
UNIVERSITY OF LIVERPOOL

DOCTORAL THESIS

Manifolds & Memory
Improving the Search Speed of Evolutionary

Algorithms

Author:
James BUTTERWORTH

Supervisors:
Prof. Karl TUYLS

Prof. Rahul SAVANI

A thesis submitted in fulfillment of the requirements
for the degree of Doctor of Philosophy

in the

Department of Computer Science

June 4, 2023

https://www.liverpool.ac.uk/
https://www.liverpool.ac.uk/computer-science/

iii

Declaration of Authorship
I, James BUTTERWORTH, declare that this thesis titled, “Manifolds & Memory: Im-
proving the Search Speed of Evolutionary Algorithms” and the work presented in it
are my own. I confirm that:

• This work was done wholly or mainly while in candidature for a research de-
gree at this University.

• Where any part of this thesis has previously been submitted for a degree or
any other qualification at this University or any other institution, this has been
clearly stated.

• Where I have consulted the published work of others, this is always clearly
attributed.

• Where I have quoted from the work of others, the source is always given. With
the exception of such quotations, this thesis is entirely my own work.

• I have acknowledged all main sources of help.

• Where the thesis is based on work done by myself jointly with others, I have
made clear exactly what was done by others and what I have contributed my-
self.

Signed:

Date:

James Butterworth

James Butterworth
04/06/2023

v

“We shall not cease from exploration
And the end of all our exploring

Will be to arrive where we started
And know the place for the first time.”

- Little Gidding (1942)
T. S. Eliot

vii

UNIVERSITY OF LIVERPOOL

Abstract
Faculty of Science and Engineering
Department of Computer Science

Doctor of Philosophy

Manifolds & Memory: Improving the Search Speed of Evolutionary Algorithms

by James BUTTERWORTH

Evolutionary Algorithms (EA) are a set of algorithms inspired by Darwin’s the-
ory of Natural Selection that are well equipped to perform a wide variety of opti-
misation tasks. Due to their use as a derivative-free continuous value optimisation
algorithm, EAs are often compared to gradient based optimisation techniques, such
as stochastic gradient descent (SGD). However, EAs are generally deemed subpar to
gradient based techniques, evidenced by the fact that none of the most commonly
used Deep Learning frameworks implement EAs as a neural network optimisation
algorithm, and that the majority of neural networks are optimised using gradient
based techniques. Nevertheless, despite often cited as being too slow to optimise
large parameter spaces, such as large neural networks, numerous recent works [123,
138] have shown that EAs can outperform gradient based techniques at reinforce-
ment learning (RL) control tasks.

The aim of this work is to add more credence to the claim that EAs are a compet-
itive technique for real valued optimisation by demonstrating how the search speed
of EAs can be increased. We achieve this using two distinct techniques.

Firstly, knowledge from the optimisation of a set of source problems is reused
to improve search performance on a set of unseen, target problems. This reuse of
knowledge is achieved by embedding information with respect to the location of
high fitness solutions in an indirect encoding (IE). In this thesis, we learn an IE by
training generative models to model the distribution of previously located solutions
to a set of source problems. We subsequently perform evolutionary search within
the latent space of the generative part of the model on various target problems from
the same ‘family’ as the source problems. We perform the first comparative analysis
of IEs derived from autoencoders, variational autoencoders (VAE), and generative
adversarial networks (GAN) for the optimisation of continuous functions. We also
demonstrate for the first time how these techniques can be utilised to perform trans-
fer learning on RL control tasks. We show that all three types of IE outperform direct
encoding (DE) baselines on one or more of the problems considered. We also per-
form an in-depth analysis into the behaviour of each IE type, which allows us to
suggest remediations to some of the pathologies discovered.

The second technique explored is a modification to an existing neuroevolution-
ary (the evolution of neural networks) algorithm, NEAT [137]. NEAT is a topology
and weight evolving artificial neural network, meaning that both the weights and
the architecture of the neural network are optimised simultaneously. Although the
original NEAT algorithm includes recurrent connections, they typically have trouble
memorising information over long time horizons. Therefore, we introduce a novel
algorithm, NEAT-GRU, that is capable of mutating gated recurrent units (GRU) into

HTTPS://WWW.LIVERPOOL.AC.UK/
https://www.liverpool.ac.uk/science-and-engineering/
https://www.liverpool.ac.uk/computer-science/

viii

the network. We show that NEAT-GRU outperforms NEAT and hand coded base-
lines at generalised maze solving tasks. We also show that NEAT-GRU is the only
algorithm tested that can locate solutions for a much harder navigational task where
the bearing (relative angle) towards the target is not provided to the agent.

Overall we have introduced two novel techniques that have successfully achieved
an increase in EA search speed, further attesting to their competitiveness compared
to gradient based techniques.

ix

Acknowledgements
I would first like to give my heartfelt thanks to my supervisors. Karl Tuyls, you

believed in me enough to give me the opportunity to pursue this PhD. Throughout
it you have provided me with a lot of freedom to conduct the research that was both
pertinent and personally intrigued me. Thank you for introducing me to the field
of Evolutionary Algorithms and robotics, and welcomingly me so warmly into the
smARTLab.

Rahul Savani, you took on the responsibility as my second supervisor half way
through my PhD and immediately got to work providing in-depth valuable techni-
cal advice. Your ability to grasp the bigger picture all the way down to the miniature
details over such a wide variety of areas has always impressed and inspired me.
Your stoic approach to problems has taught me how to be calm in the face of seem-
ingly impossible tasks. Along with Karl, you have taught me how to both strive
for excellence, and how to treat people for whom you are professionally responsible
with respect and compassion.

I would never have gotten through this PhD without the advice, support and
many laughs afforded by my colleagues at the University of Liverpool. Greg Palmer,
we began this journey together as undergraduate students with no knowledge of
AI. Together we discovered how fascinating it could be by using evolutionary al-
gorithms to evolve simulated fighting agents for our second year group project. I
remember the delight on your face when you excitedly presented me with the re-
sults of an overnight evolutionary run, which had produced an agent with an ability
to snipe other agents from long distances. It was safe to say from that point, we
were hooked. Jacopo Castellini your joy is infectious and it has helped me greatly
through a number of really tough times. You were also a source of many interesting
and helpful discussions. Tom Spooner thank you for the many conversations where
we spoke about how much we love programming, and the many times that we threw
AI ideas around. Others including Kimberley McGuire, Daniel Fernandes Gomes,
Bastian Broecker, Shan Luo, Paolo Paoletti, Paul Dunne, Frans Oliehoek, Martin
Gairing, and Joe Jerome provided lots of technical advice and support. Thank you
to the numerous support staff over the years for providing a safe space to escape
when the stresses of the PhD all got too much: Lindsay, Rebekah, Jamie, Helen,
and Alison.

I would like to thank Benjamin Schnieders, a great friend who is unfortunately
no longer with us. We shared a lot of great times together, the trials and tribulations
of doing a PhD, and a particularly memorable trip to Germany to partake in the
RoboCup @ Work competition. You taught me so much about about programming,
C++, and the joys of robotics. We lost you at the end of 2018, at which time I knew
you still viewed me as a C++ beginner, but I hope now you would be proud of how
much I have learnt. Not a day goes by that there isn’t a little bit of what you taught
me in everything that I build.

Between October 2019 and April 2020 I undertook an internship at NNAISENSE
in Lugano, Switzerland. I am so grateful for this opportunity, for which I thank
Faustino Gomez. I learnt so much from my colleagues there, especially my good
friend Vojtěch Micka. Vojta, thank you for looking after me throughout my time in
Lugano, and for being such a great friend during my time there and since then also.

I would finally like to thank my friends and family. My parents, Neal and Lynne,
for everything. Dad, thank you for instilling in me an enthusiasm for life and the
confidence and abilities to achieve what I set my mind to. Mum, thank you for your
unwavering belief in me and all your love and support throughout my entire life.

x

I would also like to thank my sister, Win, for always being a constant source of joy
and tomfoolery.

Finally, I would like to thank Katie for the insurmountable support and guidance
both during this PhD and personally. This PhD has been more stressful for you than
it has been for me; partly because of my laid-back nature, and partly because you
so greatly want me to achieve everything that you believe me capable of. You have
taught me so much in such a short space of time about the type of person I want to
be, and for that I am eternally grateful.

xi

Contents

Declaration of Authorship iii

Abstract vii

Acknowledgements ix

1 Introduction 1
1.1 Research Questions . 2
1.2 Contributions . 3
1.3 Published Material . 4
1.4 Structure . 5

2 Preliminaries 7
2.1 Evolutionary Computation . 7

2.1.1 Evolution by Natural Selection 7
2.1.2 Evolutionary Algorithms . 8

A Canonical Evolutionary Algorithm 8
Brief history . 10
Genetic Algorithms . 10
Evolution Strategies . 11
Evolutionary Programming . 12
Genetic Programming . 13

2.1.3 CMAES . 13
2.2 Indirect Encodings . 14
2.3 Neural Networks . 17

2.3.1 Brief history . 18
2.3.2 Backpropagation . 19
2.3.3 Gated Recurrent Units (GRU) . 19

2.4 Neuroevolution . 20
2.4.1 NEAT . 21

2.5 Generative Models . 24
2.5.1 Generative Adversarial Networks (GAN) 24
2.5.2 Autoencoders . 25
2.5.3 Variational Autoencoders (VAE) 25

3 Indirect Encodings for Continuous Optimisation 29
Contributions . 30

3.1 Mathematical Framework . 30
3.2 Methodology . 32
3.3 Experiments . 33

3.3.1 Bivariate quadratic linear . 34
Code size 1 IEs . 34
Code size 2 IEs . 36

xii

3.3.2 Bivariate quadratic non-linear 38
Code size 1 IEs . 38
Code size 2 IEs . 41

3.4 Discussion . 47
3.5 Future Work . 48
3.6 Conclusion . 49

4 Generative Models over Neural Controllers for Transfer Learning 51
Contributions . 52

4.1 Related Work . 52
4.2 Conceptual Overview . 53
4.3 Methodology . 54
4.4 Experiments . 55

4.4.1 Continuous Mountain Car . 55
4.4.2 Frozen Lake . 58
4.4.3 Bipedal Walker . 62

4.5 Discussion . 63
4.6 Future Work . 66
4.7 Conclusion . 67

5 Evolving Navigational Strategies Using GRUs in NEAT 69
Contributions . 70

5.1 Related Work . 71
5.1.1 Bug Algorithms . 71
5.1.2 Evolutionary Techniques . 73
5.1.3 Reinforcement Learning . 75
5.1.4 Novelty of our Work . 75

