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Review – why use random data?

• The example in Assessment 2 considered 
data supplied by a user population as the 
basis for comparing two systems.

• The actual users were chosen at random: the 
data were not.

• In this case the “typical” behaviour of the 
systems being compared was modelled in 
terms of the “typical” experience of the 
systems’ users.
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Review – why use random data?

• There are a number of measures that 
could be used quantitatively to assess 
how good a solution is – for example,
“worst-case” run-time with input “size n”

“typical” run-time with input “size n”
“worst” solution found with input “size n”
“best” solution found with input “size n”

“typical” solution found with input “size n”
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Example setting

• A parcel delivery service has a number of 
depots (20 say) and only 1 van to move items 
between these. The delivery service is keen 
to reduce the total amount of travel involved 
(petrol costs, hours worked by drivers, etc.). 
The schedule of deliveries needed between 
each depot will differ each day. 

• This “scheduling problem” is unlikely to have 
a “fast program” solution.
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Example – modelling the problem
• For each pair of locations – D(i) and D(j) –

moving items (with no stop) between D(i) and 
D(j) will incur some cost – C(i,j) – which 
depends on the cost of travelling between the 
two locations (this cost is not fixed, since it 
varies with the number of items to be moved).

• The main  problem is to visit every depot 
involved with items to deliver so as to reduce 
the total cost involved.

• A software company offers a program, which 
it claims will assist in scheduling deliveries.
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Criteria for Evaluating Solutions 
• “worst-case” run-time = the maximum amount 

of time taken to produce a schedule.
• “typical” run-time = the “average” time taken 

to produce a schedule.
• “best” solution = the lowest cost schedule 

found by the program.
• “typical” solution = the “average” cost of 

schedules found.
• “worst” solution = the highest cost schedule 

found by the program.
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Measuring “typical” behaviour.

• In this example we have the following:
a. A fixed number of depots (but this may 

change over time, e.g. if more are added).
b. Varying day-to-day costs of moving from  

one depot to another – C(i,j).
• Two measures of “typical” performance –

how long it takes to produce a schedule and 
how “cost effective” such a schedule is.

• Randomly generated data provides one 
approach to estimating these measures.
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How would random data be used?
• The experimental assessment could be 

constructed as follows:
1. Fix the number of trials (100 say).
2. For each D(i) and D(j) choose a random 

numerical value for C(i,j).
3. Run the scheduling program with the 

resulting data, noting the time taken to find 
a schedule and its cost.

4. Compute the overall average time and cost.
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Some complications
• How do we choose a “random” value for each cost? 

Typically we will only have methods for making a 
random choice from a range of values?

• The model assumes it is always possible to travel 
directly between any two depots. What if this is not 
the case? e.g. if the road from D(1) to D(2) is closed 
and so all traffic between these must pass through 
some alternative location.

• The evaluation considers only a fixed (20) number of 
depots. What if we wish to review arbitrarily large 
number, e.g. 50, 100, 1000+?
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Random “Structures”
• The issues raised on the previous slide can be 

treated in terms of using random objects with a 
particular structure as the basis for an experiment.

• We can think of structures as having a particular size 
– e.g. the number of depots in the parcel delivery 
case – and as meeting given criteria.

• An example of such structures has already been 
used in Assessment 1 together with random methods 
for constructing representatives, i.e. permutations of 
the n numbers <1,2,3, …, n>.

• In this case: size=n; “structure” = “an ordering, P, of
<1,2,3,…,n> in which each number, k, between 1 and
n appears exactly once”.
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More Examples of Structures I
• This section of the module has 2 aims:
a. To introduce some examples of frequently 

used structures in computing applications.
b. To describe some basic approaches that 

can be used with each structure type, T say, 
in order to generate a “random structure S
of type T whose size is n”.

• We have already looked at the example of 
T=Permutations and ways of generating 
random permutations of size n.
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More Examples of Structures II
• We consider the following –
1. n-bit numbers.
2. Combinations (selections) of a given 

number (k, say) of objects from a collection 
of objects.

3. Networks (also called graphs).  
4. Binary trees.
• It is assumed that we already have

available methods such as those provided 
in, e.g. the class Random from java.util
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Informal examples and applications I

• n-bit numbers: in many cases instead 
of methods for producing arbitrary 
random values there may only be 
“reliable” methods for generating 
“random bits”, e.g. if a coin lands 
Heads=1; Tails=0.

