COMP108 Algorithmic Foundations

Mathematical Induction

Prudence Wong

Which Ball is Heavier?

balance scale

9 balls look identically the same but 1 is heavier than the rest

How to find the heavier one by weighing 2 times only?

Learning outcomes

- > Understand the concept of Induction
- > Able to prove by Induction

Analysis of Algorithms

After designing an algorithm, we analyze it.

- Proof of correctness: show that the algorithm gives the desired result
- Time complexity analysis: find out how fast the algorithm runs
- Space complexity analysis: find out how much memory space the algorithm requires
- Look for improvement: can we improve the algorithm to run faster or use less memory? is it best possible?

A typical analysis technique

Induction

> technique to prove that a property holds for all natural numbers (or for all members of an infinite sequence)

∀ for all

E.g., To prove $1+2+...+n = n(n+1)/2 \forall +ve integers n$

n	LHS	RHS	LHS = RHS?
1	1	1*2/2 = 1	
2	1+2 = 3	2*3/2 = 3	
3	1+2+3 = 6	3*4/2 = 6	

However, none of these constitute a proof and we cannot enumerate over all possible numbers.

 \Rightarrow Induction

Intuition – Long Row of Dominoes

- > How can we be sure each domino will fall?
- > Enough to ensure the 1st domino will fall?
 - > No. Two dominoes somewhere may not be spaced properly

- > Enough to ensure all are spaced properly?
 - > No. We need the 1st to fall
- > Both conditions required:
 - > 1st will fall; & after the kth fall, k+1st will also fall
 - > then even infinitely long, all will fall

Induction

To prove that a property holds for every positive integer n

Two steps

- > Base case: Prove that the property holds for n = 1
- Induction step: Prove that if the property holds for n = k (for some positive integer k), then the property holds for n = k + 1
- Conclusion: The property holds for every positive integer n

To prove:
$$1 + 2 + 3 + ... + n = \frac{n(n+1)}{2}$$
 \(\forall + ve integers n\) \(\text{Base case: When n=1, L.H.S=1, R.H.S=}\frac{1 \times 2}{2} = 1.

- So, the property holds for n=1.
- > Induction hypothesis:

Assume that the property holds when n=k for some integer k≥1.

- i.e., assume that $1 + 2 + 3 + ... + k = \frac{k(k+1)}{2}$
- > Induction step: When n=k+1, we have to prove

$$1 + 2 + 3 + \dots + k + (k + 1) = \frac{(k + 1)(k + 2)}{2}$$

Example - Induction step

► L.H.S =
$$\frac{1+2+...+k+(k+1)}{2}$$

= $\frac{k(k+1)}{2} + (k+1)$ ← by hypothesis
= $(k+1)(\frac{k}{2}+1)$
= $\frac{(k+1)(k+2)}{2}$
= R.H.S

- > So, property also holds for n=k+1
- > Conclusion: property holds for all +ve integers n

Target: to prove

$$1 + 2 + \dots + k + (k + 1) = \frac{(k + 1)(k + 2)}{2}$$

Induction hypothesis

$$1 + 2 + \dots + k = \frac{k(k+1)}{2}$$

Conclusion

We have proved

- 1. property holds for n=1
- 2. if property holds for n=k, then also holds for n=k+1

In other words,

- > holds for n=1 implies holds for n=2 (induction step)
- > holds for n=2 implies holds for n=3 (induction step)
- > holds for n=3 implies holds for n=4 (induction step)
- > and so on

By principle of induction: holds for all +ve integers n

Alternative Proof

$$2*[1+2+3+...+(n-2)+(n-1)+n] = n(n+1)$$

$$1+2+3+...+(n-2)+(n-1)+n = \frac{n(n+1)}{2}$$

To prove n^3+2n is divisible by $3 \forall$ integers $n\geq 1$

n	n ³ +2n	divisible by 3?
1	1+2 = 3	
2	8+4 = 12	
3	27+6 = 33	
4	64+8 = 72	

Prove it by induction...

To prove n^3+2n is divisible by 3 \forall integers $n\geq 1$

- Base case: When n=1, n³+2n=1+2=3, divisible by 3. So property holds for n=1.
- Induction hypothesis: Assume property holds for n=k, for some +ve int k, i.e., assume k³+2k is divisible by 3
- > Induction step: When n=k+1,

Target: to prove $(k+1)^3+2(k+1)$ is divisible by 3

To prove n^3+2n is divisible by 3 \forall integers $n\geq 1$

- >Induction step: When n=k+1,
 - $(k+1)^3+2(k+1) = (k^3+3k^2+3k+1) + (2k+2)$ $= (k^3+2k) + 3(k^2+k+1)$

sum is divisible by 3

by hypothesis, divisible by 3 divisible by 3

- >Property holds for n=k+1
- >By principle of induction: holds ∀ integers n≥1

```
Target: to prove (k+1)^3+2(k+1) is divisible by 3
```

Induction hypothesis k³+2k is divisible by 3

$$n! = n(n-1)(n-2) ... *2*1$$

To prove $2^n < n! \forall$ +ve integers $n \ge 4$.

n	2 ⁿ	n!	LHS < RHS?
1	2	1	**
2	4	2	**
3	8	6	**
4	16	24	
5	32	120	
6	64	720	

Prove it by induction...

To prove $2^n < n! \forall$ +ve integers $n \ge 4$.

