
Algorithmic Foundations
COMP108

COMP108
Algorithmic Foundations

Basics

Prudence Wong

http://www.csc.liv.ac.uk/~pwong/teaching/comp108/201314

Algorithmic Foundations
COMP108

Crossing Bridge @ Night

1 min

2 min

each time, 2 persons share a torch
they walk @ speed of slower person

Can you do it
in 17 mins?

5 min

10 min

Target: all cross
the bridge

Can you do it
in 17 mins?

Algorithmic Foundations
COMP108

Module Information
Dr Prudence Wong

Rm 3.18 Ashton Building, pwong@liverpool.ac.uk

office hours: Mon 3-5pm

Demonstrators

Mr David Hamilton, Miss Alison Liu, Mr Jude-Thaddeus Ojiaku

3

(Basics)

Mr David Hamilton, Miss Alison Liu, Mr Jude-Thaddeus Ojiaku

References

Main: Introduction to the Design and Analysis of Algorithms.
A. V. Levitin. Addison Wesley.

Reference: Introduction to Algorithms. T. H. Cormen, C. E.
Leiserson, R. L. Rivest, C. Stein. The MIT Press

Algorithmic Foundations
COMP108

Module Information (2)
Teaching, Assessments and Help

33 lectures, 11 tutorials

2 assessments (20%), 1 written exam (80%)

Office hours, email

Tutorials/Labs

4

(Basics)

Tutorials/Labs

Location :

Lecture/Seminar Rooms (theoretical) or

Lab 1 (practical)

Week 2: Theoretical – Lecture/Seminar Rooms

Algorithmic Foundations
COMP108

Module Information (3)
� Each assessment has two components

� Tutorial participation (25%)

� Class Test (75%)

� Assessment 1

Tutorials 1 – 5 (Weeks 2-6)� Tutorials 1 – 5 (Weeks 2-6)

� Class Test 1: Week 6, Thu 6th Mar

� Assessment 2

� Tutorials 6 – 11 (Weeks 7-12)

� Class Test 2: Week 12, Thu 8th May

5

(Basics)

Algorithmic Foundations
COMP108

Aims
� To give an overview of the study of algorithms in
terms of their efficiency.

� To introduce the standard algorithmic design
paradigms employed in the development of efficient

What do we mean by good?

6

(Basics)

paradigms employed in the development of efficient
algorithmic solutions.

� To describe the analysis of algorithms in terms of
the use of formal models of Time and Space.

How to achieve?

Can we prove?

Algorithmic Foundations
COMP108

Ready to start …

Learning outcomes

� Able to tell what an algorithm is & have some
understanding why we study algorithmsunderstanding why we study algorithms

� Able to use pseudo code to describe algorithm

Algorithmic Foundations
COMP108

What is an algorithm?
A sequence of precise and concise instructions
that guide you (or a computer) to solve a specific
problem

Input Algorithm Output

8

(Basics)

Daily life examples: cooking recipe, furniture
assembly manual
(What are input / output in each case?)

Algorithmic Foundations
COMP108

Why do we study algorithms?

Given a map of n cities & traveling cost between them.

What is the cheapest way to go from city A to city B?

The obvious solution to a problem may not be efficient

Simple solution
B

9

(Basics)

Simple solution
� Compute the cost of each
path from A to B

� Choose the cheapest one

10
8

5

7
9

6

11

95

2

12
3

6
5

4

5

7

3

1

5

3

A

B

Algorithmic Foundations
COMP108

Shortest path to go from A to B

How many paths between A & B? involving 1 intermediate city?

B

The obvious solution to a problem may not be efficient

3?

5?

10

(Basics)

A

B

For large n, it’s impossible to
check all paths!
We need more sophisticated
solutions

TOO MANY!!

Algorithmic Foundations
COMP108

Shortest path to go from A to B

B

There is an algorithm, called Dijkstra's algorithm,
that can compute this shortest path efficiently.

Lesson to learn:
Brute force algorithm
may run slowly.

11

(Basics)

A

B
may run slowly.
We need more
sophisticated algorithms.

Algorithmic Foundations
COMP108

How to represent
algorithms …
� Able to tell what an algorithm is and have
some understanding why we study algorithms

�Able to use pseudo code to describe algorithm

Algorithmic Foundations
COMP108

Algorithm vs Program

Algorithms are free from grammatical rules
� Content is more important than form

� Acceptable as long as it tells people how to perform a task

An algorithm is a sequence of precise and concise instructions
that guide a person/computer to solve a specific problem

13

(Basics)

Programs must follow some syntax rules
� Form is important

� Even if the idea is correct, it is still not acceptable if
there is syntax error

Algorithmic Foundations
COMP108

Compute the n-th power

Input: a number x & a non-negative integer n

Output: the n-th power of x

Algorithm:

1. Set a temporary variable p to 1.

14

(Basics)

