
Aids to computation and the development of algorithms

Mechanical Aids to Computation and the
Development of Algorithms

Summary: Mechanical aids to computation developed out of a need to reduce the effort
involved in lengthy and tedious mathematical calculations such as those arising in making
astronomical predictions, navigation, bookkeeping, etc.Linked with the the idea of such
devices is the concept of an algorithm — a precise description of the steps to be carried out
in order to calculate some quantity. Early calculating devices could only be applied to very
specific tasks, i.e. these could not be programmed. In the 20th century the first general-pur-
pose computing devices were built. The effect of these has been to extend the range of fields
in which automatic computation can be applied, e.g. in areas such as Artificial Intelligence,
Databases etc.

Syllabus

1. Presentconcerns in Computer Science: popular views of computers; common applica-
tions and their effects. Scientificconcerns: Artificial Intelligence, theory of computa-
tion, non-Von Neumann machines

2. Introduction; Counting systems to represent numbers: Babylonian, Mayan, Roman
numerals, Arabic/Indian. Early calculating devices: clay tablet (Babylonia, ca. 2000
B.C); abacus (Babylonian, before 500 B.C). Concept of algorithm (ruler and compass
constructions, Euclid; Persian work)

3. 16-18th Century developments: Galileo’s geometric compass (1597); Napier’s and
Briggs’ development of Logarithms (1614); Oughtred’s Slide rule (1621); Mechanical
calculators of Pascal (1644) and Leibniz (1673). Jacquard’s inv ention of punched cards
(1753)

4. 19th Century: Babbage: Development of Difference Engine (1820-1830s); Analytical
Engine first attempt at general-purpose programmable computer (1840s); Boole - formu-
lation of logical algebra underpinning operation of digital computers (1880s); Hollerith’s
machine for tabulating census statistics (1887).

5. Development of first digital computers: 1920-1948: Stibitz, Eckert, Mauchly, Atanasoff,
von Neumann (US); Zuse (Germany); Turing, Wilkes (UK).

6. 1950-1960s:Spread of large-scale mainframe computers: contributions of IBM, ICL etc.;
First (high-level) programming languages; FORTRAN, COBOL, ALGOL 60.

Aids to computation and the development of algorithms 1

Mechanical Aids to Computation and the
Development of Algorithms

If this is the best of all possible worlds, what can the rest be like?

Voltaire
Candide

1. Intr oduction - Current Concerns in Computer Science

One of the more hackneyed clichés touted around at present is that "nowadays, computers are
ev erywhere". It is widely believed that computers influence significant aspects of our lives;
computers are seen, by some, as a social threat; by others, as a panacea for social problems;
and, frequently, computers are accepted as a valid scapegoat for human incompetence. Yet, as
little as 30 years ago, such views would not have been found outside the pages of science-
fiction stories. It is clearly the case that, in order for these perceptions to have gained ground,
a tremendous increase in the public awareness of computers must have occurred. In this,
introductory, lecture we shall examine what the principal current concerns in computer sci-
ence are and discuss how these have contributed to popular misconceptions about the rôle
and functionality of computational systems. In particular we will address the following set of
questions:

1. Why are the attitudes, summarised in the opening paragraph, misrepresentations of the
use and potential of computers?

2. What has happened, in the recent development of computational aids, to cause a
widespread acceptance of such views and what are the actual areas on which the present
state of computer technology has an impact?

3. What, in practise, are the present concerns of Computer Science as a scientific disci-
pline?

1.1. Misconceptionsconcerning computational systems

The views described above can be reduced to two assumptions:

A. Computerscan do anything.

B. Computersare ‘responsible’ for their behaviour.

(A) accounts for the perception of computer potential as threatening or beneficial; (B) for the
proffering of computers as causes of errors.

In order to refute (B) it is enough to observe that a computer is, merely, a tool that is
used underhuman control to specific ends. To reason that the quadrupling of a pensioner’s
electricity bill was caused as a result of ‘the computer making a mistake’ is no more logical
than propounding ‘the engine made a mistake’ as a defence to a motoring offence. Thus, the
only individuals who are ‘responsible’ for the behaviour of machines are their users and
designers.1

The assertion ‘computers can do anything’ is rather more difficult to deal with. As a
precisely formulated mathematical abstraction, however, it has been known to be false since

1) There are numerous examples of the (often wilful) failure to understand this obvious fact: the excuses made
by television companies who failed to come close to predicting the outcome of the last two General Elections;
the near nuclear accident at 3-Mile Island; the actual nuclear disaster at Chernobyl.

2 Introduction

1936.2

It is the case, however, that this technical refutation of the claim ‘computers can do
anything’ is not universally accepted: Turing’s premises are questioned, even by some com-
puter scientists.Nevertheless, underlying Turing’s proof is the appreciation that all any com-
putational system does is to manipulate finite sequences of symbols, such manipulations being
carried out in accordance with a given program3 of instructions. Given this, rather stark,
description of the capabilities of computational mechanisms, it should seem immediately
apparent that the claim ‘computers can do anything’ is fallacious. There are those who would
dispute this, however, and we will return to this issue at the end of the lecture.

1.2. Cultural and social causes of misconceptions concerning computers

One of the most noticeable aspects of how important scientific developments become widely
known is in their (frequently misleading) portrayal in popular culture. As examples one may
cite the r̂oles played by: electrical power in Mary Shelley’s Fr ankenstein; new psychological
theories of personality in Stevenson’s Dr. Jekyll and Mr. Hyde; the exploitation of Freud’s
psychoanalytic theories by Surrealist art; the effects of nuclear radiation and atomic power in
films such asThem! and The Incredible Shrinking Man; etc. Progress in Computer Science
has been no exception to this phenomenon, even though much of its history is concerned
with the development of artefacts rather than abstractions. Of course the association of
anthropomorphic attributes with machines and the view of these as threatening forces are very
old ideas, cf. the Luddite riots in the 18th century. In this century the same theme may be
found in works ranging from early instances such as Duchamp’s great sculptureLa maríee
mise à nu par ses ćelibitaires, m̂eme (Le grand verre)4 through musical compositions like
Varèse’ Désertsto its specific computer representations in such films as Russell’s Billion Dol-
lar Brain5, Tarkovsky’s Solaris, Kubrick’s 2001, etc. Thus in the specific case of computer
development thepopular dissemination of the capabilities of these machines was, from the
1950s onward through the media of cinematic fiction and less than accurate newsreel and
journalistic coverage. This, of course, during a period (post-war to mid 1960s) when a gen-
eral appreciation of new technology and ideas would largely be acquired through cinemas
rather than through television.

Despite the fact that the image of machines as threatening/beneficial has long been fash-
ionable it is not one that can be seriously sustained without some underlying foundation—
no matter how weak such a foundation may be in reality, e.g. the Luddite reaction to new
technology, mirrors the real threat that individuals felt concerning their employment and wel-
fare. If we examine what this foundation is in the case of progress in computer science then
some understanding of how it has been distorted may be gained.

When we observe an individual performing, with great proficiency, a task that is
regarded as intellectually demanding we have a natural tendency to view such a person as
possessing above average ‘intelligence’. This is especially the case when the activity at which

2) vide ‘On computable numbers with an application to theEntscheidungsproblem’ (Proc. LondonMathl. Soc.,
Series 2 (42), pp. 230-265 (1936); corrections:ibid, (43) pp. 544-546 (1937)). An achievement of the great
English mathematician and computer pioneer Alan M. Turing (1913-54) whose contribution will be discussed
later in this course.

3) The U.S. spelling ‘program’ (as opposed to the British ‘programme’) has become a standard usage when the
word is used in the particular sense implied here.

4) Although gynomorphic would be a more appropriate description of this.

5) A particularly laughable misrepresentation of computers: the eponymous machine is capable of analysing
material of enormous complexity in order to make forecasts concerning military strategy; it can produce output
in graphical, spoken and printed form, but throughout the film information is supplied to it in the form of paper
tape and punched cards, techniques that had already been improved upon by the time the film was made.

Aids to computation and the development of algorithms 3

they excel is one which we, ourselves, find beyond our abilities. Thus, a gifted writer or
artist, a successful entrepreneur, a prominent scientist or mathematician, a persuasive orator,
or a skilled chess player, may often be regarded as people of ‘great intelligence’, despite
whatever evidence they may exhibit to the contrary. This tendency accounts in part for certain
misconceptions that are widely held about computers and, unfortunately, is one which too
many computer scientists have encouraged and too few hav e tried to correct.

Traditional applications of computers have included numerical calculations, deciphering
codes, storage and processing of recorded information, and recently decision-support and
advice giving. Considerthe first of these. Involved arithmetic calculation is an activity that
many, if not most, people find difficult to carry out, particularly if it is to be done solely in
one’s head. Computers, however, can be programmed to perform such calculations extremely
quickly and in a manner which always gives the correct answer. Similarly deciphering
encrypted text (the process of translating a piece of text given in an encoded form back to its
original plain text format) is something which requires a skilled human agent but which can
be accomplished, fairly easily, by appropriate computer systems.6 Now both of these activi-
ties — arithmetic calculation and code decryption— are ones which would be regarded as
indicating ‘intelligence’ in an individual who performs them ‘well’. Hence we have one
source of fallacies concerning computational mechanisms: since computers can (be pro-
grammed to) perform extremely well tasks that are normally found difficult, e.g. arithmetic,
and since a human with some competence in such tasks would be considered ‘intelligent’, it
follows that computers are ‘intelligent’ and therefore could solve other problems which we
find hard to deal with. This is a rather casual logic but one which was (is, even) widely
accepted.7.

One might argue, however, that there are many examples of mechanical devices that
perform tasks well beyond the ability of a human agent— e.g. compact disc players, televi-
sion sets, etc— and no (sane) individual would regard such as ‘intelligent’; why, then, should
computers be considered differently? Such an argument is, of course, perfectly sound, there is
no reason: the misconception that computers are capable of ‘intelligent’ action arises not only
from their facility at tasks such as arithmetic but also from the fact that they can be config-
ured (i.e.programmed) to carry out other, unrelated, tasks as well. In addition a computer
executing a program appears, in some sense, to be independent of human control.8

The reasoning "computers can perform well some tasks that require ‘intelligence’ and
thus may be able to carry out other functions needing a similar ability" was one of the histor-
ical motivations behind a study that, at present, forms one of the principal fields in Computer
Science: the area of Artificial Intelligence (A.I.). We shall return to this topic when dis-
cussing current issues in Computer Science in the concluding section of these notes. For the
moment, it should be noted that the misrepresentation and exaggerated claims concerning the
potential of A.I. systems has been, to a significant degree, a factor in the view of computers
as threatening/beneficial objects.

Aside from the distorted perception of A.I., it is, undoubtedly, the application of com-
puter systems as record maintenance tools that has contributed most to public disquiet about
computers. Hereis a selection of areas in which personal records are stored, processed and

6) One of the first British computers— COLOSSUS— was constructed during the Second World War to
assist with precisely this task of decoding intercepted messages.

7) For which fact newsreel coverage of early computer systems bears some responsibility: a famous newsreel of
the Whirlwind computer, built at M.I.T in the late 1940s, involves an over-excited reporter awe-stricken by the
machine’s 10 second calculation of a table of square roots and enthusing over the potential other uses of this
machine.

8) This (illusory) appearance of detachment is used to considerable effect in at least three films:2001, The
Forbin Project, and the execrableDemon Seed.

4 Introduction

maintained on computerdatabases: Personal taxation records (by the Inland Revenue); stu-
dent exam marks, course registrations, and other details (by the University of Liverpool,
among others); Vehicle Licencing records (by the D.V.L.C. at Swansea); Social Security
information (by the D.S.S. at Newcastle); car theft and motoring offences (by the Police
National Computer); credit status and personal financial records (by banks, building societies,
credit card agencies); employee salary details and other personal information (by most large
employers).

It can be seen that data processing and handling is one of the areas of computer activity
which affects almost everybody. The last 20-25 years have seen, in this sphere, an enormous
increase in the number of applications which are dealt with by computer-based record sys-
tems rather than by the more traditional paper filing techniques. This expansion in the amount
of confidential and personal information held on computer systems has been viewed with
trepidation by many individuals, largely on account of the following reasons:

i. Civil liberties groups feel concerned about the uses to which personal details of individ-
ual citizens are put, and have expressed fears about the extent of (and reasons for hold-
ing) information about certain categories of people. Examples cited as grounds for such
concern include: the use of employment blacklists by certain companies; details about
members of political parties/pressure groups etc; the fact that the storage capacity of the
Police National Computer database considerably exceeds that which would be needed to
record all instances of car thefts.

ii. Clearly, since a lot of information is confidential, appropriate safeguards must be
adopted to ensure that only authorised individuals have access to this. A number of
database systems have failed to address this requirement.

iii. Finally, there is concern about detecting and amending errors in stored records, e.g. if a
credit card company has mistakenly identified an individual as a bad credit risk then
this can have serious consequences for the person affected: they may find themselves
unable to obtain a bank loan or mortgage, or face the embarrassment of having their
credit card confiscated when they attempt to use it.

Some indication of the seriousness with which the last two points have been treated may be
discerned in actions taken by Parliament within the last 10 years. In 1984 the Data Protection
Act became law. This created the post of Data Protection Registrar by whom all instances of
computer recording of personal information had to approved9. The Act also gav e individuals
the power to inspect computer record systems where they had reason to believe information
relating to them was held10 and to have such information corrected if it was in error. The
other legislative action occurred in 1990 when The Computer Misuse Act, a Private Mem-
ber’s bill sponsored by the Conservative M.P., Emma Nicholson, became law. This crimi-
nalised the activity of obtaining unauthorised access to computer systems— so called ‘hack-
ing’. Regrettably its success has been rather mixed: the only prosecutions brought to date
have resulted in one highly publicised acquittal and custodial sentences for two individuals
who pleaded guilty at trial.

In summary, we can see that two of the main causes of the public awareness of com-
puter development have been the popular reporting of A.I. potential— thus the fallacious
extrapolation from facility at arithmetic to capability for intelligent independent action— and

9) This provision did not, in fact, apply universally: certain classes of system were exempted, specifically those
dealing with ‘national security’ issues.

10) The reason why the University of Liverpool now informs students of the actual marks they obtained on
exam papers is in order to comply with the provisions of the Data Protection Act (although the Act only requires
that such marks be releasedon request; voluntary disclosure is not, in fact, a legal requirement). Ten years ago
such action would have been considerable unthinkable in many quarters.

Aids to computation and the development of algorithms 5

the growth of computer information storage systems with the attendant problems these create.
We conclude this sub-section by, briefly, examining a few other areas in which computer
technology has become influential and the effect of these developments on the general per-
ception of computers.

Some applications which have noticeably been affected by technological developments
are the areas of: process control; graphical displays; and transaction systems.

Process control concerns the use of computer systems to regulate activities such as the
running of processes ranging from chemical production plants and nuclear power stations to
washing machines and video recorders. In these the fact that computer mechanisms are being
applied is often not obvious, part of the reason for this is the increased sophistication of the
devices that carry out the control actions so that the physical space occupied by the controller
is very small.

Similar technological progress accounts for the advances and wider applications of com-
puter graphics. Unfortunately much of the exploitation of this capability has been in some-
what trivial areas: special effects in films, arcade and computer games. The approbation the
latter have attracted is an interesting sociological phenomenon,viz. reports about children
addicted to such games, claims that these may trigger epileptic fits or cause psychological ill-
nesses; assertions that they encourage sociopathic behaviour; and the belief that these games
deprive children of time that could be spent in more ‘worthwhile’ pursuits11.

Finally, transaction handling via computer systems has increased greatly since the early
1970s. Common examples of such systems are: automatic cash dispensers used by banks and
building societies; airline booking and other seat reservation applications; library information
services, e.g. the LIBIS system used at Liverpool University. In the first area— cash dis-
pensers— some concerns have been expressed about security, specifically the occurrence of
‘phantom withdrawals’ from accounts. At present there has been no resolution of the dispute
between banks (who maintain that all questioned transactions occur because customers have
released their identification code to a third party) and consumer organisations (who claim that
unauthorised withdrawals from accounts are possible without such a code being disclosed). It
seems probable, however, that this argument will be resolved in favour of the consumer inter-
ests.

1.3. Current Scientific Concerns in Computer Science

In the preceding sub-section we discussed those developments in computer technology, over
the last quarter of a century, that have had a significant impact on the public awareness of
computers. We conclude this opening section by examining a few of the research areas which
are currently of importance in the development of Computer Science as a scientific discipline.
The topics discussed, briefly, below are not intended to provide an exhaustive survey, but
merely to give an overview of some areas which are being pursued.

We shall concentrate on three general areas in which there have been significant interest
over the last few years:

i. Artificial Intelligence

ii. Non-traditionalapproaches to computation.

iii. MathematicalTheory of Computation.

