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Abstract. We consider the problem of minimizing the number of ADMs
in optical networks. All previous theoretical studies of this problem dealt
with the off-line case, where all the lightpaths are given in advance. In a
real-life situation, the requests (lightpaths) arrive at the network on-line,
and we have to assign them wavelengths so as to minimize the switching
cost. This study is thus of great importance in the theory of optical
networks. We present an on-line algorithm for the problem, and show
its competitive ratio to be 7

4
. We show that this result is best possible

in general. Moreover, we show that even for the ring topology network
there is no on-line algorithm with competitive ratio better than 7

4
. We

show that on path topology the competitive ratio of the algorithm is
3
2
. This is optimal for this topology. The lower bound on ring topology

does not hold when the ring is of bounded size. We analyze the triangle
topology and show a tight bound of 5

3
for it. The analyzes of the upper

bounds, as well as those for the lower bounds, are all using a variety of
proof techniques, which are of interest by their own, and which might
prove helpful in future research on the topic.

1 Introduction

1.1 Background

Optical wavelength-division multiplexing (WDM) is today the most promising
technology that enables us to deal with the enormous growth of traffic in commu-
nication networks, like the Internet. A communication between a pair of nodes is
done via a lightpath, which is assigned a certain wavelength. In graph-theoretic
terms, a lightpath is a simple path in the network, with a color assigned to it.

Given a WDM network G = (V, E) comprising optical nodes and a set of full-
duplex lightpaths P = {p1, p2, ..., pN} of G, the wavelength assignment (WLA)
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task is to assign a wavelength to each lightpath pi. Most of the studies in optical
networks dealt with the issue of assigning colors to lightpaths, so that every two
lightpaths that share an edge get different colors.

When the various parameters comprising the switching mechanism in these
networks became clearer, the focus of studies shifted, and today a large portion
of the studies concentrates on the total hardware cost. The key point here is that
each lightpath uses two Add-Drop Multiplexers (ADMs), one at each endpoint. If
two adjacent lightpaths, i.e. lightpaths sharing a common endpoint, are assigned
the same wavelength, then they can use the same ADM. Because ADMs are
designed to be used mainly in ring and path networks in which the degree af a
node is at most two, an ADM may be shared by at most two lightpaths. The
total cost considered is the total number of ADMs. A more detailed technical
explanation can be found in [GLS98].

Lightpaths sharing ADMs in a common endpoint can be thought as concate-
nated, so that they form longer paths or cycles. These paths/cycles do not use
any edge e ∈ E twice, for otherwise they cannot use the same wavelength which
is a necessary condition to share ADMs.

1.2 Previous Work

Minimizing the number of ADMs in optical networks is a main research topic
in recent studies. The problem was introduced in [GLS98] for the ring topology.
An approximation algorithm for ring topology with approximation ratio of 3/2
was presented in [CW02], and was improved in [SZ04, EL04] to 10/7 + ε and
10/7, respectively. For general topology [EMZ02] describe an algorithm with
approximation ratio of 8/5. The same problem was studied in [CFW02] and an
algorithm with an approximation ratio of 3

2 + ε was presented. This algorithm
is further analyzed in [FSZ06b].

The problem of on-line path coloring is studied in earlier works, such as [LV98].
The problem studied in these works has a different objective function, namely
the number of colors.

All previous theoretical studies on the problem of minimizing the number of
switches dealt with the off-line case, where all the lightpaths are given in advance.
In a real-life situation, the requests (lightpaths) arrive at the network on-line,
and we have to assign them wavelengths so as to minimize the switching cost.
An on-line algorithm is said to be c-competitive if for any sequence of lightpaths,
the number of ADMs used is at most c times that used by the optimal offline
algorithm (see [BEY98]).

1.3 Our Contribution

We present an on-line algorithm with competitive ratio of 7
4 for any network

topology. We prove that no algorithm has a competitive ratio better than 7
4

even if the topology is a ring.
We show that the same algorithm has a competitive ratio of 3

2 in path topolo-
gies, and that this is also a lower bound for on-line algorithms in this topology.
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The lower bound on ring topology does not hold when the ring is of a bounded
size. We study the triangle topology, and show a tight bound of 5

3 for the com-
petitive ratio on this topology, using another algorithm.

The analyses of the upper bounds, as well as those for the lower bounds, use a
variety of proof techniques, which are of interest on their own, and which might
prove helpful in future research on the topic.

In Section 2 we describe the problem and some preliminary results. The al-
gorithm and its competitive analysis are presented in Section 3. In Section 4
we present lower bounds for the competitive ratio of the problem on general
topology, ring and path topologies. In Section 5 we present tight bounds for
triangle networks. We conclude with discussion and open problems in Section 6.
Some proofs are sketched in this Extended Abstract; for full details the reader
is referred to [SWZ07].

