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Which Ball is Heavier?

balance scale

9 balls look identically the same

but 1 is heavier than the rest

How to find the heavier one 
by weighing 2 times only?
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Learning outcomes
� Understand the concept of Induction

� Able to prove by Induction
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Analysis of Algorithms
After designing an algorithm, we analyze it. 

� Proof of correctness: show that the algorithm gives the 
desired result

� Time complexity analysis: find out how fast the 
algorithm runs
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(Induction)

algorithm runs

� Space complexity analysis: find out how much memory 
space the algorithm requires

� Look for improvement: can we improve the algorithm to 
run faster or use less memory? is it best possible?
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A typical analysis technique
Induction

� technique to prove that a property holds for all natural 
numbers (or for all members of an infinite sequence)

E.g., To prove 1+2+…+n = n(n+1)/2 ∀∀∀∀ +ve integers n
n LHS RHS LHS = RHS?

1 1 1*2/2 = 1

∀∀∀∀ for all
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(Induction)

However, none of these constitute a proof and we 
cannot enumerate over all possible numbers.

⇒ Induction

1 1 1*2/2 = 1

2 1+2 = 3 2*3/2 = 3

3 1+2+3 = 6 3*4/2 = 6
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Intuition – Long Row of Dominoes
� How can we be sure each domino will fall?

� Enough to ensure the 1st domino will fall?
� No. Two dominoes somewhere may not be spaced properly
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(Induction)

� Enough to ensure all are spaced properly?
� No. We need the 1st to fall

� Both conditions required: 
� 1st will fall; & after the kth fall, k+1st will also fall

� then even infinitely long, all will fall
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Induction
To prove that a property holds for every 
positive integer n

Two steps

� Base case: Prove that the property holds for n = 1

Induction step: Prove that if the property holds for n 
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(Induction)

� Induction step: Prove that if the property holds for n 
= k (for some  positive integer k), then the property 
holds for n = k + 1

� Conclusion: The property holds for every positive 
integer n
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Example

To prove:                                     ∀∀∀∀+ve integers n

� Base case: When n=1, L.H.S=1, R.H.S=         = 1.
So, the property holds for n=1.

� Induction hypothesis:
Assume that the property holds when n=k for some 

2

)1(
...321

+
=++++

nn
n

2

21 ×

8

(Induction)

Assume that the property holds when n=k for some 
integer k≥1.

• i.e., assume that

� Induction step: When n=k+1, we have to prove 
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Example - Induction step
� L.H.S = 1+2+...+k+(k+1)
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(Induction)

= R.H.S

� So, property also holds for n=k+1

� Conclusion: property holds for all +ve integers n

Induction hypothesisTarget: to prove
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Conclusion
We have proved

1. property holds for n=1

2. if property holds for n=k, then also holds for n=k+1

In other words,

holds for n=1 implies holds for n=2 (induction step)
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(Induction)

� holds for n=1 implies holds for n=2 (induction step)

� holds for n=2 implies holds for n=3 (induction step)

� holds for n=3 implies holds for n=4 (induction step)

� and so on ......

By principle of induction: holds for all +ve 
integers n
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Alternative Proof

1 2 3 … … n-2 n-1 n

n n-1 n-2 … … 3 2 1+

n+1 n+1 n+1 … … n+1 n+1 n+1
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(Induction)

2*[1+2+3+…+(n-2)+(n-1)+n] = n(n+1)
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To prove n3+2n is divisible by 3 ∀∀∀∀ integers n≥1

Example 2

n n3+2n divisible by 3?

1 1+2 = 3

2 8+4 = 12
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(Induction)

Prove it by induction…

2 8+4 = 12

3 27+6 = 33

4 64+8 = 72
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To prove n3+2n is divisible by 3 ∀∀∀∀ integers n≥1

� Base case: When n=1, n3+2n=1+2=3, divisible 
by 3. So property holds for n=1.

� Induction hypothesis: Assume property holds 
for n=k, for some +ve int k,

Example 2
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(Induction)

for n=k, for some +ve int k,
i.e., assume k3+2k is divisible by 3

� Induction step: When n=k+1,

Target: to prove
(k+1)3+2(k+1) is divisible by 3
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To prove n3+2n is divisible by 3 ∀∀∀∀ integers n≥1

�Induction step: When n=k+1,

� (k+1)3+2(k+1) = (k3+3k2+3k+1) + (2k+2)

= (k3+2k) + 3(k2+k+1)

by hypothesis, divisible by 3

Example 2

divisible by 3

sum is divisible 
by 3
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(Induction)

�Property holds for n=k+1

�By principle of induction: holds ∀∀∀∀ integers n≥≥≥≥1

by hypothesis, divisible by 3 divisible by 3

Target: to prove
(k+1)3+2(k+1) is divisible by 3

Induction hypothesis
k3+2k is divisible by 3
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Example 3
To prove 2n < n! ∀∀∀∀ +ve integers n ≥ 4.

n! = n(n-1)(n-2) … *2*1

n 2n n! LHS < RHS?
1 2 1

2 4 2

3 8 6
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(Induction)

3 8 6

4 16 24

5 32 120

6 64 720

Prove it by induction…
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Example 3
To prove 2n < n! ∀∀∀∀ +ve integers n ≥ 4.

� Base case: When n=4, 
L.H.S = 24 = 16, R.H.S = 4! = 4*3*2*1 = 24,
L.H.S < R.H.S. 
So, property holds for n=4
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(Induction)

So, property holds for n=4

� Induction hypothesis: Assume property holds for 
n=k for some integer k ≥ 4, i.e., assume 2k < k!