1. Set a temporary variable p to 1.

2. Repeat the multiplication p = p * x for n times.

3. Output the result p.

Algorithmic Foundations
COMP108

Pseudo Code
pseudo code:

p = 1

for i = 1 to n do

p = p * x

output p
C++:

p = 1;

for (i=1; i<=n; i++)

C:

p = 1;

for (i=1; i<=n; i++)

p = p * x;

printf("%d\n", p);

for (i=1; i<=n; i++)

p = p * x;

cout << p << endl;

Java:

p = 1;

for (i=1; i<=n; i++)

p = p * x;

System.out.println(p);

Pascal:

p := 1;

for i := 1 to n do

p := p * x;

writeln(p);

15

(Basics)

Algorithmic Foundations
COMP108

Pseudo Code
iteration i p

start 1

1 1 3

2 2 9

3 3 27

suppose n=4, x=3

p = 1

Another way to
describe algorithm is
by pseudo code

16

(Basics)

3 3 27

4 4 81

end 5

trace table

p = 1

for i = 1 to n do

p = p * x

output p

similar to programming language

more like English Combination of both

Algorithmic Foundations
COMP108

Pseudo Code: conditional

Conditional statement
if condition then

statement

if condition then
statement

else
if a > 0 then

if a < 0 then

a = -a

b = a

output b

17

(Basics)

else
statement

if a > 0 then

b = a

else

b = -a

output b

What is computed?

Algorithmic Foundations
COMP108

Pseudo Code: iterative (loop)

Iterative statement
for var = start_value to end_value do
statement

while condition do

statement
condition to CONTINUE the loop

var automatically increased by 1
after each iteration

18

(Basics)

repeat
statement

until condition

condition to CONTINUE the loop

condition to STOP the loop

condition for while loop is NEGATION
of condition for repeat-until loop

Algorithmic Foundations
COMP108

for loop

i=1

Sum of 1st n nos.:

input: n

sum = 0

sum=0

for var = start_value to end_value do
statement

19

(Basics)

i=1

i <= n?

sum = sum+i

No

Yes

sum = 0

for i = 1 to n do

begin

sum = sum + i

end

output sum

i=i+1

the loop is executed n times

Algorithmic Foundations
COMP108

for loop

iteration i sum

start 0

1 1 1

suppose
n=4

Sum of 1st n nos.:

input: n

sum = 0

for var = start_value to end_value do
statement

20

(Basics)

1 1 1

2 2 3

3 3 6

4 4 10

end 5

sum = 0

for i = 1 to n do

begin

sum = sum + i

end

output sum

the loop is executed n times

Algorithmic Foundations
COMP108

while loop
while condition do

statement

Sum of 1st n numbers:

input: n

sum = 0

condition to CONTINUE the loop

21

(Basics)

sum = 0

i = 1

while i <= n do

begin

sum = sum + i

i = i + 1

end

output sum

� Do the same as for-
loop in previous slides

� It requires to
increment i explicitly

Algorithmic Foundations
COMP108

Sum of all input numbers:

sum = 0

while (user wants to continue) do

begin

ask for a number

while loop – example 2
execute undetermined
number of times

22

(Basics)

ask for a number

sum = sum + number

end

output sum
continue?

ask for number

sum = sum+number

No

Yes

Algorithmic Foundations
COMP108

repeat-until
repeat

statement

until condition

condition to STOP the loop

Sum of all input numbers:

Stop?

ask for number

sum = sum+number

Yes

No

23

(Basics)

Sum of all input numbers:

sum = 0

repeat

ask for a number

sum = sum + number

until (user wants to stop)

output sum

� also execute
undetermined
number of times

� How it differs
from while-loop?

Algorithmic Foundations
COMP108

More Example 1
input: x, y

r = x

q = 0

while r >>>>= y do

begin

r = r − y

q = q + 1

(@ end of) iteration r q

14 0

1 10 1

2 6 2

3 2 3

suppose x=14, y=4

iteration r q

suppose x=14, y=5

24

(Basics)

q = q + 1

end

output r and q

(@ end of) iteration r q

1 9 1

2 4 2

suppose x=14, y=7

What is computed?

Algorithmic Foundations
COMP108

input: x, y

if x < y then

swap x & y

i = y

while i >>>>= 1 do

begin

if x%i==0 && y%i==0 suppose x=15, y=6

More Example 2 (@ end of)

iteration
output (this
iteration)

i

4

1 4 3

2 2

3 2 1

4 1 0

suppose x=12, y=4

if x%i==0 && y%i==0

then output i

i = i-1

end

suppose x=15, y=6

25

(Basics)

6

1 5

2 4

3 3

4 3 2

5 1

6 1 0

What values are output?

a%b

remainder of
a divided b

Algorithmic Foundations
COMP108

More Example 3
input: x, y

if x < y then

swap x & y

i = y

found = false

while i >>>>= 1 && !found do

begin

What value is output?

begin

if x%i==0 && y%i==0

then found = true

else i = i-1

end

output i

Questions:
� what value of found makes
the loop stop?