2 Preliminaries

An instance α of the problem is a pair α = (G, P ) where G = (V, E) is an
undirected graph and P is a set of simple paths in G. In an on-line instance,
the graph G is known in advance and the set P of paths is given on-line. In this
case we denote P = {p1, p2, ..., pN} where pi is the i-th path of the input and
Pi = {pj ∈ P |j ≤ i} consists of the first i paths of the input.

In this work we need a number of notions introduced in [FSZ06a].

– The paths p, p′ ∈ P are conflicting or overlapping if they have an edge in
common. This is denoted as p � p′. The graph of the relation � is called the
conflict graph of (G, P ).

– A proper coloring (or wavelength assignment) of P is a function w : P �→ N,
such that w(p) �= w(p′) whenever p � p′.

– A valid chain (resp. cycle) of α = (G, P ) is a path (resp.cycle) formed by the
concatenation of distinct paths pi0 , pi1 , ..., pik−1 ∈ P that do not go over the
same edge twice. Note that the paths of a valid chain (resp. cycle) constitute
an independent set of the conflict graph.

– A solution S of an instance α = (G, P ) is a set of valid chains and valid
cycles of P such that each p ∈ P appears in exactly one of these sets.

Note that w is a proper coloring if and only if for any color c ∈ N, w−1(c) is
an independent set in the conflict graph.

In the sequel we introduce the shareability graph, which together with the
conflict graph constitutes another (dual) representation of the instance α. In the
sequel, except one exception, we will use the dual representation of the problem.

– The shareability graph of an instance α = (G, P ), is the edge-labelled multi-
graph Gα = (P, Eα) such that there is an edge e = (p, q) labelled u in Eα if
and only if p �� q, and u is a common endpoint of p and q in G.

– A valid chain (resp. cycle) of Gα is a simple path pi0 , pi1 , ..., pik−1 of Gα, such
that any two consecutive edges in the path (resp. cycle) have distinct labels
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and its node set is properly colorable with one color (in G), or in other words
constitutes an independent set of the conflict graph.

– The sharing graph of a solution S of an instance α = (G, P ), is the following
subgraph Gα,S = (P, ES) of Gα. Two lightpaths p, q ∈ P are connected with
an edge labelled u in ES if and only if they are consecutive in a chain or
cycle in the solution S, and their common endpoint is u ∈ V . We will usually
omit the index α and simply write GS . d(p) is the degree of node p in GS .

Example: Let α = (G, P ) be the instance in the left side of Figure 1. Its share-
ability graph Gα is the graph at midle. In this instance P = {a, b, c, d}, and it
constitutes the set of nodes of Gα. The edges together with their labels are Eα =
{(b, c, u), (a, c, w), (a, b, x), (a, d, x)}, because a and b can be joined in their com-
mon endpoint x, etc.. Note that, for instance (b, d, x) /∈ Eα, because although b
and d share a common endpoint x, they can not be concatenated, because they
have the edge (x, u) in common. The corresponding conflict graph is at the right
side of the figure. It has the same node set and one edge, namely (b, d). The paths
b, d ∈ P are conflicting because they have a common edge, i.e. (u, x).

u

wx

v

a
d

c
b

t

a

d

bc
u

w

x

x

a

d

bc

Fig. 1. A sample input

Note that the edges of the conflict graph are not in Eα. This immediately
follows from the definitions. Note also that, for any node v of Gα, the set of
labels of the edges adjacent to v is of size at most two.

Valid chains and cycles of Gα correspond to valid chains and cycles of the
instance α. In the above example the chain a, d which is the concatenation of
the paths a and d in the graph G, corresponds to the simple path a, d in Gα and
the cycle a, b, c which is a cycle formed by the concatenation of three paths in
G corresponds to the cycle a, b, c in Gα. Note that no two consecutive labels are
equal in this cycle. On the other hand the paths b, a, d can not be concatenated
to form a chain, because this would require the connection of a to both b and d
at node x. The corresponding path b, a, d in Gα is not a chain because the edges
(b, a) and (a, d) have the same label, namely x.

S = {(d, a, c), (b)} is a solution with two chains. The sharing graph of this
solution has two edges (d, a) and (a, c). Note that for a chain of size at most
two, the distinct labelling condition is satisfied vacuously, and the independent
set condition is satisfied because no edge of Gα can be an edge of the conflict
graph.

