
Algorithmic Foundations
COMP108

COMP108
Algorithmic Foundations

Divide and Conquer Divide and Conquer

Prudence Wong

Algorithmic Foundations
COMP108

Pancake Sorting
Input: Stack of pancakes, each of different sizes

Output: Arrange in order of size (smallest on top)

Action: Slip a flipper under one of the pancakes and
flip over the whole stack above the flipper

3

finish

4

1

3

2

4

1

3

2

start

Algorithmic Foundations
COMP108

Triomino Puzzle
Input: 2n-by-2n chessboard with one missing square &

many L-shaped tiles of 3 adjacent squares
Question: Cover the chessboard with L-shaped tiles

without overlapping

Is it do-able?
2n

2n

Algorithmic Foundations
COMP108

Robozzle - Recursion
Task: to program a robot to pick up all stars in a

certain area
Command: Go straight, Turn Left, Turn Right

Algorithmic Foundations
COMP108

Divide and Conquer …

Algorithmic Foundations
COMP108

Learning outcomes

� Understand how divide and conquer works and
able to analyse complexity of divide and conquer
methods by solving recurrence

� See examples of divide and conquer methods

6

(Divide & Conquer)

Algorithmic Foundations
COMP108

Divide and Conquer
One of the best-known algorithm design
techniques

Idea:

�A problem instance is divided into several smaller
instances of the same problem, ideally of about
same size

7

(Divide & Conquer)

instances of the same problem, ideally of about
same size

� The smaller instances are solved, typically
recursively

� The solutions for the smaller instances are
combined to get a solution to the large instance

Algorithmic Foundations
COMP108

Merge Sort …

Algorithmic Foundations
COMP108

Merge sort

� using divide and conquer technique

� divide the sequence of n numbers into two halves

� recursively sort the two halves

� merge the two sorted halves into a single sorted

9

(Divide & Conquer)

� merge the two sorted halves into a single sorted
sequence

Algorithmic Foundations
COMP108

51, 13, 10, 64, 34, 5, 32, 21

we want to sort these 8 numbers,
divide them into two halves

10

(Divide & Conquer)

Algorithmic Foundations
COMP108

51, 13, 10, 64, 34, 5, 32, 21

51, 13, 10, 64 34, 5, 32, 21

divide these 4
numbers into

halves

similarly for
these 4

11

(Divide & Conquer)

halves

Algorithmic Foundations
COMP108

51, 13, 10, 64, 34, 5, 32, 21

51, 13, 10, 64 34, 5, 32, 21

51, 13 10, 64 34, 5 32, 21

further divide each shorter sequence …

12

(Divide & Conquer)

further divide each shorter sequence …
until we get sequence with only 1 number

Algorithmic Foundations
COMP108

51, 13, 10, 64, 34, 5, 32, 21

51, 13, 10, 64 34, 5, 32, 21

51, 13 10, 64 34, 5 32, 21

51 13 10 64 34 5 32 21

13

(Divide & Conquer)

51 13 10 64 34 5 32 21

merge pairs of
single number into
a sequence of 2
sorted numbers

Algorithmic Foundations
COMP108

51, 13, 10, 64, 34, 5, 32, 21

51, 13, 10, 64 34, 5, 32, 21

51, 13 10, 64 34, 5 32, 21

51 13 10 64 34 5 32 21

14

(Divide & Conquer)

51 13 10 64 34 5 32 21

13, 51 10, 64 5, 34 21, 32

then merge again into sequences of
4 sorted numbers

Algorithmic Foundations
COMP108

51, 13, 10, 64, 34, 5, 32, 21

51, 13, 10, 64 34, 5, 32, 21

51, 13 10, 64 34, 5 32, 21

51 13 10 64 34 5 32 21

15

(Divide & Conquer)

51 13 10 64 34 5 32 21

13, 51 10, 64 5, 34 21, 32

10, 13, 51, 64 5, 21, 32, 34

one more merge give the final sorted sequence

Algorithmic Foundations
COMP108

51, 13, 10, 64, 34, 5, 32, 21

51, 13, 10, 64 34, 5, 32, 21

51, 13 10, 64 34, 5 32, 21

51 13 10 64 34 5 32 21

16

(Divide & Conquer)

51 13 10 64 34 5 32 21

13, 51 10, 64 5, 34 21, 32

5, 10, 13, 21, 32, 34, 51, 64

10, 13, 51, 64 5, 21, 32, 34

Algorithmic Foundations
COMP108

Summary

Divide

� dividing a sequence of n numbers into two
smaller sequences is straightforward

Conquer

17

(Divide & Conquer)