11) The last is a recurring objection to new entertainment media: contemporary sources may be found inveigh-
ing against comics and cheap thrillers, gramophone records, cinema, radio, television, etc. Undoubtedly the 15th
century invention of the printing press attracted similar approbation from those claiming to be solicitous of chil-
dren’s well-being.

6 Introduction

1.3.1. Artificial Intelligence (A.I.)

We hav e already mentioned this area in connection with misconceptions about computer
potential. Thereare a number of competing factions working in this field who disagree over
what the exact aims of A.I. should be. It is to be regretted that the strength of this disagree-
ment is such that opposing camps often comment on ideas whose validity they dispute, in a
style which might be considered inappropriate to the conduct of a rational, scientific dis-
course. The two predominant opinions may be summarised as:

"The aim of A.I. should be to understand the processes of thought and intelligence as
computational phenomena."

"The aim of A.I. should be to build systems that can perform some activities at least as
well as human agents."

The latter approach has, without question, been the more successful. One of its most impor-
tant contributions has been the development of, what are called,Expert Systems. Such sys-
tems are attempts to replicate the advisory and decision-making processes used by experts in
specialist domains of knowledge. Fields in which successful systems have been built include:
medical diagnosis (for particular classes of ailment); legal systems (for interpreting specific
items of legislation); and mineral prospecting. Research into extending the range and develop-
ing the capabilities of such systems is, at present, one of the central areas of computer sci-
ence.

The alternative school has concentrated on areas such as understanding natural language,
and philosophical debate about the nature of what constitutes an ‘intelligent machine’. In
recent years there has been a growing interaction between this approach and work carried out
in cognitive psychology, neurophysiology, and linguistics. In this respect some interesting
work is being performed. Arguably, the both approaches are still suffering the consequences
of inflated claims made in the 1960s and 1970s about what could be delivered.12

1.3.2. Non-traditional approaches to computation

Non-traditional, or more properlynon-von Neumann13 computer models, have become estab-
lished as a core research area in computer science in the last 10 years.Four sub-topics
within this field are currently the subject of much attention:

A. Neural networks

B. GeneticAlgorithms

C. QuantumComputers

D. Parallel Computers

A. Neural Networks

The theory behind these developed from biological models of the working of the human
brain. Such networks have been successfully applied to deal with categories of pattern recog-
nition problems, e.g.voice recognition. One of the computationally interesting aspects of the
neural network approach is the fact that neural networks are customised by being ‘trained’
with examples of the objects to be recognised. Thus the internal characteristics of the

12) There are numerous stories about failed A.I. systems, e.g. in the 1970s the U.S. Intelligence agencies funded
a project for determining geo-political strategies; on being asked to draw a conclusion from the three state-
ments: ‘Russia is a communist dictatorship’; ‘Russia is hostile to the U.S.A.’ and ‘Cuba is a communist dictator-
ship’, the system responded ‘Cuba is in Russia’.

13) After the Hungarian born, U.S. computer scientist John von Neumann (1903-57) who is credited with the
first formal description of the structure of general-purpose computers.

Aids to computation and the development of algorithms 7

network are modified, sometimes by the network itself, until a satisfactory performance level
is attained. Investigation of learning and training approaches forms an important facet of work
on neural networks. In addition advances in the physical construction of computer systems
have created the possibility of building very large neural networks inexpensively.

B. Genetic algorithms

Genetic algorithms provide another example of ideas from biology being translated into com-
putational analogues. The idea underlying these is to emulate the evolution of DNA
sequences as a means of solving computational problems. Thus the processes by which DNA
strings combine and evolve are mirrored by symbol manipulation operations on sequences of
symbols. Some promising approaches have been developed for some difficult optimisation
problems. Research in this area, at present, is concerned with developing the theoretical basis
of these methods (which is currently not well understood) and with extending its applicability.

C. Quantum Computation

Whereas neural networks and genetic algorithms have come about through importing ideas
from biology, quantum computation has its origins in developments in physics — specifically
exploiting quantum level effects as a computational device. The theoretical properties of
quantum computers were first described by the physicist David Deutsch14 by whom the possi-
bility that these may be considerably faster than classical machines was raised. At present
much of the current research on this model is of a highly theoretical nature (hindered by the
fact that a number of publications mis-report Deutsch’s conclusions). There is, however, some
work in progress concerning the feasibility of constructing quantum computers.

D. Parallel Computers

The methods described above may be seen as particular special cases of a more general class
of non-von Neumann computers: parallel computers. In these a (potentially very large) num-
ber of individual computers are ‘linked’ together in order to provide a more powerful
machine. There are many significant research problems being addressed in this field at pre-
sent: developing parallel machines for a specific applications; designing methodologies for
programming on parallel computers; analysing the efficiency of parallel solutions; etc. This is
an area that has only really begun to develop within the last ten years and is likely to pose
important questions in Computer Science for a number of years to come.

1.3.3. MathematicalTheory of Computation

This group of subjects forms one of the oldest traditional research concerns in Computer Sci-
ence. Itsorigin (arguably in 190015) predates the appearance of the first modern computer
systems by almost fifty years.The general aim of this field is to address questions in the
design of computer systems and programs from a formal mathematical perspective. Within
this area fall three studies of principal interest:

14) In, Deutsch, D: ‘Quantum Theory, the Church-Turing principle and the universal quantum computer;Proc.
Royal Soc. of London, Series A, (400), pp. 97-117 (1985). The concluding section of this paper gives a novel, if
somewhat technical, discussion of the relationship between computer science and modern theoretical physics.

15) I have chosen this date from the presentation of David Hilbert’s lecture ‘Mathematical Problems’, given
during the International Congress of Mathematicians at Paris in 1900, the text of which was published inArchiv
der Mathematik und Physik, (1), pp. 44-63, 213-237 (1901). Hilbert, in this lecture, presented a collection of 23
open problems in mathematics, the second of which —Die Entscheidungsproblem— poses the challenge of
constructing a specific algorithm (i.e. program).

8 Introduction

A. Semanticsof programming languages.

B. ComputabilityTheory.

C. ComputationalComplexity Theory.

A. Semantics of programming languages

Informally this area is concerned with how to attach precise ‘meanings’ to constructs that
occur in computer programs. The motivation behind this is twofold: if the actual behaviour of
a program can be defined in a rigorous enough manner then the problem of showing that the
program fulfills a particular function reduces to that of mathematically proving that the
semanticsof the program accord with the intended functionality. This objective is the goal of
the Formal Verification theory. Formal verification was first mooted in the early 1970s by,
among others, the Dutch mathematician Dijskstra, the English computer scientist Hoare, and
the U.S. computer scientist Floyd. The other motivation for the theory of program semantics
is that if precise meanings can be attached to programs then it becomes possible tospecify
formally the functionality a program should achieve. Formal specification concerns the con-
struction of methods by which the requirements of a system can be described precisely and
unambiguously. While some success has been achieved with the design of specification sys-
tems (most notably at Manchester and Oxford) the existing formal verification techniques
have yet to achieve any great level of sophistication. Programming semantics is one of the
internationally recognised areas of expertise in British computer science.

Computability Theory

Computability theory is concerned with the classification of which problems can and cannot
be solved by computer programs. The first significant work in this field dates back to the
1930’s when concepts of what constitutes a valid computational system were proposed by
Emil Post, Alan Turing, Stephen Kleene, and many others. There has been an increased
revival of work in this field, partly as a consequence of the developments in non-von Neu-
mann models discussed earlier. Some of these models challenge the premises which are used
in the proofs that certain problems cannot be solved. It is, currently, unclear whether the
models with the strongest claims in this area would actually be constructible in practice.

Computational Complexity Theory

While computability theory is concerned with the question of which problems can be solved
by computers, computational complexity is concerned with which problems can be solved
efficiently. The term ‘complexity theory’ was first coined in the mid-1960s by Hennie and
Stearns, but related work in this field has been in progress since the 1930s, specifically the
work of Shannon, Shestakov, and Lupanov concerning building efficient ‘hardware’. Several
of the most important open questions in Computer Science and mathematics are ones that
have been raised as a consequence of work in this area, the most widely studied of which
has been theP == ?NP question first formulated by Steven Cook in 1973. Briefly this asks
whether a specific class of ‘decision problems’ can be solved by ‘efficient’ programs; a posi-
tive answer (which is not expected by most experts in the field) would have considerable
implications for a very large number of applications areas. This field is another area of Com-
puter Science in which Britain has a considerable international reputation.

1.4. Summary

Computer technology has developed to a considerable degree over the last 20 years. This has
resulted in certain applications of computers impinging on various aspects of individual’s day-

Aids to computation and the development of algorithms 9

to-day lives. As a scientific concern research interests in Computer Science have led to an
interaction between older scientific disciplines such as Biology, Psychology, and Physics.
Unfortunately, it is still the case that the advent of increased computer application has met
with either public concern and suspicion or with over-optimistic beliefs about what computers
can do.

10 Introduction

Mechanical Aids to Computation and the
Development of Algorithms

2. Intr oduction - Early History

Although the computer and its widespread application in our society, are phenomena that
have become predominant in only the last 30 years, many of the concepts underlying these
developments have their origins in concerns dating back to the earliest cultures. Computers
manipulatedata (Latin, plural of datum, neut. p.p.dare, cognate Sanskrit,datta: those things
which have been given), i.e. process and transform given representations of information in
order to obtain a desired result. Within this basic description of computer behaviour we can
discern two fundamental ideas:

1. Representation:A concrete, symbolic encoding of information, e.g. numbers, words,
names.

2. Tr ansformation: The steps (recipe,program, algorithm) used to calculate a specific
result.

A symbolic encoding of information provides a vehicle for communication — information
can be passed on in a commonly understood form. A record of the process by which the rep-
resentation is transformed allows the calculation process to be carried out repeatedly on dif-
ferent sets of data, e.g. we have all learned the steps needed to determine the result of multi-
plying any two large numbers.

One might ask, however, why, giv en a system for encoding information and the
sequence of steps needed to manipulate this to a specific end, it should be necessary to seek
mechanicalassistance with the task? The answer to this question lies in the fact that the cal-
culations required to carry out these tasks are often laborious. This fact has two consequences
if no mechanical aid is employed:

1. Thecomputation will take a long time to complete.

2. The answers may be incorrect, because of human error, and so thesamecomputation
may have to be carried out several times.

(Consider, which would you prefer: to multiply two 5 figure numbers by hand on paper or to
use an electronic calculator? Which answer would you have greater confidence in?)

The calculations involved in predicting celestial phenomena from previously observed
data; in assessing the rates of taxation to levy in order to raise a required sum; in analysing
census statistics; in determining the path of a projectile; all of these are examples where
lengthy, tedious and (if done by hand) error-prone computations arise.

Thus the historical development of the topic we are considering can be seen to be based
on three related processes:

1. The development of symbolic representations of informationthat are amenable to
manipulation.

2. Theformulation of algorithms by which such representations may be processed to solve
computational problems.

3. Theconstruction of mechanical aids that allow such algorithms to be implemented in an
efficient and a reliable manner.

It ought to be clear that methods for representing information must been have dev eloped first,
so it is appropriate to examine one aspect of such representations — number systems —

Aids to computation and the development of algorithms 11

before going on to consider the algorithms and mechanical aids that utilise them.

The simplest method of representing numbers is to use a sequence of identical marks to
denote quantities, e.g. Figure 1 below

Modern form Tally System
1 |
2 ||
3 |||
4 ||||
5 ||||------
10 ||||------ ||||------
25 ||||------ ||||------ ||||------ ||||------ ||||------

Figure 1: Simple Counting System

Archaeological discoveries have established that the ‘tally system’was independently devel-
oped by many early cultures, e.g. bones with notches denoting quantities have been found by
anthropologists in Czechoslovakia, similar fragments dating from around 8500 B.C. have also
been discovered in Africa. Despite its rudimentary nature, this system does exhibit important
features that were to be preserved in later systems. The most important of these is the con-
cept of counting in multiples of somebasic number (5 in the example above). While most
societies adopted 5 or 10 as the typical base (from the practice of counting on fingers) these
were by no means universally chosen. The South American Mayan culture employed a sys-
tem based around the number 360 (from their estimate of the number of days in a year); the
Babylonians used 60 as a base. It is interesting to note that the influence of the Mayan and
Babylonian systems continues in the present day (a circle contains 360 degrees, a degree 60
subparts called minutes, a minute 60 subparts called seconds; similarly we denote time units
in multiples of 60 — 1 hour is 60 minutes is 60×× 60 seconds)

Although the tally system has several advantages — it is easy to understand, simple
arithmetic operations such as addition, subtraction and multiplication can be performed with-
out great difficulty — it is extremely cumbersome when used to represent large numbers,
such as might arise in recording population sizes, and it is not suitable for more complicated
computational tasks, e.g.division. Attempts to address the first problem can be discerned in
the notational systems used by Greek and Roman societies (from ca. 1000 B.C for Greek,
700 B.C, Roman). These, though, were really only slightly more sophisticated versions of the
tally system: instead of using a single denotational symbol to construct numbers, a set of dif-
ferent symbols is employed, each representing a different quantity, Figure 2.

12 EarlyDevelopment

Modern Greek Roman Numeral Modern Greek RomanNumeral
1 α ′′ I 25 α ′′′′ XXV
2 β ′′ II 50 β ′′′′′′ L
3 γ ′′ III 99 γ ′′′′′′′′′′ XCIX (not IC !)
4 δ ′′ IV 100 δ ′′′′′′′′′′ C
5 ε ′′ V 500 - D
6 ζ ′′ VI 900 - CM
9 ι′′ IX 1000 - M
10 λ ′′ X 1948 - MCMXLVIII
20 υ ′′ XX 10000 µυ ριoι1 M
24 ω ′′ XXIV 100000 - M

Figure 2: Greek and Roman Counting Systems

Notice that both of these systems eventually become no better (and in some respects consid-
erably worse) than the simple tally system. The method of Roman numerals does, however,
introduce an important idea, although failing to exploit it fully: the concept ofpositional
notation. Thus in the representation of 1948 the openingM has a different meaning from the
M occurring as the third character. Both of these systems indicate the importance of the qual-
ification ‘amenable to manipulation’ that we stressed earlier. The major deficiency of the
Roman system is that it is decidedly unsuitable as a basis for computation.In the tally sys-
tem the calculation of 494++ 506 is a (notationally) lengthy but very easy computation; the
computation ofCDXCIV ++ DVI in Roman numerals is not (the answer, M , bears no sym-
bolic relation to the summands and although the result is almost twice as large as the individ-
ual contributions, it is expressed using one symbol instead of nine). A task such as multipli-
cation, conceivable in the tally system, present major difficulties in Roman numerals. So
inflexible is this system that a suitable topic for doctoral research in the early European uni-
versities concerned algorithms for multiplication and division using Roman numerals. Despite
all of these drawbacks, Roman numerals remained the predominant means of representing
quantities in European culture well into the 14th century.

They were ultimately replaced by a system which contributed what was one of the most
important discoveries of early science: a fully positional notationwith a representation for the
number zero. There is evidence that the Mayan civilisation employed a symbol for zero in
their number system. Its arrival in European science came via knowledge of Arabic mathe-
matics. Arab scholars had themselves learned of this system from Indian civilisation. The
Indian discovery dates from, at the latest, 200 B.C (the earliest recorded use, in a textbook,
by Bakhshali). The word ‘zero’ in English, itself originates from India (Sanskritsunya —
empty or blank — translated aszifr by Arab writers, hence Latinzephirumand Englishzero
and cipher). The Arabic system employed 10 different symbols representing the numbers
0, 1, 2, . . . , 9and formed the basis of thedecimal systemthat is used today. First popularised
in Europe by Leonardo of Pisa in hisLiber Abaci (The Book of Computation) of 1228,
despite attempts to suppress it during the reaction against Islamic scholarship, the obvious
advantages of the system over Roman numerals eventually led to its being universally
adopted.

We now turn to the development of the earliest algorithms and mechanical computing
devices.

1) µυ ριoι is typically translated as10, 000but is more accurately rendered as ‘countless’. Herodotus’ esti-
mate of the Persian forces at the Battle of Marathon and the source of the English word ‘myriad’.

Aids to computation and the development of algorithms 13

(NUMBER ON RIGHT)
(NUMBER ON LEFT) -

RESULT

SUBTRACTION =

10

9

8
7

6

5

4
3

2
1

1
2

3
4

5

6

7
8

9

10

Figure 3: Simple Addition and Subtraction Device
Figure 3 shows the structure of one of the earliest forms of primitive computing device that
could be used for addition and subtraction. Units were marked out on two lengths of wood.
Addition tables and the result of subtractions could be constructed by lining up appropriate
units. Other than such basic mechanisms,look-up tables were constructed. At Senkereh in
what was Babylonia a clay tablet dating from between 2300-1600 B.C has been discovered
which contains the squares of the first 24 numbers. This is now in the British Museum.
Such tables obviate the need to recompute particular values and were probably constructed
using stones as counters, e.g. Figure 4.