We define ∀i ∈ {0, 1, 2} , Di(S)
def
= {p ∈ P |d(p) = i} and di(S)

def
= |Di(S)|.
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Note that d0(S) + d1(S) + d2(S) = |P | = N.
An edge (p, q) ∈ ES with label u corresponds to a concatenation of two paths

with the same color at their common endpoint u. Therefore these two endpoints
can share an ADM operating at node u, thus saving one ADM. We conclude
that every edge of ES corresponds to a saving of one ADM. When no ADMs are
shared, each path needs two ADM’s, a total of 2N ADMs. Therefore the cost of
a solution S is

cost(S) = 2 |P | − |ES | = 2N − |ES | .
The objective is to find a solution S such that cost(S) is minimum, in other

words |ES | is maximum.
The following definitions and Lemma appeared in [FSZ06b], we repeat them

here for completeness.
Given a solution S, d(p) ≤ 2 for every node p ∈ P . Therefore, the connected

components of GS are either paths or cycles. Note that an isolated vertex is a
special case of a path. Let PS be the set of the connected components of GS that
are paths. Clearly, |ES | = N − |PS |. Therefore cost(S) = 2N − |ES | = N + |PS |.

Let S∗ be a solution with minimum cost. For any solution S we define

ε(S)
def
=

d0(S) − d2(S) − 2 |PS∗ |
N

.

Lemma 2.1 For any solution S, cost(S) = cost(S∗) + 1
2N(1 + ε(S)).

Proof. Clearly |ES∗ | = N − |PS∗ |. On the other hand 2 |ES | is the sum of the
degrees of the nodes in GS , namely 2 |ES | = d1(S)+2d2(S) = N −d0(S)+d2(S).
We conclude:

cost(S) − cost(S∗) = |ES∗ | − |ES | = N − |PS∗ | − N − d0(S) + d2(S)
2

=
N

2
+

d0(S) − d2(S) − 2 |PS∗ |
2

=
1
2
N

(
1 +

d0(S) − d2(S) − 2 |PS∗ |
N

)

	

3 Upper Bounds

In this sectionwefirst describe an on-line algorithm, show that it is 7/4-competitive
on any network topology and 3/2-competitive on path topology.

3.1 Algorithm ONLINE-MINADM

In a general network, when the lightpaths are given one-by-one, we adopt a
simple coloring procedure. Basically, a new lightpath with endpoints u and v
looks for free ADM at its endpoints. If there are two of the same color, then it first
tries to make a cycle with the existing lightpaths, and if this is impossible then
it makes a path. If there are free ADMs (at one endpoint, or at both endpoints
but of different colors), then it tries to connect to any of them. Otherwise - when
there is no free ADM - it is assigned a new color.
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When we attempt to color some lightpath pi, a color λ is said to be feasible
for pi, if there is no other lightpath with the same color and overlapping with pi.
In other words λ is feasible for pi, if we can assign w(pi) = λ and w is a proper
coloring for Pi.

When a lightpath pi with endpoints ui and vi arrives,

– If there exists a chain of lightpaths with the same color λ with endpoints
ui, vi and λ is feasible for pi then, assign w(pi) = λ.

– Otherwise, If there exists a chain of lightpaths with the same color λ with
one endpoint from {ui, vi} and λ is feasible for pi then, assign w(pi) = λ.

– Otherwise, assign w(pi) = λ′, where λ′ is an unused color.

Note that, as in the last clause the algorithm resorts to an unused color, it
will never construct two chains with the same color. Therefore in the first clause,
the algorithm necessarily closes a cycle.

Algorithm ONLINE-MINADM is obviously correct: w is a proper coloring for
Pi, because if pi is colored by one the first two cases, then it is checked by the
algorithm for feasibility, otherwise w(pi) is assigned an unused color, therefore no
other path, in particular no path pj conflicting with pi may have w(pj) = w(pi).

In this and the following section we prove the following theorem.

Theorem 3.1 Algorithm ONLINE-MINADM is optimal for

– general topology, with competitive ratio of 7
4 ,

– ring topology, with competitive ratio of 7
4 ,

– path topology, with competitive ratio of 3
2 .

3.2 Analysis for General Topology

Lemma 3.1 The competitive ratio of ONLINE-MINADM is at least 7
4 .

Proof. Let G be a cycle of three nodes V = {v1, v2, v3}, E = {e1, e2, e3} where
e1 = (v1, v2), e2 = (v2, v3), e3 = (v3, v1) and let P = {p1, p2, p3, p4} where p1 =
(e3), p2 = (e1), p3 = (e2, e3), p4 = (e1, e2). The optimal solution assigns w(p1) =
w(p4) = λ1 and w(p2) = w(p3) = λ2, and uses 4 ADMs. Recall that ONLINE-
MINADM receives the paths of the input one at a time. It assigns w(p1) = λ1,
then w(p2) = λ1 because λ1 is feasible for p2, then w(p3) = λ2 because λ1 is not
feasible for p3 and finally w(p4) = λ3, because neither λ1 nor λ2 are feasible for
p4. It uses 7 ADM’s in total. 	

