Algorithmic Foundations COMP108

# **COMP108 Algorithmic Foundations**

#### **Mathematical Induction**

#### Prudence Wong

Algorithmic Foundations COMP108

### Learning outcomes

- > Understand the concept of Induction
- > Able to prove by Induction

# Which Ball is Heavier? balance scale

9 balls look identically the same but 1 is heavier than the rest

How to find the heavier one by weighing 2 times only?

> Algorithmic Foundations COMP108

Algorithmic Foundations

COMP108

# Analysis of Algorithms

After designing an algorithm, we analyze it.

- > Proof of correctness: show that the algorithm gives the desired result
- > Time complexity analysis: find out how fast the algorithm runs
- > Space complexity analysis: find out how much memory space the algorithm requires
- > Look for improvement: can we improve the algorithm to run faster or use less memory? is it best possible?

### A typical analysis technique Induction

- technique to prove that a property holds for all natural numbers (or for all members of an infinite sequence)
- E.g., To prove  $1+2+\dots+n = n(n+1)/2 \forall +ve$  integers n

| n | LHS       | RHS       | LHS = RHS? |
|---|-----------|-----------|------------|
| 1 | 1         | 1*2/2 = 1 | <u>.</u>   |
| 2 | 1+2 = 3   | 2*3/2 = 3 | •)         |
| 3 | 1+2+3 = 6 | 3*4/2 = 6 | •          |

However, none of these constitute a proof and we cannot enumerate over all possible numbers.

 $\Rightarrow$  Induction

# Induction

To prove that a property holds for every positive integer n

#### Two steps

- > Base case: Prove that the property holds for n = 1
- > Induction step: Prove that if the property holds for n = k (for some positive integer k), then the property holds for n = k + 1
- Conclusion: The property holds for every positive integer n

# Intuition – Long Row of Dominoes

#### > How can we be sure each domino will fall?

- > Enough to ensure the  $1^{st}$  domino will fall?
  - > No. Two dominoes somewhere may not be spaced properly





- > Enough to ensure all are spaced properly?
  - $\succ$  No. We need the  $1^{st}$  to fall
- Both conditions required:
  - ightarrow 1<sup>st</sup> will fall; & after the k<sup>th</sup> fall, k+1<sup>st</sup> will also fal
  - $\succ$  then even infinitely long, all will fall



(Induction)

Algorithmic Foundations

COMP108

Algorithmic Foundations COMP108

5 (Induction)

# Example

- To prove:  $1 + 2 + 3 + ... + n = \frac{n(n+1)}{2}$   $\forall$ +ve integers n
  - > Base case: When n=1, L.H.S=1, R.H.S= $\frac{1 \times 2}{2}$  = 1. So, the property holds for n=1.
  - > Induction hypothesis:

Assume that the property holds when n=k for some integer  $k \ge 1$ .

- i.e., assume that  $1 + 2 + 3 + ... + k = \frac{k(k+1)}{2}$
- > Induction step: When n=k+1, we have to prove

$$1 + 2 + 3 + \dots + k + (k + 1) = \frac{(k + 1)(k + 2)}{2}$$

# **Example - Induction step**

#### > So, property also holds for n=k+1

> Conclusion: property holds for all +ve integers n

| Target: to prove                                         | Induction hypothesis                   |
|----------------------------------------------------------|----------------------------------------|
| $1 + 2 + \dots + k + (k + 1) = \frac{(k + 1)(k + 2)}{2}$ | $1 + 2 + \dots + k = \frac{k(k+1)}{2}$ |

Algorithmic Foundations COMP108

9

(Induction)

# **Alternative Proof**

|   | n+1 | n+1 | n+1 | <br> | n+1 | n+1 | n+1 |
|---|-----|-----|-----|------|-----|-----|-----|
| + | n   | n-1 | n-2 | <br> | 3   | 2   | 1   |
|   | 1   | 2   | 3   | <br> | n-2 | n-1 | n   |

$$2^{*}[1+2+3+...+(n-2)+(n-1)+n] = n(n+1)$$
  
1+2+3+...+(n-2)+(n-1)+n =  $\frac{n(n+1)}{2}$ 

# Conclusion

#### We have proved

- 1. property holds for n=1
- 2. if property holds for n=k, then also holds for n=k+1

#### In other words,

- > holds for n=1 implies holds for n=2 (induction step)
- > holds for n=2 implies holds for n=3 (induction step)
- > holds for n=3 implies holds for n=4 (induction step)
- > and so on .....

