Algorithmic Foundations

COMP108

COMP108 Algorithmic Foundations

Divide and Conquer

Prudence Wong

Algorithmic Foundations COMP108

Pancake Sorting

Input: Stack of pancakes, each of **different** sizes Output: Arrange in order of size (smallest on top) Action: Slip a flipper under one of the pancakes and flip over the whole stack above the flipper

Triomino Puzzle

2ⁿ-by-2ⁿ chessboard with one missing square & Input: many L-shaped tiles of 3 adjacent squares Question: Cover the chessboard with L-shaped tiles without overlapping

Robozzle - Recursion

Algorithmic Foundations COMP108

```
Task:
          certain area
Command: Go straight, Turn Left, Turn Right
```

to program a robot to pick up all stars in a

Divide and Conquer ...

Learning outcomes

- > Understand how divide and conquer works and able to analyse complexity of divide and conquer methods by solving recurrence
- > See examples of divide and conquer methods

(Divide & Conquer)

6

Algorithmic Foundations

Divide and Conquer

One of the **best-known** algorithm design techniques

Idea:

- > A problem instance is <u>divided</u> into several smaller instances of the same problem, ideally of about same size
- > The smaller instances are solved, typically recursively
- > The solutions for the smaller instances are <u>combined</u> to get a solution to the large instance

Algorithmic Foundations COMP108

Algorithmic Foundations

COMP108

Merge Sort ...

7

Merge sort

- > using divide and conquer technique
- > divide the sequence of n numbers into two halves
- > recursively sort the two halves
- merge the two sorted halves into a single sorted sequence

51, 13, 10, 64, 34, 5, 32, 21

Algorithmic Foundations COMP108

Algorithmic Foundations

COMP108

(Divide & Conquer)

(Divide & Conquer)

Algorithmic Foundations Algorithmic Foundations COMP108 Example Example if n=1 $T(n) = {1 }$ $T(n) = {1 }$ if n=1 (T(n/2) + 1 otherwise)otherwise Guess: $T(n) \leq 2 \log n$ Guess: $T(n) \leq 2 \log n$ For the base case when n=2, Assume true for all n' < n [assume $T(n/2) \le 2 \times \log(n/2)$] L.H.S = T(2) = T(1) + 1 = 2T(n) = T(n/2) + 1 $R.H.S = 2 \log 2 = 2$ $\leq 2 \times \log(n/2) + 1 \leftarrow by hypothesis$ $L.H.S \leq R.H.S$ $= 2 \times (\log n - 1) + 1 \leftarrow \log(n/2) = \log n - \log 2$ <2log n i.e., $T(n) \leq 2 \log n$ 33 (Divide & Conquer) Algorithmic Foundations COMP108 Algorithmic Foundations More example More example if n=1 if n=1 Prove that $T(n) = \begin{cases} 1 \\ T(n) = \end{cases}$ Prove that $|T(n) = \{1, 2\}$ is O(n) is O(n) $2 \times T(n/2) + 1$ otherwise $2 \times T(n/2) + 1$ otherwise

Guess: $T(n) \leq 2n - 1$

 $T(n) = 2 \times T(n/2) + 1$

= 2n - 1

= 2n - 2 + 1

Assume true for all n' < n [assume $T(n/2) \le 2(n/2)-1$]

 $\leq 2 \times (2 \times (n/2) - 1) + 1 \leftarrow by hypothesis$

i.e., $T(n) \le 2n-1$

Guess: $T(n) \leq 2n - 1$

(Divide & Conquer)

35

36

COMP108

34

(Divide & Conquer)

COMP108

Algorithmic Foundations COMP108

Tower of Hanoi - Rules

Only 1 disk can be moved at a time

A disc cannot be placed on top of other discs that are smaller than it

Target: Use the smallest number of moves

41 (Divide & Conquer)

COMP108

Algorithmic Foundations Tower of Hanoi - One disc only

Easy! Need one move only.

Tower of Hanoi - One disc only

Algorithmic Foundations COMP108

Algorithmic Foundations

COMP108

Tower of Hanoi - Two discs

We first need to move Disc-2 to C, How? by moving Disc-1 to B first, then Disc-2 to C

Algorithmic Foundations COMP108

47

Tower of Hanoi - Two discs

Tower of Hanoi - Three discs

We first need to move Disc-3 to C, How?

> Move Disc-1&2 to B (recursively)

Tower of Hanoi - Two discs

В

А

48

С

Algorithmic Foundations

COMP108

51 (Divide & Conquer)

move 1 disc

from A to C

move 1 disc

from C to B

move 1 disc

from B to A

52

move 1 disc

from A to C

50

Algorithmic Foundations COMP108

Fibonacci number ...

Fibonacci's Rabbits

A pair of rabbits, one month old, is too young to reproduce. Suppose that in their second month, and every month thereafter, they produce a new pair.

Algorithmic Foundations

COMP108

Algorithmic Foundations COMP108

Algorithmic Foundations COMP108

Petals on flowers

euphorbia

13 petals:

1 petal: white calla lilv

8 petals:

bloodroot

5 petals:

columbine

21 petals: black-eyed susan shasta daisy

trillium

34 petals: field daisy

Search: Fibonacci Numbers in Nature

59

Fibonacci number

Fibonacci number F(n)

 $\begin{cases} 1 & \text{if } n = 0 \text{ or } 1 \\ F(n-1) + F(n-2) & \text{if } n > 1 \end{cases}$

n	0	1	2	3	4	5	6	7	8	9	10
F(n)	1	1	2	3	5	8	13	21	34	55	89

Pseudo code for the recursive algorithm: Algorithm F(n) if n==0 or n==1 then return 1 else return F(n-1) + F(n-2)

(Divide & Conquer)

60