21=1+2+3+4+5+6

15=1+2+3+4+5
10=1+2+3+4

6=1+2+33=1+211 4 = 2 x 2
9 = 3 x 3

16 = 4 x 4

25 = 5 x 5

Figure 4: Computing Squares and Sums By Arranging Counters

14 EarlyDevelopment

The use of pebbles and arrangements of these as aids to computing was common to many
cultures. Its influence is apparent in many terms still used today, e.g square(via arrangements
in Figure 4), triangular numbers which represent the sums of the firstn numbers;calculus
and calculation both deriving from the Latin for pebble (hence the different usages of the
word calculus in mathematical sciences and medicine);cheque and exchequer which derive
from the mediaeval English custom of calculating tax levies by piling stones on a board
marked out in black and white squares (the word is combination of Latinex meaning ‘from’
and Norman Frenchchequefor the checked pattern).

The use of counters as an aid to computation reaches its greatest level of sophistication
and power in a device which is still very extensively used today in the Far East: theabacus.
Figure 5

Figure 5: Structur e Of Japanese Abacus

The abacus represents the state of a calculation by the position of beads strung into columns
on wires. The earliest invention of the abacus is now credited to the Babylonians (the word
abacus derives from a Phoenician word abak). By the sixth century B.C. they were widely
used in Greek society: the historian Herodotus (ca. 484-424 B.C) mentions them in this
period and left records of complex calculations performed on them, e.g. the accrued interest
on a loan of 766 talents, 1095 drachmae and 5 obols over a period of 1464 days at a rate of
one drachma per day for every 5 talents. Other incidences of the use of abaci in late Greek
culture are Eutocius of Ascalon’s computation of (30133/4)2; references in the surviving
speeches of the orator Demosthenes (385-322 B.C); and the writings of the Cynic philosopher
Diogenes (d.ca. 320 B.C). It was in Oriental cultures, principally China and Japan, however,
that the abacus reached its highest level of dev elopment. The Japanese contributed the con-
cept of dividing the abacus frame horizontally into two zones (the so-calledHeaven zone
with 2 beads andEarth Zone with 5)2 With this device calculations of great complexity
could be performed at great speed. In 1946, in a meeting between the fastest mechanical cal-
culator operator in the U.S. Army, one Private. T.N. Wood equipped with a contemporary
state-of-the-art calculator, was defeated in 4 out 5 speed contests by Kiyoshi Matsuzaki, who
used an abacus. This device is still widely used in banking and financial calculations in Japan
today.

It should be noted that even such crude devices as the notched sticks of Figure 4, pre-
sume some understanding of thealgorithmic processdetermining their use. It is likely that
the first employers of simple computational aids were unaware that the reasonwhy they pro-
duced the correct answer was because they exploited simple algorithms relating the data oper-
ated upon to the results obtained. The Greek mathematician, Euclid (4th Century B.C) is the
earliest known identifier of specific algorithms (although it is clear that the calculations, such

2) Although the modern Japanese abacus has reduced the heaven zone to a single bead.

Aids to computation and the development of algorithms 15

as those documented by Herodotus on abaci — compute the interest due on amountx at a
rate of y per z for each w — presuppose methods stating how to proceed). Euclid’s work
The Elementsis of collection of results, mainly in Geometry, spread over 7 books. It is
important, for our purposes, for two reasons:

i. It is the earliest known attempt to formalise the concept of algorithm, i.e. to separate
‘admissible’ computational processes from ‘inadmissible’ ones.

ii. Book VII, dedicated to properties of numbers, describes a number of important algo-
rithms at least one of which is still taught today.

As regards the first point, Euclid addressed the issue of what algorithms could be said to be
valid if one was concerned with constructing various geometrical objects, e.g. squares with a
certain area; lines and angles with particular properties; regular polygons, etc.The Elements
admits such an object if and only if one can show how to construct it in afinite number of
steps using only a ruler, i.e. straight edge to draw lines, and a pair of compasses (to draw cir-
cles and arcs). See Figure 6.

Adjustable Radius

Hinge

CompassesRuler

Figure 6: Ruler and Compasses

For example one may easily check that the algorithm below constructs a regular hexagon —
a six sided figure in which all sides have equal length and all internal angles are equal:

1. Draw a circle C of radiusr (uses compasses)

2. Choosea point φ on C and draw a circle with centreφ and radiusr . The new circle
cutsC at two points α and β .

3. Draw a circle with centreα and radiusr . This cutsC at φ and a new point γ .

4. Draw a circle with centreγ and radiusr . This cutsC at α and a new point δ .

5. Draw a circle with centreδ and radiusr . This cutsC at γ and a new point ε .

6. Draw a circle with centreε . This cutsC at δ and β .

7. Usea straight line to connectφ →→ α →→ γ →→ δ →→ ε →→ β →→ φ The resulting polygon is a
regular hexagon.

Ruler and Compass Construction of Regular Hexagon

Stages of this process are illustrated in Figure 7.

16 EarlyDevelopment

φφ

φφ

α

β

γ α

β

γ α

β

α

β

γ

δ

ε

φδ

Figure 7: Ruler and Compass Construction of Regular Hexagon

Although this may seem a very primitive class of algorithm, problems of great subtlety arise
in it. In particular, the problem of squaring the circle (i.e. construct a square whose area is
equal to that of a given circle) was first raised by Euclid. This was not shown to be impossi-
ble using ruler and compasses until the end of the 19th Century3 — over 2300 years after
Euclid’s death.

The second important contribution of The Elementsis the algorithm to calculate the
greatest common divisorof two numbers. Given two numbers —m and n — the greatest
common divisor ofm and n, denotedgcd(m, n), is the largest number that divides bothm
and n without leaving any remainder, e.g. gcd(12, 40)== 4, gcd(7, 15)== 1, etc. Euclid’s
Algorithm, as it is now known, is shown below:

3) By Lindemann in 1882. Of the other important constructions left open by Euclid — trisection of a given
angle and duplication of a given cube — the former was proved impossible by Descartes (1637), the latter was
known to be impossible by Arabic mathematicians.

Aids to computation and the development of algorithms 17

greatest common divisor of m and n

1. If m is smaller thann then swop the values ofm and n.
2. Set m equal to the remainder ofm divided by n.
3. If m is not equal to 0 then go back to step 1, with the

new values ofn and m.
4. Returnn as the answer.

Euclid’ s Algorithm

Euclid’s work was not the only early investigation of algorithms. Another important Greek
contribution concerns a problem which is still very much of interest today — the generation
of prime numbers. A prime number is a whole number, greater than 1, which is divisible
without remainder by only itself and by 1. Methods of finding prime numbers have existed
for over 2000 years and, since the only known algorithms are computationally very demand-
ing, finding large primes is a standard performance test carried out on new powerful com-
puter systems: in the last 40 years the size of the largest known prime has advanced from a
40 digit number (found in 1886) to a 15,000 digit number (identified in 1991). The first
algorithm to identify prime numbers is the famous Sieve of Eratosthenes(fl. 3rd Century
B.C). This works as follows: suppose on wishes to know all the prime numbers less than
some number, n say. Write down all the numbers from 2 ton and then carry out the follow-
ing steps:

1. Let k : == 2
2. For each number, m, betweenk ++ 1 and n if m is an exact

multiple of k then crossm of the list of numbers.
3. Set k to be the smallest uncrossed off number left.
4. If k is less thann then repeat process from step (2).
5. Any number which has not been crossed off is a prime number.

The Sieve of Eratosthenes

The process is illustrated below:

Cross out Multiples of 5

Cross out Multiples of 3

Cross out Multiples of 2

373635343332313029282726
252423222120191817161514

1312111098765432

2 3 4 5 6 7 8 9 10 11 1213

14 15 16 17 18 19 20 21 22 23 24 25
2627 28 29 3031 32 33 34 35 36 37

2 3 4 5 6 7 8 9 10 11 1213

14 15 16 17 18 19 20 21 22 23 24 25
2627 28 29 3031 32 33 34 35 36 37

Figure 8: Sieve of Eratosthenes

18 EarlyDevelopment

The word algorithm in English comes from the Arab mathematicianal-Khowarizmiwho
flourished at the end of the 8th Century A.D. Al-Khowarizmi had reported the Indian discov-
ery of the decimal number system with zero and introduced a number of important concepts
in his bookAl-jabr wa’l muqabalawhose title gives us the word algebra in English. Another
Arab mathematician,al-Khashi (1393-1449), devised a method of computing the decimal
expansion ofπ (the ratio between a circle’s circumference and its diameter)4, obtaining a
result accurate to 16 places. Al-Khashi also devised the first mechanical computing devices
which could be used to predict the occurrence of important celestial phenomena such as solar
and lunar eclipses.

In summary, by the middle of the 15th Century there had evolved a flexible and power-
ful system for representing numerical quantities (both whole numbers and decimal fractions);
some basic algorithmic techniques had beendeveloped for manipulating these representations
to deal with various calculations; and the first moderately sophisticated aids to such calcula-
tions had been developed.

One of the important trends in the history of this topic becomes apparent around this
period: that as the level of scientific and engineering knowledge increases, so in parallel does
the complexity of the mathematical calculations associated with their development. Thus, to
date, there has never been a point reached where the contemporary state of computational
aids has exceeded the most demanding requirements of contemporary sciences. We can cite
two examples of this at the end of the 15th century. First, increasing knowledge about mat-
ters such as planetary motion had resulted in data from observations that was increasingly
difficult to process and interpret with the methods available. Second, there was little in the
way of devices to help with navigation at a time when there was a considerable increase in
exploration and commercial trade. In the next section of these notes we examine the continu-
ing development of computational mechanisms following this period.

4) A method of memorising this is the phrase: ‘How I need a drink, alcoholic of course, after all those lectures
involving tedious mnemonics for pi’. The number of letters in each word gives the sequence of digits in the
expansion ofπ .

Aids to computation and the development of algorithms 19

Mechanical Aids to Computation and the
Development of Algorithms

3. Mechanical Calculators prior to the 19th Century

3.1. Introduction

It was observed, at the conclusion of the last chapter, that the general adoption of a nota-
tional formalism sophisticated enough in which to express some complex calculations, coin-
cided with a greatly increased requirement for techniques and tools that could assist in diffi-
cult numerical analyses. Consider, for example, the following fields in which such computa-
tional problems became of great importance from the middle of the 15th century onwards:

A. Navigation

By the middle of the 16th century the first major European exploration of the Americas was
well advanced, trade-routes by sea had been established with parts of the Indian sub-continent
and the Far East, and the first circumnavigation of the globe had been completed. The growth
of merchant trading houses, in Italy and other European sea powers, coupled with the
demand for imports from distant parts of the world, created a need for more and more
sophisticated navigational instruments. Thus, in the mid-16th century there were no suitable
mechanisms for constructing detailed maps, for accurately measuring distances at sea, and
thus for precisely determining how long a particular voyage would take to complete. As a
result, merchants financing trading expeditions would be faced with ruin if a ship bringing
back goods arrived too early (so that the available market was already saturated with the
imported goods from a rival trader or earlier journey) or too late: if the financial backing for
the voyage had been raised by a loan secured on the projected profit, the date set for repay-
ment might have passed by the time a ship had returned.1 While computational mechanisms
to help in navigation would not in themselves be sufficient to alleviate all potential difficul-
ties, such tools would be of some assistance in planning expeditions, estimating how long
they would take, and scheduling departures in order to avoid adverse weather conditionsen
route, e.g. if a particular sea area is known, from previous experience, to be prone to violent
storms during certain parts of the year, then a ship that had to travel through such an region
could have its departure dates fixed to try and avoid that period. A primitive and crude mea-
suring device — the geometric compass — was produced by Galileo in 1597: this was of
some assistance in translating distances on maps to distances at sea.

B. Financial assessments

Even with the vastly more sophisticated technology available today, the calculation and analy-
sis of financial data is an extremely complex process, e.g. business concerns must keep record
of transactions carried out in order to: make leg al tax and V.A.T returns, pay their work-force
appropriately, and set the price of goods and services competitively; similarly, at the level of
Government — local, national, and, to an increasing extent, supra-national — accurate assess-
ment of finance is critical in determining taxation policy, limiting government spending plans,
and predicting the ‘likely’ trend of important economic indicators. Although the scale of sim-
ilar pecuniary activities was considerably less in the 16th century, nev ertheless this was more

1) A scenario used in Shakespeare’sThe Merchant of Venice(ca. 1596): Antonio’s troubles with Shylock arise
as a result of the former being unable to repay the loan advanced to him due to the failure of his merchant ships
to arrive within a month of their scheduled date.

20 16th-18thCentury Developments

than offset by the absence of any powerful tools for assisting with the relevant calculations.
We noted above the growing importance of merchant traders, particularly in Italy, as reg ards
navigation. In city states, such as Florence and Venice following the Renaissance, the major
merchant families exercised enormous financial, and thereby political, power. In order to
maintain such influence it was important to such groups that their mercantile concerns2 were
as successful as possible: errors in business calculations might result in too little or too much
of a specific commodity being available and/or an uneconomic price being charged.

In the same way, while the contemporary social organisations did not lead to the tax
regime which is common today, when revenue was required by a state for some purpose, e.g.
financing a military campaign, the minimum amount to raise had to be assessed and a mecha-
nism by which this amount could be realised, determined3. Thus, as with navigation, in the
spheres of finance and commerce there was little in the way of tools and methods to assist in
the calculations required, at a time when these were becoming increasingly more complicated
activities.

C. The study of mechanics and planetary motion

The Italian astronomer and mathematician Galileo (1564-1642) in work carried out around
1600, had noted that the behaviour of certain natural phenomena could be described through
the use of mathematical models, e.g. the path that might be taken by a projectile. By the end
of the century such ideas had been developed into a detailed mathematical theory of mechan-
ics and motion by, principally, Newton (1642-1727). One of the fields in which such develop-
ments were of notable scientific and practical importance was the study of planetary motion.
Historically this had always been an important activity in European culture: the position of
planets as seen from Earth relative to the fixed stars, formed the basis for astrological prog-
nostications. Copernicus (1473-1543) had developed his heliocentric theory by mathematical
analyses of ancient observations of planetary position. This work involved extremely cumber-
some arithmetic calculations. Thus, as the Copernican theory became more widely accepted4

attempts began to produce more accurate theories from new observational data5, Once again,
however, the problem of carrying long and cumbersome calculations in order to verify experi-
mental hypotheses arose. In summary, applying and verifying the correctness of mathematical
models of motion often involved, what were at the time, extremely complex operations, such
as the calculation of square roots or trigonometric functions.

3.2. Tabular methods of making calculation easier — Logarithms

In 1614 the Scots mathematician John Napier of Merchiston (1550-1617) published a paper
entitled Mirifici logarithmorum canonis descriptio6 in which he demonstrated how the diffi-
cult processes of multiplication, division and root extraction could, given suitable information,

2) Despite its present-day importance, banking was not a powerful (political) influence: the Roman Catholic and
Protestant churches prohibited their adherents from charging interest on loans of money, the practise which
forms the main source of income for banks.

3) A formal system of Government set Income Tax is a comparatively recent development (early 19th century in
the U.K).

4) It must be recalled that at this time, publicising arguments contrary to classical (i.e Aristotelian) philosophy
was frowned upon: Copernicus’De Revolutionibus Orbitum Coelestiumwas immediately placed on the Roman
Catholic Index Librorum Prohibitorumupon its publication in 1543 (and was not removed from this list until
1837). Opposition to these ideas continued for over 50 years, e.g. after an ecclesiastical trial held in Venice and
lasting seven years, on 17th February 1600, the philosopher Giordano Bruno of Nola (1548-1600) was burnt at
the stake in Rome for, among other offences, promoting the validity of Copernicus’ ideas.

5) cf. the work of Kepler and Brahe as described elsewhere in this course.

6) ‘A description of the miraculous working of the rules of logarithms’

Aids to computation and the development of algorithms 21

be reduced to the relatively easy processes of addition and subtraction. Napier’s method is
based on a very simple idea. Suppose we take any number, x which is greater than zero.
Then for any two numbers p and q the relationship ‘x raised to the power ofp’ multiplied
by ‘x raised to the power ofq’ is equal to ‘x raised to the power of thesum of p and q’,
i.e. xp ×× xq == xp++q. Similarly ‘ x raised to the power p’ divided by ‘x raised to the power q’
is equal to ‘x raised to the power of the difference betweenp and q’, i.e. xp ÷÷ xq == xp−−q.
How does these relationships assist in performing multiplication and division? Suppose we
wish to multiply two numbersv and w. If we can find two numbersc and d say such that
v == xc and w == xd, then v ×× w == xc++d and so the result of multiplyingv and w is the unique
number y with the propertyy == xc++d. Here c (resp.d) is called thelogarithm (to the base x)
of p (resp. q); the answer (y) is the anti-logarithm (to the basex) of c ++ d. For example
suppose x == 2 and we wish to multiply p == 16 and q == 128. We hav e p == 16== 24 and
q == 128== 27, hence c == 4 and d == 7, thus 16×× 128== 211 == 2048. In this 4 is the logarithm (to
the base 2) of 16; 7 is the logarithm to the base 2 of 128 and 2048 is the anti-logarithm to
the base 2 of 11.

