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1 Introduction

A branching program (BP) is a directed acyclic graph where each node has
out-degree 2 or zero. Nodes with out-degree equal to zero are called sinks and are
labelled with boolean constants. The remaining nodes are labelled with boolean variables
taken from a set X=i:l,....znl. There is a distinguished node, called the root which has
in-degree equal to zero. A BP computes an m-argument boolean function f as follows:
Starting at the root, the value of the variable labelling the current node is tested, if it
is zero (one) the next node tested is the left (resp. right) descendant of the current
node. The BP computes f if and only if Va € {0,1}™ the path traced from the root under
a halts at a sink labelled f(a). The natural complexity measure for a branching
program is the number of non-sink nodes. Branching programs are one example of the
many forms of restricted boolean networks introduced in attempts to account for the
complexity of realising specific boolean functions. Cobham [2] has demonstrated that
branching program depth and capacity (i.e. logz(BP—s'i.zepare lower bounds on Time and

Space in any reasonable model of sequential computation.

In order to acquire insight about arbitrary branching programs, a number of
restricted models have been considered (e.g Borodin et alia [1]. Masek [3]). Among these
is the "l-time only” model (BP)) studied by Masek [3], Pudlak [4]. and Wegener [5]. [6].
This imposes the constraint that on any path from the root to a sink each variable is
tested at most once. Thus a BP, has depth at most m. In [6] Wegener proved
exponential lower bounds on the BPl—complexity of certain clique functions. In
Section(2) of this paper we show how the argument used may be generalised to yield
lower bounds on arbitrary boolean functions. In the remainder of the paper we apply
the results of Section(2) to obtain exponential lower bounds on the BP;complexi\ty of the
directed and undirected Hamiltonian circuit functions and perfect matchings. The lower
bounds obtained for the perfect matching and undirected hamiltonian circuit predicates

are, to date, to largest established for explicitly defined functions in the model.
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branches of v may become input branches of w (or wvice—wversa) without affecting the
computation of f.

A variable z  is positive (negative) on a path from the root to v, if z, has been

tested at some node on this path and found to have the value 1 (0), i.e. the path
includes the right (left) branch of the z, testing node. A variable z, is untested on a
path if no node on the path is labelled z.

Below, unless otherwise stated, graph will mean “undirected simple graph".

X = {z“ | 1 <i<j<n} will denote a set of n(n-1)/2 boolean variables. G(Xn) is the
n-vertex graph in which there is an edge (i.7) if and only if :cv,=14

Kn denotes the complete graph on n vertices. The ezxtremal number of a graph G
(¢(G.n)) is the minimum number of edges which must be removed from Kﬂ to leave a
graph which does not contain G as a subgraph.

A graph is k-regular if every vertex has degree k.

Notation
BPIU) = 1-time only branching program complezity of f
G(V,E): Arbitrary n-vertex undirected graph with vertex set V(G) and edge set E(G).
H(4,B,E): Arbitrary bipartite graph with vertex sets 4 and B.
6(G): Degree of graph G
If C c V(€) then:

N(C) = fvin V(G)-C|v is adjacent to some vertexr of C}

2 General Lower Bounds

Definition 1: Let f be a (non-constant) boolean function over X, which depends on

all its arguments. 6(f) is defined to the greatest value a (where 0<a<m-1) such that:
VzeX V YCX-{z], with |[Y| «

3 a partial assignment, m, to the variables of X — ¥ — {z}, for which:

ff(z.Y)=zo0r f"(z,Y) = -z

Since it will be true for the functions considered in Sect(3), for the sake of brevity
we shall assume that the former case always holds for each z€X. The following lemma

demonstrates how 8(f) relates to BP's computing f, and clearly its correctness is not
affected by this assumption.
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Lemma 1: Let T be any BP computing f(X). If v end w are distinct nodes ‘ (x , .8 ) € E(l
: p+1'"p+
of T such that on some path p to v and on some path p to w at most 6(f)
variables have been tested then neither v nor w is a sink of T and v and w The subgraph f

cannot be merged.
! V(H)-ta . a_ . £

Proof: Note: A special case of this result is at the core of Wegener's lower

bound for clique functions. The proof below is essentially the same argument ) (V"m,cV"m) N E(F

originally employed by Wegener in [6].

has e(H, WV, D
Let 7,6 be the partial assignments used to traverse the paths from the root | .

of T to v,w respectively. Let V be the set of variables tested on the path P, Definition 3: I

excluding the variable labelling v. Similarly let ¥ be the set of variables tested o NR-graphs. (With |V

on the path p , excluding the variable labelling w. So |VI].|¥| < 8(f). Clearly

neither v nor w can be a sink, since f can still attain the value 0 or 1. An n-vertex gra

Furthermore if v, w lie on the same path from the root then they cannot be

For any family

merged without creating a cycle in T. It follows that there is some z € VoW

which has been postively tested at v and negatively tested at w. Now assume o SSRGS e ne!il"“"‘
that v, w can be merged. Then we claim that V=F. For suppose there is some .

f As we shall pro-
::jEV such that xj¢W. Then since: f(X) = f(::j, ¥, X—W—{z,l). from the

o 6o an even number of
definition of 6(f) there exists m, such that f™"s = z. Therefore z, would have

L R-graph.predicates f
to be retested, which is forbidden since T is a 1-time only branching program.