#### By principle of induction: holds for all +ve integers n

10 (Induction)

Algorithmic Foundations COMP108

# Example 2

|--|

| n | n <sup>3</sup> +2n | divisible by 3? |
|---|--------------------|-----------------|
| 1 | 1+2 = 3            | ٢               |
| 2 | 8+4 = 12           | ٢               |
| 3 | 27+6 = 33          | ٢               |
| 4 | 64+8 = 72          | ٣               |

#### Prove it by induction...

11 (Induction)

# Example 2

#### To prove <u>**n**<sup>3</sup>+2n is divisible by 3</u> $\forall$ integers n≥1

- Base case: When n=1, n<sup>3</sup>+2n=1+2=3, divisible by 3. So property holds for n=1.
- Induction hypothesis: Assume property holds for n=k, for some +ve int k, i.e., assume k<sup>3</sup>+2k is divisible by 3
- > Induction step: When n=k+1,

Target: to prove (k+1)<sup>3</sup>+2(k+1) is divisible by 3

# Example 3

n! = n(n-1)(n-2) ... \*2\*1

To prove  $2^n < n! \forall$  +ve integers  $n \ge 4$ .

| n | 2 <sup>n</sup> | n!  | LHS < RHS? |
|---|----------------|-----|------------|
| 1 | 2              | 1   | ×          |
| 2 | 4              | 2   | X          |
| 3 | 8              | 6   | ×          |
| 4 | 16             | 24  | •          |
| 5 | 32             | 120 | <u>.</u>   |
| 6 | 64             | 720 | ٢          |

Prove it by induction ...

# Example 2

To prove  $n^3+2n$  is divisible by 3  $\forall$  integers  $n\geq 1$ 

>Induction step: When n=k+1,

>  $(k+1)^3+2(k+1) = (k^3+3k^2+3k+1) + (2k+2)$ =  $(k^3+2k) + 3(k^2+k+1)$ 

sum is divisible by 3

by hypothesis, divisible by 3 divisible by 3

>Property holds for n=k+1

>By principle of induction: holds  $\forall$  integers n≥1

Target: to prove (k+1)<sup>3</sup>+2(k+1) is divisible by 3

k<sup>3</sup>+2k is divisible by 3

Induction hypothesis

14

(Induction)

Algorithmic Foundations COMP108

# Example 3

To prove  $2^n < n! \forall$  +ve integers  $n \ge 4$ .

- Base case: When n=4,
   L.H.S = 2<sup>4</sup> = 16, R.H.S = 4! = 4\*3\*2\*1 = 24,
   L.H.S < R.H.S.</li>
   So, property holds for n=4
- > Induction hypothesis: Assume property holds for n=k for some integer k ≥ 4, i.e., assume 2<sup>k</sup> < k!</p>

Target: to prove 2<sup>k+1</sup><(k+1)!

15

13

(Induction)

Algorithmic Foundations

COMP108



# Example 3

To prove  $2^n < n! \forall$  +ve integers  $n \ge 4$ .

- > Induction step: When n=k+1,
  - > L.H.S =  $2^{k+1} = 2^{\star}2^{k} < 2^{\star}k! \leftarrow by hypothesis, 2^{k} < k!$
  - > R.H.S =  $(k+1)! = (k+1)*k! > 2*k! > L.H.S \leftarrow because k+1>2$
  - > So, property holds for n=k+1
- > By principle of induction: holds  $\forall$  +ve integers n≥4

Target: to prove 2<sup>k+1</sup><(k+1)! Induction hypothesis 2<sup>k</sup><k!

#### Algorithmic Foundations COMP108

17

(Induction)

### Note

- The <u>induction step</u> means that if property holds for some integer k, then it also holds for k+1.
- It does <u>NOT</u> mean that the property must hold for k nor for k+1.
- Therefore, we <u>MUST</u> prove that property holds for some starting integer  $n_0$ , which is the <u>base</u> <u>case</u>.

Missing the base case will make the proof fail.

# Example 3



Algorithmic Foundations COMP108

(Induction)

Algorithmic Foundations

COMP108

# What's wrong with this?

Claim: For all n, n=n+1

- > Assume the property holds for n=k, i.e., k = k+1
- > Induction Step:
  - > Add 1 to both sides of the induction hypothesis
  - > We get: k+1 = (k+1)+1, i.e., k+1 = k+2
- > The property holds for n=k+1

BUT, we know this isn't true, what's wrong?

19

(Induction)

### What about this?

- Claim: All comp108 students are of the same gender
- > Base case: Consider any group of ONE comp108 student. Same gender, of course.
- > Induction hypothesis: Assume that any group of k comp108 students are of same gender
- > Induction step: Consider any group of k+1 comp108 students...



