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Crossing Bridge @ Night

1 min

2 min

each time, 2 persons share a torch
they walk @ speed of slower person

Can you do it 
in 17 mins?

5 min

10 min

Target: all cross 
the bridge

Can you do it 
in 17 mins?
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Module Information (2)
Teaching, Assessments and Help

33 lectures, 11 tutorials

2 assessments (20%), 1 written exam (80%)

Office hours, email

Tutorials/Labs
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Tutorials/Labs

Location : 

Lecture/Seminar Rooms (theoretical) or 

Lab 1 (practical)

Week 2: Theoretical – Lecture/Seminar Rooms
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Module Information (3)
� Each assessment has two components

� Tutorial participation (25%)

� Class Test (75%)

� Assessment 1

Tutorials 1 – 5 (Weeks 2-6)� Tutorials 1 – 5 (Weeks 2-6)

� Class Test 1: Week 6, Thu 6th Mar

� Assessment 2

� Tutorials 6 – 11 (Weeks 7-12)

� Class Test 2: Week 12, Thu 8th May
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Aims
� To give an overview of the study of algorithms in 
terms of their efficiency.

� To introduce the standard algorithmic design 
paradigms employed in the development of efficient 

What do we mean by good?
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paradigms employed in the development of efficient 
algorithmic solutions.

� To describe the analysis of algorithms in terms of 
the use of formal models of Time and Space.

How to achieve?

Can we prove?
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Ready to start …

Learning outcomes

� Able to tell what an algorithm is & have some 
understanding why we study algorithmsunderstanding why we study algorithms

� Able to use pseudo code to describe algorithm



Algorithmic Foundations
COMP108

What is an algorithm?
A sequence of precise and concise instructions 
that guide you (or a computer) to solve a specific
problem

Input Algorithm Output
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Daily life examples: cooking recipe, furniture 
assembly manual
(What are input / output in each case?)
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Why do we study algorithms?

Given a map of n cities & traveling cost between them. 

What is the cheapest way to go from city A to city B?

The obvious solution to a problem may not be efficient

Simple solution
B
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Simple solution
� Compute the cost of each 
path from A to B

� Choose the cheapest one

10
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Shortest path to go from A to B

How many paths between A & B? involving 1 intermediate city?

B

The obvious solution to a problem may not be efficient

3?

5?
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A

B

For large n, it’s impossible to 
check all paths!
We need more sophisticated 
solutions

TOO MANY!!
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Shortest path to go from A to B

B

There is an algorithm, called Dijkstra's algorithm, 
that can compute this shortest path efficiently.

Lesson to learn:
Brute force algorithm 
may run slowly.  

11

(Basics)

A

B
may run slowly.  
We need more 
sophisticated algorithms.
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How to represent 
algorithms …
� Able to tell what an algorithm is and have 
some understanding why we study algorithms

�Able to use pseudo code to describe algorithm
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Algorithm vs Program

Algorithms are free from grammatical rules
� Content is more important than form

� Acceptable as long as it tells people how to perform a task

An algorithm is a sequence of precise and concise instructions 
that guide a person/computer to solve a specific problem
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Programs must follow some syntax rules
� Form is important

� Even if the idea is correct, it is still not acceptable if 
there is syntax error
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Compute the n-th power

Input: a number x & a non-negative integer n

Output: the n-th power of x

Algorithm:

1. Set a temporary variable p to 1.
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1. Set a temporary variable p to 1.

