
Energy-Efficient Flow Time Scheduling:

An Experimental Study

Jude-Thaddeus Ojiaku (speaker) ∗ Daniel Thomas ∗

Prudence W.H. Wong ∗

1 Introduction

Power management has become a vital issue in the design of modern processors. A pop-
ular technology to reduce energy usage is dynamic speed scaling [5, 8] where a processor
can vary its speed dynamically. This has been adopted in technologies like AMD’s Cool
‘n’ Quiet [1] and Intel’s Speedstep [6]. Running a job at a slower speed saves energy, yet
it takes longer time and may affect the performance. The challenge arises from the con-
flicting objectives of providing good “quality of service” (QoS) and conserving energy.
In the past few years, a lot of effort has been devoted to revisiting classical scheduling
problems with energy in concern (e.g., [2, 4, 9]).

One commonly used QoS measurement is the total flow time (or equivalently average
response time). The flow time of a job is the time elapsed from its arrival to completion.
When energy is not a concern, the objective is to minimize the total flow time of all jobs,
and it is well known that SRPT (shortest remaining processing time first) produces
a schedule with the smallest possible flow time. To understand the tradeoff between
flow and energy, Albers and Fujiwara [3] initiated the study of minimizing a linear
combination of total flow and energy. An algorithm called AJC (active job count) has
been proposed [3, 7], in which the speed of the processor is determined by the number
of active jobs that have arrived but not completed yet.

We present an experimental study of scheduling to minimize flow time plus energy.
We evaluate the performance of AJC along with two fixed speed heuristics of which one
has prior knowledge of the job instance and the other does not. We study both single
processor and multi-processor settings.

2 Experiment settings

We assume the inifinte speed model, i.e., a processor can vary its speed in the range
[0,∞). When a processor runs at speed s, the energy consumption is given by sα where
α > 1 [5] and s units of work is completed in each time unit.

We consider the variable speed function, SAJC, and fixed speed functions SF1 and Sd.
SAJC varies the speed based on the number of active jobs and is defined as n

1

α , where
n is the number of active jobs and α is set to 3. SF1 uses a fixed speed of 1. Both

∗{J.Ojiaku, danieljt, pwong}@liverpool.ac.uk. Department of Computer Science, University of
Liverpool, UK.

1



SAJC and SF1 have no prior information on the jobs. On the other hand, Sd has some
partial information of the job set. Given in advance the average job size and average
inter-arrival time but not the details of each job, Sd determines one single speed based
on the averages.

To test the algorithms, we generate input job sets randomly. We vary average job
size and inter-arrival time. For each set of parameters we generate 100 random job sets.
Each job set contains 1000 jobs. A job instance is dense if jobs arrive very frequently
and contains large jobs, otherwise, it is sparse.

The simulation program is implememted in C# and the experiments are run on a
dual-core CPU with clock speed of 2.9 GHz and 3 GB of main memory.

3 Results and observations

Job selection heuristics. We compare the performance of SJF and SRPT and the
experiments show that the cost of using SJF is only about 1.1 times that of SRPT.

Effectiveness of speed scaling. In this experiment we demonstrate the effective-
ness of speed scaling by comparing the performance of SAJC to the fixed-speed heuristic,
SF1, which uses a fixed speed of 1. We observe that SF1 is similar to SAJC when the job
instance is sparse but is unable to cope with dense job instances and it could incur a
cost of up to 30 times (Figure 1a) that of SAJC. This agrees with the intuition that fixed
speed heuristic does not give a good performance without any prior information of the
job instance.

Speed scaling vs fixed speed. Here we compare the performance of SAJC to fixed-
speed heuristic, Sd. We observe that although Sd incurs higher costs than SAJC in most
job instances, it performs slightly better in some cases, as shown in Figure 1a. A possible
explanation could be that Sd is less sensitive to the actual variation of the jobs.

Experiments on multiple processors. We examine the performance of several
processor allocation heuristics that assigns jobs to the processor with the minimum total
number of jobs, total size of jobs, total cost of active jobs or number of active jobs. We
simulate multi-processor environments with 2, 4, 8 and 16 processors. We observe that
increasing the number of processors reduces the total cost. The improvement is small for
a small number of processors (the cost reduces by 10% with 2 processors) while significant
improvement is observed for more processors (90% with 16 processors). The different job
allocation heuristics have very small difference. We show the case for minimum number
of active jobs in Figure 1b.

References

[1] Advanced Micro Devices. AMD Cool ‘n’ QuietTM technology. http://www.amd.com/us/

products/technologies/cool-n-quiet/Pages/cool-n-quiet.aspx. Online; Accessed 08-
Feb-2013.

[2] S. Albers. Energy-efficient algorithms. Communications of the ACM, 53(5):86–96, May 2010.

[3] S. Albers and H. Fujiwara. Energy-efficient algorithms for flow time minimization. ACM
Transactions on Algorithms (TALG), 3(4), 2007.

[4] N. Bansal, T. Kimbrel, and K. Pruhs. Dynamic speed scaling to manage energy and temper-
ature. In IEEE Proc. FOCS, pages 520–529, 2004.

2



 0

 3

 6

 9

 12

 15

 18

 21

 24

 27

 30

 33

1 2 4 8 16 32 64 128 256 512

R
at

io

Average Inter-arrival Time

SF1 vs SAJC and SD vs SAJC

SD vs SAJC

SF1 vs SAJC

SAJC / SAJC

(a) Average job size = 128

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

1 2 4 8 16 32 64 128 256 512

R
at

io

Average Job Size

MINACTIVECOUNT Performance with Average Inter-arrival time of 16

2 Processors
4 Processors
8 Processors

16 Processors
1 Processor

(b) Average inter-arrival time=16

Figure 1: (a) Performances of SAJC, Sd and SF1. (d) Multi- processor allocation based on
number of active jobs.

[5] D. Brooks, P. Bose, S. Schuster, H. Jacobson, P. Kudva, A. Buyuktosunoglu, J. Wellman,
V. Zyuban, M. Gupta, and P. Cook. Power-aware microarchitecture: Design and modeling
challenges for next-generation microprocessors. Micro, IEEE, 20(6):26–44, 2000.

[6] Intel Corporation. Enhanced Intel Speedstep Technology for the Intel Pentium M Pro-
cessor. ftp://download.intel.com/design/network/papers/30117401.pdf. Online; Ac-
cessed 08-Feb-2013.

[7] T. Lam, L. Lee, I. To, and P. Wong. Speed scaling functions for flow time scheduling based
on active job count. In 16th ESA, pages 647–659. Springer, 2008.

[8] M. Weiser, B. Welch, A. Demers, and S. Shenker. Scheduling for reduced cpu energy. Mobile
Computing, pages 449–471, 1996.

[9] F. Yao, A. Demers, and S. Shenker. A scheduling model for reduced cpu energy. In 36th
IEEE FOCS, pages 374–382, 1995.

3