In the sequel S is a solution returned by the ONLINE-MINADM and S∗ is an
optimal solution.

Lemma 3.2 The competitive ratio of ONLINE-MINADM is at most 7
4 .

Proof. We direct each edge of GS∗ , such that each path becomes a directed
path and each cycle becomes a directed cycle. The direction chosen for every
path (resp. cycle) is arbitrary. Let

−→G S∗ be the digraph obtained by this process.
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Unless otherwise stated, din(p) and dout(p) denote the in and out degrees of p

in
−→G S∗ , respectively. Clearly, ∀p ∈ P , din(p) ≤ 1 and dout(p) ≤ 1. The following

definitions refer to
−→G S∗ :

LAST ∗ is the set of nodes that do not have successors in
−→G S∗ , namely

LAST ∗ def
= {p ∈ P |dout(p) = 0} .

Note that |LAST ∗| = |PS∗ |.
The functions Next∗ and Prev∗ are defined as expected: Next∗ (resp. Prev∗)

maps a node p to the next (resp. previous) node in
−→G S∗ whenever such a node

exists, namely:
Next∗ : P \ LAST ∗ �→ P

and Next∗(p) is the unique node u such that there is an edge from p to u in−→G S∗ . Prev∗ = Next∗−1.
With these definitions in hand, we partition D0(S) into the sets A, B, C and

D using the following classification procedure : Given a path p ∈ D0(S), if p ∈
LAST ∗ then p is in A and fA(p) = p. Otherwise, there is a node q = Next∗(p),
we decide according to the degree of q in S: if it has degree 2, then p is in B and
fB(p) = q, if it has degree 1, then p is in C and fC(p) = {p, q}, otherwise q has
degree 0, then p is in D.

It is also immediate from the description that fA : A �→ LAST ∗, fB : B �→
D2(S) and fC : C �→ 2P .

We first show that D = ∅. Assume, by contradiction that p ∈ D for some p ∈
D0(S). Then there is q ∈ D0(S) such that q = Next∗(p), therefore (p, q) ∈ ES∗ ⊆
Eα. ONLINE-MINADM assigned unique colors to each of p and q. Assume
without loss of generality that q comes later than p in the input sequence. p is
assigned a unique color, therefore it is the only element in its chain. Then w(p)
is feasible for q. Then the algorithm should assign w(q) = w(p), a contradiction.

fA(p) = p, therefore it is a one-to-one function, i.e. |A| ≤ |LAST ∗| = |PS∗ |.
fB(p) = Next∗(p). Next∗ is one-to-one, therefore fB is one-to-one, i.e. |B| ≤

|D2(S)| = d2(S).
We will now show that the sets fC(p) are disjoint. Note that fC(p) = {p, q}

where p ∈ D0(S) and q /∈ D0(S). Assume that fC(p) ∩ fC(p′) �= ∅. Let fC(p) =
{p, q} and fC(p′) = {p′, q′}. Then either p = p′ or q = q′. In the latter case
q = Next∗(p) = Next∗(p′) = q′, then p = p′. In both cases, we have p = p′. We
conclude that if p �= p′, fC(p) ∩ fC(p) = ∅. As the sets fC(p), have exactly 2
elements, we conclude that |C| ≤ N

2 .
We have d0(S) = |D0(S)| = |A|+ |B|+ |C|+ |D| ≤ |PS∗ |+ d2(S) + N

2 . Then

ε(S)
def
=

d0(S) − d2(S) − 2 |PS∗ |
N

≤ 1
2
.

Substituting this in Lemma 2.1 and recalling that cost(S∗) ≥ N we get

Cost(S) ≤ Cost(S∗) +
1
2
N(1 +

1
2
) = Cost(S∗) +

3
4
N ≤ 7

4
Cost(S∗). 	
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3.3 Analysis for Path Topology

Lemma 3.3 ONLINE-MINADM is 3
2 -competitive in path topology.

Proof. Let V = {v1, v2, ...} be the nodes of the path from left to right, and
σi (resp. τi) be the set of paths having vi as their right (resp. left) endpoint.
It is well known that the number of ADMs used by an optimal solution is
Σi max {|σi| , |τi|}. In an optimal solution, at each node vi, exactly min {|σi| , |τi|}
pairs of paths are assigned one color per pair. In fact these pairs constitute
a maximum matching MMi of the complete bipartite graph (σi, τi, σi × τi).
The solution saves |MMi| = min {|σi| , |τi|} ADMs at node vi, in other words
ES∗ = �iMMi. Note that every matching of a complete bipartite graph can be
augmented to a maximum matching. Let S∗ be an optimal solution, such that
the matching in each node is obtained by augmenting the matching done by S
to a maximum matching, i.e. ES ⊆ ES∗ .