�merging two sorted sequences of total length
n can also be done easily, at most n-1
comparisons

Algorithmic Foundations
COMP108

10, 13, 51, 64 5, 21, 32, 34

To merge two sorted sequences,

Result:

18

(Divide & Conquer)

To merge two sorted sequences,
we keep two pointers, one to each sequence

Compare the two numbers pointed,
copy the smaller one to the result

and advance the corresponding pointer

Algorithmic Foundations
COMP108

10, 13, 51, 64 5, 21, 32, 34

Then compare again the two numbers

5, Result:

19

(Divide & Conquer)

Then compare again the two numbers
pointed to by the pointer;

copy the smaller one to the result
and advance that pointer

Algorithmic Foundations
COMP108

10, 13, 51, 64 5, 21, 32, 34

Repeat the same process …

5, 10, Result:

20

(Divide & Conquer)

Repeat the same process …

Algorithmic Foundations
COMP108

10, 13, 51, 64 5, 21, 32, 34

Again …

5, 10, 13Result:

21

(Divide & Conquer)

Again …

Algorithmic Foundations
COMP108

10, 13, 51, 64 5, 21, 32, 34

and again …

5, 10, 13, 21Result:

22

(Divide & Conquer)

and again …

Algorithmic Foundations
COMP108

10, 13, 51, 64 5, 21, 32, 34

…

5, 10, 13, 21, 32Result:

23

(Divide & Conquer)

…

Algorithmic Foundations
COMP108

10, 13, 51, 64 5, 21, 32, 34

When we reach the end of one sequence,

5, 10, 13, 21, 32, 34Result:

24

(Divide & Conquer)

When we reach the end of one sequence,
simply copy the remaining numbers in the other

sequence to the result

Algorithmic Foundations
COMP108

10, 13, 51, 64 5, 21, 32, 34

Then we obtain the final sorted sequence

5, 10, 13, 21, 32, 34, 51, 64Result:

25

(Divide & Conquer)

Then we obtain the final sorted sequence

Algorithmic Foundations
COMP108

Pseudo code
Algorithm Mergesort(A[1..n])Algorithm Mergesort(A[1..n])

if n > 1 then begin

copy A[1..n/2] to B[1..n/2]

copy A[n/2+1..n] to C[1..n/2]

Mergesort(B[1..n/2])

26

(Divide & Conquer)

Mergesort(B[1..n/2])

Mergesort(C[1..n/2])

Merge(B, C, A)

end

Algorithmic Foundations
COMP108

51, 13, 10, 64, 34, 5, 32, 21

51, 13, 10, 64 34, 5, 32, 21

51, 13 10, 64 34, 5 32, 21

51 13 10 64 34 5 32 21

MS()

MS(

MS(

MS(

MS()

) MS() MS() MS()

)MS() MS() MS() MS()MS() MS()MS()

)

27

(Divide & Conquer)

51 13 10 64 34 5 32 21

13, 51 10, 64 5, 34 21, 32

5, 10, 13, 21, 32, 34, 51, 64

10, 13, 51, 64 5, 21, 32, 34

MS()MS() MS() MS() MS()MS() MS()MS()

M(), M(),

M(,)

Algorithmic Foundations
COMP108

Pseudo code
Algorithm Merge(B[1..p], C[1..q], A[1..p+q])

set i=1, j=1, k=1

while i<=p and j<=q do

begin

if B[i]≤≤≤≤C[j] then

set A[k] = B[i] and i = i+1

28

(Divide & Conquer)

set A[k] = B[i] and i = i+1

else set A[k] = C[j] and j = j+1

k = k+1

end

if i==p+1 then copy C[j..q] to A[k..(p+q)]

else copy B[i..p] to A[k..(p+q)]

Algorithmic Foundations
COMP108

10, 13, 51, 64 5, 21, 32, 34B: C:

p=4 q=4

i j k A[]

Before loop 1 1 1 empty

End of 1st iteration 1 2 2 5

End of 2nd iteration 2 2 3 5, 10

29

(Divide & Conquer)

End of 3rd 3 2 4 5, 10, 13

End of 4th 3 3 5 5, 10, 13, 21

End of 5th 3 4 6 5, 10, 13, 21, 32

End of 6th 3 5 7 5, 10, 13, 21, 32, 34

5, 10, 13, 21, 32, 34, 51, 64

Algorithmic Foundations
COMP108

Time complexity
Let T(n) denote the time complexity of Let T(n) denote the time complexity of
running merge sort on n numbers.