Of course there is an obvious, immediate problem with this technique: once we have
fixed the basex (2 in the example above) we need to know the logarithms with respect to
this base of any numbers to be multiplied and the antilogarithm of the result of adding or
subtracting these. Since this calculation is itself likely to be extremely cumbersome, ideally
one needs atable of logarithms and antilogarithms that have already been constructed. Thus,
suppose we have the following information available:

• A list of the logarithms (to the base 10, say) of all numbers (to some precision)
between 0 and 100.

• A list of the antilogarithms (to the base 10) of all numbers (to some precision) between
0 and 4.

Then with such tables we can multiply and divide any two numbers (with a reasonable
degree of accuracy depending on the precision of the tables). Notice that, if some small
degree of error is acceptable — and the extent of the tables used will make such errors
inevitable anyway — we can indeed multiply or divide any two numbers. If a given number
is too small or too large then there is a simple transformation that can be applied to make
the calculation possible. The method of calculating usinglog tableswas commonly taught in
schools in the U.K well into the mid 1970s (when electronic calculators obviated the need for
them) and this provided a standard method for involved numerical calculations arising in sci-
ence and technical applications until the advent of reliable electronic mechanisms. The tech-
nique is applied by the following algorithm:

Input: 2 numbersp and q
Output: p ×× q (or p ÷÷ q)
Method:

1. Find the logarithm ofp in the table given (or of the number closest top);
call this numberc

2. Find the logarithm ofq in the table given (or of the number closest toq);
call this numberd

3. Add c and d; (or subtractd from c if division is wanted);
call the resultw.

4. Find the antilogarithm of the number nearest tow in the table of antilogarithms
and return this as the result ofp ×× q (or p ÷÷ q).

Algorithm for calculating using logarithms

22 16th-18thCentury Developments

Napier’s original work announced themethodof calculation by logarithms but his tables were
not very easy to use. Napier’s tables used the constant 1/e as the base7 of the logarithm, i.e.
the value x in our description above.

The production of the first detailed ‘practical’ table of logarithms was undertaken by Napier’s
contemporary, the English mathematician Henry Briggs (1561-1631). Soon after the publica-
tion of Napier’s paper, Briggs’ recognised the importance of using 10 as the base. This dis-
covery was of crucial importance in simplifying and extending the applicability of logarithms,
viz. suppose one wishes to know the log to the base 10 of 9.82 and one has available only
the logs of the whole numbers between 1 and 1000: since 9.82== 982÷÷ 100; and log10 100== 2,
i.e. 100== 102; therefore log10 9. 82== log10 982−− 2. Briggs communicated this idea to Napier
and in 1617 they met at Napier’s house in Merchiston (a suburb of Edinburgh). The 17th
century writer William Lilly relates the following account of their first meeting:

When Merchiston [Napier] first published his Logarithms Mr Briggs . . . was so surprised with
admiration of them that he could have no quietness in himself until he had seen that notable
person whose only invention they were . . . Mr Briggs appoints of a certain day when to meet at
Edinburgh; but, failing thereof, Merchiston was fearful he would not come. It happened one day
as John Marr and the Lord Napier were speaking of Mr. Briggs , . . . , saith Merchiston, "Mr.
Briggs will not come now"; at the very instant one knocks at the gate, John Marr hasted down
and it proved to be Mr. Briggs . . . He brings Mr. Briggs into my Lord’s chamber, where almost
one quarter of an hour was spent, each beholding the other with admiration, before one word
was spoken.

William Lilly
Autobiography

Subsequently, Briggs published a table of logarithms to the base 10 for the whole numbers
between 1 and 1000. He spent the remainder of his life producing tables for all numbers
between 2000 and 29000 and 90000 and 100000. Briggs’ tables were accurate to 14 decimal
places, an astonishing feat of calculation given the absence of any mechanism to assist in its
generation. In the years following Briggs’ death the gaps in his tables were filled in and
tables of the logarithms of trigonometric functions — such assine and tangent also
calculated8.

Napier’s and Briggs’ development of logarithms represents one of the most important scien-
tific achievements of the 17th century. As a result of this breakthrough, what were once enor-
mously difficult computations could be performed with great accuracy by anyone who had
mastered addition and subtraction. As we observed earlier, the use of logarithms as an aid to
calculation continued well into the late 1970s when the method was still being taught as part
of school mathematical courses.

An important by-product of logarithms was theslide rule, another computing aid that
was very widely used in scientific and technical calculations until the appearance of elec-
tronic calculators. In the previous chapter we saw that an early form of calculating device
was provided by using two lengths of wood, marked with equidistant symbols, in order to
carry out addition. In 1620 the English mathematician William Gunter (1581-1621)

7) The fact that Napier chose this constant suggests that he was, probably, unaware of the general concept of
‘base of a logarithm’. e is a constant that, like π , arises in many mathematical analyses. Unlike π , defined as
the ratio between the circumference and diameter of a circle, there is no simple physical definition ofe. While
there are several precise characterisations of the value ofe using ideas from advanced mathematics — e.g. in
calculuse is the unique constant such that the functionf (x) == ex is its own derivative — Napier would not
have known of these.

8) Logarithms to the base 10 are now known ascommon logarithms, whereas a minor modification of Napier’s
system (using the basee, instead of1/e) is giv en the namenatural or Napierian logarithms. The latter often
arise in mathematical analysis. Base 2 occurs in several Computer Science applications.

Aids to computation and the development of algorithms 23

recognised that the same principle, coupled with the ideas underlying logarithms, could be
exploited to construct a device with which rough estimates of division and multiplication cal-
culations could be made. Thus instead of using marks which were placed equidistantly, suc-
cessive marks were placed at (appropriately) decreasing distances, e.g.the distance from the
mark representing 1 and the mark representing 2 would be same as the distance between the
mark representing 2 and that representing 4, etc. Gunter’s calculating aid consisted of a grid
on which numbers could be multiplied and divided by adding and subtracting lengths with
the assistance of a compass. The slide rule in its modern form, however, was the invention of
another English mathematician — William Oughtred (1574-1660). The form of modern slide
rules is outlined in Figure 9 below:

Logarithmic scale

Logarithmic scale

Movable section

Fixed section

Hairline cursor

Figure 9: Structure of Modern Slide Rule

The fixed and movable sections are marked off using a logarithmic scale, i.e. one in which
the distances between quantities varies according to the regime described above. The fixed
section may also contain scales corresponding to other mathematical functions, e.g. trigono-
metric functions, square roots etc. The movable section is aligned with values on the fixed
section during a calculation with the cursor being used to assist in reading off results. High-
quality slide-rules are capable, in the hands of an experienced user, of giving answers to the
precision of 4 or 5 places. The method by which quantities are multiplied using a slide rule
is described in the algorithm below:

24 16th-18thCentury Developments

Input: p and q, numbers between 1 and 10
Output: The result of multiplyingp and q
Method:
1. Adjust the movable section until the place marked 1 on this

is aligned with the place marked p on the fixed section.
2. Find the place marked q on the movable section.
3. The number on the fixed section which is aligned withq

is the result of multiplyingp and q.

Procedure for multiplication using a slide rule

Notice that the restriction forcingp and q to be between 1 and 10 is not serious: if either is
outside this range then it is easy to adjust the values to be multiplied, e.g. 982×× 0. 15 is the
same calculation as 9.82×× 1. 5×× 10.

To wards the end of his life, Napier invented a device which, for many years, was more
highly regarded than his researches concerning logarithms: a mechanism for simplifying the
task of multiplying numbers that has since become known as Napier’s bones9. Napier’s
bones were, in effect, a clever representation of multiplication tables: Figure 10, below,
depicts the rods used for the numbers 1 to 8. Each rod contains 9 squares: the first is
inscribed with the number associated with the particular rod; the remaining 8 are each
bisected by a diagonal running from the lower left to the upper right; thenth square contains
the result of multiplying the rod-number byn so that the upper triangle of the square con-
tains the most significant figure and the lower triangle the least significant figure, e.g. in the
rod numbered 8, the sixth square (numbering from 2), contains the number 48 written in this
form.

63

3

8

4

2

2

2

6

2

2

7

4
2

2

2
1

8

2

9

6

9

8

7

6

3

2

8

6

4

2

6

8

8

4

4

3

3

2

2

1

0 05 5

5

5

5

5

0

0

0

0

1 2 3 4 5 6 7 8

1 1 1 1

1
1

11

1

1

1

1

1

1

1

4

4

4

4

6

2

2
3

4
0

8
4

6
5

46

2
7

2

82

3 5

2
4

4 9

5
6

6
3

2

1 8

2 4

0
3

63

24

4
8

5
4

Figure 10: Napier’s Bones

Napier’s bones could be used to set up a 2 to 9 times multiplication table for any number.
Given a particular number one selected the rods corresponding to the digits in the number
and placed them together in a rack whose side was labelled from 2 to 9. To multiply this by
6, say, one proceeded along the row marked 6 going from right to left adding the numbers in
each parallelogram to give the next digit. Figure 11 shows how the rods would be set up to

9) It is indicative of the religious strife during the times that Napier lived in that he considered neither this
invention nor his discoveries concerning logarithms to be his most important work. Napierwas certain that he
would mainly be remembered for his lengthy anti-Catholic tract entitledPlaine Discovery of the whole Revela-
tion of Saint John; an item of work which is now almost forgotten.

Aids to computation and the development of algorithms 25

multiply by the number 132,577.

9

8

7

6

5

4

3

2

4

1

5

2

3

6

7

8

9

1

1

1

3

5

6

9

2

8

1
2

2

2
4

7

4

1

1

1

1

1

2

0

8

6

2

4

6

8

7

1

1

4
2

82

3 5

2
4

4 9

5
6

6
3

1

5

0

0

0

0

5

5

5

5

1

2

2

3

3

4

4

7

1

1

4
2

82

3 5

2
4

4 9

5
6

6
3

Figure 11: Multiplication Table for 132,577

To find the result of multiplying 132,577 by 9 one has the following squares in the 9th row:

0/9 2/7 1/8 4/5 6/3 6/3

With these we have: 132, 577×× 9 == 1, 193, 193,i.e. the rightmost 3 is the rightmost 3 in the
row; then going from right to left: 9== 3 ++ 6, 1== 5 ++ 6 (with a carry-over of 1); 3== 8 ++ 4 ++ 1
(again with a carry-over); 9== 7 ++ 1 ++ 1; 1== 9 ++ 2 (with another carry-over of 1); and 1== 0 ++ 1.

Napier’s inv ention was extremely successful and was very widely used. Many different
versions were manufactured and employed by accountants, bookkeepers, and others whose
work routinely involved computing products of numbers. The sets of rods came in a number
of different sizes and were normally engraved on wood, however, in rare cases ivory was
sometimes employed. As late as the mid-1960s, Napier’s bones were still being used in pri-
mary schools in Britain to assist in teaching multiplication.

3.3. Thefirst mechanical calculators — Schickard, Pascal, and Leibniz

Tables of logarithms, slide rules, and Napier’s rods reduced the complexities of multiplication
and division to the comparatively easy processes of addition and subtraction. In our descrip-
tion of these devices above, we also outlined the methods by which specific calculations were
performed with them, i.e. thealgorithms which someone would employ. It should be clear
that these algorithms were quite simple. The next development was the invention of mechani-
cal systems that went some way toimplementsuch algorithms.

In the present day, the idea of taking some routine, repetitive, and methodical task and
automating it, is a commonplace; something which rarely strikes one as novel or surprising.
To some extent, however, this is because we have become accustomed to the concept of
automation, e.g. in factory assembly lines, or the various dealings with computer database
systems such as those described in the opening lecture. Thus, since we are aware thatsome
processes can be automated, new applications tend to go unreported, unless they inv olve some
significant technical development. With such an attitude the construction of the first ‘semi-
automatic’ calculating machines may appear to be an unremarkable development. We can

26 16th-18thCentury Developments

advance two reasons as to why this is not the case. Firstly, as we observed above, new
spheres of automation are found less surprising today because we are aware of precedents: in
the early 17th century, when the first mechanical calculators were thought of, the concept of
performing calculations by machine was a radically new idea. Secondly, the technological
resources available today render many tasks much simpler to automate, e.g. very rapid com-
puter systems rely on electrical power and developments in device physics: in the 17th cen-
tury no such resource was available, thus in order to build calculating machines one only had
recourse to mechanical ingenuity.

The invention of the first mechanical calculator is now credited to the German polymath
Wilhelm Schickard (1592-1635). Schickard’s contribution has only recently been recognised,
largely on account of the researches of the historian Franz Hammer and the mathematician
Bruno von Freytag L̈oringhoff. Hammer, an authority on Kepler’s writings, discovered notes
and correspondence from Schickard while preparing an edition of Kepler’s complete works.
In 1935, Hammer found a letter from Schickard to Kepler containing a rough drawing of and
detailed description of Schickard’s calculating machine.10 Unfortunately, Schickard’s letter
referred to a more detailed sketch of the machine, which was not among the correspondence
examined by Hammer. In 1956, however, twenty-one years after his initial discovery, Hammer
came across a more detailed diagram among an archive of Schickard’s papers in Stuttgart.
This diagram also provided instructions as to how to build the machine. Hammer was unable
to determine precisely how Schickard’s machine operated, however, von Freytag, working
from the rediscovered documents and a knowledge of contemporary mathematical techniques,
was able to build a replica of the machine. The working version was finally completed in
1960.

Schickard’s machine employed a simple mechanical device that continued to form the
basis of calculating machines right up to the appearance of the first electronic computers:
addition and subtraction are performed by the movement of geared wheels linked to a
numeric display. Thus the effect of adding one to a displayed number would be accomplished
by rotating the appropriate wheel so that the next digit was displayed11. A rough outline of
such a device is shown in Figure 12, below.

Figure 12: Gear based counter

In devices like this the main problem to be solved is that of recording carries and borrows
resulting from additions and subtractions. Schickard solved this by employing a complex

10) A facsimile of this letter appeared in the editionLitterae ad Kepplerum, prepared by Hammer in the 1930s.

11) Much the same principle is used in odometers in cars.

Aids to computation and the development of algorithms 27

system of mutilated and auxiliary gears. Schickard informed Kepler of his invention in letters
written between 20th September 1623 and 25th February 1624:

What you have done by calculation I have just tried to do by way of mechanics. I have con-
structed a machine consisting of eleven complete and six incomplete sprocket wheels which can
calculate.

Letter to Kepler, 20th Sept. 1623

I had placed an order with a local man, Johan Pfister, for the construction of a machine for you:
but when half-finished, this machine, together with some other things of mine, especially several
metal plates, fell victim to a fire which broke out unseen during the night. . . I take the loss
very hard, now especially, since there is no time to produce a replacement soon.

Letter to Kepler, 25th Feb. 1624

The above letter of 1624 is the last, known, extant correspondence of Schickard, concerning
his invention of what he dubbed theCalculating Clock. Schickard died from bubonic plague
on the 24th of October 1635. It is probable that his surviving papers were lost or destroyed
during the Thirty Years War, that raged through central Europe in the mid-17th Century:
Schickard’s home town, T̈ubingen, was particularly badly affected by the course of this war.

Prior to the discoveries of Hammer and von Freytag Löringhoff concerning Schickard’s
researches, the construction of the first mechanical calculator was generally attributed to the
French mathematician, scientist and philosopher Blaise Pascal (1623-1662).

Pascal was born in 1623 in the Auvergne region of France, and first came to promi-
nence as a precociously gifted mathematician at the age of 16. Although he died at the rela-
tively young age of 39 during his lifetime he made significant contributions to mathematics
(being, with Fermat, one of the founders of modern probability theory), and hydraulics: Pas-
cal was the first to demonstrate the existence of air-pressure and vacuums; the importance of
his work in the latter field is recognised in the adoption of his name as the S.I. unit of pres-
sure. Pascal’s researches into mechanical calculators were motivated by the problems faced by
his father Etienne Pascal. Etienne Pascal had been a successful lawyer and presiding judge
who had fallen out of favour with the authorities, but thanks to the intercession of powerful
friends, was eventually appointed as a tax commissioner based in Rouen. Unfortunately, his
appointment, in 1639, coincided with an enormous revision of the tax levying system in
France, as Cardinal Richelieu sought to raise money to conduct a war against Spain. Even
with the assistance of his son, Etienne Pascal frequently found himself working into the early
hours of the morning as he recalculated levies and rates to be raised. The only ‘mechanical’
tools available were the mediaeval counting boards (orexchequers) that were briefly alluded
to in the last lecture. Almost all of the computation involved repeatedly adding and subtract-
ing various totals. In 1642, at the age of 19, Blaise Pascal suggested to his father that it
could be possible to design a machine that was capable of dealing with these simple calcula-
tions automatically. Pascal’s machine — thePascaline as it became known — was com-
pleted in 1644 after almost three years of experimentation. A schematic of the front panel
layout of the first Pascaline is depicted in Figure 13 below.