5.2 NEAT-GRU . 76
5.3 Experimental Setup . 77

5.3.1 I-Bug . 77
5.3.2 Evolutionary Setup . 78

Bearing Experiments . 78
No Bearing Experiments . 80

5.4 Results . 81
5.4.1 I-Bug . 81
5.4.2 Evolutionary Results . 81

Bearing Experiments . 81
No Bearing Experiments . 83

5.5 Discussion . 83
5.6 Subsequent Work . 85
5.7 Future Work . 85
5.8 Conclusion . 86

6 Conclusion 87
6.1 Research Questions & Contributions . 87
6.2 Wider Impact . 90
6.3 Limitations & Future Work . 91
6.4 Final Remarks . 93

xiii

A Additional Mathematical Optimisation Results 95
A.1 Bivariate quadratic linear results . 95
A.2 Bivariate quadratic non-linear results . 100

B Additional Control Domain Results 107
B.1 Frozen Lake results . 107
B.2 Bipedal Walker results . 109

C Hyperparameters 111
C.1 NEAT-GRU experiment hyperparameters 111

Bibliography 117

xv

List of Figures

2.1 A canonical evolutionary algorithm. The population of individuals
is randomly initialised (blue). Each individual is subject to a fitness
evaluation (red). Individuals are selected to reproduce based on their
newly acquired fitness values (yellow). Genetic operators, such as
mutation and crossover, are applied to the genes of the individuals
(orange). The new child individuals form the new population, which
are in turn subject to fitness evaluations. This process repeats until
a certain fitness is achieved or a maximum number of generations is
attained. 9

2.2 The neurons of the larger network are defined by their coordinates
with respect to one another. For every permutation of neuron pairs in
the substrate of the larger network, the x and y values of the coordi-
nates are input into the CPPN. The CPPN outputs a weight value for
the connection between every neuron pair. Image source: [135] 16

2.3 An example CPPN that takes substrate coordinates as input and out-
puts a connection weight. The neuron activation functions consist of a
number of functions such as gaussian, sine, sigmoid, amongst others.
Image source: [134] . 16

2.4 A model of a neuron in an artificial neural network. Inputs are in
green, weights are in blue. Inputs get multiplied by weights and
summed at the output neuron, shown in blue. 17

2.5 A model of a recurrent neuron. Input is in green, weights are in blue.
Input gets multiplied by w1 and summed with w2 multiplied by the
previous output yt�1 and the bias w3. 20

2.6 Illustration of a GRU cell. Sigmoid and hyperbolic tan activation func-
tions are represented by ‘sig’ and ‘tanh’ respectively. The multipli-
cation symbol, ⇥, represents the Hadamard product. Image source:
https://en.wikipedia.org/wiki/Gated_recurrent_unit 21

2.7 The crossover process in NEAT. Each parent has a set of genes rep-
resenting the connections between nodes. Each gene has a historical
marking integer which is incremented each time a new gene is mu-
tated into a network, and a weight value. The blue genes represent
those that originate from parent 1 and the red genes represent those
that are new in parent 2, including weight mutations on the genes
that have the same historical marking as those from parent 1. During
crossover the child inherits common (matching) genes randomly and
the disjoint and excess genes from the most fit parent (here parent 2
has the highest fitness). 22

https://en.wikipedia.org/wiki/Gated_recurrent_unit

xvi

2.8 A representation of the 3 types of mutations that can occur in NEAT.
A weight mutation perturbs the weight on connection number 3. A
structural add connection mutation adds connection number 8. A struc-
tural add node mutation adds node number 6 and in turn connections
6 and 7. 23

2.9 A representation of an autoencoder. The encoder takes input, x, (in
green) and passes it through hidden layers (yellow) to a lower dimen-
sional latent code, z. The decoder attempts to reconstruct x from z.

. 26
2.10 A representation of a variational autoencoder. The encoder maps the

input, x, to two vectors µ and ln s. The latent variable z is sampled
from the multivariate isotropic gaussian N (µ, s2I). The decoder at-
tempts to reconstruct input x from sampled latent code z. 27

3.1 5 evolutionary runs for a DE, a DEIS, an AE derived IE, and a VAE
derived IE with code sizes of 1 on the target problem, (a = 2, b = 2).
The fitnesses plotted are those of the best winner so far in the evolu-
tionary run. The solid lines are the mean values of the 5 runs, whereas
the dotted lines are the fitness values of the highest performing run. . 35

3.2 Enumerated manifold of the best performing AE derived IE of code
size 1. Enumeration occurs over the [0, 1] latent space at increments of
0.01. Maxima for the source and target problems are shown as green
and red crosses respectively. Training data for the generative models
is shown in yellow. 35

3.3 5 evolutionary runs for a DE, a DEIS, an AE derived IE, and a VAE
derived IE with code sizes of 2 on the target problem, (a = 2, b = 2).
The fitnesses plotted are those of the best winner so far in the evolu-
tionary run. The solid lines are the mean values of the 5 runs, whereas
the dotted lines are the fitness values of the highest performing run. . 36

3.4 Enumerated manifold of the best performing AE and VAE derived IEs
of code size 2. Maxima for the source and target problems are shown
as green and red crosses respectively. Training data for the generative
models is shown in yellow. 37

3.5 Code size 1 and 2 comparisons for each IE type (5 runs each) on the
(a = 2, b = 2) target problem. 37

3.6 5 evolutionary runs for a DE, and all 3 IEs with a code size of 1 on the
target problem, (a = 0.5, b = 0.25). The fitnesses plotted are those
of the best winner so far in the evolutionary run. The solid lines are
the mean values of the 5 runs, whereas the dotted lines are the fitness
values of the highest performing run. 39

3.7 Enumerated manifolds over the latent space of all 3 code size 1 IEs
on the target problem, (a = 0.5, b = 0.25). Maxima for the source
and target problems are shown as green and red crosses respectively.
Training data for the generative models is shown in yellow. 40

3.8 5 evolutionary runs for each of the 3 IEs with a code size of 1 on the
target problem, (a = �3.5, b = 12.25). The fitnesses plotted are those
of the best winner so far in the evolutionary run. The solid lines are
the mean values of the 5 runs, whereas the dotted lines are the fitness
values of the highest performing run. 41

xvii

3.9 5 evolutionary runs for a DE, a DEIS, and each of the 3 IEs with a code
size of 1 on the target problem, (a = 5, b = 25). The performance of
the AE and VAE are so similar that their separation is not clear on
this plot. The fitnesses plotted are those of the best winner so far in
the evolutionary run. The solid lines are the mean values of the 5
runs, whereas the dotted lines are the fitness values of the highest
performing run. 42

3.10 5 evolutionary runs for a DE and all 3 IEs with a code size of 2 on the
target problem, (a = 0.5, b = 0.25). The fitnesses plotted are those
of the best winner so far in the evolutionary run. The solid lines are
the mean values of the 5 runs, whereas the dotted lines are the fitness
values of the highest performing run. 43

3.11 Enumerated manifolds over the latent space of all 3 code size 2 IEs
on the target problem, (a = 0.5, b = 0.25). Maxima for the source
and target problems are shown as green and red crosses respectively.
Training data for the generative models is shown in yellow. 44

3.12 Zoomed enumerated manifold of the GAN derived IE from Figure
3.11c. It illustrates the folding of the manifold which might lead to
local optima in search. 45

3.13 5 evolutionary runs for a DEIS and each of the 3 IEs with a code size
of 2 on the target problem, (a = �3.5, b = 12.25). 45

3.14 5 evolutionary runs for a DE, a DEIS, and each of the 3 IEs with a code
size of 2 on the target problem, (a = 5, b = 25). 46

3.15 IE code size comparisons for each of the 3 IE types on each of the non-
linear target problems. Plots record the mean of the best winner so far
in the evolutionary run and the best of the best winners so far. 46

4.1 Fitness function plots for three different engine power settings in CMC.
Plots were generated by producing 1000 random neural networks and
assessing their fitnesses. The axes are the weight values of the neural
networks and the colour represents the fitness. 53

4.2 10 evolutionary runs for a DE, 5 evolutionary runs for a UC, and 5
evolutionary runs for an IE derived from a VAE with a code size of
1 on CMC with an engine power of 0.0014. The fitnesses plotted are
those of the best winner so far, this is the best solution found so far
during the evolutionary run. The solid lines are the mean fitnesses
of the runs and the dotted line is the best run according to the final
generation fitness. 57

4.3 Comparison of IEs derived from an autoencoder, a VAE, and a GAN
on CMC with test engine power 0.0014. All IEs use a code size of 1.
Universal controller is also shown for comparison but a direct encod-
ing is left out because its fitness values for the first few generations
are much lower. The fitnesses plotted are those of the best winner so
far, this is the best solution found so far during the evolutionary run.
The solid lines are the mean fitnesses over 5 evolutionary runs and
the dotted line is the best run according to the final generation fitness. 58

xviii

4.4 Comparison of IE performance between code sizes 1 and 2 on CMC
with test engine power 0.0014. The fitnesses plotted are those of the
best winner so far, this is the best solution found so far during the
evolutionary run. The solid lines are the mean fitnesses over 5 evolu-
tionary runs and the dotted line is the best run according to the final
generation fitness. 59

4.5 The weight space of the neural network controller for the CMC do-
main. The thistle, gold and dark orange points represent the training
data used to train the generative models. The grey dotted line labelled
‘IE manifold’ represents an enumeration over the one dimensional la-
tent space of the decoder derived from the VAE in Figure 4.2 mapped
into the two dimensional weight space. The enumeration is over the
range [-3,3] with increments of 0.05. The blue diamond at (-3.68, 89.58)
represents the best winner found by the decoder. The red and green
crosses represent the initial centroids of search for the DE and the UC,
respectively, with the dotted circles representing the initial sigma of
the search distributions. 59

4.6 10 evolutionary runs for the DE and 5 evolutionary runs for both the
UC and all 3 IEs on Frozen Lake with an target goal position of (1,3).
All IEs use a code size of 2. The fitnesses plotted are those of the best
winner so far, this is the best solution found so far during the evolu-
tionary run. The solid lines are the mean fitnesses over 5 evolutionary
runs (10 for the DE) and the dotted line is the best run according to
the final generation fitness. 60

4.7 Representations of the Frozen Lake environment highlighting the per-
centage of the population in a single generation that ends the episode
in a particular tile. Each tile in the 4x4 FL environment is labeled
by one of the following types: S, the starting location; F, frozen tile
(traversable); H, hole; and G, the goal location. The target domain
with goal position (1,3) is shown. The coordinates of the tile and the
aforementioned percentage are also shown. Each subfigure highlights
the state of the environment at different generations for the DE, UC
and GAN plotted in Figure 4.6. 61

