• BinaryTree class – Selected Methods
public boolean IsLeafNode()
Returns true if this tree has just a single node.
public void SetRootValue(int n)
Sets the data in the root of this tree to be n.
public void SetLeft(BinaryTree T)
public void SetRight(BinaryTree T)
Sets the LeftTree (RightTree) field to be T.
public static BinaryTree BuildTree(int root,

BinaryTree Left, Right)

2008 62COMP114 – Experimental
Methods in Computing

Realisations –

public boolean IsLeafNode() {
return (Left==null)&&(Right==null); }

public static BinaryTree BuildTree(int root,
BinaryTree Left, Right)

BinaryTree T = new BinaryTree();
T.SetRootValue(root);
T.SetLeft(Left); T.SetRight(Right);
return T; }

32

2008 63COMP114 – Experimental
Methods in Computing

Random Binary Trees (n leaf nodes)

• We describe 2 approaches – both of which
feature in Assessment 3 (together with a
third method).

• Method 1 – RootDown
1. If (n>1) {
2. Choose a random integer, k, between 1 and n-1 –

(each k has 1/(n-1) chance.
3. LeftTree = RootDown (k);
4. RightTree = RootDown (n-k);

2008 64COMP114 – Experimental
Methods in Computing

Method 2 – LeafUp

BinaryTree[] T = new BinaryTree()[n];
int m = n;
while (m>1) {

j = Random integer between 0 and m-1
Swap T[j] and T[m-1];
i = Random integer 0 and m-2;
Temp = BuildTree(m,T[j], T[i]);
T[i] = Temp; m – – ; }; return T[0];

33

2008 65COMP114 – Experimental
Methods in Computing

Comparison –

• RootDown recursively forms an n-leaf binary
tree by randomly choosing the number of leaf
nodes (k) in its Left tree (so that the Right tree
has n-k leaf nodes).

• When k=1 the tree formed has one leaf node.
• LeafUp starts with n (1-leaf) trees; chooses

two at random to give the Left and Right trees
of a new tree. This will result in n-1 (n-2
single leaf + 1 2-leaf) trees.

2008 66COMP114 – Experimental
Methods in Computing

Example – RootDown

8

5 3

1

1 1

22 3

2 11

11

1

34

2008 67COMP114 – Experimental
Methods in Computing

Example – LeafUp

2

3 5

78 4

6

2008 68COMP114 – Experimental
Methods in Computing

Properties – Tree Depth

• The depth of a binary tree, T, measures
the number of nodes in the longest path
of links from the root of T to any leaf
node of T.

• If T is a single leaf then Depth(T)=1 else
Depth(T) = 1 +
maximum {Depth(T.Left),Depth(T.Right)

35

2008 69COMP114 – Experimental
Methods in Computing

Random Trees and Depth

• In most applications where binary trees
occur, these trees are “shallow”: their
depth is significantly smaller than the
number of leaf nodes.

• For example, for <Key-Data> lookup, if
a tree is very unbalanced, it may take
much longer to find some of the stored
keys.

2008 70COMP114 – Experimental
Methods in Computing

Random Trees and Depth

• Both RootDown and LeafUp are biased to
produce “shallow” trees.

• Neither method is “uniform”: it is not the case
that every n-leaf tree has an equal chance of
being generated.

• Methods for which every n-leaf tree is equally
likely are non-trivial.

• The characteristics of “uniformly generated”
binary trees are very different from those
output by RootDown and LeafUp.

