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Pancake Sorting
Input: Stack of pancakes, each of different sizes

Output: Arrange in order of size (smallest on top)

Action: Slip a flipper under one of the pancakes and 
flip over the whole stack above the flipper
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Triomino Puzzle
Input: 2n-by-2n chessboard with one missing square &

many L-shaped tiles of 3 adjacent squares
Question: Cover the chessboard with L-shaped tiles 

without overlapping

Is it do-able?
2n

2n
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Robozzle - Recursion
Task: to program a robot to pick up all stars in a 

certain area
Command: Go straight, Turn Left, Turn Right
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Divide and Conquer …
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Learning outcomes

� Understand how divide and conquer works and 
able to analyse complexity of divide and conquer 
methods by solving recurrence

� See examples of divide and conquer methods
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Divide and Conquer
One of the best-known algorithm design 
techniques

Idea:

�A problem instance is divided into several smaller
instances of the same problem, ideally of about 
same size
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instances of the same problem, ideally of about 
same size

� The smaller instances are solved, typically 
recursively

� The solutions for the smaller instances are 
combined to get a solution to the large instance
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Merge Sort …
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Merge sort

� using divide and conquer technique

� divide the sequence of n numbers into two halves

� recursively sort the two halves

� merge the two sorted halves into a single sorted 
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� merge the two sorted halves into a single sorted 
sequence
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51, 13, 10, 64, 34, 5, 32, 21

we want to sort these 8 numbers,
divide them into two halves
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51, 13, 10, 64, 34, 5, 32, 21

51, 13, 10, 64 34, 5, 32, 21

divide these 4 
numbers into 

halves

similarly for 
these 4
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halves
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51, 13, 10, 64, 34, 5, 32, 21

51, 13, 10, 64 34, 5, 32, 21

51, 13 10, 64 34, 5 32, 21

further divide each shorter sequence …
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further divide each shorter sequence …
until we get sequence with only 1 number
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51, 13, 10, 64, 34, 5, 32, 21

51, 13, 10, 64 34, 5, 32, 21

51, 13 10, 64 34, 5 32, 21

51 13 10 64 34 5 32 21
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51 13 10 64 34 5 32 21

merge pairs of 
single number into 
a sequence of 2 
sorted numbers
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51, 13, 10, 64, 34, 5, 32, 21

51, 13, 10, 64 34, 5, 32, 21

51, 13 10, 64 34, 5 32, 21

51 13 10 64 34 5 32 21
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51 13 10 64 34 5 32 21

13, 51 10, 64 5, 34 21, 32

then merge again into sequences of 
4 sorted numbers

Algorithmic Foundations
COMP108

51, 13, 10, 64, 34, 5, 32, 21

51, 13, 10, 64 34, 5, 32, 21

51, 13 10, 64 34, 5 32, 21

51 13 10 64 34 5 32 21
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51 13 10 64 34 5 32 21

13, 51 10, 64 5, 34 21, 32

10, 13, 51, 64 5, 21, 32, 34

one more merge give the final sorted sequence
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51, 13, 10, 64, 34, 5, 32, 21

51, 13, 10, 64 34, 5, 32, 21

51, 13 10, 64 34, 5 32, 21

51 13 10 64 34 5 32 21
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51 13 10 64 34 5 32 21

13, 51 10, 64 5, 34 21, 32

5, 10, 13, 21, 32, 34, 51, 64

10, 13, 51, 64 5, 21, 32, 34
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Summary

Divide

� dividing a sequence of n numbers into two
smaller sequences is straightforward

Conquer
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�merging two sorted sequences of total length 
n can also be done easily, at most n-1
comparisons
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10, 13, 51, 64 5, 21, 32, 34

To merge two sorted sequences,

Result:
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To merge two sorted sequences,
we keep two pointers, one to each sequence

Compare the two numbers pointed,
copy the smaller one to the result

and advance the corresponding pointer
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10, 13, 51, 64 5, 21, 32, 34

Then compare again the two numbers

5, Result:
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Then compare again the two numbers
pointed to by the pointer;

copy the smaller one to the result
and advance that pointer
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10, 13, 51, 64 5, 21, 32, 34

Repeat the same process …

5, 10,  Result:
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Repeat the same process …
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10, 13, 51, 64 5, 21, 32, 34

Again …

5, 10, 13Result:
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Again …
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10, 13, 51, 64 5, 21, 32, 34

and again …

5, 10, 13, 21Result:
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and again …
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10, 13, 51, 64 5, 21, 32, 34

…

5, 10, 13, 21, 32Result:
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…
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10, 13, 51, 64 5, 21, 32, 34