4.8 10 evolutionary runs for the DE and 5 evolutionary runs for both the
UC and a GAN with code size = 2 on Bipedal Walker with a knee
speed of 5. The fitnesses plotted are those of the best winner so far.
The solid lines are the means of the runs and the dotted line is the best
run according to the final generation fitness. 63

4.9 Comparison of IEs derived from an autoencoder, a VAE, and a GAN
on BW with test knee speed 5. All IEs use a code size of 2. Universal
controller is also shown for comparison but a direct encoding is left
out because its fitness values for the first few generations are much
lower. The fitnesses plotted are those of the best winner so far, this is
the best solution found so far during the evolutionary run. The solid
lines are the mean fitnesses over 5 evolutionary runs and the dotted
line is the best run according to the final generation fitness. 64

4.10 PCA results for Frozen Lake neural controller weight space mapping
the training data (red) and enumerations over the GAN (yellow) and
VAE (blue) latent spaces to a 2 dimensional space for visualisation.
The latent space enumerations were performed between -3 and 3 with
a step size of 0.05. 65

xix

5.1 The ‘Com’ bug algorithm. The agent moves along a straight line to-
wards the target until an obstacle is met, it will then follow the obsta-
cle until it can continue on its path to the target. 72

5.2 A comparison of an example NEAT and NEAT-GRU network. Inputs
and outputs to the network are shown as yellow rectangles. Hidden
nodes and GRU nodes are highlighted in blue and green respectively.
Blue text illustrates network weights on connections. 76

5.3 An example of one of the randomly generated environments used in
the test set. The environment has a number of deceptive rooms and
corridor structures. One of the robots is the target and is motionless
throughout the run whereas the other robot contains the navigation
algorithm and aims to find the other robot. 78

5.4 Scatter charts showing the performance metrics for I-Bug and for the
10 genomes produced by NEAT-GRU that outperformed I-Bug. A
smaller trajectory length is more desirable. The 2 solutions that out-
performed I-Bug in all 3 metrics are highlighted in green and the 8
solutions that outperformed I-Bug in only 2 metrics are highlighted
in blue. 82

5.5 A graph showing the average population fitness and the max popu-
lation fitness during training for both GRU and non-GRU versions of
the bearing experiment. It shows the slight fitness increase attributed
to the inclusion of GRUs. The results are averaged over 20 runs. . . . 83

5.6 A graph showing the maximum fitness so far of the population dur-
ing training for both GRU and non-GRU versions of the non-bearing
experiment. It shows a dramatic fitness increase attributed to the in-
clusion of GRUs and how the non-GRU version plateaus at a score of
3000. The results were averaged over 10 runs. 84

A.1 5 evolutionary runs for a DE, a DE with informed start, and a GAN
derived IE with a code size of 1 on the target problem, (a = 2, b = 2).
The fitnesses plotted are those of the best winner so far in the evolu-
tionary run. The solid lines are the mean values of the 5 runs, whereas
the dotted lines are the fitness values of the highest performing run. . 95

A.2 Enumerated manifold of the best performing VAE derived IE of code
size 1. Enumeration occurs over the [-3, 3] latent space at increments
of 0.01. Maxima for the source and target problems are shown as
green and red crosses respectively. Training data for the generative
models is shown in yellow. 96

A.3 Enumerated manifold of the best performing GAN derived IE of code
size 1. Enumeration occurs over the [-30, 30] latent space at incre-
ments of 0.05. 97

A.4 5 evolutionary runs for a DE, a DE with informed start, and all 3 IE
types with a code size of 2 on the target problem, (a = 2, b = 2). The
fitnesses plotted are those of the best winner so far in the evolutionary
run. The solid lines are the mean values of the 5 runs, whereas the
dotted lines are the fitness values of the highest performing run. . . . 98

A.5 Enumerated manifold of the best performing GAN derived IE of code
size 2. Enumeration occurs over the [-3, 3] latent space at increments
of 0.05. Mode collapse has occured over the training points situated
at (0, 0). 99

xx

A.6 5 evolutionary runs for a DE, a DE with informed start, and all 3 IEs
with a code size of 1 on the target problem, (a = 0.5, b = 0.25). The
fitnesses plotted are those of the best winner so far in the evolutionary
run. The solid lines are the mean values of the 5 runs, whereas the
dotted lines are the fitness values of the highest performing run. . . . 100

A.7 5 evolutionary runs for a DE, a DE with informed start, and each of
the 3 IEs with a code size of 1 on the target problem, (a = �3.5, b =
12.25). The fitnesses plotted are those of the best winner so far in
the evolutionary run. The solid lines are the mean values of the 5
runs, whereas the dotted lines are the fitness values of the highest
performing run. 101

A.8 5 evolutionary runs for a DE, a DE with informed start, and all 3 IEs
with a code size of 2 on the target problem, (a = 0.5, b = 0.25). The
fitnesses plotted are those of the best winner so far in the evolutionary
run. The solid lines are the mean values of the 5 runs, whereas the
dotted lines are the fitness values of the highest performing run. . . . 102

A.9 5 evolutionary runs for a DE, a DE with informed start, and each of
the 3 IEs with a code size of 2 on the target problem, (a = �3.5, b =
12.25). The fitnesses plotted are those of the best winner so far in
the evolutionary run. The solid lines are the mean values of the 5
runs, whereas the dotted lines are the fitness values of the highest
performing run. 103

A.10 Enumerated manifolds over the latent space of all 3 code size 1 IEs
on the target problem, (a = �3.5, b = 12.25). Maxima for the source
and target problems are shown as green and red crosses respectively.
Training data for the generative models is shown in yellow. 104

A.11 Enumerated manifolds over the latent space of all 3 code size 2 IEs
on the target problem, (a = �3.5, b = 12.25). Maxima for the source
and target problems are shown as green and red crosses respectively.
Training data for the generative models is shown in yellow. 105

B.1 Comparison of IE performance between code sizes 1, 2, and 3 on FL
with test goal position (1,3). The fitnesses plotted are those of the best
winner so far, this is the best solution found so far during the evolu-
tionary run. The solid lines are the mean fitnesses over 5 evolutionary
runs and the dotted line is the best run according to the final genera-
tion fitness. 108

B.2 Comparison of IE performance between code sizes 1, 2 and 3 on BW
with test knee speed 5. The fitnesses plotted are those of the best win-
ner so far, this is the best solution found so far during the evolutionary
run. The solid lines are the mean fitnesses over 5 evolutionary runs
and the dotted line is the best run according to the final generation
fitness. 109

xxi

List of Tables

2.1 Binary and Gray code representations of integers 0 - 8. 17

5.1 A table highlighting the number of evolutionary runs out of 20 in
which at least one genome outperformed I-Bug on the 209 test en-
vironments for both NEAT and NEAT-GRU. 82

C.1 A table of NEAT hyperparameters used for the NEAT (no GRU) bear-
ing experiments. 112

C.2 A table of NEAT hyperparameters used for the NEAT-GRU bearing
experiments. Note the non-zero probability of mutate_gru_add_node_prob.

. 113
C.3 A table of NEAT hyperparameters used for the NEAT (no GRU) no

bearing experiments. 114
C.4 A table of NEAT hyperparameters used for the NEAT-GRU no bear-

ing experiments. 115

xxiii

List of Abbreviations

AE Autoencoder
BC Behaviour characteristic
BW Bipedal Walker
CMAES Covariance Matrix Adaptation Evolution Strategy
CMC Continuous Mountain Car
CNN Convolutional neural network
CPPN Compositional Pattern Producing Network
CTRNN Continuous Time Recurrent Neural Network
DDE Data-driven encoding
DE Direct encoding
DEIS Direct encoding with an informed start
DNA Deoxyribonucleic acid
EA Evolutionary Algorithm
EC Evolutionary Computation
EDA Estimation of distribution algorithm
ENTM Evolvable Neural Turing Machine
EP Evolutionary Programming
ES Evolution Strategy
FFPSO Force Field Particle Swarm Optimisation
FL Frozen Lake
FSM Finite-state machine
FST Finite-state transducer
GA Genetic Algorithm
GAN Generative Adversarial Network
GPU Graphics processing unit
GP Genetic Programming
GRU Gated Recurrent Unit
IE Indirect encoding
KL Kullback-Leibler
LSTM Long Short-term Memory
MAV Micro-Arial Vehicle
NE Neuroevolution
NEAT NeuroEvolution of Augmenting Topologies
NS Novelty Search
NTM Neural Turing Machine
PCA Principal Component Analysis
PSO Particle Swarm Optimisation
RL Reinforcement Learning
SGD Stochastic Gradient Descent
SLAM Simultaneous Localisation and Mapping
TWEANN Topology and Weight Evolving Neural Network
UAV Unmanned-Arial Vehicle

xxiv

UC Universal controller
VAE Variational Autoencoder

1

Chapter 1

Introduction

Evolutionary algorithms (EA) are a suite of algorithms that can automatically find
solutions to a wide variety of problems. EAs are inspired by the process of natural
selection, whereby individuals that are comparatively fitter than the other members
of a population have a larger chance of survival and thus, stand a higher chance
of passing their genes onto subsequent generations. EAs emulate this process by
subjecting each individual in the population to a fitness evaluation, and then se-
lecting individuals for reproduction with a frequency directly proportional to their
fitness values. Stochastic genetic operators, such as mutation and crossover, are sub-
sequently applied to the genes of the selected individuals in order to further explore
the search space. The processes of selection, crossover, and mutation working in
tandem balances both exploitation and exploration of a search space, resulting in a
powerful optimisation technique.

The nature of EAs allows them to be applied to many different types of optimi-
sation problem, such as combinatorial optimisation and continuous optimisation. In
the field of combinatorial optimisation, EAs have been applied to problems such as
the travelling salesman problem [98], timetable scheduling [129] and job scheduling
[101]. In the area of continuous optimisation, EAs have been applied to problems
such as the optimisation of neural network controllers [17, 35, 80, 114, 123, 138], the
design of optical fibre [87], and to the placement of wind turbines [150].

Given their applicability at optimising functions over Rn, they are naturally com-
pared to other continuous optimisation techniques that utilise the gradient. Using
the gradient to find the global optima of a function is a wise strategy and can re-
sult in faster search than ignoring this information. It is for this reason that gradient
based algorithms such as gradient descent or Newton’s method are often preferred
over EAs for continuous optimisation. However, if the search space is highly non-
convex, or the gradients are very noisy or not available at all, derivative-free tech-
niques, such as EAs, may be more fruitful.

The Deep Learning revolution of the 21st century [44] is an example of where
gradient based optimisation methods are more commonly used than the derivative-
free counterparts, such as EAs. The backpropagation algorithm made it such that
a many layer neural network is end-to-end differentiable. Therefore, most modern
deep learning frameworks such as PyTorch and Tensorflow only implement gradi-
ent based optimisation algorithms under the assumption that they are superior to
derivative-free alternatives. Faster search, combined with the fact that deep neural
networks appear to have less local minima than previously assumed [21, 27, 75],
provides the main argument for ignoring derivative-free techniques.