The prototype Pascaline could add and subtract five digit numbers — not large enough for
practical purposes, but Pascal subsequently had six and eight digit variants constructed. Sub-
traction with the machine was not an easy operation. As with Schickard’s calculating clock,
the arithmetic operations were performed by rotating gearing mechanisms which affected the
digits shown in the upper section.The user set up the required calculation by rotating the
dials in the lower half. Unlike Schickard’s machine, however, the method by which the Pas-
caline dealt with carry-overs was extremely clumsy. This had two undesirable side-effects: the

28 16th-18thCentury Developments

20149

79850

E D C B A

9

5

8

7

6
4

3

2

1
09

5

8

7

6
4

3

2

1
0 0

1

2

3
4

6

7

8

5

9 0
1

2

3
4

6

7

8

5

90
1

2

3
4

6

7

8

5

9

Figure 13: Front Panel of Pascal’s Calculator
gearing mechanism was prone to jam; and the numerical dials (hence gears) could only rotate
in one direction. This latter drawback meant that subtraction became a far more complicated
process. The numeric display consisted of two distinct sections, a sliding bar being used to
uncover whichever section was relevant to the operation being performed. Subtraction was
carried out by exploiting a notational trick called "9’s complement representation" the use of
which allows subtraction to be reduced to addition.12

Overall, despite its ambitious design, the Pascaline was a rather inelegant and difficult
to use machine. It seems probable that had Schickard’s ideas and construction found a wide
audience13 then Pascal’s machine would not have been invented.

Nevertheless, the Pascaline enjoyed an enormous vogue, to such an extent that Pascal
applied for a patent to protect his invention. Pascal had the misfortune for his patent (or
privilege as it was then called) application to need the approval of the Chancellor Peter
Seguier, one of the people that Etienne Pascal had offended in 1638. Seguier received the
application in 1645 but delayed approving it until late in 1649. Contemporary documentation
indicates the anger that Pascal felt upon seeing his invention being imitated by others:

I hav e seen with my own eyes one of these false products of my own idea constructed by a
workman of the City of Rouen, a clockmaker . . . After being given a simple account of my first
model, which I had constructed several months previously, he was bold enough to attempt
another, and what is more, with a different kind of movement; but since the fellow has no apti-
tude for anything . . . and does not even know whether there is such a thing as geometry or
mechanics, the result was that he simply turned out a useless object. . . so imperfect inside that
it was no good for anything; but owing simply to its novelty it aroused a certain admiration
amongpeople who know nothing at all about such things . . . The sight of this little abortion was
extremely distasteful to me and so chilled the enthusiasm with which I was working at the time
that I dismissed all my workmen, fully intending to abandon the enterprise owing to the fear that
others might set to work with the same boldness and that the spurious objects they might

12) In modern digital computers a variant of this trick, called "1’s complement" is used to represent negative
numbers and hence perform subtraction in the same way as addition. While Pascal discovered neither method,
his calculator is of historical interest as the earliest known device to employ it.

13) It should be noted that Pascal, and indeed almost every contemporary of his, was completely unaware of
Schickard’s work. Kepler was probably the only significant scientific figure to know of this and there is little
evidence to suggest that that he had seen Schickard’s machine in operation or could have reconstructed it. Thus,
the Pascaline was an independent development.

Aids to computation and the development of algorithms 29

produce from my original thought would undermine both public confidence and the use that the
Public might derive from it.

Publicity statement by Pascal
Rouen,ca. 1645

Once the initial novelty of the Pascaline had disappeared, however, the machine failed to be
widely sold. Partly this was because of its lack of robustness and habit of becoming jammed
during calculations and partly this was because of its expense: almost a year’s salary for a
middle-income worker. Even those in a position easily to afford this cost, royalty and aristo-
crats, took no interest in it: this group tended to regard arithmetic as a task to be carried out
by servants and underlings. A final reason was the distrust people felt towards machines: a
suspicion that since mechanical objects can be made to give incorrect answers (e.g. weighing
machines) the so could calculators. It is likely that fewer than 20 machines were sold during
its time of manufacture.14 Six years after the patent was approved, in 1655, Pascal entered a
Jansensist convent outside Paris and for the remainder of his life did no further scientific or
mathematical work, concentrating instead on philosophical writings until his death in 1669.
The famousPens ́ees sur la religion et sur quelques autres sujetsof 1660 was a product of
this period and is work that is as highly regarded as his mathematical achievements. In
recognition of his contribution to mathematics and computer science, a (now extensively
used) programming language was given, by Niklaus Wirth its designer, the name PASCAL.

Finally, in this chapter, we come to one of the great figures of 17th century culture: Gottfried
Wilhelm von Leibniz — still noted today for his contributions to mathematics, logic, philoso-
phy and calculation. Leibniz was the inventor of differential calculus in the form that it is
known and used today: although his development was 20 years after Newton’s work, the
notation constructed by Leibniz was vastly superior to the crude symbolism employed by
Newton. Leibniz was a child prodigy: learning Latin at the age of eight and Greek after a
few more years (largely self-taught). He had completed a doctorate in Law by the age of 19
at the University of Altdorf in Nürnberg15 and subsequently became employed by the Arch-
bishop of Mainz.

For our purposes, Leibniz is of interest because of his invention of a calculator known
as theStepped Reckoner. This was an ambitious attempt to build a machine that could not
only add and subtract automatically but could also multiply and divide automatically. Neither
Schickard’s nor Pascal’s calculators attempted seriously to address the latter problems, thus
Leibniz’ machine is the first known calculator that found a mechanism for dealing with these
tasks. In this way it is much closer to the mechanical calculators of the late 19th to mid 20th
centuries.

The idea of constructing such a machine occurred to Leibniz while he was on a diplo-
matic mission to Paris in 1672. In a document written in 1685, Leibniz recalled that the ini-
tial inspiration was caused by learning of a pedometer that had recently been built. This dis-
covery had prompted the idea that it might be possible to build a machine to perform all the
basic arithmetic operations. At first, Leibniz was unaware of Pascal’s work but later found
out about it from a passing reference to the Pascaline in Pascal’s posthumously published
Pens ́ees. Once he had uncovered the principles underlying Pascal’s machine, Leibniz concen-
trated on applying the same ideas to solving the problems of multiplication and division. By

14) Surviving examples of the Pascaline are extremely rare and considerably sought after by collectors of scien-
tific instruments. The current (September 1993) record auction price for a scientific instrument is the seven fig-
ure sum realised for an eight digit Pascaline in 1989.

15) This was in fact Leibniz’ second doctorate: he had earlier been refused permission to graduate at the Univer-
sity of Liepzig on account of his age.His Liepzig dissertation —De Arte Combinatoriais one of the first
attempts to systematise logic as a mathematical tool.

30 16th-18thCentury Developments

1674 he had progressed sufficiently far to commission a working model of his design: the
resulting machine became known as the Stepped Reckoner. Leibniz solved the problem of
multiplication by inventing a special type of gear, now called theLeibniz Wheel. This con-
sisted of a cylinder in which gearing teeth were set at varying lengths along the cylinder:
there were nine rows in total, the row corresponding to the digitk running k-tenths of the
distance along the cylinder. By combining a system of these together it was possible to
amend a numeric display in a manner consistent with multiplying by a single digit. Although
not fully automatic — the machine required user intervention to sort out carry-overs — the
Stepped Reckoner was undoubtedly the most conceptually ambitious automatic calculating
device that had been attempted. Only one Stepped Reckoner is known to have been built
(which is now in a museum in Hannover). Thereare two reasons for this lack of develop-
ment: the calculator was a highly intricate work requiring great mechanical expertise to con-
struct; and the machine had one disadvantage — it gav e the wrong answers. In 1893, over
175 years after Leibniz’ death, the reason for this was discovered: a design error in the carry-
ing mechanism meant that the machine failed to carry tens correctly when the multiplier was
a two or three digit number. It is unknown whether Leibniz was aware of this design fault,
but in any event, it is probable that a corrected design would not have been constructed.

3.4. Summary

The 16th and 17th centuries saw enormous breakthroughs in the domain of methods and
machines for simplifying calculations. Some — as in the development of logarithms — came
from increased mathematical understanding; others from the insight of a few individuals that
arithmetic tasks could be translated into mechanical analogues. We hav e seen that two of the
important motivations behind these developments were the need to analyse data from astro-
nomical observations; and the desire to reduce the labour intensiveness of calculating taxation
levies in the increasingly complicated economic systems that had grown up. It is important to
realise that the advances made during this period are of lasting importance. We hav e noted
that many of the calculating techniques — logarithms, slide rules etc. — continued to be
extensively used and taught until as little as twenty years ago. Furthermore, the first mechani-
cal calculators, crude though they may seem to us today, did have two significant conse-
quences: the mechanisms developed formed the basis ofall automatic calculators until the
middle of the twentieth century; and, far more importantly, these provided the first real indi-
cation that complex arithmetic taskscould be solved on machines. An awareness of the last
consequence can be seen as central to the ultimate development of electronic digital comput-
ers in the form that we know them today.

Aids to computation and the development of algorithms 31

Mechanical Aids to Computation and the
Development of Algorithms

4. 19th Century Contributions and their Impact on Elements of Modern Computers

4.1. Introduction

The prototype calculators of the late seventeenth century demonstrated the feasibility of per-
forming lengthy calculations by mechanical methods. Ultimately this demonstration would
result in the construction of the modern computer in the form that is common today. We can
at this point, however, note a number of elements — both conceptual and concrete — that
are missing from the devices considered previously.

• There is no concept of ‘program’, so that in order to repeat a calculation the same steps
must again be performed by hand and separately instantiated for differing input data.

• Computation is, for the most part, memory less: except in some special cases, partial
results must be written down and re-entered when they are to used in completing a cal-
culation.

• Each step of a calculation requires some manual intervention, thus the computation does
not proceed independently of human control.

• The technology employed is mechanical not electronic.

The history of calculating machines post-Leibniz can — admittedly with hindsight — be seen
as a series of ideas and technological advances that progressively dealt with these lacunae.
With the sole exception of the final point, ideas relating to all of these aspects were devel-
oped in the 19th century. In this lecture we shall examine the work of, principally, three peo-
ple — Joseph-Marie Jacquard (1752-1834); Charles Babbage (1791-1871); and George Boole
(1815-64) — and their contribution to the development of computational devices.

4.2. ‘Stored Programs’ and Punched Cards — Jacquard’s Loom and its consequences.

If the impetus behind much of the development of calculating machines discussed so far had
arisen from numerical computation, the motivation that led to the earliest form of ‘stored pro-
gram’ was to come from a very different source: the textile industry. We hav e seen earlier
that one of the fundamental aspects of computational systems is the concept of representing
information and, although we have not done so explicitly, the application of this idea can be
discerned in all of the artefacts that we have examined up to now: in the development of
written representations for numeric values and the mechanical parallels that sprung from
these. Thus, the alignment of pebbles on an abacus frame, the juxtaposition of moving scales
on a slide-rule, and the configuration of cogged gears on the devices of Schickard, Pascal and
Leibniz, are all examples of representational techniques that seek to simplify the complex
processes underlying arithmetic tasks. There are, however, categories of information, and rep-
resentations thereof, other than number upon which computational processes can be per-
formed. The weaving technology developed by Joseph-Marie Jacquard in 1801 illustrates one
example of such a category.

In consequence of the Industrial Revolution, the late 18th century had witnessed a con-
siderable expansion in the automation of processes that had once been the preserve of small
groups of highly skilled workers employed in so-called ‘cottage industries’. The textile indus-
try was one sphere were industrialisation had rendered obsolete such skills. Whereas, prior to
the development of mechanical looms and weaving machines, lengths of fabric had to be

32 19thCentury — Jacquard, Babbage and Boole

woven slowly by hand, the advent of powered tools for carrying out this task meant that
quantities of fabric could be mass-produced at a far quicker rate than previously, thereby
reducing its expense. There was one area, however, where the new machines could not com-
pete with skilled manual workers: in the generation of cloth containing anything other than a
plain (or at best extremely simple) woven pattern. The Jacquard Loom provided a solution to
this problem so that, with it in use, extremely intricate patterns and pictures could be auto-
matically woven into cloth at much the same rate as a plain length of fabric could be gener-
ated. The key idea behind Jacquard’s loom was to control the action of the weaving process
by interfacing the behaviour of the loom to an encoding of the pattern to be reproduced. In
order to do this Jacquard arranged for the pattern to be depicted as a groups of holes
‘punched’ into a sequence of pasteboard card. Each card contained the same number of rows
and columns, the presence or absence of a hole was detected mechanically and used to deter-
mine the actions of the loom. By combining a ‘tape’ of cards together the Jacquard loom was
able to weave (and reproduce) patterns of great complexity, e.g. a surviving example is a
black and white silk portrait of Jacquard woven under the control of a 10,000 card ‘program’.

Jacquard’s inv ention of the punched card is now recognised as important largely because
of the influence it had on other developers of computing machinery. One of these, Charles
Babbage, will be discussed later in this section. Another significant offshoot resulting from
Jacquard’s idea is found in the work of Herman Hollerith (1860-1929)

4.2.1. Hollerith’s Census Collator

Societies, or more correctly the wielders of power in societies, have long been concerned
with accurately assessing statistical data relating to population, i.e. the activity that is called
census taking. Many ancient sources contain records of contemporary censuses, ranging from
Biblical reports (e.g. 2 Samuel 2:1-9, Luke 2:2) to surviving accounts of Roman census tak-
ing: in classical Roman government the r̂ole of Censor1 was an important public office.
There were a number of reasons for carrying out such counts: exact information on the size
of the current population giving details of the proportions of men, women and children; num-
bers in different occupations, and income could be used in assessing tax levies, determining
entitlement to representatives in legislative bodies, and in planning future policy.

It is immediately apparent that conducting a full census of even a moderate size popula-
tion, entails collecting, preparing, and collating an enormous quantity of information. The
U.S. Constitution(Article 1, Sect. 3) set in motion the constitutional requirement to hold a
decennial census, the first of which commenced on August 2nd 1790. Censuses have been
held at the required interval ever since: Britain and other European countries adopted similar
practises over a century later. The 1790 census took over nine months to gather and process
all of the information involved. Even at this early stage and dealing with a population of
about 3.8 million people a problem is apparent: processing the information gathered is cost-
ing a considerable amount of time and expense. By the time of the 1860 census the U.S.
population had increased to 31.4 million people and it had become necessary to place a limit
of 100 questions on the census form. Even with this restriction it was becoming apparent that
without any kind of mechanical assistance a point would be reached where the results of the
previous census would not have been processed before the statutory requirement to hold the
next one came into effect. For the 1870 census, a crude device invented by Charles Seaton
was available to assist with the processing task. This, however, was little more than a con-
venient data entry and output tool.

1) The noun ‘censor’ in English carries two meanings: that of ‘person responsible for conducting a census’ and
that of ‘person responsible for delineating changes to texts, films, etc so that these are in accordance with what
is deemed acceptable for public consumption’. This dual meaning arises from the fact that the office of Public
Censor in Roman society held both responsibilities.

Aids to computation and the development of algorithms 33

Hollerith became involved with this problem following the 1880 census, having started
work with the Census Office in 1881. At this time he met John Shaw Billings, who had been
involved in statistical analysis of the 1880 returns. Hollerith’s biographer records that the idea
for an improved method for processing census forms came to Billings and Hollerith during
dinner at the former’s house2 Hollerith, himself, attributed the idea to Billings reporting their
discussion as:

He said to me there ought to be a machine for doing the purely mechanical work of tabulating
population and similar statistics. . . he thought of using cards with the description of the individ-
ual shown by notches punched in the edge of the card. . .