1 if n=1

2××××T(n/2) + n otherwise
T(n) =

We call this formula a recurrence.

30

(Divide & Conquer)

We call this formula a recurrence.

A recurrence is an equation or inequality that
describes a function in terms of its value on
smaller inputs.

To solve a recurrence is to derive asymptotic
bounds on the solution

Algorithmic Foundations
COMP108

Time complexity
Prove that is O(n log n)

Make a guess: T(n) ≤≤≤≤ 2 n log n (We prove by MI)

For the base case when n=2,For the base case when n=2,

1 if n=1

2××××T(n/2) + n otherwise
T(n) =

31

(Divide & Conquer)

For the base case when n=2,
L.H.S = T(2) = 2××××T(1) + 2 = 4,
R.H.S = 2 ×××× 2 log 2 = 4
L.H.S ≤≤≤≤ R.H.S

Substitution method

Algorithmic Foundations
COMP108

Time complexity
Prove that is O(n log n)

Make a guess: T(n) ≤≤≤≤ 2 n log n (We prove by MI)

Assume true for all n'<n [assume T(n/2) ≤≤≤≤ 2 (n/2) log(n/2)]

T(n) = 2××××T(n/2)+n

1 if n=1

2××××T(n/2) + n otherwise
T(n) =

by hypothesis

32

(Divide & Conquer)

T(n) = 2××××T(n/2)+n

≤≤≤≤ 2 ×××× (2××××(n/2)xlog(n/2)) + n

= 2 n (log n - 1) + n

= 2 n log n - 2n + n

≤≤≤≤ 2 n log n
i.e., T(n) ≤≤≤≤ 2 n log n

by hypothesis

Algorithmic Foundations
COMP108

Example

Guess: T(n) ≤≤≤≤ 2 log n

1 if n=1

T(n/2) + 1 otherwise
T(n) =

For the base case when n=2,

33

(Divide & Conquer)

L.H.S = T(2) = T(1) + 1 = 2

R.H.S = 2 log 2 = 2

L.H.S ≤ R.H.S

Algorithmic Foundations
COMP108

Example

Guess: T(n) ≤≤≤≤ 2 log n

Assume true for all n' < n [assume T(n/2) ≤ 2 x log (n/2)]

1 if n=1

T(n/2) + 1 otherwise
T(n) =

34

(Divide & Conquer)

Assume true for all n' < n [assume T(n/2) ≤ 2 x log (n/2)]

T(n) =T(n/2) + 1

≤2 x log(n/2) + 1← by hypothesis

=2x(log n – 1) + 1 ← log(n/2) = log n – log 2

<2log n
i.e., T(n) ≤≤≤≤ 2 log n

Algorithmic Foundations
COMP108

More example
Prove that is O(n)

Guess: T(n) ≤≤≤≤ 2n – 1

For the base case when n=1,

1 if n=1

2××××T(n/2) + 1 otherwise
T(n) =

35

(Divide & Conquer)

For the base case when n=1,
L.H.S = T(1) = 1
R.H.S = 2××××1 - 1 = 1
L.H.S ≤≤≤≤ R.H.S

Algorithmic Foundations
COMP108

More example
Prove that is O(n)

Guess: T(n) ≤≤≤≤ 2n – 1

Assume true for all n' < n [assume T(n/2) ≤≤≤≤ 2(n/2)-1]

T(n) = 2××××T(n/2)+1

1 if n=1

2××××T(n/2) + 1 otherwise
T(n) =

36

(Divide & Conquer)

T(n) = 2××××T(n/2)+1

≤≤≤≤ 2 ×××× (2××××(n/2)-1) + 1 ← by hypothesis

= 2n – 2 + 1

= 2n - 1 i.e., T(n) ≤≤≤≤ 2n-1

Algorithmic Foundations
COMP108

Summary

Depending on the recurrence, we can guess the
order of growth

T(n) = T(n/2)+1 T(n) is O(log n)

T(n) = 2××××T(n/2)+1 T(n) is O(n)

37

(Divide & Conquer)

T(n) = 2××××T(n/2)+1 T(n) is O(n)

T(n) = 2××××T(n/2)+n T(n) is O(n log n)

Algorithmic Foundations
COMP108

Tower of Hanoi …

Algorithmic Foundations
COMP108

Tower of Hanoi - Initial config

There are three pegs and some discs of different
sizes are on Peg A

39

(Divide & Conquer)

3
2
1

A B C

Algorithmic Foundations
COMP108

Tower of Hanoi - Final config

Want to move the discs to Peg C

40

(Divide & Conquer)

3
2
1

A B C

Algorithmic Foundations
COMP108

Tower of Hanoi - Rules

Only 1 disk can be moved at a time

A disc cannot be placed on top of other discs that
are smaller than it

41

(Divide & Conquer)

3
2

Target: Use the smallest number of moves

Algorithmic Foundations
COMP108

Tower of Hanoi - One disc only

Easy!