- Base case: When n=4,
 L.H.S = 2⁴ = 16, R.H.S = 4! = 4*3*2*1 = 24,
 L.H.S < R.H.S.
 So, property holds for n=4
- > Induction hypothesis: Assume property holds for n=k for some integer $k \ge 4$, i.e., assume $2^k < k!$

```
Target: to prove 2^{k+1} < (k+1)!
```

To prove $2^n < n! \forall$ +ve integers $n \ge 4$.

- > Induction step: When n=k+1,
 - > L.H.5 = 2^{k+1} = $2*2^k < 2*k! \leftarrow by hypothesis, <math>2^k < k!$
 - > R.H.5 = $(k+1)! = (k+1)*k! > 2*k! > L.H.5 \leftarrow because k+1>2$
 - > So, property holds for n=k+1
- > By principle of induction: holds ∀ +ve integers n≥4

```
Target: to prove 2^{k+1} < (k+1)!
```

Induction hypothesis 2k<k!

1!=1

Example 3

Why base case is n=4?

When n=1, $2^{1}=2$,

When n=2, $2^2=4$, 2!=2

When n=3, $2^3=8$, 3!=6

Property does not hold for n=1, 2, 3

Note

The induction step means that if property holds for some integer k, then it also holds for k+1.

It does <u>NOT</u> mean that the property must hold for k nor for k+1.

Therefore, we \underline{MUST} prove that property holds for some starting integer n_0 , which is the \underline{base} case.

Missing the base case will make the proof fail.

What's wrong with this?

Claim: For all n, n=n+1

- Assume the property holds for n=k, i.e., k = k+1
- > Induction Step:
 - > Add 1 to both sides of the induction hypothesis
 - > We get: k+1 = (k+1)+1, i.e., k+1 = k+2
- > The property holds for n=k+1

BUT, we know this isn't true, what's wrong?

What about this?

- Claim: All comp108 students are of the same gender
- Base case: Consider any group of ONE comp108 student. Same gender, of course.
- Induction hypothesis: Assume that any group of k comp108 students are of same gender
- > Induction step: Consider any group of k+1 comp108 students...

So, A, B & other (k-1) students are of the same gender

Recall: Finding minimum

```
input: a[1], a[2], ..., a[n]
M = a[1]
i = 1
while (i < n) do
begin
   i = i + 1
   M = min(M, a[i])
end
output M</pre>
```

```
Base case: When i=1, M is min(a[1])
```

Induction hypothesis: Assume the property holds when i=k for some k≥1.

Induction step: When i=k+1,

- If a[k+1] < min(a[1],...,a[k]),
 M is set to a[k+1], i.e., min(a[1],...,a[k+1]),
- Else, a[k+1] is not min,
 M is unchanged & M equals min(a[1],...,a[k+1])

Property: After statements assigning values to M, the value of M is min(a[1], ..., a[i])

Challenges ...

To prove
$$1^2 + 2^2 + 3^2 + ... + n^2 = \frac{n(n+1)(2n+1)}{6} \forall$$
 +ve int $n \ge 1$.

n	LHS	RHS	LHS = RHS?
1	1	1*2*3/6 = 1	
2	1+4 = 5	2*3*5/6 = 5	
3	1+4+9 = 14	3*4*7/6 = 14	
4	1+4+9+16 = 30	4*5*9/6 =30	
5	1+4+9+16+25 = 55	5*6*11/6 = 55	

Prove it by induction...

To prove
$$1^2 + 2^2 + 3^2 + ... + n^2 = \frac{n(n+1)(2n+1)}{6}$$

- > Base case: when n=1, L.H.S = $\frac{1}{6}$, R.H.S = $\frac{1 \times 2 \times 3}{6}$ =1=L.H.S
- > Induction hypothesis: Assume property holds for n=k

> i.e., assume that
$$1^2 + 2^2 + 3^2 + ... + k^2 = \frac{k(k+1)(2k+1)}{k}$$

> Induction step: When n=k+1, target is to prove

$$1^{2} + 2^{2} + 3^{2} + ... + k^{2} + (k+1)^{2} = ???$$

- > Then property holds for n=k+1
- > By principle of induction, holds for all +ve integers

Target: to prove
$$1^2 + 2^2 + 3^2 + ... + k^2 + (k+1)^2 = ???$$

Induction hypothesis:
$$1^2 + 2^2 + 3^2 + ... + k^2 = \frac{k(k+1)(2k+1)}{6}$$

Induction Step: When n = k+1

L.H.S. =
$$1^2 + 2^2 + 3^2 + ... + k^2 + (k+1)^2$$

= R.H.S.

Prove that $1+3+5+...+(2n-1) = n^2 \forall +ve \text{ integers } \geq 1$ (sum of the *first n odd integers* equals to n^2)

n	LHS	RHS	LHS = RHS?
1	1	12 = 1	
2	1+3 = 4	2 ² = 4	
3	1+3+5 = 9	$3^2 = 9$	
4	1+3+5+7 = 16	4 ² =16	
5	1+3+5+7+9 = 25	$5^2 = 25$	

Prove it by induction...

Prove that $1+3+5+...+(2n-1) = n^2 \forall +ve integers \ge 1$

- Base case: When n=1,
- Induction hypothesis:
 Assume property holds for some integer k, i.e., assume ???
- > Induction step: When n=k+1,

Target: to prove ???

Prove that $1+3+5+...+(2n-1) = n^2 \forall +ve integers \ge 1$

> Induction step: When n=k+1,

L.H.S. =

R.H.S. =

Therefore, property holds for n=k+1

By principle of induction, holds for all +ve integers

Target: to prove ???

Induction hypothesis: ???