Despite this, experiments from the past decade have shown EAs to be compar-
ative to gradient based techniques in terms of search speed and the fitness of the
solution found. These examples come both from the area of reinforcement leaning

2 Chapter 1. Introduction

(RL) [123, 138], and from function approximation and prediction using neural net-
works [97]. This is owed to the inherent parallelisability of EAs and interesting con-
clusions with respect to gradient based optimisation. In [138], it is shown that EAs
locate higher fitness solutions compared to gradient based RL techniques in just un-
der half the Atari games they are trained to play. Furthermore, it is also shown that
random search outperforms RL techniques, DQN and A3C in 3 and 6 games respec-
tively. This suggests that in certain optimisation tasks, such as RL tasks, following
the gradient, which could be noisy and non-informative, can even be detrimental to
performance.

In an attempt to further dispel claims that EAs are not scalable to Deep Learning
sized parameter sets, this thesis introduces two distinct techniques to improve the
search speed of EAs. The promising results shown here illustrate that there are cer-
tainly more performance gains that can be achieved from EAs on top of the mount-
ing evidence that they are just as powerful as gradient based techniques. As a result,
it is hoped that EAs start to be recognised as a viable competitor, especially in the
field of Deep Learning, and to convince the community that they should be included
in modern Deep Learning libraries.

1.1 Research Questions

The aim of this thesis is the ask whether there exist techniques that can improve the
search speed of EAs in a number of different domains, without compromising on
the quality of the solutions found.

Firstly, we ask whether we can improve the performance of EAs in transfer learn-
ing tasks. Transfer learning is where knowledge that has been gained on some source
problems can be reused to improve learning on some target problems. This reuse
of knowledge results in a search speed increase by bootstrapping learning on new
problems. We ask whether this is the case on a wide variety of optimisation tasks.
We consider whether continuous function optimisation can benefit from EAs reusing
knowledge. Given that many modern machine learning problems can be formulated
as the minimisation or maximisation of some continuous function, f : Rn ! R, we
believe this to be a sensible place to start. We subsequently ask whether new transfer
learning techniques can assist in a number of control environments typically tackled
by reinforcement learning algorithms.

We approach transfer learning in EAs by embedding knowledge from source
problems in an indirect encoding (IE). An IE is a static (through the evolutionary
search process) function that maps a genotype to a phenotype. A genotype is a vec-
tor of genes on which evolutionary operators are applied and the phenotype is that
which is subject to fitness evaluation. We ask whether IEs can embed knowledge
from previous source problems to improve search speed on unseen but similar tar-
get problems. In order to construct the aforementioned IEs, we use generative mod-
els to learn a model of previously found good solutions and subsequently perform
evolutionary search in its latent space.

These questions, coupled with an approach on how to achieve it, leads to a first
set of research questions:

RQ1: Can we use generative models to construct indirect encodings for evolution-
ary algorithms to perform transfer learning for the optimisation of continuous
functions?

1.2. Contributions 3

RQ2: Which generative model type produces an indirect encoding that improves
search performance the most on continuous optimisation problems, and under
what conditions?

RQ3: Can we use generative models to construct indirect encodings for evolution-
ary algorithms to perform transfer learning in reinforcement learning control
tasks?

Secondly, we consider whether the inclusion of the long term memory mecha-
nism, the gated recurrent unit (GRU) [22] in the seminal EA algorithm, NEAT [137],
improves search speed on a number of generalised maze solving tasks. The first task
consists of solving randomly generated mazes where the inputs to the agent are: the
distance to the goal, the relative angle (the bearing) towards the goal, and proxim-
ity sensors to prevent crashing against walls. The second task consists of simpler
environments where only the distance to the goal is provided as input to the agent.
The second task is a much harder navigational task that requires the memorisation
of previous distance readings in order to navigate successfully.

These considerations lead to a second set of research questions:

RQ4: Does the inclusion of gated recurrent units into NEAT result in improved evo-
lutionary search performance on generalised maze solving tasks?

RQ5: Does the inclusion of gated recurrent units into NEAT result in improved evo-
lutionary search performance on a much harder navigational task whereby
bearing information is not available?

1.2 Contributions

This thesis contributes to its overall aim by presenting two separate techniques for
increasing the search speed of evolutionary algorithms.

In Chapter 3, we answer RQ1 and RQ2, and:

• We show that autoencoders, variational autoencoders (VAE), and generative
adversarial networks (GAN) all have the ability to produce indirect encodings
that improve evolutionary search compared to baselines on unseen continuous
optimisation problems.

• We show that the performance of the indirect encodings derived from the gen-
erative models is highly dependent on the target problem being optimised and
its relation to the source problems for which the indirect models were trained.

• We compare the performance of the three generative models and highlight
pathologies that affect each of them and show under which conditions these
occur. We subsequently suggest remediations to some of the pathologies.

In Chapter 4, we answer RQ3, and:

• We show that the techniques presented in Chapter 3 can be reformulated as a
way to perform efficient transfer learning on RL control tasks.

• We show that autoencoders, VAEs, and GANs all have the ability to produce
indirect encodings that improve evolutionary search compared to baselines on
unseen RL control problems. We illustrate this on three OpenAI Gym bench-
mark environments.

4 Chapter 1. Introduction

• We compare the performance of all three generative models at producing IEs,
highlight certain failure modes, and suggest remediations.

In Chapter 5, we answer RQ4 and RQ5, and:

• We introduce a new algorithm, NEAT-GRU, that integrates GRU cells into
NEAT networks.

• We show that NEAT-GRU reliably produces polices that outperform NEAT
and hand-designed baselines at generalised maze solving tasks.

• We show that NEAT-GRU greatly outperforms NEAT at a harder navigational
task whereby bearing information is not provided to the agent. In fact, NEAT
is never able to produce solutions to this task, whereas NEAT-GRU produces
a solution on every run.

1.3 Published Material

Throughout the course of this PhD a number of publications were produced. Chap-
ters 4 and 5 are based around the following publications:

Chapter 4: James Butterworth, Rahul Savani, Karl Tuyls. “Generative Models
over Neural Controllers for Transfer Learning”. In: Parallel Problem Solving
from Nature – PPSN XVII. PPSN 2022, pp. 400-413 [16].

Chapter 5: James Butterworth, Rahul Savani, Karl Tuyls. “Evolving Indoor
Navigational Strategies Using Gated Recurrent Units in NEAT”. In: Proceedings
of the Genetic and Evolutionary Computation Conference Companion. GECCO 2019,
pp. 111-112 [15].

There were also publications that were produced during the course of this PhD
that were not included in this thesis. Work conducted during my masters was ex-
tended and published:

James Butterworth, Bastian Broecker, Karl Tuyls, Paolo Paoletti. “Evolving
Coverage Behaviours For MAVs Using NEAT”. In: Proceedings of the 17th In-
ternational Conference on Autonomous Agents and MultiAgent Systems. AAMAS
2018. pp. 1886–1888 [17].

This work explored how NEAT could be used to evolve controllers for micro-
aerial vehicles (MAV) performing dynamic coverage. Dynamic coverage is the pro-
cess of maximally and continuously monitoring an area of interest. In this work
controllers were evolved in simulation and then transferred to real MAVs.

Another publication that I was heavily involved with was the following:

Lauren Parker, James Butterworth, and Shan Luo. “Fly Safe: Aerial Swarm
Robotics using Force Field Particle Swarm Optimisation”. In: CoRR abs/1907.07647
2019 [100].

In it we modified particle swarm optimisation (PSO) to be used as a goal find-
ing algorithm for use on real MAVs. Each MAV represents a particle in PSO, which
share information regarding distance to the goal with one another. The original PSO

1.4. Structure 5

algorithm allows the particles to move within close proximity to one another. How-
ever, this would be dangerous on a real swarms of MAVs. Therefore, we introduced
a new algorithm, Force Field Particle Swarm Optimisation (FFPSO), which induces
repellent force fields around the particles in PSO. We showed the applicability of this
new algorithm in simulation and on a real swarm of MAVs.

1.4 Structure

The structure of this thesis is as follows. Chapter 2 introduces preliminary mate-
rial needed to further understand the context of this thesis. Topics covered include
evolutionary algorithms, neural networks, and generative models. Where previ-
ous algorithms have been used in our work, their descriptions have been moved to
Chapter 2. Chapter 3 applies indirect encodings derived from generative models to
continuous function optimisation. A comparison of three generative models at pro-
ducing IEs is provided and remediations are suggested for the individual patholo-
gies. Chapter 4 applies the techniques from Chapter 3 to the area of transfer learning
in reinforcement learning control problems. All three models are compared on three
OpenAI Gym environments and analyses of the results is carried out. Finally, in
Chapter 5 we propose NEAT-GRU, an extension to NEAT that includes GRUs. We
show how NEAT-GRU outperforms baselines and NEAT at both generalised maze
solving and a harder navigational task where the relative angle to the goal is not
provided to the agent.

7

Chapter 2

Preliminaries

2.1 Evolutionary Computation

Evolutionary Computation (EC) is a term that was coined in 1991 [36], which at the
time referred to the field consisting of Genetic Algorithms, Evolution Strategies, and
Evolutionary Programming. Since then, the field has expanded to include other sub
areas such as, Genetic Programming, Differential Evolution, and Particle Swarm Op-
timisation. All the algorithms studied in the field of EC, referred to as Evolutionary
Algorithms (EA), draw inspiration from the Darwinian theory of natural selection -
the key mechanism of biological evolution.

2.1.1 Evolution by Natural Selection

Evolution by natural selection is a theory first proposed by Charles Darwin and
Alfred Wallace [26], and subsequently expanded by Darwin in his seminal work, On
the Origin of Species [25]. The theory aimed to explain the wide diversity of life on
Earth, as well as the apparent observation that animals often seem highly adapted to
the conditions of the environment that they inhabit. Darwin and Wallace suggested
that the observed adaptation is due to a process called natural selection.

All life undergoes a “struggle for existence". This occurs due to the finite amount
of resources available to sustain an exponentially growing population indefinitely.
Due to this struggle for existence, many organisms do not survive long enough to
reproduce. Variations naturally occur between individuals in a population. Some of
these variations lead to advantages in this struggle for existence, thereby increasing
the chance that a particular individual reproduces. These variations are passed on
to the offspring of the individuals that were successful in reproducing. This process
results in the observed change of a population through time, often in a way that
renders the individuals more adapted to their environment. It is hypothesised, and
widely accepted, that this process of evolution by natural selection has given rise to
some of the most complicated and intelligent systems that exist, such as, flocks of
birds, the eye, and the human brain.