42

(Divide & Conquer)

1

A B C

Algorithmic Foundations
COMP108

Tower of Hanoi - One disc only

Easy! Need one move only.

43

(Divide & Conquer)

1

A B C

Algorithmic Foundations
COMP108

Tower of Hanoi - Two discs

We first need to move Disc-2 to C, How?

by moving Disc-1 to B first, then Disc-2 to C

44

(Divide & Conquer)

2
1

A B C

Algorithmic Foundations
COMP108

Tower of Hanoi - Two discs

Next?

Move Disc-1 to C

45

(Divide & Conquer)

2

A B C

1

Algorithmic Foundations
COMP108

Tower of Hanoi - Two discs

Done!

46

(Divide & Conquer)

2
1

A B C

Algorithmic Foundations
COMP108

Tower of Hanoi - Three discs

We first need to move Disc-3 to C, How?

�Move Disc-1&2 to B (recursively)

47

(Divide & Conquer)

3
2
1

A B C

Algorithmic Foundations
COMP108

Tower of Hanoi - Three discs

We first need to move Disc-3 to C, How?

�Move Disc-1&2 to B (recursively)

� Then move Disc-3 to C

48

(Divide & Conquer)

3 2

A B C

1

Algorithmic Foundations
COMP108

Tower of Hanoi - Three discs

Only task left: move Disc-1&2 to C (similarly as
before)

49

(Divide & Conquer)

32
1

A B C

Algorithmic Foundations
COMP108

Tower of Hanoi - Three discs

Done!

50

(Divide & Conquer)

3
2
1

A B C

Algorithmic Foundations
COMP108

Tower of Hanoi

ToH(num_disc, source, dest, spare)

begin

if (num_disc > 1) then

ToH(num_disc-1, source, spare, dest)

Move the disc from source to dest

if (num_disc > 1) then

invoke by calling
ToH(3, A, C, B)

if (num_disc > 1) then

ToH(num_disc-1, spare, dest, source)

end

51

(Divide & Conquer)

Algorithmic Foundations
COMP108ToH(3, A, C, B)

move 1 disc
from A to C

ToH(2, A, B, C) ToH(2, B, C, A)

ToH(1, A, C, B) ToH(1, C, B, A)

move 1 disc

ToH(1, B, A, C) ToH(1, A, C, B)

move 1 disc

52

(Divide & Conquer)

move 1 disc
from A to B

move 1 disc
from A to C

move 1 disc
from C to B

move 1 disc
from B to C

move 1 disc
from B to A

move 1 disc
from A to C

Algorithmic Foundations
COMP108ToH(3, A, C, B)

move 1 disc
from A to C

ToH(2, A, B, C) ToH(2, B, C, A)

ToH(1, A, C, B) ToH(1, C, B, A)

move 1 disc

ToH(1, B, A, C) ToH(1, A, C, B)

move 1 disc

1

2
4

5

7 8

9
11

12

53

(Divide & Conquer)

move 1 disc
from A to B

move 1 disc
from A to C

move 1 disc
from C to B

move 1 disc
from B to C

move 1 disc
from B to A

move 1 disc
from A to C

3 6 10 13

from A to C; from A to B; from C to B;
from A to C;

from B to A; from B to C; from A to C;

Algorithmic Foundations
COMP108

move n-1
discs from
B to C

Time complexity

T(n) = T(n-1) + 1 + T(n-1)

Let T(n) denote the time
complexity of running
the Tower of Hanoi
algorithm on n discs.

move n-1
discs from
A to B

move Disc-n
from A to C

54

(Divide & Conquer)

1 if n=1

2××××T(n-1) + 1 otherwise

from A to C

T(n) =

Algorithmic Foundations
COMP108

Time complexity (2)
T(n) = 2××××T(n-1) + 1

= 2[2××××T(n-2) + 1] + 1

= 22 T(n-2) + 2 + 1

= 22 [2××××T(n-3) + 1] + 21 + 20

= 23 T(n-3) + 22 + 21 + 20

1 if n=1

2××××T(n-1) + 1 otherwise
T(n) =

55

(Divide & Conquer)