Thus VCF and by a similar argument W C V. So as claimed if v,w can be
Theorem 3:
merged then V=W
| 8(RE(X))) >
Now consider the variable z. Then: rx) = s( z, V- [z‘}. X — V) and since
|V - !x‘] | < 8(f) — 1, there exists a partial assignment = to X — V such that: where c=mc
|6 _ : - .oglrm ; =
f = 1 since z=1 under § ; f = 0 since zi-O under y Before giving & -

above.

This contradiction establishes that v,w cannot be merged. O
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Corollary 4
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(”‘,ﬂ'ﬁ,.”) € E(H) for some apﬁe A—gp. ﬁpﬂe B—IJ(QP)

The subgraph H'(V"m,E‘)of H(A,B.E) where V. .wE are given by:

V(H)-{a . B

a
p' T p+l’

} - N(a

peid ~Na . a ) - N, )

P+l

v, =V, ) 0 EH)

re

has ¢(H,[V__|)>|V__|-c.. Where ¢ and c_are constants.
rem rem 1 o 1

Definition 3: Let R = U_?‘, R, ....R, ...} (where i1<i2<“'<ij<”‘) be an infinite family of

NR-graphs. (With |V(_1g‘_)|=-ij).l S
J

An n-vertex graph, G(V,E) is an R-graph if and only if R € R is a subgraph of G.

For any family R as above, RC-iO,l]"("“l)/z-'[O.I] is the (monotone) boolean function,

defined for neiil,...,i’_....} to be 1 if and only if G(X‘) is an R-graph.

As we shall prove below, the undirected hamiltonian circuit function, for graphs with
an even number of vertices, and the Perfect Matching function are both expressible as

R-graph predicates for two particular families of NR-graphs.

Theorem 3: For any family of NR-graphs, with 6(_Ign)=k:

8(RG(X)) > n/2-k-c
where c='m.a.zico, c]], the constants of Definition(3).

Before giving a proof of this theorem, we illustrate how it is applied to the functions

above.

Corollary 4: UHC(X ) is the monotone boolean function which is 1 if and
only if the graph G(X‘) Contains an undirected hamiltonian circuit.

BP (UHC(X))) > 2"°~¢

Proof: Only the case where m is even need be considered. Let € be the

family of graphs:

(G By by 5800

in which the i'th member is the 2i vertex cycle graph. Each C" is 2-regular and
bipartite (since n is even). (Fig(la)) C_is also neighbourhood restricted, since

(assuming the labelling of Fig(la)):
Vi1i<pg<n/2-1
N (°'1' a, ...ap)! < p+1
The subgraph of tl"l consisting of the vertices:

iapi»l' ap+2""
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is just a hamiltonian path. The corollary therefore follows if:

e(n-vertex hamiltoniean path, n) > n-6

This is proved by induction on n > 2. The base is immediate so assume
this lower bound on € holds for all values less then m. Consider K" with any
set of m-6 edges removed to leave & new m-vertex graph F. If F contains a

vertex v such that:

[(n-3)/2] < 6(v) < m—1 ([..] denotes ceiling function)

Then F contains a hamiltonian path. For, by the inductive hypothesis since
6(v)<n-1, the subgraph consisting of V(F)-v and their incident edges contains a
hamiltonian path, and as 6(v)> [(n-3)/2], so v must be adjacent to the vertex
in which this path starts or finishes, or v is adjacent to two vertices which are

connected by an edge in this path.

It follows that the only case to be considered is when all the edges
removed from K“ are incident to a single vertex v. But now the subgraph

consisting of the remaining vertices and their incident edges is Kﬂ_ and

g
certainly a hamiltonian path starting in a vertex to which v is adjacent can be

found. Thus F conteins a hamiltonian path and the lower bound on £ follows.

Theorem(2) and Theorem(3) yield the lower bound on BPI(UHC(X")). u}

It may be observed that a similar lower bound holds for the directed hamiltonian

circuit function.