When we reach the end of one sequence,

5, 10, 13, 21, 32, 34Result:
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When we reach the end of one sequence,
simply copy the remaining numbers in the other 

sequence to the result 
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10, 13, 51, 64 5, 21, 32, 34

Then we obtain the final sorted sequence

5, 10, 13, 21, 32, 34, 51, 64Result:
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Then we obtain the final sorted sequence
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Pseudo code
Algorithm Mergesort(A[1..n])Algorithm Mergesort(A[1..n])

if n > 1 then begin

copy A[1..n/2] to B[1..n/2]

copy A[n/2+1..n] to C[1..n/2]

Mergesort(B[1..n/2])
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Mergesort(B[1..n/2])

Mergesort(C[1..n/2])

Merge(B, C, A)

end
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51, 13, 10, 64, 34, 5, 32, 21

51, 13, 10, 64 34, 5, 32, 21

51, 13 10, 64 34, 5 32, 21

51 13 10 64 34 5 32 21

MS( )

MS(

MS(

MS(

MS( )

) MS( ) MS( ) MS( )

)MS( ) MS( ) MS( ) MS( )MS( ) MS( )MS( )

)
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51 13 10 64 34 5 32 21

13, 51 10, 64 5, 34 21, 32

5, 10, 13, 21, 32, 34, 51, 64

10, 13, 51, 64 5, 21, 32, 34

MS( )MS( ) MS( ) MS( ) MS( )MS( ) MS( )MS( )

M( ), M( ),

M( , )
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Pseudo code
Algorithm Merge(B[1..p], C[1..q], A[1..p+q])

set i=1, j=1, k=1

while i<=p and j<=q do

begin

if B[i]≤≤≤≤C[j] then

set A[k] = B[i] and i = i+1
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set A[k] = B[i] and i = i+1

else set A[k] = C[j] and j = j+1

k = k+1

end

if i==p+1 then copy C[j..q] to A[k..(p+q)]

else copy B[i..p] to A[k..(p+q)]
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10, 13, 51, 64 5, 21, 32, 34B: C:

p=4 q=4

i j k A[ ]

Before loop 1 1 1 empty

End of 1st iteration 1 2 2 5

End of 2nd iteration 2 2 3 5, 10
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End of 3rd 3 2 4 5, 10, 13

End of 4th 3 3 5 5, 10, 13, 21

End of 5th 3 4 6 5, 10, 13, 21, 32

End of 6th 3 5 7 5, 10, 13, 21, 32, 34

5, 10, 13, 21, 32, 34, 51, 64
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Time complexity
Let T(n) denote the time complexity of Let T(n) denote the time complexity of 
running merge sort on n numbers.

1 if n=1

2××××T(n/2) + n otherwise
T(n) =

We call this formula a recurrence.
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We call this formula a recurrence.

A recurrence is an equation or inequality that 
describes a function in terms of its value on 
smaller inputs.

To solve a recurrence is to derive asymptotic 
bounds on the solution
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Time complexity
Prove that is O(n log n)

Make a guess: T(n) ≤≤≤≤ 2 n log n (We prove by MI)

For the base case when n=2,For the base case when n=2,

1 if n=1

2××××T(n/2) + n otherwise
T(n) =
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For the base case when n=2,
L.H.S = T(2) = 2××××T(1) + 2 = 4,
R.H.S = 2 ×××× 2 log 2 = 4
L.H.S ≤≤≤≤ R.H.S

Substitution method
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Time complexity
Prove that is O(n log n)

Make a guess: T(n) ≤≤≤≤ 2 n log n (We prove by MI)

Assume true for all n'<n  [assume T(n/2) ≤≤≤≤ 2 (n/2) log(n/2)]

T(n) = 2××××T(n/2)+n

1 if n=1

2××××T(n/2) + n otherwise
T(n) =

by hypothesis
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T(n) = 2××××T(n/2)+n

≤≤≤≤ 2 ×××× (2××××(n/2)xlog(n/2)) + n

= 2 n (log n - 1) + n

= 2 n log n - 2n + n

≤≤≤≤ 2 n log n
i.e., T(n) ≤≤≤≤ 2 n log n

by hypothesis
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Example

Guess: T(n) ≤≤≤≤ 2 log n

1 if n=1

T(n/2) + 1 otherwise
T(n) =

For the base case when n=2,

33

(Divide & Conquer)

L.H.S = T(2) = T(1) + 1 = 2

R.H.S = 2 log 2 = 2

L.H.S ≤ R.H.S
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Example

Guess: T(n) ≤≤≤≤ 2 log n

Assume true for all n' < n  [assume T(n/2) ≤ 2 x log (n/2)]

1 if n=1

T(n/2) + 1 otherwise
T(n) =
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Assume true for all n' < n  [assume T(n/2) ≤ 2 x log (n/2)]