Billings himself, credited the idea to Hollerith. In any event, for the 1890 census Hollerith
had perfected a system for encoding census returns onto punched cards and designed machin-
ery which could process these to tally the totals corresponding to various statistics. He had
earlier demonstrated the efficacy of his approach by reorganising record keeping systems in
various large institutions. The success of Hollerith’s systems led to his ideas being copied by
other companies keen to make money from the lucrative contract for census automation. By
the time of the 1910 census this erupted in an acrimonious Patent Dispute between Hol-
lerith’s company (Tabulating Machine) and a rival org anisation controlled by Edward Durand.
Hollerith eventually lost the lawsuit after the case had been appealed to the Supreme Court.
Nevertheless, Hollerith’s contributions to and application of punched cards was a significant
step in the development of automatic computing machinery. The format he developed for
storing information continued to be used extensively well into the 1960s. Equally significant
was the r̂ole eventually played by his company. After merging or taking over rival concerns
Tabulating Machine became the Computing-Tabulating-Recording Company. In 1914 CTR
acquired a salesman from NCR — Thomas J. Watson. Watson had taken overall control of
CTR within five years of joining them. The last name change took place in 1924 when CTR
became International Business Machines or IBM.

4.3. Difference Engines and Analytic Engines — Charles Babbage

Our description of Hollerith’s dev elopment of automated punched card analyses for the pur-
pose of collating census data has taken this historical review into the early twentieth century.
Hollerith’s work represents one of the earliest large-scale applications of mechanical methods
in a domain where computer systems are now commonplace: that ofdata processing, i.e. the
storage, maintenance, and analysis of recorded information. Computer technology has, how-
ev er, traditionally been associated with another, rather different field: the rapid evaluation of
intricate algebraic or arithmetic formulae. Arguably the first serious attempt to realise such a
facility, with devices conceptually similar to modern computer components, can be found in
the efforts of Charles Babbage (1791-1871) and his co-researcher Augusta Ada Byron, Count-
ess of Lovelace (1816-52). Between them, Babbage and Countess Lovelace greatly extended
the functionality and sophistication of calculating devices based on mechanical gears. The
engineering concepts and designs underlying this work were principally the contribution of
Babbage. These, important though they were, represented no tremendousconceptualadvance,
however; we have already seen that the exploitation of systems of mechanical gears in order
to emulate arithmetic processes, was central to the basic calculating devices of Schickard,
Pascal, and Leibniz dating from over one hundred years earlier. True, Babbage determined
that such mechanisms could be configured to perform much more complicated tasks than the
four basic arithmetic operations and, moreover, that the engineering technology of the time

2) Hollerith’s biographer, G.D. Austrian, claims that Hollerith wished to make the acquaintance of Billings’
daughter: on first meeting her he had attempted to impress her by buying all but one of the lottery tickets that
she was selling — naturally the one ticket left unpurchased was the winning one.

34 19thCentury — Jacquard, Babbage and Boole

allowed an effective demonstration of this potential — from a present day perspective, how-
ev er, the real significance of Babbage’s and Lovelace’s work lies other than in mere engineer-
ing legerdemain. Thus, it is perhaps rather the case that two innovations, due in no small
degree to Countess Lovelace, should be seen as the most important legacy to modern comput-
ing left by these two. The innovations in question? Principally the concept of astored pro-
gram; and, secondly, the suggestion that there is a direct analogue between semiotic manipu-
lation as a facet of computational artifice and semiotic manipulation in the classical mathe-
matical context of algebra. This latter concept is fundamental to the bases on which the
mathematical theories of computation are constructed. Before considering Babbage’s early
work and his joint endeavours with Countess Lovelace in more detail, it is worth briefly
reviewing the background of both.

Babbage first became noted as a prolific inventor whose work naturally led him to con-
sider the possibility of building better mechanical computing devices. While his first major
idea — the so-called Difference Engine — could only be partially built3, for almost the last
twenty years of his life, Babbage was obsessed with the design and construction of a much
more powerful machine — the Analytic Engine. The ambitious scope of this was far beyond
the engineering capability of the time4. Nev ertheless, unlike the Difference Engine, work on
which Babbage ceased when the concept of the Analytic Engine occurred to him (since the
latter would have encompassed the former) — the Analytic Engine is, arguably, the first real
attempt to construct something resembling a modern computer. By the end of his life Bab-
bage had become extremely enbittered by the lack of public and (more importantly as regards
financing) government recognition of the significance of the Analytic Engine, a full working
design of which is not known to have been completed. In his seventies, Babbage had turned
into that rather tiresome character: the ‘English Victorian eccentric’. Among his proclivities at
this stage was a healthy and fierce dislike of street musicians: upon hearing these he used to
race into the road to chase them away from his house. An almost equal intolerance of chil-
dren was created as a result of local children taunting him by imitating the noise and cries of
street-corner musicians outside his home.

The background of Ada, Countess of Lovelace was entirely different from that of Bab-
bage whose family ran a prospering banking concern. Had it not been as a result of the suc-
cess of one of his earliest calculators, the two might never hav e met. Augusta Ada Byron
was the only daughter of the great English poet Lord Byron, born from a marriage under-
taken by Byron in order to quieten the contemporary scandal surrounding his, then considered
to be, vigorous and unorthodox love life. Lord Byron died in 1829 (in Greece) when she
was only 14 and as the only (legitimate) daughter of an English aristocrat, her life would
normally have consisted of the then usual round of so-called upper class society events, fol-
lowed by marriage to someone of a similar background, followed by subsequent obscurity
caring for husband and children (in that order). Countess Lovelace was, however (and fit-
tingly for a daughter of Byron!) an extremely gifted, intelligent and independent-minded
woman. She first encountered Babbage at one of the, then popular, society events dedicated
to showing-off interesting and amusing new inv entions. Here she came across a prototype of
the Difference Engine upon which Babbage was working at the time.Fascinated by the
device she became intent on meeting its inventor and discussing it with him. From the time
they met until her death Babbage and Countess Lovelace were in constant touch with each
other, she, in her letters, suggesting and describing, a number of significant ideas for enhanc-
ing such artefacts. It is only recently that her contribution to the development of modern

3) Independently a complete, working, though less ambitious machine based on much the same ideas was
realised by the Swedish partnership of Georg Scheutz (1785-1873) and his son Edvard (1821-1881).

4) Whether the machine could ever hav ebeen built, prior to the advent to electronic devices, is open to question.

Aids to computation and the development of algorithms 35

computer principles has received the recognition it deserves. It was as a tribute to her work
that a newly designed and now widely used programming language was named, in her hon-
our, ADA.

Babbage’s interest in computing machines arose while he was checking tables produced for
the Royal Astronomical Society, in 18205 These tables, containing astronomical data, values
of logarithms, trigonometric functions, and various physical constants, formed the basis for
the analysis of scientific experiments and for navigation. They had been produced by hand, in
some cases the measures given had been compiled over two centuries previously, and thus
due to human errors in the calculations and copyists mistakes in transcribing the tables for
publication, the standard tables were rife with errors. By the 1820s the standard Government
tables for navigational purposes contained well over 1000 known errors and the corrigenda
ran to 7 volumes. Even the corrigenda required further corrections. While engaged in the
tedious task of checking such tables Babbage realised that much of the calculation required
was of a routine and mechanical nature. Thus producing a mechanical device which could
generate the tables automatically would have significant benefits: calculating and transcription
errors would be eliminated.

Babbage’s first important idea in this area was the so-calledDifference Engine. This was
intended to evaluate polynomials6 The term ‘difference’ came about from the principle used
to evaluate such expressions: a mathematical technique called theMethod of Differences, on
which Babbage had carried out important work. By this technique all polynomial evaluation
could, in principle, be reduced to addition. In 1822 Babbage presented a paper to the Royal
Astronomical Society in which he proposed constructing a machine to generate and print sci-
entific tables. The process of carrying out addition mechanically was well understood by this
time and so Babbage was able to demonstrate a machine he had constructed to print tables of
squares, cubes, and a single more complicated polynomial. Impressed, the Society supported
Babbage’s proposal to build a machine that would work to the accuracy of 20 decimal places.
Babbage now faced a problem that has bedevilled the development of science and engineer-
ing: money. Babbage attempted to obtain Government funding to construct his proposed
machine. In 1823, after some debate the Exchequer approved the award of 1500 to meet the
costs of developing a large Difference Engine. Babbage planned to take 2-3 years designing
and building the machine and estimated that about 50007 would be needed. It had been
understood by Babbage that such funds as would required in addition to the initial 1500 grant
would be forthcoming. Unfortunately for the subsequent history of the Difference Engine the
Exchequer’s understanding differed from Babbage’s.

The Difference Engine was never finished. After 10 years work, involving acrimonious
disputes with the Government over financing, arguments with influential scientific figures of
the time, allegations of fraud, and the expenditure of 34,0008 (at least half of which came
from Babbage’s own resources out of the estate inherited from his father) Babbage ceased
work on the Difference Engine. What remains of it is now on display in the Science Museum
in London.

5) Babbage’s autobiography giv es a different version, but this is considered to be unreliable.

6) A polynomial is a function,f (x) which may be written in the formf (x) ==
n

k==0
ΣΣ ak xk for some choice of

constantsa0 , . . . ,an, e.g.41++ x ++ x2.

7) In 1823 an income of 100 per annum would allow a comfortable standard of living. In modern terms the
grant awarded to Babbage was of the order of 750,000; the amount he actually believed was needed would be
around 2.5 million at today’s costs.

8) About 17 million at current prices.

36 19thCentury — Jacquard, Babbage and Boole

Undoubtedly the main reason why Babbage did not continue work on the Difference
Engine was because he had conceived the idea of a machine which would render it obsolete:
the Analytic Engine. Babbage’s description of the components and function of this machine
display extraordinary prescience when considered in the light of modern digital computers:

The Analytical Engine consists of two parts:

1st. Thestore in which all the variables to be operated upon, as well as those
quantities which have arisen from the result of other operations, are placed.

2nd. The mill in which the quantities to be operated upon are always brought.

algebraical operations to be performed upon given letters, and of certain other modifica-
tions depending on the numerical values assigned to those letters.

There are two sets of cards, the first to direct the nature of the operations to be per-
formed — these are called operation cards; the other to direct the particular variables on
which these cards are required to operate — these latter are called variable cards.

required to develop, the law of its development must be communicated to it by two sets
of cards. When these have been placed, the engine is special for that particular formula.
The numerical value of its constants must then be put on the columns of wheels below
them, and on setting the Engine in motion it will calculate and print the numerical
results of that formula.

What Babbage describes in these excerpts was something remarkably close the the modern
computer: a device utilising the elements of Memory, Processing Unit, and program (or for-
mula as Babbage called it). Babbage envisaged the actual power of the machine being pro-
vided by steam with its realisation being by mechanical gears. Ada Lovelace was one of the
only people to understand and appreciate the significance of Babbage’s ideas. She expanded
considerable effort on developing the first programs for the planned machine and on docu-
menting its design and logic. Her detailed descriptions are the only clear records left of the
proposed mechanics of the machine. Babbage had to develop the machine at his own expense
and quickly ran into problems with funding, since the Government refused to support the new
machine. Babbage and Lovelace worked extensively on the principles underlying the machine.
In 1852, however, Ada Lovelace died, in considerable pain, from cancer of the uterus at the
age of 36. Babbage effectively worked alone on the machine until his own death in 1871.

The range and ambitious scope of the Analytical Engine was far beyond the capabilities
of the technology available at the time. Mechanical gears and steam power might have been
adequate for the limited needs of earlier machines, however, these could not have been manu-
factured to the precision required to make the Analytical Engine a reality. Nev ertheless, as a
theoretical concept, the idea of the Analytical Engine and its logical design are of enormous
significance. This is the first realisation that, by mechanical means, it might be possible to
program complicated algorithms.The Analytic Engine had, in principle, all of the important
components (Memory, Processor and Input/Output protocol) that are present in modern-day
computer systems. For this reason Babbage has a strong claim to be the inventor (even if not
the first builder) of the modern computer.

4.4. George Boole (1815-64)

The achievement of the autodidactic English mathematician George Boole may not, at first
sight, seem as significant as the concepts moted by Babbage and amplified by Ada Lovelace.
Nevertheless, he was responsible for formalising and developing a system which underpins
the operation ofevery modern digital computer: the system, named in his honour, of Boolean
algebra.

Aids to computation and the development of algorithms 37

Boole was not primarily concerned with the automation of calculating activities. His
motivation for developing the system was to assist in expressing and evaluating the soundness
of logical propositions. For example, suppose we have a number of assertionsP, Q, R, S,
etc. Boole considered the question of what could be said of assertions made by combining
these in various ways, e.g.P AND Q AND R, (P OR S) AND(Q OR R). By considering
assertions to bytrue or false, Boole developed an algebraic calculus to interpret whether
composite assertions weretrue or false in terms of how they composition was formed (i.e.
the combination of AND, OR, etc) and the truth or falsity of the atomic assertions. Boole
published his work in the mid 19th Century9 Its importance with respect to computer design
was realised in the 20th century when approaches to constructing digital computer were being
investigated. Boole’s calculus was instrumental in breaking the tradition of reducing computa-
tion to addition: the route that had, in effect, dominated the design of automatic calculating
machines from Schickard through to Babbage, since by exploiting Boolean algebra and elec-
trical (or electro-mechanical)switching components10 it became possible to build reasonably
reliable systems capable of carrying out complex computing tasks.

4.5. Conclusion

The nineteenth century developments in automatic computation form a bridge between the
mechanical methods of early calculating machines and the advent of digital computer systems
in the twentieth century. Babbage and Lovelace conceived the idea of constructing a machine
that in its composition was similar to the machines present today. That they failed to realise
their conception was largely due to the inadequacies of the contemporary engineering technol-
ogy. Their work, however, delineated the components that were to be adopted in subsequent
machines. These, in combination with Boole’s formalisation of an algebraic system that was
to prove subsequently to be of immense value, were ultimately to lead to the development of
electronic computing systems in the following century.

9) An Investigation of the Laws of Thought, Dover Publications, Inc., 1854

10) A switching component is one which is always in one of two ‘states’ (on or off) and can be moved from one
to the other on receipt of a suitable stimulus.

38 19thCentury — Jacquard, Babbage and Boole

Mechanical Aids to Computation and the
Development of Algorithms

5. Digital Electronic Computers prior to 1950

5.1. Introduction

We argued, at the conclusion of the previous chapter, that the failure of Babbage to realise a
functioning prototype of the Analytic Engine — arguably the first proposal for a pro-
grammable ‘computer’ — was not due to any conceptual lack of insight but was, rather, an
inevitable consequence of the inadequacies of contemporary engineering technology. Babbage
had sought to construct a programmable calculating tool using the interaction of mechanical
gear wheels meshed together as a basis. Undoubtedly the most significant technological
insight in the genesis of modern digital computers was the realisation thatbinary switching
componentsprovided not only a sufficient basis for the implementation of automated calcula-
tors but, indeed, would also be anecessaryfoundation of any machine as ambitious in con-
cept as Babbage’s Analytic Engine, i.e. a machine which could:

• remember the results of intermediate calculations;

• automatically repeat a sequence of calculations usingnew data;

• be reconfigured (programmed) to carry out an entirely different sequence of computa-
tions.

How do ‘binary switching devices’ aid in the construction of such machines. Recall that such
a switching device can viewed as in Figure 14 below.

Output

Stimulus

Source

Figure 14: Switching Component

Under a sufficiently large ‘stimulus’ the switch is closed and (while the stimulus remains suf-
ficiently ‘high’) a signal can pass from the source to the output. If the stimulus and signal
are both electrical and the concept of a ‘high enough stimulus’ is that of carrying a large
enough voltage then such a configuration gives a convention for representing 0 (the voltage
on the output is too small to close a switch) and 1 (the voltage on the output is large enough
to close a switch). We can thereby represent arbitrary number using a notational system
called binary, e.g. the number 20 is represented by 5 switches set (in order) to 10100. We
can, however, do much more than merely represent numbers: we can also manipulate such
representations by using an appropriately powered (e.g. electrical) system of switches. Thus
consider the configurations in Figure 16 below.

Aids to computation and the development of algorithms 39

(ii)

(i) OutS

A

B

Out

BA

S

Figure 16: Logical AND and Logical OR circuits

In (i) the output equals ‘1’ ifboth A and equal 1; in (ii) the output equals ‘1’ ifA or B
equal 1. The algebra developed by George Boole and introduced at the end of Chapter 4 pro-
vides a mechanism for reducing complex arithmetic operations to networks of switching com-
ponents representing the operations logical AND, OR, and negation which manipulate binary
representations of numbers. Thus, in principle, one can build systems to carry out arithmetic
(and other operations) automatically. Using electrically driven switches we can

• represent numbers (using binary notation)

• perform calculations on these (e.g. addition, multiplication and more complex functions)
by providing an appropriate network of switching components.

• Store and execute programs by expressing programming tasks as a sequence of basic
operations on data and relaising these operations by switching networks.

One might argue that all of these could (in principle) be done mechanically, howev er, the use
of gearing mechanisms does not enjoy many of the advantages of systems built as outlined
above:

• Binary systems have only two values to represent; so such systems would be less likely
to suffer from failures.