Corollary 5: An n-vertex graph G(V,E), where n is even, contains a perfect
matching if and only if there exists a subset of E(G) of size mn/2 such that
every vertex is an endpoint of exactly one edge in this subset. PM(X ) is the
monotone boolean function which takes the value 1 if G(X_) contains & perfect
matching. "

BP (PM(X)) > 2n/2-2

Proof: Let PR be the family of graphs (Fig(1b)):
{PM, PM,, ... PM,, ..

Clearly, PM'l is neighbourhood restricted, with c°=0. Thus the Corollary

follows if:

e(PM_,n) > n-2

To prove this, observe that the number of distinct perfect matchings in K“
is: (n-1).(n-8).....(3).(1). However removing any one edge from K can destroy at
most: (n-3).(n-5)....(3).(1) perfect matchings. The lower bound on £ and hence
BP (PM(X)) follows. O

Proof: (of Theorem 3)
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Let YCX_ of size at most n/2-k-c. Without loss of generality, suppose the
edge (1,2) €Y. We shall prove that the edges in z - Y - (1,2) may be fixed in
such a way that the resulting graph is an R-graph if and only if it contains the
edge (1,2). Let:

r = fveV(G)| (i,v)€Y} where i=1 or 2

NULL = fveV(6)—-{1.2}| (Gv)¢Y V 1<j<n]

NULL is the set of vertices of G none of whose incident edges occur in Y.

Now:
INULL| > n—2—|1"lul‘2l—2(n/2—k—c—|F‘|—II‘zl)
> |r‘1| + |I‘2| + 2(k—1)+2c

Consider the following mapping from V(G) to A(Rn) v} B(Rn) (=V(R")).

M1) The vertices in I‘X\JI‘2 are rmapped to e in V(Rn). Here
P=|F1ul‘2|gn/2—k—c, and a is the '"neighbourhood restricted” set of
Definition(2).

M2) A subset Match of NULL, with size |E(gp)| is mapped onto E(_gp).

M3) The vertices 1,2 of V(G) are mapped to the vertices a,
A(R“) and B(Rn). Recall that these vertices of Rn satisfy:

n .
+1 and ﬁp+1 m

& urt Py B a UN(a )
and
(ap+1' ﬂp+l) = E(Ru)

M4) A subset Match12 of NULL - Ma.tch.y having size

(s, B,,) — fa,,. B, }| is mapped onto N(a_ .6, )~ fo B 1}

p+1 p+1" Up+1

M5) The remaining vertices of G(X‘) are associated with the unmapped

vertices of V(R ). These form the V__ vertices of Definition(2).

The lower bound on the size of NULL and the definition of "Neighbourhood

restricted” establish that this mapping can be constructed. Observe that at

most |V__|-c, edges can be forbidden in the subgraph consisting of the V
rem 1 rem

vertices (i.e by setting the edges in Y to 0). For if Cut denotes the set of edges

in {V__ xV__]nY then |Cut| < |V_ | - ¢, since:
rem rem rem 1

IV"_ml >n - 2|l"xu1"2| - c,—2k
[Cut| < n/2 -k —c— T |- [T,

Thus:

V.|~ lcutl>n/2 T | - I, - &

SRS
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But: |I‘1| + |I‘2| < n/2 - k - c. Hence:

IV, ol — [Cutl 2c2>c
rem 1
So the following edges can now be set to 1.

E1) All edges between I‘IUI‘Z and Ma.tch.r which correspond to the edges
between « and N(a ).
P+l P
E2) All edges between {1,2} and Match , which correspond to the edges
between f{a ﬂpﬂ} and LI((:(’n ﬁ,ﬂ) except for the edge (1,2).

p+1’ +1'

E3) All edges connecting the vertices in Matchy and Match12 which
B .

correspond to edges connecting vertices in Ll(gp) and N(a

p+1’ Up+1

E4) A minimal set of edges in iV' xV"ml—Y to correspond to the Viem

em
subgraph of R”, c.f The size of Cut and the "extremal number” property of R".

E5) All edges connecting vertices in Ma.tch.n, where D is Y or 12, to vertices
in V__ . which correspond to edges between ﬁ(gp) and V__ in R and edges
between ﬂ(apﬂ, 6”1) end V__ in R

All remaining edges in X-— Y - (1,2) are set to 0. This yields the graph of
Fig(2). Note that each of the vertices in NULL has degree exactly k in this

construction.

If the edge (1,2) is present in G, then clearly G is an’ R—graph. However if
the edge (1,2) is missing from G then it cannot be an R-graph. For suppose the
contrary were true, and that F is an Rn—subgraph of G. Since Rn is k-regular,
for some v€T UT, an edge (1,v) must be in E(F), and so one of the edges (v,w)
added by (E1) must be absent from E(F), where we Matchy. for otherwise v
would have degree k+1 in F. But now the vertex w can now have degree at

most k-1. This contradiction proves the theorem. O
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(a) G(X5)

(b) R

Figure 2
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