When first proposed, Darwin’s theory of natural selection lacked a rigorous the-
ory of heredity - a required component for any system undergoing natural selection
[111]. It was not until the integration of Mendel’s theories of inheritance with the
Boveri-Sutton chromosome theory of inheritance - which identifies chromosomes
as the carriers of genetic material - and subsequently, the integration of these ideas
with the theory of natural selection by Fisher in 1930, that evolution by natural se-
lection as a theory could stand up to rigorous scrutiny. It was later discovered that
chromosomes are made up of a molecule called deoxyribonucleic acid (DNA). DNA
copying errors and recombination (crossover) of the DNA during meiosis result in
the natural variation alluded to in Darwin’s original work.

8 Chapter 2. Preliminaries

The full collection of genetic material of an organism is known as the genotype.
DNA carries this genetic information and is the means by which this information is
passed between organisms through the generations. The phenotype is the set of all
the observable characteristics of the organism itself. The phenotype can be thought
of as the realisation of the genotype having gone through a developmental procedure
and then subject to effects of its environment. The phenotype is greatly influenced
by the genotype that it is derived from. For example, in humans the HTT gene is
responsible for the creation of a protein called Huntingtin. A mutated HTT gene can
cause Huntington’s disease, a fatal neurodegenerative disease with no known cure.

2.1.2 Evolutionary Algorithms

A Canonical Evolutionary Algorithm

Most evolutionary algorithms have a set of core similarities making them distinct
compared to other search algorithms.

• A population of individuals or solutions is maintained which is altered through
a number of discrete time steps, known as a generation.

• Each solution is subject to a fitness evaluation, the result of which has an influ-
ence on some selection procedure.

• Genetic operators are applied to selected members of the population. Many
types are used, mainly crossover and mutation.

• Each individual is typically represented by a vector of values known as the
genotype. These values can take on many forms, and do, depending on the
type of problem being solved.

One should be able to see the similarities to biological systems beginning to ap-
pear. Populations of solutions are maintained at any one time. Each individual in a
finite population is subject to a fitness evaluation determining whether its genes are
passed onto the next generation; this is akin to the ‘struggle for existence’ alluded
to by Darwin. Variations are induced in individuals via genetic operators such as
crossover (similar to meiosis) and mutation. The genotype of the digital individuals
is a vector of values akin to the genes held in DNA.

Figure 2.1 demonstrates a typical evolutionary algorithm. A population of so-
lutions is randomly initialised and subsequently subject to a fitness evaluation. A
fitness evaluation consists of each individual in the population being evaluated ac-
cording to some environment-dependent fitness function. In the case of a mathe-
matical optimisation problem, the fitness would be the value f (x) where x would
be the genotype of the individual. Whereas, if the problem of interest is a routing
problem, the fitness function may consist of the length of the route obtained by the
individual.

When the entire population has been evaluated, the population is then subjected
to a selection procedure. The selection procedure consists of selecting individuals
for the application of genetic operators. The majority of selection algorithms give
precedence to individuals with a larger fitness score. A wide variety of selection
procedures exist, some of the more common ones are:

• Truncation selection. The population is ranked according to fitness score and
only the top k individuals are selected.

2.1. Evolutionary Computation 9

Initialise population

Fitness evaluation

Selection

Genetic operators

Crossover

Mutation

FIGURE 2.1: A canonical evolutionary algorithm. The population of
individuals is randomly initialised (blue). Each individual is subject
to a fitness evaluation (red). Individuals are selected to reproduce
based on their newly acquired fitness values (yellow). Genetic oper-
ators, such as mutation and crossover, are applied to the genes of the
individuals (orange). The new child individuals form the new pop-
ulation, which are in turn subject to fitness evaluations. This process
repeats until a certain fitness is achieved or a maximum number of

generations is attained.

• Roulette wheel selection. The individuals of the population are selected stochas-
tically where the probability of selection for individual i is pi = fi/ Ân

j=1 f j,
where n is the population size and fi is the fitness of individual i.

• Tournament Selection. A set of k individuals in randomly chosen from the
population and the individual with the highest fitness is selected.

Once individuals have been selected, they undergo a number of genetic opera-
tors. Similar to selection, there are a wide variety of operators but the most common
ones are crossover and mutation.

One-point crossover consists of randomly splitting the genotypes from two se-
lected parents at the same location, as shown in Figure 2.1. Once split, two children
are created, each with a subset of genes from both parents. Other crossover tech-
niques exist such as two-point crossover, in which the random splitting occurs twice
on each genotype - this technique can be generalised to k-point crossover for k num-
ber of splits. Another common crossover technique is uniform crossover in which
each individual gene of the child is selected from either parent with equal probabil-
ity.

Mutation consists of randomly altering the value of some gene, as shown in
Figure 2.1. Mutation operators take on different forms depending on the data type
of the gene. For a binary genotype, mutation would take the form of a bit flip.
However, for a floating point, genotype mutation might consist of adding a random
number derived from a gaussian distribution with zero mean and some variance,

10 Chapter 2. Preliminaries

s, commonly known as the mutation power. Each gene has a certain probability of
undergoing mutation, known as the mutation rate. Both the mutation rate and the
mutation power are hyperparameters of the EA, however, as we will see later, many
algorithms do adjust these values at runtime.

Once genetic operators are applied, the produced children form the population
of the next generation, which go on to be evaluated, selected and modified them-
selves. This process will continue until some stopping criteria is met. Typical stop-
ping criteria are: a maximum number of generations has been reached, a threshold
fitness score has been achieved, or a time limit has been passed.

Brief history

Ideas of algorithms that draw inspiration from evolution, Evolutionary Algorithms,
first started to appear in the 1940s and 1950s. Genetical or evolutionary search was
first considered in 1948 as a search method to “organise" Turing’s unorganised ma-
chine, which can be considered as one of the first randomly connected binary neural
network designs [145]. Turing hypothesised that a system of genes required to rep-
resent his proposed unorganised machines would not be very complex, and hinted
at the fact that search similar to natural selection could be used to optimise such a
machine.

In 1958, Friedberg designed and implemented a system called a ‘Learning Ma-
chine’ in which a computer program was represented as a sequence of instructions
[39]. This program was subject to operators akin to mutation and crossover, and
instructions that are present in successful programs remain for subsequent eval-
uations. Soon after, in 1962, Bremermann [11] embedded the ideas from evolu-
tion firmly in the area of mathematical optimisation. He solved systems of linear
equations and linear programming problems by applying mutation and crossover
to genotypes consisting of binary genes.

As time progressed, three separate evolutionary algorithmic ideas emerged, each
with slightly different details and target applications. These algorithmic areas were
that of Genetic Algorithms (GA), Evolution Strategies (ES), and Evolutionary Pro-
gramming (EP).

Genetic Algorithms

Genetic Algorithms, pioneered and made popular by John Holland [54], focused
attention on the development of application-independent evolutionary algorithms.
This was realised by adopting a binary string as the genotype, and, if required, map-
ping this genotype to an application appropriate phenotype. In the case of a problem
such as the Knapsack Problem, a binary string representation is very natural, a 1 at
position i of the string indicates the presence of the ith item in the bag and a 0 rep-
resents its absence. However, in the case of problems such as continuous function
optimisation, an appropriate mapping between the binary genotype representation
and the floating point application appropriate representation must be designed. An
inadequate genotype-phenotype mapping can lead to a large performance degrada-
tion [119] and issues such as Hamming Walls, where a large number of synchronised
mutations are required to escape a local fitness peak.

The application-independent binary string representation has the advantage that
it requires little modification when being applied to different problems and the same
genetic operators can be reused. Genetic Algorithms typically employ a significant

2.1. Evolutionary Computation 11

amount of crossover and very little mutation, which is seen as a “background op-
erator, assuring that the crossover operator has a full range of alleles so that the
adaptive plan is not trapped in a local optima" [54].

Evolution Strategies

Ideas of evolution strategies began in the 1960s and 1970s with the work of Rechen-
berg and Schwefel [7]1. The focus of evolution strategies is on the optimisation of
real-valued functions [28]. Due to this, mutation typically consists of the addition of
a random number drawn from a gaussian distribution with a mean of 0 and a vari-
ance, s, known as the mutation strength. Mutation plays a much greater role in evo-
lution strategies than in genetic algorithms. Crossover, or recombination, consists of
either averaging the genes of k parents (intermediate recombination) or randomly
selecting each gene of the child from the corresponding gene of either of the two
parents (dominant recombination). However, unlike in a genetic algorithm where
two parents produce two offspring, recombination in an evolution strategy produces
only one child. A key feature of most evolution strategies is the runtime adaption of
the mutation step sizes, this is performed in order to “adapt to the properties of the
fitness landscape” [7].

The (1 + 1)-ES is one of the first, and most conceptually simple to understand, ES
algorithms. The 1971 dissertation of Rechenberg [110] was the first work to analyse
the (1 + 1)-ES algorithm on real valued functions. (1 + 1)-ES has a population of 2,
one parent and one child. Each generation the parent produces a child via mutations
of its genes using a gaussian distribution with a mean of 0 and a standard deviation,
s. If the fitness of the child is the same as or greater than that of the parent, the child
is used as the parent in the next generation, otherwise the child is discarded.

Algorithmic variations of (1 + 1)-ES continued to be explored, such as the more
generic (µ + l)-ES, where µ and l represent the number of parents and children in
the population respectively. In order to keep the population size constant, the worst
performing l members of the population are removed after each generation. With a
value of µ > 1 recombination could be applied as described above, which can speed
up evolution substantially [7].

It was discovered early into the development of evolution strategies that the
performance of the algorithm was highly dependent on the choice of the mutation
strength, s [28]. Therefore, the mutation strengths (one for each gene) were coe-
volved with the parameters to be optimised, resulting in a genome of double the
original size. This resulted in mutation strengths that responded to the specific un-
derlying fitness landscape, leading to faster optimisation.

The multivariate gaussian distribution used to mutate the genes in the evolution
strategies discussed so far is defined as Nk(µ, S), where µ is the mean vector of zeros
of size k, and S is the covariance matrix of size k⇥ k. In the case of the (µ + l)-ES set
of algorithms S is defined in the following way:

S =

0

BBB@

s2
1 0 · · · 0

0 s2
2 · · · 0

...
...

0 0 · · · s2
k

1

CCCA

1I would prefer to cite the original papers but they are in German. Instead, I cite an introduction to
evolution strategies co-authored by Schwefel in which he describes the origins.