• Using electricity as the source of power allows for much faster systems.

In summary the realisation that binary notation and Boolean algebra were better foundations
for building automatic calculating machines than mechanical gearing systems proved to be
crucial in rendering programmable systems feasible: the computational representation of a
quantity is more flexible; and the processing of such representations can be described in a

40 20thCentury — Digital Electronic Computers

concise algebra and therefore replicated. All modern computing systems can, at the most
basic level of operations, be described in terms of complex networks of binary switching
components.

The first such ‘switching components’ were electro-mechanicalrelay-contact switches.
These comprised two metal contacts connected by a hinge; on receipt of a sufficiently high
voltage the two metal contact closed together to all a current to pass through them.

5.2. Development of First Electrical Machines in Germany (1936-44) — Zuse and
Schreyer

Probably the first person to appreciate the importance of electrical components and Boolean
algebra, as concepts that could be used to build a general-purpose computing tool, was the
German engineer Konrad Zuse. Zuse had studied engineering in Berlin and in the course of
his training had to learn about solutions to simultaneous linear equations.In such equations
one is given a set of k identities involving k variables, e.g.

3x ++ 2y ++ 3z == 18

5x ++ 3y ++ 2z == 17

4x ++ 6y ++ 7z == 37

and one is required to find (usually, unique) values for thek variables which simultaneously
satisfy thek identities. In the example, the (unique) solution isx == 1, y == 2, andz == 3. Such
systems commonly arise in engineering applications as a model for representing trade-offs
between different criteria in building structures, e.g. weight, strength, rigidity etc of materials
used. Suchsystems are not mathematically difficult to solve, however, considerable amounts
of calculation are involved. The traditional approach (known as Gaussian elimination)
becomes extremely laborious when more then four identities are to be dealt with. In engineer-
ing applications such as architecture systems involving several hundred equations often arose
and constructing feasible solutions to such systems would require months of work by a num-
ber of teams. Zuse conceived the idea of carrying out the required calculations by a machine
while he was a student in 1934. Zuse recognised that such a machine would need to meet
three basic criteria.

• The machine would have to be as general as possible, i.e. not only deal with basic
arithmetic or even simultaneous equations but with any suitably formulated series of cal-
culations. To this end Zuse designed the machine to have a very similar structure to
that proposed for the Analytic Engine by Babbage:1 thus there was to be a memory for
recording data, an arithmetic unit for carrying out calculations, acontrol unit governing
which operations were to be performed and the flow of data upon which they operated,
a program unit for entering instructions and data, and finally, an output unit for printing
results.

• Binary representations of data would be used.

• The operations of the machine were described and implemented using a formulation of
Boolean algebra.

In 1936, while working at the Henschel Aircraft Company in Berlin, Zuse started to build his
first machine: the Z1. This was undertaken entirely privately at his own expense. This was
completed in 1938 but was not really satisfactory, since the arithmetic unit did not function
correctly. Zuse was still using a basically mechanical system to carry out all of the calcula-
tions although the machine represented a significant advance on Babbage since the use of

1) This design was proposed without any knowledge of Babbage’s work, which Zuse did not encounter until
1939.

Aids to computation and the development of algorithms 41

binary avoided many of the traditional engineering problems. The important breakthrough
came with his second machine, the Z2, in which Zuse dispensed with the mechanical plates
of his prototype machine (except for the memory design which had worked successfully in
the Z1) and substituted electromechanical relays instead. This had two effects: the machine
worked; and it operated (for the time) extremely quickly. The suggestion that electro-mechan-
ical relay switches be used had come from Zuse’s colleague, Helmut Schreyer, an electrical
engineer. Schreyer, in fact, proposed a far more radical solution to the problems with the
mechanical aspects of the arithmetic unit: that of using a purely electronic device called a
thermionic valve (similar to the valves found in old wireless sets). This could be used both as
a memory device and as a switching mechanism. Zuse, however, felt more comfortable using
the electromechanical relay devices. Schreyer’s idea was eventually taken up in the early
1950s by prototype British and U.S. computers. The final version of the Z2 was completed in
1939. Zusewas conscripted at the outbreak of the Second World War eventually ending up
working at the Aerodynamics Research Institute. Schreyer, who was not conscripted, contin-
ued on his own idea of building a machine using purely electronic components, in this case
thermionic valve. Both Zuse and Schreyer were attempting to build a general-purpose com-
puter. Both faced the same problem: a total lack of official interest in their work. In 1942,
Schreyer submitted a research proposal describing his machine and its potential to the Ger-
man High Command: it was rejected as being of no importance. Zuse was only able to work
on his next machine, the Z3, by presenting it as aspecial-purposecalculator to solve a prob-
lem that was hindering progress on aircraft design. In fact Zuse and the team working with
him had always intended to build a general-purpose machine. The Z3, which was the first
ev er working general-purpose programmable computer was completed in December 1941. By
modern standards it was not a large machine: its memory could hold 64 numbers each con-
taining 22 binary digits (orbits). Multiplication could be performed in under 5 seconds and
in addition to the basic arithmetic functions the machine could be programmed to carry out
more complex tasks such as the calculation of square roots. The machine was programmed
by entering the instructions to be executed into the memory. This input was done by manu-
ally setting the memory content. The machine which comprised a tape reader, operators con-
sole and functional units containing about two and a half thousand relays was built for very
little cost, ∩∩ about 10002 One of the important innovations of the Z3 was its practice of
treating data in fixed lengthwords (of 22 bits long) so that all input numbers were translated
into this form for processing. The practise of designing machines in terms of some fixed
word size continues in machines built today were 32 bit and 64 bits are common sizes.

Zuse went on to built a larger machine, the Z4, which after being relocated a number of
times during its construction to avoid bombing attacks, was completed in the late 1940s. It
was subsequently placed in a technical institute in Zurich in 1950 were for a number of years
it was the only available powerful calculating tool in mainland Europe. The Z3 no longer
exists: it was destroyed by an air-raid on Berlin in April 1945.

5.3. U.S. Research — Aiken, Atanasoff, Eckert, Mauchly and Von Neumann

The work of Zuse and Schreyer was unknown outside Germany at the time. Most of the
innovations made by the two were independently developed in the United States (and Britain)
in the 1940s.

The history of electronic digital computer development in the United States over this
period is extremely complex and still regarded as a matter of some controversy. The results
of this confusion were the patent disputes involving the company representing two of the sig-
nificant pioneers in this work — J. Presper Eckert (1929-) and John Mauchly (1907-1980).

2) Approximately 20,000 at current prices.

42 20thCentury — Digital Electronic Computers

The disputes started in 1952: Eckert and Mauchly finally lost their patent case (under which
they claimed to have ‘invented’ the first ‘modern electronic computer’) in the Supreme Court
on October 19th 1973.

In this section we only have space to quickly review the main contributors to the devel-
opment of the important early machines in the U.S. and to outline the work of the individuals
responsible for them. As well as Eckert and Mauchly two other figures are significant: John
Atanasoff (1904-)and John von Neumann (1903-1957). That Eckert and Mauchly were not
granted legal recognition of ‘their’ invention may, in some part, be attributed to claims made
on behalf of these two.

Independently of these four, howev er, How ard Aiken had in 1937 at Harvard University
proposed some ideas concerning the structure of what he considered an ideal computer: one
that could represent negative as well as positive numbers, perform all standard arithmetic
operations, carry out sequences of operations. Aiken’s idea combined elements of Babbage’s
work but with the additional concept of using the punched-card representation for data as
delineated by Hollerith. Aiken was able to interest I.B.M. (which Hollerith’s original com-
pany had become) into supporting his proposals. The machine, subsequently called the Mark
1, was built between 1939 and 1944. As with Zuse’s Z machines it employed electromechani-
cal relays, and comprised three-quarter of a million parts. Its speed at individual arithmetic
functions was similar to that of the Z3, and when finished it was capable of completing six
months manual calculation in less than a single day’s working.

The Mark 1 was already out-of-date by the time it became operational in 1944. It had
been superseded by the machine being developed at the Moore School of Pennsylvania State
University. Before this project started an earlier machine had been designed by John Atana-
soff and Clifford Berry. Their machine was to be based on valve devices, which although
favoured by Schreyer had been ignored by Zuse who preferred to use relays. Atanasoff had
succeeded in constructing an electronic calculator that could perform simple arithmetic. He
and Berry then set about scaling this simple machine into a more complex computer. Their
design provided for a novel storage medium on magnetic drums, 50 bit binary arithmetic, and
input on punched cards.A number of components, including arithmetic units were built and
later studies of the full design (made in the 1960s) concluded that the proposed machine
would have worked as a special-purpose calculating machine. The machine, however, was
never completed as both Berry and Atanasoff abandoned it to work for the U.S. military at
the onset of the Second World War. The subsequent recognition of Atanasoff’s work (over 20
years after it was done) has led to the Atanasoff-Berry Computer (or ABC) as justifying
claims being made for Atanasoff having invented the first general-purpose electronic com-
puter. These claims are defended by Iowa State University were the two worked and were
accepted in the Supreme Court ruling invalidating the patent suit filed on behalf of Eckert
and Mauchly. While it is certainly the case that the design of the ABC was technically
sound, nevertheless the machine was never built, and on this ground Eckert and Mauchly’s
claim to be the first U.S. developers has some foundation.

Like Shreyer and Atanasoff, Mauchly was interested in employing valves as the basic
switching component for constructing an electronic calculating machine. He was interested in
the problem of weather forecasting and the possibility of doing this by a machine. Mauchly
met Atanasoff after presenting a paper on approach to tackling this problem. Mauchly’s
mechanism for doing this, however, performed its analyses on analogue electronic signals.
Atanasoff and Mauchly disagree about the outcome of their discussions. Nevertheless,
Mauchly subsequently became concerned with working on a digital electronic machine, based
on valves. Eckert and Mauchly came together while the former was studying at the Moore
School. Eventually, in May 1943, they succeeded in persuading the U.S. Government to

Aids to computation and the development of algorithms 43

finance the construction of a electronic computer. This was to become known as ENIAC:
Electronic Numerical Integrator and Calculator. The initial budget for the machine was
$61,700. It was completed in May 1944 and has a strong claim to be the first ever general-
purpose electronic machine. The total cost of the project by the time a demonstration was
held in February 1945 was almost half a million dollars. The final machine had two notice-
able features: it was extremely large (the dimensions were 100×× 10×× 3 feet, weight of 30
tons, over 100,000 components, and occupying an area of 1800 square feet); it was also far
faster than anything that has been built previously, being able to multiply in under 3/1000
second. The publicity demonstration in 1945 involved calculations of tables of trigonometric
functions and powering of large numbers; all of these calculations were performed in a matter
of seconds.

The final figure of importance in our review of U.S. developments is John von Neu-
mann. Although von Neumann made a number of technical improvements to the initial design
of ENIAC and was involved in setting up the successor project: EDVA C which would be a
programmable machine, he is principally of importance for his theoretical work on computer
structures (orarchitecture) and his r:ˆole in convincing sceptical authorities of the significance
of the potential provided. He has (mistakenly) been credited as the inventor of the digital
computer as a result of circulating the first draft description of its operation. Among his
many important contributions to Computer Science is his development of a structural descrip-
tion of how computers can be organised: this is now known as the von Neumann model and
in effect describes the relationship between memory, program, and control units. In addition,
von Neumann became involved with the design and construction of one machine — the IAS
— which could be used to demonstrate his ideas, conceived in 1946 this machine was not
completed until 1950. Nevertheless, von Neumann came to be regarded in the U.S. as the
principal authority on computer design.

5.4. Developments in the U.K. — COLOSSUS to EDSAC

Zuse and Schreyer in trying to develop their ideas for a general-purpose computer met with
apathy when seeking support from the German High Command. Some military historians3)

have claimed that the failure of the German military intelligence to appreciate the potential
uses of such a machine, and thereby divert resources from other research, was a major strate-
gic error. Clearly, it is impossible to say for certain if this was indeed the case. Nevertheless
if neglecting to pursue computer development was a technical error it was not one that was
also made by British and U.S. research strategists. Much of the impetus behind developments
in the U.S. arose from the need for the army to be able to calculate trajectories of projectiles
quickly and accurately. In the U.K. the main motivating factor in the development of comput-
ers for military use came about through another application: that of deciphering coded inter-
cepted messages.

In 1938 the British Intelligence service managed to obtain a complete working descrip-
tion of the GermanENIGMA machine from Richard Lewinski, a Polish Jew who had been
employed at the factory where these machines were built. Lewinski had been dismissed from
his post on account of his religion. The ENIGMA machine was a coding device: by setting
up a secret key, messages typed on it would appear in an encrypted form; the receiver of the
message who knew the key could then decipher its actual content. ENIGMA was the mecha-
nism by which all command orders and strategic decisions were communicated through the
High Command to field officers. As such the encryption device (and, of course, the rota for
setting keys) was carefully guarded. Lewinski had been able to pass on a precise description
of the machine since, possessing a formidable memory, he had remembered exact details of

3) e.g. Mark Arnold-Forster

44 20thCentury — Digital Electronic Computers

its construction and operation while employed where it was built. In principle, once the
British Intelligence service understood the workings of ENIGMA they would have complete
knowledge of German military operations.

The machine, however, was not enough in itself. Having intercepted a message it was
still necessary to know the keyword that had been used to encode it and codes were changed
three times a day. Knowledge of the internal working of the machine greatly reduced the
range of possible keys consistent with a particular intercepted text, but typically there would
be an enormous number of possible keys left to test. The frequency of code changes and the
labour involved in testing a possible key meant that the task of decoding messages clearly
needed some degree of non-human intervention. It was to assist in this that early in the Sec-
ond World War Project ULTRA was started at Bletchley Park. Theaim of this project was
to construct a machine that would quickly identify code keys so that messages could be
decrypted. The most important figure involved with the research at Bletchley Park was the
English mathematician Alan Mathieson Turing (1912-1954). Turing was to become a signifi-
cant pioneer in computer development and popularisation. In 1936 he had addressed the ques-
tion of whether it was possible to specify algorithms (i.e. programs) for every conceivable
function and demonstrated that a particular problem — that of deciding whether an algorithm
came to halt on a given input4 could not, in general, be solved. Turing was also one of the
first people to consider the question of whether machines were capable of ‘intelligent’
behaviour and so a founder of the Computer Science discipline ofArtificial Intelligence. He
proposed a method, now called The Turing Test, for determining if a machine was acting in
an ‘intelligent’ way: namely, that a human observer monitoring the responses to questions
from the machine and another human participant would be unable to distinguish which set of
responses came from the machine and which from the human.

Researchers at Bletchley Park initially built a number of small relay-based machines to
process potential keys. While these devices were of considerable help in decoding it was
ev entually decided to build a valve based machine to automate fully the decryption process.
Construction of this machine, called COLOSSUS, started in January 1943 and was completed
by December of the same year. There is a strong case for regarding COLOSSUS as the first
working electronic computer5 despite the fact that it was limited to carrying out a special-
purpose task. COLOSSUS comprised 1800 valves and could read 5000 characters per second
via a paper tape reader. By the end of 1944 a larger machine, called Mark II, had been built
in addition.

British engineers were among the first to develop and enrich the ideas that had pro-
duced the ENIAC computer in the U.S. In July 1945, Douglas Hartree had visited and talked
with a number of people who had worked on this machine (despite the fact that its operation
was technically classified information owned by the U.S. Military). Hartree, on his return to
Britain, tried to encourage British development of similar machines. As a consequence a
number of institutions started work on such projects. At Cambridge University, a team coordi-
nated by Maurice Wilkes built the EDSAC computer. This was the first stored-program com-
puter and is the closest of machines considered so far to modern machines. The EDSAC led
to two significant innovations: it was the basis of the world’s first user Computing Service;
and user programs were coded in anassembler language. Since machines operated on binary
codes a description of the program instructions has to be supplied in this form. This, how-
ev er, is difficult to do since it is very easy to enter part of an instruction wrongly. In order

4) Now known as,The Halting Program.

5) The British work at Bletchley Park was not a factor considered in the Eckert-Mauchly patent dispute in the
U.S. since the existence of COLOSSUS and documents relating to it were classified under the Official Secrets
Act in the U.K. Details about this work were not publicly released until 1976.

Aids to computation and the development of algorithms 45

to overcome this problem, simple English language mnemonics are used to write the program
and this is then translated into the equivalent binary patterns understood by the machine.