We will now define a function f : (ES∗ \ ES) �→ ES .
Let e = (pi, pj) ∈ ES∗ \ ES . e ∈ ES∗ = �iMMi. Let e ∈ MMk. Assume

without loss of generality that i < j, i.e. path pi appears before pj in the input.
As e /∈ ES , none of pi, pj are paired with any path at node vk. Therefore when
pj appears in the input w(pi) is feasible for pj , if it is not assigned color w(pi),
this can be only because it is assigned color w(pj) = w(pi′ ), for some i′ < j.
Let the common node of pj and pi′ be vk′ . Then e′ = (pj , pi′) ∈ ES∗ . We define
f(e) = e′. Note that e′ is defined uniquely because there can not be a third path
except pj and pi′ getting the same color and ending at node vk′ . Necessarily
k′ �= k, because we know that pj is not paired at node vk.

We claim that f is one-to-one. Assume, by contradiction that there is some
e′′ �= e, such that f(e′′) = e′. Then e′′ ∈ ES∗ , therefore e′′ ∈ MMk′′ for
some node vk′′ . By the construction of f , k′′ is the other endpoint of pi′ .
Let e′′ = (pi′ , pi′′). By the discussion in the previous paragraph, symmetri-
cally it follows that j < i′, a contradiction. Therefore f is one-to-one, i.e.
|ES∗ | − |ES | = |ES∗ \ ES | ≤ |ES |, thus |ES | ≥ 1

2 |ES∗ |.
We conclude as follows. Cost(S) − Cost(S∗) = |ES∗ | − |ES | ≤ |ES∗ |

2 ≤ N
2 ≤

Cost(S∗)
2 , therefore:

Cost(S) ≤ 3
2
Cost(S∗). 	


4 Lower Bounds

4.1 General Topology

Lemma 4.1 There is no deterministic on-line algorithm with competitive ratio
< 7

4 .

Proof. Assume ALG is a deterministic on-line algorithm, with competitive ratio
ρ. We show that ρ ≥ 7

4 . For colors we use numbers 1, 2, .... The color assigned
to a lightpath a by ALG is denoted by w(a). We use the network depicted in
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A B C

HG

E D
F

K M

A B C

HG

E D
F

K M

21

y

Fig. 2. Proof of Lemma 4.1

Figure 2. The first lightpath in the input is EFG. Without loss of generality,
assume w(EFG) = 1.

The second lightpath in the input is. First assume w(BDG) = 1. In this case
if lightpath EABDG arrives, we have w(EABDG) = 2, then when lightpath
GFEAB arrives we have w(GFEAB) = 3. ALG thus uses 7 ADMs, while it
is easy to see the an optimal solution can use only 4 ADMs, thus ρ ≥ 7

4 , a
contradiction. Hence, w(BDG) = 2.

When the third lightpath in the input y=BAE arrives The situation is as
depicted in the right side of the figure. It is clear that w(y) �= 3, since otherwise
ρ ≥ 6

3 > 7
4 , a contradiction. Thus w(y) = 1 or w(y) = 2.

– case a: w(y) = 1
Let z=EFKMHG be the next lightpath in the input sequence. Clearly w(z) �=
1.Hencew(z) = 2orw(z) = 3. Ifw(z) = 2,when lightpathsGFEAB,EABDG,
BDGFE and EABCDG arrive, we get w(GFEAB) = 3, w(EABDG)
= 4, w(BDGFE) = 5, w(EABCDG) = 6, and ρ = 14

8 = 7
4 , a contradiction.

In the case w(z) = 3 for u=EABDCHG we have w(u) = 4, and ρ ≥ 9
5 > 7

4 , a
contradiction.

– case b: w(y) = 2
Let z=BDCHG. Clearly w(z) �= 2. Hence w(z) = 1 or w(z) = 3. If w(z) = 1,
when lightpaths EABDG, GFEAB, GKFEAB, and EFGDB arrive, we have
w(EABDG) = 3, w(GFEAB) = 4, w(GKFEAB) = 5, w(EFGDB) = 6,
and ρ ≥ 14

8 = 7
4 , a contradiction. In the case w(z) = 3, for u=GHMKFEAB

we have w(u) = 4. Then ρ ≥ 9
5 > 7

4 , a contradiction.
	


4.2 Ring Topology

The result in the previous Lemma can be proven, though asymptotically even
for ring topologies.