T(n) =T(n/2) + 1

≤2 x log(n/2) + 1← by hypothesis

=2x(log n – 1) + 1 ← log(n/2) = log n – log 2

<2log n
i.e., T(n) ≤≤≤≤ 2 log n
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More example
Prove that is O(n)

Guess: T(n) ≤≤≤≤ 2n – 1

For the base case when n=1,

1 if n=1

2××××T(n/2) + 1 otherwise
T(n) =
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For the base case when n=1,
L.H.S = T(1) = 1
R.H.S = 2××××1 - 1 = 1 
L.H.S ≤≤≤≤ R.H.S

Algorithmic Foundations
COMP108

More example
Prove that is O(n)

Guess: T(n) ≤≤≤≤ 2n – 1

Assume true for all n' < n [assume T(n/2) ≤≤≤≤ 2(n/2)-1]

T(n) = 2××××T(n/2)+1

1 if n=1

2××××T(n/2) + 1 otherwise
T(n) =
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T(n) = 2××××T(n/2)+1

≤≤≤≤ 2 ×××× (2××××(n/2)-1) + 1 ← by hypothesis

= 2n – 2 + 1

= 2n - 1 i.e., T(n) ≤≤≤≤ 2n-1
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Summary

Depending on the recurrence, we can guess the 
order of growth

T(n) = T(n/2)+1 T(n) is O(log n)

T(n) = 2××××T(n/2)+1 T(n) is O(n)
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T(n) = 2××××T(n/2)+1 T(n) is O(n)

T(n) = 2××××T(n/2)+n T(n) is O(n log n)
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Tower of Hanoi …
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Tower of Hanoi - Initial config

There are three pegs and some discs of different 
sizes are on Peg A
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3
2
1

A B C
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Tower of Hanoi - Final config 

Want to move the discs to Peg C
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3
2
1

A B C
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Tower of Hanoi - Rules

Only 1 disk can be moved at a time

A disc cannot be placed on top of other discs that 
are smaller than it
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3
2

Target: Use the smallest number of moves
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Tower of Hanoi - One disc only

Easy!
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1

A B C
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Tower of Hanoi - One disc only

Easy!  Need one move only.

43

(Divide & Conquer)

1

A B C
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Tower of Hanoi - Two discs

We first need to move Disc-2 to C, How?

by moving Disc-1 to B first, then Disc-2 to C
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2
1

A B C
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Tower of Hanoi - Two discs

Next?

Move Disc-1 to C
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2

A B C

1
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Tower of Hanoi - Two discs

Done!
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2
1

A B C
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Tower of Hanoi - Three discs

We first need to move Disc-3 to C, How?

�Move Disc-1&2 to B (recursively)

47
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3
2
1

A B C
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Tower of Hanoi - Three discs

We first need to move Disc-3 to C, How?

�Move Disc-1&2 to B (recursively)

� Then move Disc-3 to C
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3 2

A B C

1
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Tower of Hanoi - Three discs

Only task left: move Disc-1&2 to C (similarly as 
before)
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32
1

A B C
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Tower of Hanoi - Three discs

Done!
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3
2
1

A B C
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Tower of Hanoi

ToH(num_disc, source, dest, spare)

begin

if (num_disc > 1) then

ToH(num_disc-1, source, spare, dest)

Move the disc from source to dest

if (num_disc > 1) then

invoke by calling
ToH(3, A, C, B)

if (num_disc > 1) then

ToH(num_disc-1, spare, dest, source)

end
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move 1 disc
from A to C

ToH(2, A, B, C) ToH(2, B, C, A)

ToH(1, A, C, B) ToH(1, C, B, A)

move 1 disc

ToH(1, B, A, C) ToH(1, A, C, B)

move 1 disc
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move 1 disc
from A to B

move 1 disc
from A to C

move 1 disc
from C to B

move 1 disc
from B to C

move 1 disc
from B to A

move 1 disc
from A to C
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move 1 disc
from A to C

ToH(2, A, B, C) ToH(2, B, C, A)

ToH(1, A, C, B) ToH(1, C, B, A)

move 1 disc

ToH(1, B, A, C) ToH(1, A, C, B)

move 1 disc

1

2
4

5

7 8

9
11

12
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move 1 disc
from A to B

move 1 disc
from A to C

move 1 disc
from C to B

move 1 disc
from B to C

move 1 disc
from B to A

move 1 disc
from A to C

3 6 10 13

from A to C; from A to B; from C to B;
from A to C;

from B to A; from B to C; from A to C;
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move n-1 
discs from 
B to C

Time complexity

T(n) = T(n-1) + 1 + T(n-1) 