• How can “random bit” methods be 
used to construct 

a. Random numbers from given range?
b. What about random floats or doubles?
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Informal examples and applications II

• Combinations: in lotteries such as the 
UK National Lottery, we are not so 
much interested in the ordering of 
outcomes but in the particular choice 
of 6 from 49 numbers selected.

• In simulating such processes 
techniques for choosing k values from 
n possibilities are used.
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Informal examples and applications III

• Networks
• A huge range of problems – such as the 

scheduling example described earlier – can 
be modelled in terms of networks.

• In assessing how good such methods are 
as solutions, techniques for building random 
networks are used.

• Network: 
Collection of nodes {v(1), v(2), … , v(n)}
Collection of links (edges) <v(i), v(j)> (links 
in networks may be directed or undirected)
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Informal examples and applications IV

• Binary Trees.
• A number of applications can be modelled 

in terms of looking at properties of a logical 
expression that is built from the problem 
data, e.g. developing workable timetables.

• Given a set of variables {v1,v2, … , vk} and 
a set of operations, e.g. {+,  – , ×, ÷} or 
{∧,∨,¬} – a random expression over the 
variables and operations can be formed by 
building a special type of network called a 
(binary) tree.
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Arbitrary Numbers from random bits

• Recall from COMP103 that numerical values 
are represented as a sequence of binary
“digits” (or bits). 

• So, if we only have a random bit source to 
use, we can build a generator of random 
integers between 0 and 2k – 1 simply by 
using the bit source for each of the k bits in 
turn. 

• Note that it is not necessary to cast an array 
of k Booleans to an integer in order to do this.
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Arbitrary Numbers from random bits

int x = 0;         // x will hold the random int.
for (int i=0; i<k; i++) {

b = Random bit;      // b=1 or b=0
x = 2*x + b; };

return x;
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What about floats/doubles?

• The line “x=2*x + b” can be adapted to 
generate a k-bit (for suitable k) float or double 
value that is at least 0 and less than 1.

double x = 0.0;         // x is the random double.
double y;
for (int i=0; i<k; i++) {

b = Random bit;      // b=1 or b=0
if (b==1) y=0.5 else y=0.0;
x = x/2.0 + y; };

return x;
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Combinations – choosing k from n items

• The method is very similar to the more 
efficient permutation generator.

• Instead of using “m = the number of 
values still to be chosen – m = n, 
initially”, for selecting only k items the 
starting value of m is set to be k.
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Choosing k random items from n

1. int[ ] Q = new int [k]     // holds the k choices
a. int m = k; 
b. int t = n-1;
c. while (m>0) {
d. r =  a random integer  between 0 and t;
e. Q[m-1] = P[r];   // P is collection of n items.
f. Swap P[r] with P[t];   t-- ; m-- ; };
g. return Q;
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Graphs and Networks
• A network , H, is a structure defined by two 

components:
V = {v(0), v(2), … , v(n-1)}
F = { e(0), e(2), … e(m-1)}

• V is called the set of nodes in H.
• F is the set of links.
• Each link e(k) is specified by a pair <v(i),v(j)>

of nodes from V.
• A link <v(i),v(j)> is not the same as a link 

<v(j),v(i)> .
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Graphs and Networks II

• A graph, G, is a  similar structure defined by 
two components:

V = {v(0), v(2), … , v(n-1)}
E = { e(0), e(2), … e(m-1)}

• V is again called the set of nodes in G.
• E is now called the set of edges.
• Each edge e(k) is also specified by a pair 

{v(i),v(j)} of nodes from V.
• For graphs, however, an edge  {v(i),v(j)} is 

exactly the same as an edge  {v(j),v(i)}.
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A network with 5 nodes; 7 links;

v(0)

v(4)v(3)

v(2)v(1)
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A graph with 5 nodes; 7 edges;

v(0)

v(4)v(3)

v(2)v(1)

2008 26COMP114 – Experimental 
Methods in Computing

Uses of graphs and networks in C.S.

• Map data – e.g. nodes correspond to towns; 
links/edges to rail connections.

• Timetable constraints – nodes model lecture 
requirements; edges indicate when two 
lectures cannot be scheduled at the same 
time.

• Program structure – nodes = methods and 
statement blocks; links = interaction and 
sequencing of these.