2. Repeat the multiplication p = p * x for n times.

3. Output the result p.
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Pseudo Code 
pseudo code:

p = 1

for i = 1 to n do

p = p * x

output p
C++:

p = 1;

for (i=1; i<=n; i++)

C:

p = 1;

for (i=1; i<=n; i++)

p = p * x;

printf("%d\n", p);

for (i=1; i<=n; i++)

p = p * x;

cout << p << endl;

Java:

p = 1;

for (i=1; i<=n; i++)

p = p * x;

System.out.println(p);

Pascal:

p := 1;

for i := 1 to n do

p := p * x;

writeln(p);
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Pseudo Code
iteration i p

start 1

1 1 3

2 2 9

3 3 27

suppose n=4, x=3

p = 1

Another way to 
describe algorithm is 
by pseudo code
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3 3 27

4 4 81

end 5

trace table

p = 1

for i = 1 to n do

p = p * x

output p

similar to programming language

more like English Combination of both
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Pseudo Code: conditional

Conditional statement
if condition then

statement

if condition then
statement

else
if a > 0 then

if a < 0 then

a = -a

b = a

output b
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else
statement

if a > 0 then

b = a

else

b = -a 

output b

What is computed?
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Pseudo Code: iterative (loop)

Iterative statement
for var = start_value to end_value do
statement

while condition do

statement
condition to CONTINUE the loop

var automatically increased by 1 
after each iteration
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repeat
statement

until condition

condition to CONTINUE the loop

condition to STOP the loop

condition for while loop is NEGATION
of condition for repeat-until loop



Algorithmic Foundations
COMP108

for loop

i=1

Sum of 1st n nos.:

input: n

sum = 0

sum=0

for var = start_value to end_value do
statement
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i=1

i <= n?

sum = sum+i

No

Yes

sum = 0

for i = 1 to n do

begin

sum = sum + i

end

output sum

i=i+1

the loop is executed n times
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for loop

iteration i sum

start 0

1 1 1

suppose 
n=4

Sum of 1st n nos.:

input: n

sum = 0

for var = start_value to end_value do
statement
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1 1 1

2 2 3

3 3 6

4 4 10

end 5

sum = 0

for i = 1 to n do

begin

sum = sum + i

end

output sum

the loop is executed n times



Algorithmic Foundations
COMP108

while loop
while condition do

statement

Sum of 1st n numbers:

input: n

sum = 0

condition to CONTINUE the loop
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sum = 0

i = 1 

while i <= n do

begin

sum = sum + i

i = i + 1

end

output sum

� Do the same as for-
loop in previous slides

� It requires to 
increment i explicitly
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Sum of all input numbers:

sum = 0

while (user wants to continue) do

begin

ask for a number

while loop – example 2
execute undetermined
number of times
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ask for a number

sum = sum + number

end

output sum
continue?

ask for number

sum = sum+number

No

Yes
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repeat-until
repeat

statement

until condition

condition to STOP the loop

Sum of all input numbers:

Stop?

ask for number

sum = sum+number

Yes

No
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Sum of all input numbers:

sum = 0

repeat

ask for a number

sum = sum + number

until (user wants to stop)

output sum

� also execute 
undetermined
number of times

� How it differs
from while-loop?
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More Example 1
input: x, y

r = x

q = 0

while r >>>>= y do

begin

r = r − y

q = q + 1

(@ end of) iteration r q

14 0

1 10 1

2 6 2

3 2 3

suppose x=14, y=4

iteration r q

suppose x=14, y=5
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q = q + 1

end

output r and q

(@ end of) iteration r q

1 9 1

2 4 2

suppose x=14, y=7

What is computed?
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input: x, y

if x < y then

swap x & y

i = y

while i >>>>= 1 do

begin

if x%i==0 && y%i==0  suppose x=15, y=6

More Example 2 (@ end of )

iteration
output (this 
iteration)

i

4

1 4 3

2 2

3 2 1

4 1 0

suppose x=12, y=4

if x%i==0 && y%i==0  

then output i

i = i-1

end

suppose x=15, y=6
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6

1 5

2 4

3 3

4 3 2

5 1

6 1 0

What values are output?

a%b

remainder of
a divided b
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More Example 3
input: x, y

if x < y then

swap x & y

i = y

found = false

while i >>>>= 1 && !found do

begin

What value is output?

begin

if x%i==0 && y%i==0  

then found = true

else i = i-1

end

output i

Questions:
� what value of found makes 
the loop stop?