Other British computers followed from the work at Cambridge: Wilkes assisted the
Lyons Company in designing a machine (LEO or Lyons Electronic Office) which handled
their account and office transaction work. LEO was handling clerical tasks by the end of
1951. At Manchester University the first of a long series of machines, the Manchester Mark
I, was built between 1947 and 1949 and followed by the Mark II in 1951. In February 1946,
Alan Turing, had put forward a complete design of a stored program computer — the Auto-
matic Computing Engine or ACE — which it was envisaged would provide a national com-
puting facility. Unable to interest Wilkes at Cambridge or Williams at Manchester (both of
whom disliked Turing), Turing developed his design at the National Physical Laboratory in
Teddington. When Turing left the NPL in 1947 a new design based on Turing’s but contain-
ing a number of fundamental new ideas was developed under the name of Pilot ACE.
Although the Pilot ACE was working by the middle of 1950 it did not become fully opera-
tional until 1952. Turing died in 19546 without seeing all of his ideas for the ACE realised.

5.5. Conclusion

The first half of the twentieth century was to see the development of computer systems in the
form that they are common today. Dispensing with solely mechanical emulations of arith-
metic processes and moving to electrically based switching components and the formalisms of
binary and Boolean algebra, allowed fast and fairly reliable calculating machines to be built.
All of the major technological improvements in computer construction since this innovation
have come about as a result of the engineering of better (smaller, faster, and more reliable)
binary switching devices. By the middle 1950s large machines of unprecedented size and
speed were operational at many U.K. institutions and several U.S. sites. Despite this progress,
however, some significant problems remained concerning the ease of using these machines.
Although Wilkes’ team had originated the idea of assembly languages, coding of programs
was still a time-consuming and error prone activity. In the final chapter of these notes we
shall examine what developments took place from the late 1950s onward which would render
the task of programming computers a far simpler task.

6) Of cyanide poisoning. The inquest subsequently ruled that Turing had committed suicide, citing as motive
Turing’s impending prosecution for homosexual activity. Turing’s relatives, however, hav ealways maintained
that his death was accidental: given Turing’s eccentric habit of mixing lethal chemicals together to see what the
outcome would be there is some degree of justification for their claim.

46 20thCentury — Digital Electronic Computers

Mechanical Aids to Computation and the
Development of Algorithms

6. Making computing easier: Programming Languages

6.1. Introduction

In the early 1950s even if one had access to a computer facility, actually using this to carry
out a specific calculation would often be an extremely frustrating activity. There were two
reasons for this: technology; and the problems in describing the task to be performed in a
manner that the computer system could act upon. The technological problem arose because
the machines were built using several thousand valves. Valves require significant amounts of
electrical power, when they are operating they generate heat, when they become too hot they
burn-out and have to be replaced (much as an electric bulb does when supplied with too
strong a current). Given the size and expense of contemporary systems and the fact that only
one calculation series at a time could be run, in order to perform some calculation it was
necessary to reserve a time slot in which one had sole access to the facility. It was often the
case, however, that having set up the ‘program’ the computer system immediately ceased to
function because some of its valves burnt out. This technological drawback was overcome
within a few years of the discovery of the transistor. The TRADIC, built in 1954, was the
first computer to employ transistors as replacements for valves. Although over-heating still
posed (and indeed continue to pose) a problem, transistors were much more reliable.They
also led to far faster machines being possible. Almost all of the subsequent development of
more reliable ‘hardware’ and faster computer systems came about as a consequence of
improved transistor technology and device physics: from the early transistor machines of the
mid 1950s, through to machines using LSI components (one which a logical AND gate could
be placed) in the 1960s, up to the VLSI devices of the present-day. The last are of such com-
plexity that a computer processor, of far greater power than any of the 1950s machines, can
be built on a silicon chip no larger than a fingernail (as opposed to the space of several gym-
nasia taken by machines like the Whirlwind 1 at M.I.T.).

Improvements in fabricating switching components made large computer systems less
prone to hardware failure, but they did not render the task of implementing a series of calcu-
lations any less difficult. Recall that a key dev elopment in the realisation of automatic calcu-
lating machines was the introduction of binary representations as the fundamental items oper-
ated upon. John von Neumann, in formulating the structural organisation of stored program
computers, had shown how a string of binary digits could be used to encode both instructions
and data. Following this approach a machine that operated on, say 16 bitwords, the memory
locations that held the program would have the instructions interpreted as follows: the first
few bits (4 for example) would indicate a particular operation (ADD, STORE, LOAD etc)
and the remaining bits (12 in this case) would indicate where the data for the operation was
stored in memory. For a such a program to be executable by the computer, howev er, the
binary pattern corresponding to each individual instruction would have to be entered into the
memory. A typical application program for a complex scientific calculation might break down
into 200 or more such instructions and so to carry out the calculation 3200 0s and 1s would
have to be produced and loaded into memory. A single error would render the program use-
less. Even though entry can be facilitated by paper tape or punched cards, the task of actually
generating the correct code offers massive potential for error when it is done manually.

Aids to computation and the development of algorithms 47

Wilkes’ invention of assembly language coding, as described at the end of the last chap-
ter, removed some of the possibility last chapter, removed some of the possibility for tran-
scription error, even this was at such a low lev el then coding complex applications was a
demanding and time-consuming task. It was in this context that the firsthigh-level program-
ming language were developed. The difference between the assembly level and high-level lan-
guages were that in the former a single line of the program would typically translate to a sin-
gle machine instruction, whereas a single statement in a high-level language might require
several machine instructions. Of course such programs would have to be transformed (com-
piled) into a representation that could be executed by a computer. Thus a major problem
faced by the developers of the first such languages was the construction ofcompilersto carry
out this task automatically. In the final part of the course we shall, briefly, review the main
contributions made within the field of high-level language development.

6.2. ScientificComputing Applications — FORTRAN

A, perhaps surprising, property of the several of the early programming languages has been
their durability. The language FORTRAN (an acronym forFORmula TRANslation) is one of
the best examples of this phenomenon. Developed in the mid-1950s, FORTRAN was intended
for use in scientific and numerical computing applications. As such the analysis of experi-
mental data on computer systems could, in principle, be done by programs designed by the
scientists and engineers who had gathered the data. The designers of FORTRAN were among
the first to seriously address the principle objection to high-level languages that had been
raised: although producing programs that were less error-prone became easier, this fact was
counterbalanced by the inefficiency of early compilers. Thus a skilled assembly level pro-
grammer could produce code for an application that was more compact and faster than that
generated by a compiler. A number of technical decisions were taken in the provision of
FORTRAN capabilities that would make it possible to construct FORTRAN compilers which
produced machine executable code comparable to that of the best human programmers. The
most important of these was that the amount of memory to be used during the running of a
program could be exactly determined in advance, using the description of the program alone1.
As a result of this, variousoptimisationscould be made to the code produced to enhance the
running of the program.

FORTRAN was promoted by I.B.M. and continues to be extensively used today. The
original version of the language has undergone several revisions (on average a new version
appears about once every seven years). A key criterion that has to be satisfied by revised ver-
sions of the language explains, in part, why FORTRAN has continued to survive as a lan-
guage today: no revisions to the language are accepted if as a result older FORTRAN pro-
grams would cease to compile. AS a consequence of this policy, in principle, FORTRAN pro-
grams from 1955 can still be compiled using the latest version of the language. The concept
of upward compatibility, as this policy is called, is (commercially) important in ensuring that
users of a system can still continue to run old programs when new versions of the language
are released.

6.3. Commercial Data Processing — COBOL

We saw, in the opening lecture, that one of the areas in which computer systems have
become predominant is that of record maintenance. The field of processing records stored on
computer systems, e.g. computing payroll statistics and figures for corporations employing
large numbers of people, is known as (commercial)data processing. The Lyons Electronic

1) This feature of the FORTRAN language continued for almost 25 years, through successive revisions of the
language.

48 Thedevelopment of High-Level Programming Languages

Office (LEO), mentioned at the end of the last chapter, and the various census collation
devices discussed, are both examples of data processing applications. FORTRAN went some
way to addressing the requirements of scientific and engineering applications. Although it
could have been used as a method of writing typical data processing applications programs it
was not really suitable for such tasks. Various primitives desirable for data processing tasks
were missing (since they were not needed in numerical applications), and the style of FOR-
TRAN programs (which read as a series of mathematical formulae) was alien to those work-
ing in the fields of record maintenance and processing.

COBOL (COmmon Business Oriented Language) was designed at the end of the 1950s
by Admiral Grace Hopper in response to a commission from the U.S. Admiralty. Like FOR-
TRAN, it has proved extremely durable and most large-scale data processing systems today
are still realised in COBOL. One of the design aims underlying COBOL is that programs
written in it should be readable, even by non-computer professionals. So whereas FORTRAN,
in describing program instructions, employs standard mathematical symbols and operators, in
contrast, COBOL programs attempt to mimic natural language descriptions. In the earliest
versions of the language no mathematical symbols were used and arithmetic operators were
specified using the equivalent English word. This, amongst other features of the language,
made COBOL programs appear to be extremely verbose2. Thus the simple statement
A== C ++ D in FORTRAN becomesADD C TO D GIVING A in COBOL. The belief that by
substituting English for mathematical symbols programs would become more understandable
and thereby easier to write turned out, however, to be fallacious. The reason for this, which is
obvious with hindsight but was not apparent at the time, is that what makes designing a com-
puter program for a specific task difficult to do is the process of specifying, structuring, and
ordering the activities to be carried out at a fine enough level of description, i.e. the difficulty
in programming is constructing the appropriatealgorithmic process. Once this has been done
it is usually a relatively easy task to translate the algorithm steps into any programming for-
malism. Once this fact had been recognised, an important consequence was that more
research effort was concentrated on methodologies for designing programs and algorithms
rather than on superficial attempts to make such programs ‘readable’ or ‘comprehensible’.
The study of programming methodologies ultimately led to the theoretical disciplines of Pro-
gramming Language Semantics, Formal Specification, and Formal Verification that were men-
tioned, briefly in the opening lecture.

As with FORTRAN, COBOL has undergone several revisions since its initial design. In
the case of non-academic activity, COBOL has been since the early 1960s probably the most
widely used language in commercial applications. This is likely to continue to be the case for
the foreseeable future despite the growing use of other languages.

6.4. Artificial Intelligence Applications — LISP

LISP (List Processing) was developed by John McCarthy and a team of research students at
M.I.T. in 1960, originally to provide a realisation of what is known known as the paradigm
of ‘functional programming’. It subsequently became extremely popular and widely used (in
academic environments) as a language for programming Artificial Intelligence systems. While
it is still used today for such problems it has been replaced in some specific areas of this
field by subsequent developments in programming language theory: most notably by the logic
programming language PROLOG and by so-called ‘object-orientated’ languages such as

2) There is an apocryphal story to the effect that COBOL was designed in this way so that directors and com-
pany chairmen could understand and modify the payroll programs run by their corporations and that English
was necessary since such people would be incapable of understanding complex mathematical symbols such as
++.

Aids to computation and the development of algorithms 49

SMALLTALK. If readability of programs played a significant rôle in the design of COBOL,
and was at least superficially addressed by the designers of FORTRAN, anyone with experi-
ence of LISP programming will be aware that no such considerations bothered McCarthy and
his team in designing LISP. Underlying LISP is an algebraic formalism for describing effec-
tive algorithms developed by the great U.S. logician Alonzo Church (1903-) and called the
λ-calculus. Thus LISP in its most basic form3 has a precisely defined mathematical semantics
and as a consequence. it is, in principle, possible to prove precise properties of such pro-
grams. LISP is also of historical interest as being one of the first languages to use extensively
an algorithm control structure that was (deliberately) not provided in FORTRAN or COBOL:
that of recursion. In simple terms this is the action of describing an algorithm in terms of
itself, e.g. the mathematical function ‘n factorial’ (denotedn!) defined as the result of multi-
plying the first n natural numbers can be defined recursively as n! == 1 (if n == 1)
n! == n ×× (n −− 1)! (if n> 1). This facility is useful in describing approaches to various problems
in Artificial Intelligence applications such as automated theorem-proving and game-playing
systems. A number of early, apparently successful A.I. systems, were built in the 1960s and
1970s using LISP including Samuel’s ‘checker playing program’; the ‘conversational’ system
ELIZA, and an early natural language systemSHRDLUbuilt by Winograd in 1972. LISP was
also used in robotics and computer vision systems.

6.5. Algorithmic Languages — ALGOL60 and ALGOL68

The three languages we have examined above were all developed in the U.S. and are all still
very much in use today. The reasons for this vary: FORTRAN and COBOL were the first
languages of their kind available and thus were taken up quickly so that, even when techni-
cally superior methods arrived, there was a reluctance to move away from what had become
a familiar idiom. A second very important reason for the continuing survival of these two is
the fact that they were heavily promoted by U.S. computer companies. In particular, I.B.M.
has played a significant part not only in developing new versions of FORTRAN but also in
promoting it to run on their systems4. In the same way COBOL has survived largely
because of the considerable investment put into building commercial data processing systems
that use COBOL. There is little point in promoting or building a ‘better’ language since, in
order for it to be adopted, organisations would be faced with the task of reprogramming their
complete system.5 LISP, although largely restricted to academic and research environments,
continued to be used partly because of its theoretical interest but largely because of the appli-
cations in A.I. that were developed from it. In the latter field there was no serious rival to it
as a general-purpose A.I. applications language until the development of PROLOG.

ALGOL60 and its successor ALGOL68 are now (effectively) extinct languages. Never-
theless ALGOL60 was a landmark in the development of programming language theory. Its
disappearance can be entirely attributed to the failure of industrial concerns to adopt it,
despite the fact that it was extensively taught at European and U.S. universities in the 1960s.

3) All widely used implementations of this language greatly extend the functionality of the language defined by
McCarthy, which is now known as ‘pure’ LISP

4) It should be noted that I.B.M. FORTRAN compilers were until the demise of large-scale ‘mainframe comput-
ers’ far ahead of alternative versions in terms of their speed of operation and the efficiency of the machine code
generated. The FORTRAN ‘H’ compiler developed by I.B.M. for their 370 series computers is still regarded as
one of the best optimising compilers ever designed.

5) This, of course, would be a problem when an old computer system was replaced. One of the primary reasons
for I.B.M’s dominant position in the computing industry, until very recently, was the fact that when a concern
had acquired I.B.M. equipment it was easiest to replace it with a new I.B.M. machine. Moving to a rival com-
pany would have entailed extensive rewriting of systems programs.The widespread industrial usage of COBOL
and FORTRAN also meant that at least one (often both) of these languages would be covered in undergraduate
Computer Science degree programmes.

50 Thedevelopment of High-Level Programming Languages

Its chief importance now is in the innovations that continue to influence the design of pro-
gramming languages. The effects of these are apparent in languages such as Niklaus Wirth’s
PASCAL (which now occupies the position formerly held by ALGOL60 as the language used
in degree programmes); the subsequent revisions of FORTRAN; and the U.S. Department of
Defense language ADA.

ALGOL60 was designed by an international committee working between 1958 and
1963. It was intended to be a general-purpose language but with a particular emphasis on sci-
entific and numerical applications. In this respect it improved upon FORTRAN in two ways:
firstly, ALGOL60 provided facilities to represent and manipulate complex structures inside a
program; and, secondly, like LISP, it provided recursion as a control mechanism. Until the
advent of PASCAL, the notational style of ALGOL60 was accepted as a standard way of
describing complex algorithms and a number of textbooks on the subject of algorithm design
employed an ALGOL derived notation for illustrating programs. An important theoretical
innovation was the manner in which valid statements in an ALGOL program were described:
a system called Backus-Naur Form (or BNF) after two of the committee who worked on the
design. In simple terms this described how syntactically correct statements could be recog-
nised by prescribing ‘grammatical rules’. This formalism was subsequently adopted in
describing new programming languages as well as revisions to existing ones.

ALGOL68, the successor to ALGOL60, was also designed by an international commit-
tee and was intended to remove some of the weaknesses that had been identified with the
original ALGOL60 language and to extend its functionality. The final language posed consid-
erable problems: although it was no more difficult to construct programs in it, the design and
implementation of compilers to translate such programs into a machine understandable form
was a major task. The first two implementations of such compilers were both carried out in
the U.K: one at the R.S.R.E (Royal Signals and Radar Establishment); and the second at the
University of Liverpool. ALGOL68 continued to be taught at Liverpool up until 1987. The
investment of effort required to construct compilers was one of the factors in ALGOL68’s
failure to become established, despite its considerable merits as a language.

6.6. Conclusion

From 1954 onwards the significant difficulty facing users of computer systems was not the
unreliability of the electrical devices but the task of actually describing what operations were
to be performed in a manner that could be executed by the machine. While assembly and
low-level languages went some way to addressing this, such methods were mainly in the
provenance of computer specialists rather than the individuals who wished to use computers
to solve applications problems. As a result a number of ‘high-level’ programming languages
began to appear from 1956 onwards. Some, like FORTRAN, were specifically tailored to
applications in science and engineering; others, such as COBOL, were intended for the needs
of data processing and record maintenance systems. The effect of such languages was to
make computers accessible to individuals who did not have a detailed technical knowledge of
the actual computer operation.