• Many other applications are possible.
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Why use “random networks”?

a. It may be difficult to determine exact 
behaviour by analytic techniques.

b. Even when performance guarantees can be 
given, it is often the case that “typical” 
performance is much better, e.g. one may 
be able to show an approach always finds a 
solution whose value is “at least” 1/3 rd of the 
best possible; in practice, the same method
may often find solutions which are ½ the 
optimal value.
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Random networks – possible problems

a) Typical behaviour as determined by 
“genuinely random” networks – e.g. if one 
considers techniques in which every n node 
network is equally likely – may be very 
different from “typical instances” seen in 
real contexts.

b) For complex structures such as graphs, 
networks, trees, construction of random 
data and interpretation of results requires 
some care to be taken. 
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Java Representation

• The simplest (and very widely used) 
approach is via 2-dimensional arrays.

• If there are no weights associated with 
links/edges then a boolean 2-d array 
can be used otherwise an int 2-d array 
is adopted  (with a suitable convention 
for the weight assigned for links/edges 
that are not present). 
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Network class (unweighted links) I

• Fields
private boolean H[ ][ ];  // The network
private int n;   // Number of nodes
private int m;  // Number of links
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Network class (unweighted links) II

• Instance Methods
public void AddLink(int i,j);  
// Adds a link from node i to node j. 
public void RemoveLink(int i,j);  
// Removes the link from node i to node j.
public boolean TestLink(int i,j);  
// Returns true if there is a link from node i to 
node j. Otherwise returns false
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Network class (unweighted links) III

• Constructor
public void Network(int Nodes)  

{
H = new boolean [Nodes][Nodes]
n = Nodes; m = 0;

for (int i=0; i<n; i++) 
for (int j=0; j<n; j++)

H[ i ][ j ] = false;
};



17

2008 33COMP114 – Experimental 
Methods in Computing

Example method realisation

public void AddLink(int i,j)
{
if (!H[ i ][ j ])       // Link i to j not present.

m++;              // so increase link count.
H[ i ][ j ] = true;  // Adds link to H
};
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A network with 5 nodes; 7 links;

v(0)

v(4)v(3)

v(2)v(1)
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Example network

FalseTrueFalseFalseFalse4

FalseFalseFalseTrueFalse3

TrueFalseFalseFalseTrue2

FalseFalseTrueFalseTrue1

FalseTrueFalseFalseFalse0

43210H
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Representing Graphs

• A Graph class can be defined in a very similar 
way to that used for Network.

• We still have the fields n and m as before, 
and use boolean[ ][ ] G as the structure 
containing the graph.

• The main changes are to the methods 
AddLink and RemoveLink for which we use 
the names AddEdge and RemoveEdge.

• Similarly, TestLink is now called TestEdge
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Adding an edge to G

public void AddEdge(int i,j)
{
if (!G[ i ][ j ])       // Edge {i,j} not present.

m++;              // so increase edge count.
G[ i ][ j ] = true;  // Adds edge to G 
G[ j ][ i ] = true;  // but also need this in G
};
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A graph with 5 nodes; 7 edges;

v(0)

v(4)v(3)

v(2)v(1)
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Example graph

FalseTrueTrueFalseTrue4

TrueFalseTrueTrueFalse3

TrueTrueFalseFalseTrue2

FalseTrueFalseFalseTrue1

TrueFalseTrueTrueFalse0

43210G

G[ i ][ j ]=G[ j ][ i ]
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Random Networks and Graphs

• The basic methods are very similar.
• A “naïve” approach uses the following:

“In a typical (i.e random) network, a link from i
to j has exactly the same chance of being 
present as it has of being absent.” 

∴ For each possible link H[ i ][ j ] choose a 
random value, x, between 0 and 1: if x<0.5
set H[ i ][ j ]=true; else set H[ i ][ j ]=false
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Random Network Method I

public Network RandomNetwork(int n) {
Random S = new Random();
Network H = new Network(n);
for (int i=0; i<n; i++)

for (int j=0; j<n; j++)
if ((S.nextDouble()<0.5) && (i != j))
H.AddLink(i,j);

return H; };
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Random Graph Method I

public Graph RandomGraph(int n) {
Random S = new Random();
Graph G = new Graph(n);
for (int i=0; i<n; i++)

for (int j= i+1; j<n; j++)
if (S.nextDouble()<0.5) 

G.AddEdge(i,j);
return G;  };
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RandomNetwork and RandomGraph

• The main distinction is the form of the 
inner for loop: this is 

(j=i+1; j<n; j++) 
in the RandomGraph method but 

(j=0; j<n; j++)
in RandomNetwork.