� when does found change 
to such value? 
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Pseudo Code: Exercise
Write a while-loop to

1.Find the product of all integers in interval [x, y]

� e.g., if x is 2 & y is 5, then output is 2*3*4*5 = 120

assuming x and y are both integers

product = ??
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product = ??

i = ??

while ?? do

begin

??

i = ??

end

output ??
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Pseudo Code: Exercise 2
Write a while-loop for this:

2.Given two positive integers x and y, list all factors
of x which are not factors of y

� if x is 30 & y is 9, output is 2, 5, 6, 10, 15, 30 (not 1 or 3) 
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i = ??

while ?? do

begin

if ?? then

output ??

i = ??

end
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Challenges …

Convert while-loops to for-loops 
& repeat-loop
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Convert to for/repeat loops 
Find the product of all integers in interval [x, y] 
assuming x and y are both integers
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Convert to for/repeat loops (2)
Given two positive integers x and y, list all factors 
of x which are not factors of y

31

(Basics)



Algorithmic Foundations
COMP108

Searching …
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Searching
�Input: n numbers a1, a2, …, an; and a number X

�Output: determine if X is in the sequence or not

�Algorithm (Sequential search):

1. From i=1, compare X with ai one by one as long as i <= n.1. From i=1, compare X with ai one by one as long as i <= n.

2. Stop and report "Found!" when X = ai .

3. Repeat and report "Not Found!" when i > n.

33
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Sequential Search

� 12 34 2 9 7 5 six numbers
7 number X

� 12 34 2 9 7 5
7

� 12 34 2 9 7 5

To find 7

� 12 34 2 9 7 5
7

� 12 34 2 9 7 5
7

� 12 34 2 9 7 5
7 found!
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Sequential Search (2)
� 12 34 2 9 7 5
10

� 12 34 2 9 7 5
10

� 12 34 2 9 7 5
10

To find 10

12 34 2 9 7 5
10

� 12 34 2 9 7 5
10

� 12 34 2 9 7 5
10

� 12 34 2 9 7 5
10 not found! 35
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Sequential Search – Pseudo Code
i = 1

while i <= n do

begin 

if X == a[i] then

report "Found!" and stop

else

i = i+1

end

report "Not Found!"

Challenge: Modify 
it to include 

stopping conditions 
in the while loop
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Number of comparisons?
i = 1

while i <= n do

begin

if X == a[i] then

report "Found!" & stop

else

i = i+1

Best case: X is 1st no. 
⇒ ??? comparison

How many comparisons this 
algorithm requires?

i = i+1

end

report "Not Found!"

⇒ ??? comparison

Worst case: X is last 
OR X is not found 
⇒ ??? comparisons
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Finding maximum / 
minimum...

2nd max / min…
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Finding max from n +ve numbers
input: a[1], a[2], ..., a[n]

M = 0

i = 0

while (i < n) do

begin

i = i + 1

What about minimum?
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i = i + 1

M = max(M, a[i])

end

output M
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Finding min from n +ve numbers
input: a[1], a[2], ..., a[n]

M = ???

i = ???

while (i < n) do

begin

i = i + 1

How many comparisons?
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i = i + 1

M = min(M, a[i])

end

output M
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Finding 1st and 2nd min
input: a[1], a[2], ..., a[n]

M1 = ???

M2 = ???

i = ???

while (i < n) do

begin

Two variables: M1, M2

41

(Basics)

begin

i = i + 1

if (???) then

???

else if (???) then

???

end

output M1, M2
How to update M1, M2?
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Finding location of minimum
input: a[1], a[2], ..., a[n]

loc = 1 // location of the min number

i = 1

while (i < n) do

begin

i = i + 1
(@ end of) loc a[loc] i

Example

a[]={50,30,40,20,10}
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i = i + 1

if (a[i] < a[loc]) then

loc = i

end

output a[loc]

(@ end of) 

Iteration
loc a[loc] i

1

2

3

4

50

30

30

20

10

1

2

2

4

5

1

2

3

4

5



Algorithmic Foundations
COMP108

Finding min using for-loop
� Rewrite the above while-loop into a for-loop
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