
COMP108 Algorithmic Foundations

Tutorial 6

w/c 10th March 2014

Name:

Hand this in to the demonstrator at the end of the tutorial even if you haven’t finished it. You will

get feedback in the next tutorial. Tutorial participation contributes to 5% of overall marks.

1. What is the time complexity (in Big-O notation) of the following pseudo code?

a = 1, b = n, c = ⌊a+b

2
⌋

while a ≤ b do
begin

Output c
if c is odd then

a = c+ 1
else // i.e., c is even

b = c− 1
c = ⌊a+b

2
⌋

end

2. (a) Describe a divide-and-conquer algorithm to find the sum of the numbers in an array A[]
with n integers A[1]..A[n].

1

(b) Explain why the time complexity T (n) of your algorithm in (2a) can be described by the
following recurrence.

T (n) =

{

1 if n = 1
2× T (n

2
) + 1 if n > 1

(c) Consider the function T (n) defined in (2b) Prove that T (n) is O(n) by the substitution

method, i.e., use mathematical induction.

We are going to prove that T (n) ≤ 2× n− 1 for all n ≥ 1.

Base case:

When n = 1, L.H.S. T (1) = R.H.S. =

Therefore, L.H.S. = R.H.S.

Induction hypothesis: Assume that the property holds for all integers n′ < n, i.e.,
assume

T

(

n

2

)

≤ 2×
n

2
− 1

Induction step:

We want to prove T (n) ≤ 2 × n − 1.

[The induction step can be proved by first using the recurrence to express T (n) in terms
of T (n

2
), and then use the hypothesis.]

L.H.S. =

Therefore, L.H.S. ≤ R.H.S. and the property holds for n.

Conclusion: T (n) ≤ 2× n− 1 for all positive integers n and therefore, T (n) is O(n).

2