Target: to prove
2k+1<(k+1)!
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Example 3
To prove 2n < n! ∀∀∀∀ +ve integers n ≥ 4.

� Induction step: When n=k+1, 

� L.H.S = 2k+1 = 2*2k < 2*k! ←←←← by hypothesis, 2k < k!

� R.H.S = (k+1)! = (k+1)*k! > 2*k! > L.H.S ←←←← because k+1>2
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(Induction)

� So, property holds for n=k+1

� By principle of induction: holds ∀∀∀∀ +ve integers n≥4

Target: to prove
2k+1<(k+1)!

Induction hypothesis
2k<k!
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Example 3

Why base case is n=4?
When n=1, 21=2, 1!=1

When n=2, 22=4, 2!=2

When n=3, 23=8, 3!=6
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(Induction)

When n=3, 23=8, 3!=6

Property does not hold for n=1, 2, 3
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Note
The induction step means that if property holds 
for some integer k, then it also holds for k+1.

It does NOT mean that the property must hold 
for k nor for k+1.

Therefore, we MUST prove that property holds 
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(Induction)

Therefore, we MUST prove that property holds 
for some starting integer n0, which is the base 
case.

Missing the base case will make the proof fail.
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What's wrong with this?
Claim: For all n, n=n+1

� Assume the property holds for n=k,
i.e., k = k+1

� Induction Step:

� Add 1 to both sides of the induction hypothesis

� We get: k+1 = (k+1)+1, i.e., k+1 = k+2

� The property holds for n=k+1

BUT, we know this isn't true, what's wrong?
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(Induction)
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What about this?
Claim: All comp108 students are of the same 
gender

� Base case: Consider any group of ONE comp108 
student.  Same gender, of course.

Induction hypothesis: Assume that any group � Induction hypothesis: Assume that any group 
of k comp108 students are of same gender

� Induction step: Consider any group of k+1
comp108 students…
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(Induction)
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k+1
A

Take a student,
say A

k

A

Induction 
hypothesis:
same gender

k
ABB
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(Induction)

k

Induction 
hypothesis:
same gender

Swap a student,
say B, with A

So, A, B & other (k-1) students
are of the same gender

What’s wrong?
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Recall: Finding minimum
input: a[1], a[2], ..., a[n]

M = a[1]

i = 1

while (i < n) do

begin

i = i + 1

M = min(M, a[i])

end

Base case: When i=1, M is min(a[1])

Induction hypothesis: Assume the property 
holds when i=k for some k≥1.

Induction step: When i=k+1,
• If a[k+1] < min(a[1],…,a[k]), 
M is set to a[k+1], i.e., min(a[1],…,a[k+1]), 
Else, a[k+1] is not min, 
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(Induction)

end

output M

Property: After statements assigning values to M,
the value of M is min(a[1], …, a[i])

M is set to a[k+1], i.e., min(a[1],…,a[k+1]), 
• Else, a[k+1] is not min, 
M is unchanged & M equals min(a[1],…,a[k+1])
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Challenges …
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Exercise
To prove ∀∀∀∀ +ve int n ≥ 1.

n LHS RHS LHS = RHS?
1 1 1*2*3/6 = 1

2 1+4 = 5 2*3*5/6 = 5
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(Induction)

2 1+4 = 5 2*3*5/6 = 5

3 1+4+9 = 14 3*4*7/6 = 14

4 1+4+9+16 = 30 4*5*9/6 =30

5 1+4+9+16+25 = 55 5*6*11/6 = 55

Prove it by induction…
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Exercise
To prove

� Base case: when n=1, L.H.S = 1, R.H.S =               =1=L.H.S

� Induction hypothesis: Assume property holds for n=k

� i.e., assume that 

� Induction step: When n=k+1, target is to prove
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(Induction)

� Induction step: When n=k+1, target is to prove

L.H.S = …
R.H.S = … = L.H.S

� Then property holds for n=k+1

� By principle of induction, holds for all +ve integers

6

???)1(...321
22222

=++++++ kk

Algorithmic Foundations
COMP108

Induction Step: When n = k+1

L.H.S. = 12 + 22 + 32 + ... + k2 + (k+1)2

Target: to prove

Induction hypothesis: 

???)1(...321
22222

=++++++ kk
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(Induction)

= R.H.S.
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Prove that 1+3+5+…+(2n-1) = n2 ∀∀∀∀ +ve integers ≥ 1

(sum of the first n odd integers equals to n2)

Exercise 2

n LHS RHS LHS = RHS?
1 1 12 = 1

2 1+3 = 4 2 = 4
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(Induction)

2 1+3 = 4 22 = 4

3 1+3+5 = 9 32 = 9

4 1+3+5+7 = 16 42 =16

5 1+3+5+7+9 = 25 52 = 25

Prove it by induction…
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Exercise 2
Prove that 1+3+5+…+(2n-1) = n2 ∀∀∀∀ +ve integers ≥ 1

� Base case: When n=1, 

� Induction hypothesis:
Assume property holds for some integer k, 
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(Induction)

Assume property holds for some integer k, 
i.e., assume ??? 

� Induction step: When n=k+1,

Target: to prove 
???
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Prove that 1+3+5+…+(2n-1) = n2 ∀∀∀∀ +ve integers ≥ 1

� Induction step: When n=k+1,

L.H.S. = 

Exercise 2

R.H.S. = 

Therefore, property holds for n=k+1

By principle of induction, holds for all +ve integers
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(Induction)

Target: to prove ???

Induction hypothesis: ???