Lemma 4.2 No deterministic on-line algorithm has a competitive ratio better
than 7/4, even for the ring topology.

Sketch of Proof. We first give the inutitive ideas behind the adversary. Suppose
we divide the ring into four segments R1, R2, R3 and R4. The adversary first
requests lightpaths R1 and R3.
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– If the on-line algorithm assigns the same color to them, we then request
two lightpaths (R2, R3, R4) and (R4, R1, R2). The on-line algorithm uses 8
ADMs while the offline algorithm can use 4 ADMs.

– If the on-line algorithm assigns different colors to them, we then request R2.
If the on-line algorithm assigns a third color to R2, we further request R4

making the on-line algorithm using at least 7 ADMs and the offline algorithm
using 4 ADMs only.

The only problematic case for the adversary is that the on-line algorithm assigns
R1 and R2 with the same color and R3 using a different color. In this case, the
adversary requests two lightpaths (R2, R3, R4) and (R3, R4, R1). Neither of these
can share ADMs with existing lightpaths. The on-line algorithm uses 7 ADMs
plus 2 ADMs for R3 while the offline algorithm uses 4 ADMs plus 2 ADMs for
R3. The adversary then repeats the process for k times such that the on-line
algorithm uses 7k + 2 ADMs and the offline algorithm uses 4k + 2 ADMs. This
gives a competitive ratio at least 7

4 − ε for any ε > 0. The crucial point in
repeating the process is to ensure later arrival lightpaths cannot share ADMs
with lightpaths in previous iterations. This can be done by careful division of
the ring and shifting of the division in every iterations. The details can be found
in [SWZ07]. 	


4.3 Path Topology

Lemma 4.3 For any ε > 0, there is no (3
2 − ε)-competitive deterministic algo-

rithm for path topology.

Proof. We prove using the following adversary. Let G be a path with 2k nodes
u1, v1, u2, v2, ..., uk, vk (see Figure 3). Let ALG be any deterministic algorithm.
The value of k will be determined later.

1a
1u

2a
3a ka

1'b

1b

2c

1v
2u 2v 3u 3v ku kv

Fig. 3. Proof of Lemma 4.3

The adversary works in two phases. In the first phase the input is a1, a2, ..., ak

where ∀i, ai = (ui, vi). In the second phase the input depends on the decisions
made by ALG during the first phase. For every 1 ≤ i < k, if w(ai) = w(ai+1)
then the input contains two paths bi = (u1, ui+1) and b′i = (vi, vk), otherwise
the input contains one path ci = (vi, ui+1).
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Let 0 ≤ x ≤ k − 1 be the number of times w(ai) = w(ai+1) is satisfied. Then
w(ai) �= w(ai+1) is satisfied k − 1 − x times.

During the first phase the algorithm uses 2k ADMs, one for each node.
For the paths bi and b′i, let λ = w(ai)(= w(ai+1)). λ is not feasible neither for

bi nor for b′i. Then the algorithm assigns other colors to bi and b′i, and it uses 4
ADMs, for a total of 4x ADMs.

For the path ci, let λ = w(ai) and λ′ = w(ai+1)(�= λ), coloring ci with one of
these colors ALG uses one ADM, otherwise it uses 2 ADMs. Therefore for the
paths ci, ALG uses at least k − 1 − x ADMs.

Summing up, we get that ALG uses at least 2k+4x+(k−1−x) = 3(k+x)−1
ADMs.

On the other hand the following solution is possible. For any consecutive paths
ci, ci+1, ..., ci+j color such that w(bi−1) = w(ai) = w(ci) = w(ai+1) = w(ci+1) =
... = w(ci+j) = w(ai+j+1) = w(b′i+j+1). This solutions use 2k + 2x ADM’s, one
ADM at each ui, vi, x additional ADMs at u1, and x additional ADMs at vk.

Therefore the competitive ratio of ALG is at least 3(k+x)−1
2(k+x) = 3

2 − 1
2(k+x) ≥

3
2 − 1

2k . For any ε > 0 we can choose k > 1
2ε , so that the competitive ratio of

ALG is bigger then 3
2 − ε. 	


5 Triangle Topology

In the previous sections we have shown that algorithm ONLINE-MINADM has
an optimal competitive ratio, in general topologies, ring and path topologies. In
this section we show an example of topology for which ONLINE-MINADM is not
optimal. Note that the proof of Lemma 3.1 implies that ONLINE-MINADM is
7
4 -competitive in the triangle topology. We will show in this section a tight bound
of 5

3 for this topology. Note that the lower bound proof for ring networks requires
the ring to be of unbounded size. The proof will not hold for rings of a bounded
size. In this section we show that this lower bound does not hold for triangles, and
give an optimal algorithm for this topology.