12 Chapter 2. Preliminaries

Where sk is the mutation strength for the kth gene. The covariance matrix, S, is
diagonal in this case. However, the covariance matrix of a gaussian distribution can
be any positive definite matrix, therefore it can have elements other than 0 in the
non-diagonal entries. This results in a normal distribution with a rotated hyperellip-
soid, as opposed to that with a diagonal covariance matrix, which has a non-rotated
hyperellipsoid shape. A more expressive gaussian distribution can lead to much
quicker convergence to optima and greater adaptation to the particular fitness land-
scape.

A more recent evolution strategy known as covariance matrix adaptation evolu-
tion strategy (CMAES) [50] does exactly that. It adapts the entirety of S throughout
search resulting in one of the most powerful algorithms for finding global solutions
in complex real-valued optimisation problems, outranking other search algorithms
on standard benchmarks [51]. CMAES is covered in much more detail in Section
2.1.3.

CMAES is an estimation of distribution algorithm (EDA). An EDA alters the pa-
rameters of the probability distribution that produces the individuals each genera-
tion, rather than the individuals themselves, as is the case for GAs. An alternative
family of EDAs are those known as Natural Evolution Strategies (NES) [149]. NES
algorithms approximate the natural gradient of the parameters of the search distri-
bution and perform gradient ascent to move the search distribution into a region
of higher expected fitness. An NES known as xNES uses a multivariate gaussian
as its search distribution and therefore has many similarities to CMAES, however,
all the parameter updates in xNES are derived using the principles of gradient as-
cent, whereas other heuristics are used to derive the parameter updates in CMAES.
A simplified version of xNES is used in [123] to show that evolution strategies can
outperform standard reinforcement learning techniques on modern RL benchmarks.

Evolutionary Programming

Evolutionary programming was introduced in the 1960s by Fogel as a technique for
the optimisation of finite-state machines (FSM), in particular, finite-state transduc-
ers (FST). An FST is a model of computation that accepts inputs from a finite input
alphabet and generates output from a finite output alphabet. It does this by moving
between a finite number of states as a result of the input and subsequently generat-
ing an output symbol with every transition. An FST is seen as a more general model
of computation than an FSM due to the fact that it additionally outputs symbols.

In the work of Fogel [38], the evolutionary algorithm proceeds as those discussed
previously, with the main differences being the structure to which they are applied.
Fogel originally only used mutations as a method of variation, however, he did sug-
gest the concept of recombination on FSTs. Five different types of mutation were
considered [37]:

• Add a state and randomly assign all the input-output and input-transition
pairs for this state.

• Alter the starting state.

• Delete a state.

• Change an output symbol of a particular state.

• Alter a particular state-transition associated with a single input in a single
state.

2.1. Evolutionary Computation 13

Genetic Programming

Genetic Programming (GP) is a more recent subfield of evolutionary computation
that aims to evolve computer programs using evolutionary algorithms [69]. This
is achieved by representing individual programs as syntax trees and applying evo-
lutionary operators directly to the trees. Similarly to genetic algorithms, mutation
plays a much smaller role in GP than recombination. A significant problem that
arises during GP is ‘bloat’ in which the syntax trees grow to very large sizes as search
proceeds. A number of techniques have been introduced to prevent this, such as set-
ting a maximum tree depth or applying a penalty in the fitness function for larger
trees [32].

2.1.3 CMAES

Covariance matrix adaptation evolution strategy (CMAES) [50] is a powerful evolu-
tion strategy that is used extensively in Chapter 4, as such we describe it in detail
here2. It is known to be one of the leading algorithms for the optimisation of com-
plex real-valued functions [31], even when the search space is rugged. The superior
performance of CMAES as compared to other algorithms was the main motivation
for its use in this thesis, where speed of convergence was an important metric to
maximise.

Each generation l individuals are sampled from a multivariate normal distribu-
tion:

x(g+1)
k ⇠ N (m(g), (s(g))2C(g)) for k = 1, ..., l (2.1)

where x(g+1)
k 2 Rn is the kth individual (search point) from generation g + 1;

m(g) 2 Rn is the mean of the distribution at generation g; s(g) 2 R>0 is the step size,
or “overall” standard deviation of the distribution at generation g; C(g) 2 Rn⇥n is a
covariance matrix at generation g, such that (s(g))2C(g) is the full covariance matrix
of the multivariate normal distribution, N .

Similar in nature to other EDAs, the question becomes where in search space the
population producing distribution should be located and what shape should it take
in order to locate higher fitness solutions? Firstly, the centroid, or mean, m, of the
distribution is altered. The new mean, m(g+1), is calculated as a weighted average of
the µ highest fitness points in the population:

m(g+1) =
µ

Â
i=1

wix
(g+1)
i:l (2.2)

where x(g+1)
i:l is the ith highest fitness solution such that f (x(g+1)

1:l) � f (x(g+1)
2:l) �

... � f (x(g+1)
l:l) and f is the function to be maximised; wi 2 R>0 are positive weight

coefficients such that Âµ
i=1 wi = 1 and w1 � w2 � ... � wµ > 0.

Equation 2.2 points to the fact the CMAES uses a truncation selection variant as
its selection procedure by only considering the top µ individuals when calculating
the new mean. The final mean update equation is rewritten as an update of m and
incorporates a step size hyperparameter, cm:

m(g+1) = m(g) + cm

µ

Â
i=1

wi(x
(g+1)
i:l �m(g)) (2.3)

2The majority of our description of CMAES is an adaptation of [49].

14 Chapter 2. Preliminaries

where cm 1, but is usually set to 1. Equation 2.3 is equal to 2.2 when the default
setting, cm = 1 is used.

As with other evolution strategies, CMAES also modifies the ‘mutation rates’ at
run-time. For CMAES, this takes the form of modifying both s and C. A larger s
results in individuals being sampled from a larger portion of the search space, and
modifying C alters the shape of the multivariate distribution. The covariance matrix,
C, is updated every generation as follows:

C(g+1) = (1� c1 � cµ Â wj)C(g) + c1p(g+1)
c p(g+1)>

c + cµ

l

Â
i=1

wiy
(g+1)
i:l y(g+1)>

i:l (2.4)

where

y(g+1)
i:l = (x(g+1)

i:l �m(g))/s(g) (2.5)

and p(g+1)
c is the evolutionary path and is calculated as:

p(g+1)
c = (1� cc)p

(g)
c +

q
cc(2� cc)µe f f

m(g+1) �m(g)

s(g) (2.6)

where c1, cµ, and cc are hyperparameters that are typically set to default values
and are rarely altered by the practitioner. µe f f is known as the variance effective selec-
tion mass and is calculated as:

µe f f =
1

Âµ
i=1 w2

i
(2.7)

The step size, s, is also updated at every generation as follows:

s(g+1) = s(g)exp

"
cs

ds

"
||p(g+1)

s ||
E||N (0, I)|| � 1

##
(2.8)

where cs and ds are hyperparameters, and p(g+1)
s is calculated as:

p(g+1)
s = (1� cs)p

(g)
s +

q
cs(2� cs)µe f f C(g)� 1

2 m(g+1) �m(g)

s(g) (2.9)

and E||N (0, I)|| is the expected norm of a vector of size n drawn from N (0, I),
which can be approximated as:

E||N (0, I)|| ⇡
p

n(1� 1
4n

+
1

21n2) (2.10)

For more information regarding the reasoning behind the complex update rules,
and suggested default values for the hyperparameters, we refer the reader to [50]
and [49].

2.2 Indirect Encodings

The main basis of Chapters 3 and 4 is that one can capture knowledge from source
problems in an Indirect Encoding (IE), what is an indirect encoding? An IE is a
mapping from a genotype to a phenotype. A genotype is the structure that genetic

2.2. Indirect Encodings 15

operators are applied to, and the phenotype is that which is subject to fitness evalu-
ation.

An illustrative example comes from biology, where the complex structure of our
brain with its 100 trillion connections and 100 billion neurons is represented in a
mere 30 000 genes in DNA. Our DNA is our genotype which undergoes processes
such as mutations and meiosis (akin to crossover), and our brains are part of our
phenotype, resulting in our behaviours that are subject to the forces of natural selec-
tion (akin to fitness evaluations). The developmental process that transforms DNA
into the complex organism can be viewed as an indirect encoding because there is
not a one-to-one mapping between the genes and the different traits of the pheno-
type. It is clear that a vast amount of information is compressed and stored within
DNA, and it is this impressive feat that EA practitioners wish to emulate.

In the EA literature IEs are referred to in a number of ways, such as: Artificial Em-
bryogeny [136], Developmental Encodings [144], Artificial Development [68], Mat-
uration Functions [52], Genotype-Phenotype Maps [96], and Representations [119].
There are a plethora of forms that an artificial IE can take, such as: a continuous
function, f : Rn ! Rm; a binary representation of integers, f : {0, 1}n ! Z; a formal
grammar that applies a set of production rules turning starting symbols into com-
plex character strings; a bijective function mapping each individual gene to each
individual trait in the phenotype (a direct encoding). Constraints tend to be im-
posed by the domain on the phenotype form, however the practitioner can choose
whatever genotype representation and IE they wish, as long as the IE produces the
appropriate phenotype form.

There are many performance advantages of using IEs over direct encodings. Hy-
perNEAT [135] is an example of an algorithm that uses an indirect encoding to
evolve neural networks that are typically larger than those optimised by EAs (neural
networks are explained in more detail in Section 2.3). HyperNEAT does this by de-
termining the weights of a large neural network (the phenotype) by querying a small
neural network with the coordinates of the neurons of the large network. The small
network, known as a Compositional Pattern Producing Network (CPPN), maps the
coordinates of two neurons to the weight value between those neurons. Figure 2.2
illustrates how the weight of each connection of the substrate (the larger network) is
determined by querying the smaller sized CPPN.

The evolutionary process of HyperNEAT involves evolving the weights of the
CPPN, not the larger network. Due to the fact that the CPPN has a much smaller
number of parameters to evolve than the larger network, this evolutionary process
can proceed much faster than if one was evolving the weights of the larger network
directly. This is an example of an IE of the form f : Rn ! Rm where n << m.
Using the HyperNEAT algorithm can lead to increased speed of search and a higher
fitnesses of the located solutions [24, 135], especially when there is a high level of
regularity required in the phenotype.

The CPPN, introduced in [134], is a neural network that has activation functions
other than the typical sigmoid function. Activation functions used include gaussian,
sine, |x|, and more (Figure 2.3). These additional functions assist in the creation of
repetitive, symmetric, and regular weight patterns in the larger phenotypic network.
This can help exploit the intrinsic geometry of the task to which the large phenotypic
network is applied to. [134] explores the advantages of HyperNEAT on a visual
discrimination and a robotic food gathering task.

