COMP108 Algorithmic Foundations Tutorial 2 $$\rm w/c$ 10th February 2014

Name:
Hand this in to the demonstrator at the end of the tutorial even if you haven't finished it. You will get feedback in the next tutorial. Tutorial participation contributes to 5% of overall marks.
1. Alice goes to the sports centre every x days on day x , $2x$, $3x$, \cdots while Bob goes every y days on day y , $2y$, $3y$, \cdots . They want to know on which days they will see each other in the sports centre. Write a pseudo code of a while-loop to output all those days for up to 100 days. For example, if $x = 4$ and $y = 6$, then the output should be $12, 24, 36, 48, 60, 72, 84, 96$.
2. Prove by mathematical induction that $2^0 + 2^1 + 2^2 + \cdots + 2^n = 2^{n+1} - 1$, for all integers $n \ge 0$.

3. Prove by mathematical induction about the sum of odd integers:

$$1 + 3 + 5 + \dots + (2n - 1) = n^2$$
, for all integers $n \ge 1$.

4. [Puzzle] Nine balls look identical except one is of different weight (can be heavier or lighter). How can you weigh only three times on a balance scale to find out which one is different and whether it is heavier and lighter?

5. [For those who want more exercises on Mathematical Induction.] Prove the following property by mathematical induction.

$$\sum_{i=0}^{n} (1+4i) = (n+1)(2n+1) \text{ for all integers } n \ge 0.$$

Note that $\sum_{i=0}^{n} (1+4i) = 1+5+9+\ldots+(1+4(n-1))+(1+4n)$.