• This ensures each edge {i,j} is looked at 
exactly once by RandomGraph.
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Properties

• Let N=n*n-n (for networks) and (n*n-n)/2 (for 
graphs).

• The methods RandomGraph and 
RandomNetwork have

2 × 2 × 2  … × 2 × 2
N times

ways of producing a network or graph.
• Each possibility is equally likely.
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Problems with these methods

• A “typical” structure output by these methods will 
have roughly N/2 links (edges).

• Networks and graphs arising in applications, 
however, are rarely this “dense” – around N0.5 is more 
likely. For example –

• Consider the network associated with all direct flights 
between airports in which a particular airline 
operates, e.g. EasyJet use ca. 90-95 locations. Do 
EasyJet offer 4000+ direct flights (that is 45+ from 
each airport)? Only 20 destinations are available from 
Liverpool (one of the main bases).
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Possible Solutions I

A. Fix the number of links (edges) in 
advance and develop a method that 
produces only n-node, m-link (edge) 
random networks (graphs).

B. Allow the probability that a link (edge) 
appears to be specified as a 
parameter (instead of assuming it is 
always ½).
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Possible Solutions II

• Solution A could be realised as a 
“special case” of generating a random 
combination of m items from N possible.

• While this is a reasonable approach, if 
solutions with “roughly” m links (rather 
than exactly m) are acceptable, there is 
an easy way of achieving this by 
adopting Solution B.
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Random Network Method II

public Network RandNet(int n , double p) {
Random S = new Random();
Network H = new Network(n);
for (int i=0; i<n; i++)

for (int j=0; j<n; j++)
if ((S.nextDouble()<p) && (i != j))
H.AddLink(i,j);

return H; };
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Random Graph Method II

public Graph RandGraph(int n, double p) {
Random S = new Random();
Graph G = new Graph(n);
for (int i=0; i<n; i++)

for (int j= i+1; j<n; j++)
if (S.nextDouble()<p)

G.AddEdge(i,j);
return G;  };
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RandNet and RandGraph Properties 

• For these methods a link (edge) is included 
with probability p.

• This means that if N is the maximum possible 
number of links (edges) in an n-node network 
(graph) –

• a typical network produced by RandNet(n,p)
will have about m=N×p links.

• a typical graph produced by RandGraph(n,p)
will have about m=N×p edges.
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What value of p should be used?

• If n-node networks (graphs) with roughly m
links (edges) are being considered, then a 
value of p = n/N will have the effect required –
recall that N=(n*n-n) for networks; N=(n*n-
n)/2 for graphs.

• For experimental evaluations where “sparse”
networks arise in practice, ranges of p as 
multiples of 1/n or log(n)/n are often used:

2/n, 3/n, …, k/n
2×log(n)/n, 3×log(n)/n, …, k×log(n)/n
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Binary Trees I

• Although binary can be treated as a special 
type of network, it is more useful to represent 
their structure using techniques which reflect 
how binary trees are defined.

• A binary tree contains two distinct types of 
node – leaf nodes and internal nodes.

• An n-leaf binary tree has exactly n–1 internal 
nodes: the total number of nodes 
(leaves+internal) is always an odd number. 
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Binary Trees II
• n-leaf binary trees are defined recursively, that is in 

terms of smaller (number of leaf nodes) binary 
trees:

A. A single node is a 1-leaf binary tree.
B. An n-leaf binary tree, T, has three separate parts:

An internal node called the tree root – r(T)
A Left binary tree with k leaf nodes – L

A Right binary tree with n-k leaf nodes – R
• There are links from r(T) to r(L) and  r(T) to r(R).
• The number of leaf nodes in L (and in R) is at least

1 and at most n–1
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Some Examples I

i(0)

i(1)

l(2)

i(3)l(0)

i(2)

l(3) l(4)

l(1)

Root RIGHT
LEFT

2 leaf nodes
3 leaf 
nodes
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Some applications in Computing

a. Representing arithmetic and logic 
expressions.

b. Maintaining ordered collections of 
information, e.g. Telephone directories 
and other “look-up” tables.