Lemma 5.1 There is no on-line algorithm with competitive ratio < 5
3 for tri-

angle topology.

Proof. Consider a triangle with edge set {e1, e2, e3}. We will use the following
adversary.
Release two lightpaths each of length 1, on edges e1 and e2. If w(e1) = w(e2),
then we continue as in Lemma 3.1, namely release two lightpaths of length 2
each {(e2 − e3), (e1, e3}, and we get a competitive ratio of 7/4 > 5/3.

Otherwise w(e1) �= w(e2), w.l.o.g. assume w(e1) = 1, w(e2) = 2. Release a
lightpath on edge e3. If w(e3) /∈ {1, 2} then the competitive ratio is 6/3 = 2 >
5/3, otherwise w.l.o.g w(e3) = 1. In this case we have w(e1) = w(e3) = 1 using 3
ADMs, w(e2) = 2 using 2 ADMs, for a total of 5 ADMs. The competitive ratio
is 5/3. 	


For the triangle topology, let us name the three edges in the triangle network
e1, e2, and e3. There are only six types of lightpaths, namely, (e1), (e2), (e3),
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(e1, e2), (e2, e3) and (e1, e3). For any lightpath p, we say that p is length-i if it
contains i edges. There are only length-1 and length-2 lightpaths in a triangle
topology.

We now present another algorithm ONLINE-TRIANGLE and show that it
is 5/3-competitive for triangle topology. Roughly speaking, the algorithm gives
highest priority to a pair of length-2 and length-1 lightpaths to share the same
color whenever possible. For length-1 lightpaths, we have seen in the lower bound
of ONLINE-MINADM in Lemma 3.1 that, if an on-line algorithm always colors
two adjacent length-1 lightpaths with the same color, the competitive ratio of
the algorithm is at least 7

4 . To overcome this barrier, when a length-1 lightpath,
say pi = (e1), arrives, ONLINE-TRIANGLE does not always color pi with an
adjacent length-1 lightpath using the same color. However, if we color three
length-1 lightpaths on a cycle each with a different color, this will result in
a competitive ratio of 2. Therefore, if there are two lightpaths pj = (e2) and
pk = (e3) with different colors, then ONLINE-TRIANGLE should color pi with
either of these colors if it is feasible. We formalize this concept by “marking”
the three lightpaths to represent they are grouped together and should not be
further considered when other length-1 lightpaths arrive.

Formally, the algorithm runs as follows. When a request of lightpath pi with
endpoints ui and vi arrives,

1. In case pi is length-2,
– If there exists a length-1 (marked or unmarked) lightpath with color λ

with endpoints ui, vi, and λ is feasible for pi, then assign w(pi) = λ.
– Otherwise, assign w(pi) = λ′, where λ′ is an unused color.

2. In case pi is length-1,
– If there exists a length-2 lightpath with color λ with endpoints ui, vi,

and λ is feasible for pi, then assign w(pi) = λ.
– Otherwise, if there exists a valid chain of two unmarked length-1 light-

paths with different colors λ1 and λ2 with endpoints ui, vi, and λ1 or λ2

is feasible for pi (w.l.o.g. assume λ1 is feasible), then assign w(pi) = λ1

and mark all three lightpaths involved.
– Otherwise, assign w(pi) = λ′, where λ′ is an unused color.

For example, suppose P = {p1, p2, · · · , p7} where pi is, in order, (e1), (e2),
(e3), (e2), (e1), (e3), (e1, e3). Then ONLINE-TRIANGLE will first assign w(p1) =
λ1, w(p2) = λ2, w(p3) = λ1 and mark all three p1, p2 and p3. Next, we assign
w(p4) = λ3 because there is no unmarked lightpath available. We further assign
w(p5) = λ4 and w(p6) = λ3. Finally, we assign w(p7) = λ2 because p7 and p2

form a cycle.
To analyze the performance of ONLINE-TRIANGLE, we first observe how

lightpaths are colored in an optimal solution. The proof of the following lemma
follows immediately from the definitions.

Lemma 5.2 The optimal solution S∗ always colors (e1, e2) and (e3) with the
same color if possible and similarly for the two other symmetric cases. Any
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remaining length-2 lightpath is colored a distinct color. If there are some length-
1 lightpaths remained after this, cycles of three length-1 lightpaths are colored
the same color; followed by chains of two length-1 lightpaths with same color and
finally remaining length-1 lightpaths with distinct colors. It can be verified such
coloring uses the minimum number of ADMs.