Another example where using a modified IE can assist with search is when rep-
resenting integers using boolean values, i.e. f : {0, 1}n ! Z. Apart from the usual
binary numeral system that can be used to represent integers, one can also construct

16 Chapter 2. Preliminaries

FIGURE 2.2: The neurons of the larger network are defined by their
coordinates with respect to one another. For every permutation of
neuron pairs in the substrate of the larger network, the x and y val-
ues of the coordinates are input into the CPPN. The CPPN outputs a

weight value for the connection between every neuron pair.
Image source: [135]

FIGURE 2.3: An example CPPN that takes substrate coordinates as
input and outputs a connection weight. The neuron activation func-
tions consist of a number of functions such as gaussian, sine, sigmoid,

amongst others. Image source: [134]

a different mapping from boolean symbols to integers, one example being Gray code
[46]. Table 2.1 illustrates the difference between Gray code and the binary numeral
system for representing integers 0 to 8. Gray code was designed such that adjacent
integers differ by only a single bit flip in their Gray code representation. This is
particularly useful when performing evolutionary search over a boolean genotypes
because certain fitness functions can contain Hamming cliffs. This occurs when the
movement between neighbouring integers, for example 7 and 8, requires the flip of
many bits in binary representation, 0111 and 1000, respectively. If 8 has a higher
fitness value than 7, then only the specific rare combination of 4 bit flip mutations
is required to achieve a higher fitness. On the other hand, in many problems, Gray
code creates a much smoother fitness function by requiring only a single bit flip to
move between adjacent integers. Binary and Gray encodings can be interpreted as
IEs, by providing different mappings between boolean vectors and integers.

Recent works [6, 18, 40, 57, 58, 96, 106] use machine learning techniques to learn

2.3. Neural Networks 17

Integer Binary Gray
0 0000 0000
1 0001 0001
2 0010 0011
3 0011 0010
4 0100 0110
5 0101 0111
6 0110 0101
7 0111 0100
8 1000 1100

TABLE 2.1: Binary and Gray code representations of integers 0 - 8.

an IE. These IEs typically take the form f : Rn ! Rm because many are repre-
sented by neural networks. Employing these IEs in search often results in much
faster search speed and, because these IEs are automatically created, they are be-
spoke to the problem at hand. Learnt IEs represented by neural networks are the
type of IE that we explore in greater detail in Chapters 3 and 4.

2.3 Neural Networks

An artificial neural network is a computational model that was originally inspired
by neural networks in the brain. It consists of ‘neurons’ and connections between
neurons that mimic synapses in the real brain. Signal travels through layers of neu-
rons across the connections to an output. As signals travel through the network they
are modified by real values associated with each connection, these are commonly
referred to as weights. Like synapses in the brain, these weights can be altered such
that the same input results in a different output. An artificial neural network learns
by altering these weights such that a set of desired outputs is realised for some par-
ticular inputs.

y1

w1
x1

w2
x2

w3

x3
w4

FIGURE 2.4: A model of a neuron in an artificial neural network.
Inputs are in green, weights are in blue. Inputs get multiplied by

weights and summed at the output neuron, shown in blue.

An example neuron is shown in Figure 2.4. It shows inputs in green boxes which
are real numbers, weights in blue belonging to each connection and an output neu-
ron in which all inputs are aggregated to produce output y1. The mathematical func-
tion computed by the neuron in Figure 2.4 is:

18 Chapter 2. Preliminaries

y1 = f(w1x1 + w2x2 + w3x3 + w4) (2.11)

where f is typically some non-linear function commonly known as the activation
function. It is clear that the output of the neuron for a specific input is significantly
influenced by the values of the weights. Each neuron also typically has a bias input,
represented as the w4 connection in Figure 2.4.

The general form for a neuron of this type would be:

y = f(wTx + b) (2.12)

where x is a vector of inputs, wT is the transpose of a vector of weights, and b is
the bias input.

One can arrange a number of neurons in a single layer such that each neuron
in the layer computes a different non-linear function on the inputs in the following
way:

y = f(Wx + b) (2.13)

where x is still a vector of inputs, W is now a matrix of real valued weights, and
b is now a vector of bias inputs.

Deep learning is a term referring to the situation in which a number of neural
network layers are stacked one after another. An example of a 3 layered deep neural
network is as follows:

y = f(W3f(W2f(W1x + b1) + b2) + b3) (2.14)

This is known as a deep feedforward neural network. At this abstraction, Equa-
tion 2.14 little resembles the biological neuron abstraction from Figure 2.4, however
it is important to understand the origins of these models.

The learning problem for a feedworward neural network consists of altering the
weight matrices W1, W2, ..., Wn and the bias vectors b1, b2, ..., b3 (for which we will
now collectively refer to as q) such that one maps x to a desired y.

2.3.1 Brief history

Models similar to that described above were first conceptualised in the 1940s with
the seminal work of McCulloch and Pitts [88] and also in Turing’s 1948 work on
unorganised machines [145]. In 1958 Frank Rosenblatt invented the perceptron [118],
which is the same model as that of Equation 2.12, where f was set to be the heavyside
step function (outputs 1 if some threshold is reached, otherwise 0 is outputted). This
resulted in a binary classifier designed for image recognition. It was later built in
hardware resulting in a machine called the ‘Mark 1 Perceptron’.

Despite promising initial results, it was subsequently proven that the perceptron
had limitations, in that it could not classify data points that were not linearly sepa-
rable according to their classes [91]. This was because the perceptron was a single
layer neural network. It was not until 1975 that the backpropagation algorithm was
invented, resulting in a method for the training of neural networks with multiple
layers [148], thereby resolving the limitations of single layered neural networks like
the perceptron.

2.3. Neural Networks 19

A number of neural network variants were invented in order to more efficiently
process different types of data. Convolutional neural networks (CNN) [74] are par-
ticularly suited to processing images and videos, whereas long short-term memory
(LSTM) [53] enhances performance on sequences of data.

At the turn of the century, the computational cost to train neural networks was
significant compared to rival algorithms such as support vector machines. CNNs
had therefore fallen out of favor at computer vision conferences until the early 2010s
when two key works implemented fast CUDA kernels to train CNNs on the GPU,
that of Ciresan [23] and Krizhevsky [70]. This resulted in dramatic improvements
in vision benchmarks and with AlexNet [70] winning the ImageNet competition by
a significant margin. The availability of lower cost graphics processing units (GPU)
coupled with them being used to train large neural networks has lead to the deep
learning revolution, whereby deep learning has begun to penetrate many different
industries.

2.3.2 Backpropagation

The backpropagation algorithm is that which is used to calculate the gradients of
each weight of the neural network with respect to the loss function. The loss function
outputs a single real value that represents the distance between the current output
of the neural network and the desired output. The gradient of this with respect to
the weights is informative because it suggests which direction to alter the weights in
order to reduce the loss, thereby resulting in a network output closer to the desired
output.

Once the gradients have been computed, one can then use an optimisation al-
gorithm that takes advantage of gradient information to compute the new value of
each weight. Stochastic gradient descent (SGD) was initially used to perform this op-
timisation step, which consists of taking a small step in the opposite direction of the
gradient. Recently, more powerful optimisation algorithms have been proposed and
have become the default for training neural networks, such as ADAM [63]. ADAM
has a number of additional features such as computing adaptive learning rates for
each individual weight and keeping an exponentially decaying average of gradients
to reduce gradient variance.

2.3.3 Gated Recurrent Units (GRU)

A recurrent neural network is one which contains cycles. This means that it can
reuse information from previous inputs to the network to inform its current decision,
which in turn gives the network memory.

Figure 2.5 shows a vanilla recurrent neuron for which the output is computed as:

yt = f(w1xt + w2yt�1 + w3) (2.15)

where xt and yt are the input and output at time step t respectively; w1, w2 and
w3 are adjustable weights; and yt�1 is the output from the previous time step.

This type of neuron (or layer of neurons) is able to memorise inputs over short
periods of time but struggles to learn longer term dependencies. The problem is
that the gradient of the loss with respect to the weights can explode or vanish when
the length of the sequence inputted into the network is large. This is because a
small change in the recurrent weight, w2, can have a large effect on the output as the
number of time steps inputted into the network gets larger.

20 Chapter 2. Preliminaries

yw1
x

w2

w3

FIGURE 2.5: A model of a recurrent neuron. Input is in green, weights
are in blue. Input gets multiplied by w1 and summed with w2 multi-

plied by the previous output yt�1 and the bias w3.

Vanishing and exploding gradients rendered the vanilla recurrent network im-
practical for learning longer sequences, thereby incentivising a new architectural de-
sign, the LSTM [53]. The LSTM consists of a separate memory cell that can open and
close depending on the current input and previous hidden state. This meant that
information can be isolated without contamination from the rest of the input until it
is required at some point in the distant future. The LSTM architecture circumvented
the exploding and vanishing gradient problems of previous recurrent networks, re-
sulting in a network that was capable of learning over much longer sequences.

A more recently invented architecture, similar in nature to the LSTM, is the gated
recurrent unit (GRU) [20]. The GRU performs just as well as, and sometimes better
than, the LSTM, whilst simultaneously having less weights to optimise. Given that
it is a key component of Chapter 5, we will describe it in more detail here.

The full calculation performed by a GRU is given in equations 2.16 - 2.19, result-
ing in an output, ht, known as the hidden state, at every time step, t.

rt = s(Wrxt + Urht�1 + br) (2.16)
zt = s(Wzxt + Uzht�1 + bz) (2.17)

h̃t = f(Whxt + Uh(rt � ht�1) + bh) (2.18)

ht = zt � h̃t + (1� zt)� ht�1 (2.19)

where Wr, Wz, Wh, Ur, Uz, Uh are weight matrices; br, bz, and bh are vectors of
weights; s and f are the sigmoid and hyperbolic tan activation functions respec-
tively, and � is the Hadamard product, also known as the element-wise product.
Figure 2.6 illustrates this computation.

A GRU consists of two main operations or ‘gates’, the reset gate and the update
gate. The reset gate (equation 2.16) determines how to combine the new inputs with
the previous hidden state and subsequently suggests a new candidate value, h̃t, to
store. The update gate (equation 2.17) decides how much of the previous hidden
state information should be allowed to remain and how much of the new candidate
information to store instead. This provides a mechanism by which the current hid-
den state can be kept around indefinitely as long as the update gate chooses not to
change it. Depending on the new inputs, the update gate may determine that it is
appropriate to store the new information instead.