= 2 T(n-3) + 2 + 2 + 2
…
= 2k T(n-k) + 2k-1 + 2k-2 + … + 22 + 21 + 20

…
= 2n-1 T(1) + 2n-2 + 2n-3 + … + 22 + 21 + 20

= 2n-1 + 2n-2 + 2n-3 + … + 22 + 21 + 20

= 2n-1
In Tutorial 2, we prove by MI that
20 + 21 + … + 2n-1 = 2n-1

i.e., T(n) is O(2n)iterative
method

Algorithmic Foundations
COMP108

Summary - continued

Depending on the recurrence, we can guess the
order of growth

T(n) = T(n/2)+1 T(n) is O(log n)

T(n) = 2××××T(n/2)+1 T(n) is O(n)

56

(Divide & Conquer)

T(n) = 2××××T(n/2)+1 T(n) is O(n)

T(n) = 2××××T(n/2)+n T(n) is O(n log n)

T(n) = 2××××T(n-1)+1 T(n) is O(2n)

Algorithmic Foundations
COMP108

Fibonacci number …

Algorithmic Foundations
COMP108

Fibonacci's Rabbits
A pair of rabbits, one month old, is too young to reproduce.

Suppose that in their second month, and every month
thereafter, they produce a new pair.

58

(Divide & Conquer)

end of
month-0

end of
month-1

end of
month-3

end of
month-4

How many
at end of

month-5, 6,7
and so on?

end of
month-2

Algorithmic Foundations
COMP108

Petals on flowers

1 petal:
white calla lily

2 petals:
euphorbia

3 petals:
trillium

5 petals:
columbine

59

(Divide & Conquer)

8 petals:
bloodroot

13 petals:
black-eyed susan

21 petals:
shasta daisy

34 petals:
field daisy

Search: Fibonacci Numbers in Nature

Algorithmic Foundations
COMP108

Fibonacci number
Fibonacci number F(n)

F(n) =
1 if n = 0 or 1
F(n-1) + F(n-2) if n > 1

n 0 1 2 3 4 5 6 7 8 9 10

F(n) 1 1 2 3 5 8 13 21 34 55 89

60

(Divide & Conquer)

F(n) 1 1 2 3 5 8 13 21 34 55 89

Pseudo code for the recursive algorithm:Pseudo code for the recursive algorithm:
Algorithm F(n)

if n==0 or n==1 then

return 1

else

return F(n-1) + F(n-2)

Algorithmic Foundations
COMP108

The execution of F(7)

F7

F6

F5

F5

F4 F4 F3

61

(Divide & Conquer)

F4 F3

F3

F2

F1 F0

F2

F1 F0

F1

F2

F1 F0

F2

F1 F0

F2

F1 F0

F3 F3

F2

F1 F0

F2

F1 F0

F2

F1 F0

F1

F1 F1

F1

Algorithmic Foundations
COMP108

The execution of F(7)

F7

F6

F5

F5

F4 F4 F3

1
2

3
18

27

62

(Divide & Conquer)

F4 F3

F3

F2

F1 F0

F2

F1 F0

F1

F2

F1 F0

F2

F1 F0

F2

F1 F0

F3 F3

F2

F1 F0

F2

F1 F0

F2

F1 F0

F1

F1 F1

F14

5

6

7
8

9

10

13

order of execution
(not everything shown)

Algorithmic Foundations
COMP108

The execution of F(7)

F7

F6

F5

F5

F4 F4 F3

5

8

3

5

13 8

21

63

(Divide & Conquer)

F4 F3

F3

F2

F1 F0

F2

F1 F0

F1

F2

F1 F0

F2

F1 F0

F2

F1 F0

F3 F3

F2

F1 F0

F2

F1 F0

F2

F1 F0

F1

F1 F1

F1

return value
(not everything shown)

1 1

2

3

1

2

5 3

Algorithmic Foundations
COMP108

Time complexity - exponential
f(n) = f(n-1) + f(n-2) + 1

= [f(n-2)+f(n-3)+1] + f(n-2) + 1

> 2 f(n-2)

> 2 [2××××f(n-2-2)] = 22 f(n-4)

> 22 [2××××f(n-4-2)] = 23 f(n-6)

Suppose f(n)
denote the time
complexity to
compute F(n)

64

(Dynamic Programming)

> 22 [2××××f(n-4-2)] = 23 f(n-6)

> 23 [2××××f(n-6-2)] = 24 f(n-8)

…

> 2k f(n-2k)
If n is even, f(n) > 2n/2 f(0) = 2n/2

If n is odd, f(n) > f(n-1) > 2(n-1)/2

exponential in n