Let T(n) denote the time 
complexity of running 
the Tower of Hanoi 
algorithm on n discs.

move n-1 
discs from 
A to B

move  Disc-n 
from A to C
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1 if n=1

2××××T(n-1) + 1 otherwise

from A to C

T(n) =
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Time complexity (2)
T(n) = 2××××T(n-1) + 1

= 2[2××××T(n-2) + 1] + 1

= 22 T(n-2) + 2 + 1

= 22 [2××××T(n-3) + 1] + 21 + 20

= 23 T(n-3) + 22 + 21 + 20

1 if n=1

2××××T(n-1) + 1 otherwise
T(n) =
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= 2 T(n-3) + 2 + 2 + 2
…
= 2k T(n-k) + 2k-1 + 2k-2 + … + 22 + 21 + 20

…
= 2n-1 T(1) + 2n-2 + 2n-3 + … + 22 + 21 + 20

= 2n-1 + 2n-2 + 2n-3 + … + 22 + 21 + 20

= 2n-1
In Tutorial 2, we prove by MI that
20 + 21 + … + 2n-1 = 2n-1

i.e., T(n) is O(2n)iterative 
method
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Summary - continued

Depending on the recurrence, we can guess the 
order of growth

T(n) = T(n/2)+1 T(n) is O(log n)

T(n) = 2××××T(n/2)+1 T(n) is O(n)
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T(n) = 2××××T(n/2)+1 T(n) is O(n)

T(n) = 2××××T(n/2)+n T(n) is O(n log n)

T(n) = 2××××T(n-1)+1 T(n) is O(2n)
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Fibonacci number …
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Fibonacci's Rabbits
A pair of rabbits, one month old, is too young to reproduce. 

Suppose that in their second month, and every month 
thereafter, they produce a new pair.
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end of
month-0

end of
month-1

end of
month-3

end of
month-4

How many 
at end of

month-5, 6,7
and so on?

end of
month-2
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Petals on flowers

1 petal:
white calla lily

2 petals:
euphorbia

3 petals:
trillium

5 petals:
columbine
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8 petals:
bloodroot

13 petals:
black-eyed susan

21 petals:
shasta daisy

34 petals:
field daisy

Search: Fibonacci Numbers in Nature
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Fibonacci number
Fibonacci number F(n)

F(n) = 
1 if n = 0 or 1
F(n-1) + F(n-2) if n > 1

n 0 1 2 3 4 5 6 7 8 9 10

F(n) 1 1 2 3 5 8 13 21 34 55 89
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F(n) 1 1 2 3 5 8 13 21 34 55 89

Pseudo code for the recursive algorithm:Pseudo code for the recursive algorithm:
Algorithm F(n)

if n==0 or n==1 then

return 1

else

return F(n-1) + F(n-2)
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The execution of F(7)

F7

F6

F5

F5

F4 F4 F3
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F4 F3

F3

F2

F1 F0

F2

F1 F0

F1

F2

F1 F0

F2

F1 F0

F2

F1 F0

F3 F3

F2

F1 F0

F2

F1 F0

F2

F1 F0

F1

F1 F1

F1
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The execution of F(7)

F7

F6

F5

F5

F4 F4 F3

1
2

3
18

27
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F4 F3

F3

F2

F1 F0

F2

F1 F0

F1

F2

F1 F0

F2

F1 F0

F2

F1 F0

F3 F3

F2

F1 F0

F2

F1 F0

F2

F1 F0

F1

F1 F1

F14

5

6

7
8

9

10

13

order of execution
(not everything shown)
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The execution of F(7)

F7

F6

F5

F5

F4 F4 F3

5

8

3

5

13 8

21
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F4 F3

F3

F2

F1 F0

F2

F1 F0

F1

F2

F1 F0

F2

F1 F0

F2

F1 F0

F3 F3

F2

F1 F0

F2

F1 F0

F2

F1 F0

F1

F1 F1

F1

return value
(not everything shown)

1 1

2

3

1

2

5 3
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Time complexity - exponential
f(n) = f(n-1) + f(n-2) + 1 

= [f(n-2)+f(n-3)+1] + f(n-2) + 1

> 2 f(n-2)

> 2 [2××××f(n-2-2)] = 22 f(n-4)

> 22 [2××××f(n-4-2)] = 23 f(n-6)

Suppose f(n) 
denote the time 
complexity to 
compute F(n)
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> 22 [2××××f(n-4-2)] = 23 f(n-6)

> 23 [2××××f(n-6-2)] = 24 f(n-8)

…

> 2k f(n-2k)
If n is even, f(n) > 2n/2 f(0) = 2n/2

If n is odd, f(n) > f(n-1) > 2(n-1)/2

exponential in n