� when does found change
to such value?

26

(Basics)

Algorithmic Foundations
COMP108

Pseudo Code: Exercise
Write a while-loop to

1.Find the product of all integers in interval [x, y]

� e.g., if x is 2 & y is 5, then output is 2*3*4*5 = 120

assuming x and y are both integers

product = ??

27

(Basics)

product = ??

i = ??

while ?? do

begin

??

i = ??

end

output ??

Algorithmic Foundations
COMP108

Pseudo Code: Exercise 2
Write a while-loop for this:

2.Given two positive integers x and y, list all factors
of x which are not factors of y

� if x is 30 & y is 9, output is 2, 5, 6, 10, 15, 30 (not 1 or 3)

28

(Basics)

i = ??

while ?? do

begin

if ?? then

output ??

i = ??

end

Algorithmic Foundations
COMP108

Challenges …

Convert while-loops to for-loops
& repeat-loop

Algorithmic Foundations
COMP108

Convert to for/repeat loops
Find the product of all integers in interval [x, y]
assuming x and y are both integers

30

(Basics)

Algorithmic Foundations
COMP108

Convert to for/repeat loops (2)
Given two positive integers x and y, list all factors
of x which are not factors of y

31

(Basics)

Algorithmic Foundations
COMP108

Searching …

Algorithmic Foundations
COMP108

Searching
�Input: n numbers a1, a2, …, an; and a number X

�Output: determine if X is in the sequence or not

�Algorithm (Sequential search):

1. From i=1, compare X with ai one by one as long as i <= n.1. From i=1, compare X with ai one by one as long as i <= n.

2. Stop and report "Found!" when X = ai .

3. Repeat and report "Not Found!" when i > n.

33

(Basics)

Algorithmic Foundations
COMP108

Sequential Search

� 12 34 2 9 7 5 six numbers
7 number X

� 12 34 2 9 7 5
7

� 12 34 2 9 7 5

To find 7

� 12 34 2 9 7 5
7

� 12 34 2 9 7 5
7

� 12 34 2 9 7 5
7 found!

34

(Basics)

Algorithmic Foundations
COMP108

Sequential Search (2)
� 12 34 2 9 7 5
10

� 12 34 2 9 7 5
10

� 12 34 2 9 7 5
10

To find 10

12 34 2 9 7 5
10

� 12 34 2 9 7 5
10

� 12 34 2 9 7 5
10

� 12 34 2 9 7 5
10 not found! 35

(Basics)

Algorithmic Foundations
COMP108

Sequential Search – Pseudo Code
i = 1

while i <= n do

begin

if X == a[i] then

report "Found!" and stop

else

i = i+1

end

report "Not Found!"

Challenge: Modify
it to include

stopping conditions
in the while loop

36

(Basics)

Algorithmic Foundations
COMP108

Number of comparisons?
i = 1

while i <= n do

begin

if X == a[i] then

report "Found!" & stop

else

i = i+1

Best case: X is 1st no.
⇒ ??? comparison

How many comparisons this
algorithm requires?

i = i+1

end

report "Not Found!"

⇒ ??? comparison

Worst case: X is last
OR X is not found
⇒ ??? comparisons

37

(Basics)

Algorithmic Foundations
COMP108

Finding maximum /
minimum...

2nd max / min…

Algorithmic Foundations
COMP108

Finding max from n +ve numbers
input: a[1], a[2], ..., a[n]

M = 0

i = 0

while (i < n) do

begin

i = i + 1

What about minimum?

39

(Basics)

i = i + 1

M = max(M, a[i])

end

output M

Algorithmic Foundations
COMP108

Finding min from n +ve numbers
input: a[1], a[2], ..., a[n]

M = ???

i = ???

while (i < n) do

begin

i = i + 1

How many comparisons?

40

(Basics)

i = i + 1

M = min(M, a[i])

end

output M

Algorithmic Foundations
COMP108

Finding 1st and 2nd min
input: a[1], a[2], ..., a[n]

M1 = ???

M2 = ???

i = ???

while (i < n) do

begin

Two variables: M1, M2

41

(Basics)

begin

i = i + 1

if (???) then

???

else if (???) then

???

end

output M1, M2
How to update M1, M2?

Algorithmic Foundations
COMP108

Finding location of minimum
input: a[1], a[2], ..., a[n]

loc = 1 // location of the min number

i = 1

while (i < n) do

begin

i = i + 1
(@ end of) loc a[loc] i

Example

a[]={50,30,40,20,10}

42

(Basics)

i = i + 1

if (a[i] < a[loc]) then

loc = i

end

output a[loc]

(@ end of)

Iteration
loc a[loc] i

1

2

3

4

50

30

30

20

10

1

2

2

4

5

1

2

3

4

5

Algorithmic Foundations
COMP108

Finding min using for-loop
� Rewrite the above while-loop into a for-loop

43

(Basics)