We then compare S and S∗ as follows. We first give a rough idea before formally
prove it in Lemma 5.3. Roughly speaking, in S, a length-2 lightpath can always
share ADM with a length-1 lightpath unless the length-1 lightpath has been
marked with the same color with some other length-1 lightpath. In this case, S∗

also has to use extra ADMs for these this length-1 lightpath, therefore, making
S∗ use a comparable number ADMs as S in total. As mentioned before, ONLINE-
TRIANGLE does not always color adjacent length-1 lightpaths using same color
to avoid the 7

4 lower bound. Furthermore, there is no marked cycle of length-1
lightpaths all with different color; for any marked cycle, S∗ uses at least 3 ADMs
for such cycle while S uses at most 5, which is indeed the worst case leading
to the 5

3 -competitive ratio. Also for the case S∗ is able to color two length-1
lightpaths with the same color while S has to use two different colors, this only
gives a ratio of 4

3 . Precisely, we prove the competitive ratio in the following
lemma giving more details.

Lemma 5.3 ONLINE-TRIANGLE is 5
3 -competitive in the triangle topology.

Sketch of Proof. Consider the solution S, the lightpaths can be partitioned into
five disjoint sets according to how they are colored. We start with defining the
set A whose edges will not be included in later sets and similarly for other sets.
Let A be the set of cycles containing a length-1 lightpath and a length-2 lightpath
with the same color; B be the set of length-2 lightpaths with distinct color; C
be the set of marked cycles containing two same colored length-1 lightpaths and
a third different colored one (excluding those later share color with a length-2
lightpath and thus included in A); D be the set of marked chains containing two
same colored length-1 lightpaths (excluding those in A or C); and E be the set
of remaining length-1 lightpaths. In the example given above, A contains p7 and
p2; C contains p4, p5 and p6; D contains p1 and p3; B and E are empty.

We denote |A|, |B|, |C|, |D|, and |E| by a, b, c, d and e, respectively. Note
that cost(S) = 2a + 2b + 5c + 3d + 2e.

We consider four cases depending on the set B. Case 1: B is empty, in other
words, every length-2 lightpath is colored the same color as a length-1 lightpath;
this is actually the same as in S∗. For length-1 lightpaths, by Lemma 5.2, S∗

colors all possible cycle of 3 lightpaths in the same color using 3 ADMs, then
chains of 2 lightpaths with same color using 3 ADMs, and finally 1 lightpath
with its own color using 2 ADMs. S needs at most 5, 4 and 2 ADMs for each of
the cases, respectively. Therefore, S

S∗ ≤ 5
3 .

Case 2: B contains all three types of length-2 lightpaths . In this case, both
C and E must be empty, otherwise, ONLINE-TRIANGLE would have colored
some lightpath p in B with the same color as the corresponding lightpath in C
or E, then p should be in A instead. In this case S∗ outperform S by grouping
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lightpaths in B with lightpaths in D. Even if so, there are still 2d − b length-1
lightpaths left unpaired in D. So S∗ uses at least 2a + 2b + 2d − b ADMs while
S uses 2a + 2b + 3d ADMs. Then, S

S∗ ≤ 3
2 .

In Case 3, B contains two types of length-2 lightpaths only; w.l.o.g., assume
they are (e1, e2) and (e2, e3). In Case 4, B contains one type of length-2 light-
paths only; . For these two cases, we can employ a similar argument as in Cases
1 and 2 and show that S

S∗ ≤ 5
3 . The full details can be found in [SWZ07]. 	


6 Conclusion and Possible Improvements

In this paper we presented an on-line algorithm with competitive ratio of 7
4

for any network topology, and proved that no algorithm has a competitive ratio
better than 7

4 , even if the topology is a ring. We showed that the same algorithm
has a competitive ratio of 3

2 in path topologies, and that this is also a lower bound
for any on-line algorithm on this topology. The lower bound on ring topology
does not hold when the ring is of a bounded size; we showed an optimal bound of
5
3 for the competitive ratio for the triangle topology, using a different algorithm.
The analyses of the upper bounds, as well as those for the lower bounds, are
all using a variety of proof techniques, which are of interest by their own, and
which might prove helpful in future research on the topic.

Our bounds pertain to deterministic on-line algorithms. It may be interesting
to explore probabilistic algorithms and obtain similar bounds. Following our
study, it might be interesting to determine the exact complexity of the on-line
problem for tree topologies, as a function of some parameter of the tree, and
of networks (e.g., rings or paths) of bounded size. An important extension is to
consider the on-line version of the problem when grooming is allowed; in graph-
theoretic terms, this amounts to coloring the paths so that at most g of them
are crossing any edge, and where each ADM can serve up to g paths that come
from at most two of its adjacent edges (see [GRS98, ZM03]). Another direction
of extension is to the case where more involved switching functions are under
consideration.
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