• In (b) a tree node is structured as

Right tree 
“pointer”

Data for 
key

Look-up 
key

Left Tree 
“pointer”

Node “content””
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÷

– 3

17

+

812

Binary Tree for expression

(12+8)-17)÷3
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Summary of binary tree use

• For data having “Key-Value” structure, 
where “Keys” can be ordered.

• Store “key-value” pairs in a binary tree.
• The “middle” key in the ordering is 

stored in the tree root.
• All keys before this are in the Left Tree.
• All keys after it are in the Right tree.

2008 58COMP114 – Experimental 
Methods in Computing

CymbelineCloten

OthelloEmilia

Troilus and CressidaDiomedes

MacbethBanquo

Titus 
Andronicus

Aaron

The Winter’s 
Tale

Florizel

HamletGertrude

Data
(appears in)

Key
(Character)

Right > in alphabet than 
Diomedes

Left <  in alphabet than 
Diomedes
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A Binary Tree Class in Java I

Problem: How do we model the 
“recursive” structure of binary trees?
Solution:  If the class name is, for 
example, BinaryTree (with the “node” 
content being, say, an int, then the 
same class name (BinaryTree) 
describes the type of the Left and Right
components.
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A Binary Tree Class in Java

• BinaryTree class – Fields 
public class BinaryTree {

protected int TreeRoot;
protected BinaryTree LeftTree;
protected BinaryTree RightTree;

};
• TreeRoot can be any Object (not just int).
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A Binary Tree Class in Java

• BinaryTree class – Selected Methods 
public boolean IsLeafNode()
Returns true if this tree has just a single node.
public void SetRootValue(int n)
Sets the data in the root of this tree to be n.
public void SetLeft(BinaryTree T)
public void SetRight(BinaryTree T) 
Sets the LeftTree (RightTree) field to be T.
public static BinaryTree BuildTree(int root, 

BinaryTree Left, Right)
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Realisations –

public boolean IsLeafNode() {    
return (Left==null)&&(Right==null); }

public static BinaryTree BuildTree(int root, 
BinaryTree Left, Right)

BinaryTree T = new BinaryTree();
T.SetRootValue(root);
T.SetLeft(Left); T.SetRight(Right);
return T; }
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Random Binary Trees (n leaf nodes)

• We describe 2 approaches – both of which 
feature in Assessment 3 (together with a 
third method).

• Method 1 – RootDown
1. If (n>1) {
2. Choose a random integer, k, between 1 and n-1 –

(each k has 1/(n-1) chance.
3. LeftTree = RootDown (k);
4. RightTree = RootDown (n-k);
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Method 2 – LeafUp

BinaryTree[ ] T = new BinaryTree()[n];
int m = n;
while (m>1) {

j = Random integer between 0 and m-1
Swap T[ j ] and T[ m-1 ];
i = Random integer 0 and m-2;
Temp = BuildTree(m,T[ j ], T[ i ]);
T[ i ] = Temp; m – – ; }; return T[ 0 ]; 
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Comparison –

• RootDown recursively forms an n-leaf binary 
tree by randomly choosing the number of leaf 
nodes (k) in its Left tree (so that the Right tree 
has n-k leaf nodes).

• When k=1 the tree formed has one leaf node.
• LeafUp starts with n (1-leaf) trees; chooses 

two at random to give the Left and Right trees 
of a new tree. This will result in n-1 (n-2
single leaf + 1 2-leaf) trees. 
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Example – RootDown

8

5 3

1

1 1

22 3

2 11

11

1
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Example – LeafUp

2

3 5

78 4

6
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Properties – Tree Depth

• The depth of a binary tree, T, measures 
the number of nodes in the longest path 
of links from the root of T to any leaf 
node of T.

• If T is a single leaf then Depth(T)=1 else 
Depth(T) = 1 + 
maximum {Depth(T.Left),Depth(T.Right)
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Random Trees and Depth

• In most applications where binary trees 
occur, these trees are “shallow”: their 
depth is significantly smaller than the 
number of leaf nodes. 

• For example, for <Key-Data> lookup, if 
a tree is very unbalanced, it may take 
much longer to find some of the stored 
keys. 
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Random Trees and Depth

• Both RootDown and LeafUp are biased to 
produce “shallow” trees.

• Neither method is “uniform”: it is not the case 
that every n-leaf tree has an equal chance of 
being generated.

• Methods for which every n-leaf tree is equally 
likely are non-trivial.

• The characteristics of “uniformly generated”  
binary trees are very different from those 
output by RootDown and LeafUp.