### **Recall: Finding minimum**

| <pre>input: a[1], a[2],, a[n] M = a[1]</pre> | Base case: When i=1, M is min(a[1])                                                                   |
|----------------------------------------------|-------------------------------------------------------------------------------------------------------|
| i = 1<br>while (i < n) do                    | Induction hypothesis: Assume the property holds when i=k for some k≥1.                                |
| begin                                        |                                                                                                       |
| i = i + 1                                    | Induction step: When i=k+1,                                                                           |
| M = min(M, a[i])                             | <ul> <li>If a[k+1] &lt; min(a[1],,a[k]),</li> </ul>                                                   |
| end                                          | M is set to a[k+1], i.e., min(a[1],,a[k+1]),                                                          |
| output M                                     | <ul> <li>Else, a[k+1] is not min,</li> <li>M is unchanged &amp; M equals min(a[1],,a[k+1])</li> </ul> |
|                                              |                                                                                                       |

Property: After statements assigning values to M, the value of M is min(a[1], ..., a[i])

COMP108

COMP108

Algorithmic Foundations COMP108

# Exercise

To prove 
$$1^2 + 2^2 + 3^2 + ... + n^2 = \frac{n(n+1)(2n+1)}{6} \forall$$
 +ve int  $n \ge 1$ .

| n | LHS              | RHS           | LHS = RHS? |
|---|------------------|---------------|------------|
| 1 | 1                | 1*2*3/6 = 1   | <u> </u>   |
| 2 | 1+4 = 5          | 2*3*5/6 = 5   | <u>.</u>   |
| 3 | 1+4+9 = 14       | 3*4*7/6 = 14  | <u>.</u>   |
| 4 | 1+4+9+16 = 30    | 4*5*9/6 =30   | ٢          |
| 5 | 1+4+9+16+25 = 55 | 5*6*11/6 = 55 | <u>.</u>   |

Prove it by induction...

| Tar | get: to prove $1^2 + 2^2 + 3^2 + + k^2 + (k+1)^2 = ???$                         |
|-----|---------------------------------------------------------------------------------|
|     | <b>Induction hypothesis:</b> $1^2 + 2^2 + 3^2 + + k^2 = \frac{k(k+1)(2k+1)}{6}$ |

= R.H.S.

### Exercise

- To prove  $1^2 + 2^2 + 3^2 + ... + n^2 = \frac{n(n+1)(2n+1)}{6}$ > Base case: when n=1, L.H.S = 1, R.H.S =  $\frac{1 \times 2 \times 3}{6}$  =1=L.H.S > Induction hypothesis: Assume property holds for n=k > i.e., assume that  $1^2 + 2^2 + 3^2 + ... + k^2 = \frac{k(k+1)(2k+1)}{6}$ > Induction step: When n=k+1, target is to prove  $1^2 + 2^2 + 3^2 + ... + k^2 + (k+1)^2 = ???$ L.H.S = ... R.H.S = ... = L.H.S > Then property holds for n=k+1
- > By principle of induction, holds for all +ve integers

26

(Induction)

Algorithmic Foundations COMP108

# Exercise 2

Prove that  $1+3+5+...+(2n-1) = n^2 \forall$  +ve integers  $\geq 1$ 

(sum of the *first n odd integers* equals to  $n^2$ )

| n | LHS            | RHS                | LHS = RHS? |
|---|----------------|--------------------|------------|
| 1 | 1              | 1 <sup>2</sup> = 1 | ٢          |
| 2 | 1+3 = 4        | 2 <sup>2</sup> = 4 | ٢          |
| 3 | 1+3+5 = 9      | 3² = 9             | ٢          |
| 4 | 1+3+5+7 = 16   | 4² =16             | ٢          |
| 5 | 1+3+5+7+9 = 25 | 5² = 25            | <u>.</u>   |

#### Prove it by induction...

27

25

(Induction)

# Exercise 2

Prove that  $1+3+5+...+(2n-1) = n^2 \forall$  +ve integers  $\geq 1$ 

> Base case: When n=1,

> Induction hypothesis:

Assume property holds for some integer k, i.e., assume ???

> Induction step: When n=k+1,

# Target: to prove ???

29

(Induction)

30

(Induction)

# Exercise 2

Prove that  $1+3+5+...+(2n-1) = n^2 \forall$  +ve integers  $\geq 1$ 

> Induction step: When n=k+1,

L.H.S. =

#### R.H.S. =

Therefore, property holds for n=k+1

By principle of induction, holds for all +ve integers

Target: to prove ???

Induction hypothesis: ???