2.4 Neuroevolution

Neuroevolution (NE) is a field of evolutionary algorithms concerned with the evo-
lution of neural networks [133]. Unlike the neural networks in Section 2.3, which

2.4. Neuroevolution 21

h[t-1] h[t]

×

×

×

x[t]

ŷ[t]

ĥ[t]z[t]
r[t]

sig sig tanh

1-

+

FIGURE 2.6: Illustration of a GRU cell. Sigmoid and hyperbolic tan
activation functions are represented by ‘sig’ and ‘tanh’ respectively.
The multiplication symbol, ⇥, represents the Hadamard product.
Image source: https://en.wikipedia.org/wiki/Gated_recurrent_

unit

use gradient descent to optimise the weights, the weights of neural networks under-
going neuroevolution are optimised using evolutionary algorithms. Additionally,
given that EAs do not require that which they are optimising to be differentiable,
they can optimise additional parts of the neural network such as the architecture
[90, 109, 137] and the activation functions [8, 72].

Results from the field of NE in the last 5 years have shown that they can often be
competitive with state of the art reinforcement learning techniques [123, 138]. One
of the reasons is due to the increased speed of processing compared to traditional
RL techniques. EAs are inherently parallelisable meaning that one can provide more
CPU cores and continue to get speed improvements. In [138] it is shown that a
genetic algorithm can train in⇠4 hours compared to⇠7-10 days for a state of the art
RL technique, the Deep Q-Network.

Another reason NE shows promise compared to gradient based methods is that
following the gradient can often lead to search getting stuck in local optima. Results
in [138] suggest that following the gradient can be extremely detrimental to perfor-
mance compared to evolutionary based techniques. In fact, an entire field of work
called Novelty Search [76] promotes that optimising the fitness function using any
optimisation technique can be detrimental and instead searches for novel behaviours.
Using novelty search subsequently results in higher fitness solutions due to the lack
of local optima in which search can become trapped.

2.4.1 NEAT

A seminal neuroevolutionary algorithm used extensively throughout Chapter 5 is
NeuroEvolution of Augmenting Topologies (NEAT) [137]. NEAT is an example of
a Topology and Weight Evolving Artificial Neural Network (TWEANN), which is
a class of neural networks in which both the weights and the topology of a neu-
ral network are optimised using evolutionary algorithms. Optimising the topol-
ogy as well as the weights can be useful for a number of reasons. Firstly, one
does not have to spend additional time performing an architectural hyperparam-
eter search, which is often the case when using fixed topology neural networks.
Secondly, certain TWEANN algorithms, such as NEAT, can result in significant im-
provements in learning speed compared to fixed topology neural networks. Finally,

https://en.wikipedia.org/wiki/Gated_recurrent_unit
https://en.wikipedia.org/wiki/Gated_recurrent_unit

22 Chapter 2. Preliminaries

many TWEANN algorithms aim to produce minimally sized networks resulting in
reduced computational and memory demands.

FIGURE 2.7: The crossover process in NEAT. Each parent has a set
of genes representing the connections between nodes. Each gene has
a historical marking integer which is incremented each time a new
gene is mutated into a network, and a weight value. The blue genes
represent those that originate from parent 1 and the red genes repre-
sent those that are new in parent 2, including weight mutations on
the genes that have the same historical marking as those from par-
ent 1. During crossover the child inherits common (matching) genes
randomly and the disjoint and excess genes from the most fit parent

(here parent 2 has the highest fitness).

A large problem with augmenting topology neural networks is that when a new
structural item is added, for example, a new hidden node or a new connection be-
tween nodes, it is highly likely that the new respective weights are unoptimised. It
would often take some number of generations for the new weights to optimise such
that the network as a whole is competitive with the rest of the population. Due to
this, networks with new additional structure are often not preserved in the popu-
lation for long enough to optimise their weights and achieve a competitive advan-
tage. This can be particularly problematic when new structural mutations coupled
with enough time to optimise the surrounding weights are what is needed to achieve

2.4. Neuroevolution 23

higher levels of fitness. NEAT solves this problem through a process called specia-
tion.

The speciation mechanism in NEAT assigns each individual in the population to
a group (species) of other individuals whose genomes are similar to its own. The
similarity between genomes is calculated according to the number of genes that are
common between them, as well as the difference between the weights of the respec-
tive genes. Common genes are tracked using ‘historical markings’ which are unique
integers assigned to each new gene that arises through mutations into the popu-
lation. Once speciated, a number of mechanisms allows newer topological struc-
tures to be preserved in the population. These mechanisms include: explicit fitness
sharing between members of a species, boosting the fitness of younger species, and
ensuring the survival and reproduction of at least one member of the species 3. Ex-
plicit fitness sharing helps to protect genomes with innovative topological structures
within the same species by allowing them to borrow the higher fitness of others in its
species, thereby buying time to optimise the weights associated with the new struc-
ture. It also helps protect genomes different enough that they form a new species
because newer species are given a fitness boost and at least one member of each
species is allowed to reproduce (for a limited time 3).

FIGURE 2.8: A representation of the 3 types of mutations that can
occur in NEAT. A weight mutation perturbs the weight on connec-
tion number 3. A structural add connection mutation adds connection
number 8. A structural add node mutation adds node number 6 and in

turn connections 6 and 7.

The historical markings that are used to calculate the similarity between genomes
also assists with providing a useful crossover procedure (Figure 2.7). For each gene
common to both parents (has the same historical marking), the child inherits ran-
domly from either parent. The child inherits disjoint and excess genes from the fittest
of the two parents. This allows genes that have historically played a similar role to

3If no members of a species have improved their fitness within a set number of generations (default
30), the species is removed from the population. This prevents species with one poorly performing
genome surviving indefinitely.

24 Chapter 2. Preliminaries

be placed in the same position in the offspring genome. This crossover procedure
prevents the replacement of one functional sub network with a completely differ-
ent functional sub network; this is a common occurrence in fixed topology network
crossover, which can have a dramatic negative effect on fitness.

There are 3 types of mutation that can occur in NEAT networks, shown in Figure
2.8. A weight mutation that randomly mutates the weight of a connection accord-
ing to some mutation power, and two structural mutations, an add node mutation
and an add connection mutation. The add connection mutation adds a connection
between two previously unconnected nodes, as is the case with connection number
8 in Figure 2.8. The add node mutation adds a new node into the network (node 6
in Figure 2.8). When a new node is added the previous connection is disabled and
two new connections are added. The connection that runs into the new node takes
on a weight value of 1 and the connection running out of the new node takes on the
weight value of the disabled connection; this reduces the impact on the output due
to the new node.

2.5 Generative Models

A generative model is that which learns to model a probability distribution, P(x),
over training data. One is then able to sample from P(x) to generate new instances
similar to that of the training data, hence the term ‘generative’ model. Generative
models feature heavily in Chapters 3 and 4, in particular, autoencoders, VAEs, and
GANs, as such we describe them in detail here.

2.5.1 Generative Adversarial Networks (GAN)

A GAN [45] employs an innovative method to learn P(x), which consists of a zero-
sum game between two neural networks, the generator and the discriminator. The
generator generates data points in an attempt to fool the discriminator into believing
that this fake data is derived from the true training set. The discriminator attempts
to discriminate the fake data generated by the generator from the true training data.

This is achieved by setting up a two player minimax game between the discrim-
inator, D, and the generator, G, with value function, V(D, G) (Equation 2.20). The
discriminator outputs a single scalar, which represents the probability of the input
being real or fake data.

min
G

max
D

V(D, G) = Ex⇠pdata(x)[ln(D(x))] + Ez⇠pz(z)[ln(1� D(G(z)))] (2.20)

The aim of the discriminator is to maximise equation 2.20, which consists of max-
imising the log likelihood of the training data, pdata(x), corresponding to the first
term of equation 2.20, and to minimise the probabilities it associates to the fake gen-
erated data, corresponding to the second term of equation 2.20. The aim of the gen-
erator is to minimise equation 2.20, which is the opposite of the aim of the discrimi-
nator. Samples from a prior distribution, pz(z), are used as input to the generator. In
practice (and in our work), pz(z) is set to be the unit normal distribution. Typically,
the dimension of z is much less than the dimension of x. Backpropagation is used to
train both networks.

Despite being proven that the global optima of the minimax game defined in
equation 2.20 is when the probability distribution produced by the generator, pg, is
equal to pdata [45], common pathologies of GAN training regimes exist, preventing

2.5. Generative Models 25

convergence. Firstly, if the discriminator is too good with respect to the generator,
the generator can struggle to produce convincing data points because gradients that
inform it how to improve vanish. This problem can be alleviated by either using a
Wasserstein loss [2] or implementing an alternative loss function introduced in the
original GAN paper [45]. A second pernicious pathology, known as mode collapse,
occurs when the generator produces the same data point, or small set of data points,
as oppose to a diverse selection of data points representing pdata. This can happen
when the discriminator gets stuck in a local optima where it is unable to penalise
the generator for adopting this strategy. The Wasserstein loss is similarly useful in
preventing mode collapse.

2.5.2 Autoencoders

An autoencoder [121] is a neural network that is optimised to reconstruct its input
after being passed through a bottleneck layer. An encoder is used to map the input,
x, to a latent variable, z = eqe(x), via a neural network parameterised by qe. A
decoder is used to reconstruct x from z resulting in x̂ = dqd(eqe(x)), via a neural
network parameterised by qd. An illustration of this process is shown in Figure 2.9. It
does this by minimising the mean squared error loss between x and x̂ (Equation 2.21)
by backpropagating through the entire autoencoder and subsequently optimising
the parameters using gradient descent techniques highlighted in Section 2.3.2.

l(x; qe, qd) = (x� dqd(eqe(x)))2 (2.21)

The dimensionality of z is, more often than not, less than that of x and as such
the autoencoder is often used as a dimensionality reduction technique. A number of
hidden layers can be used in both the encoder and decoder part of the autoencoder
(highlighted in yellow in Figure 2.9) enabling the representation of complex non-
linear mappings.

An autoencoder is not technically a generative model because it is not optimised
to model P(x), however it does have some properties that allow it to behave similar
to one. Once trained, one can sample the latent code, z, (in the bounds attributed to
the code, for example, if a sigmoid activation function is used in the pre code layer
the code is bounded between 0 and 1) and the decoder will often map the codes to
data similar to the training data. However, there is no requirement that the entirety
of the code be mapped to respective training data values, which means that there
are often sampled codes that are mapped to data points far from the training data
distribution.

2.5.3 Variational Autoencoders (VAE)

The variational autoencoder [65] is structurally similar to the autoencoder in a num-
ber of ways (Figure 2.10). Both the VAE and the autoencoder encode input data, x,
as a lower dimensional latent code, z, and subsequently use a decoder to attempt
to reconstruct x as accurately as possible, x̂. The encoding process of the VAE dif-
fers slightly in that the output is two vectors, µ and ln(s2). The latent code, z, is
subsequently sampled from a multivariate isotropic gaussian, z ⇠ N (µ, s2I). The
decoding process proceeds in the same way as the autoencoder. The forward pass
of the VAE is illustrated in Figure 2.10.

The loss function of the VAE (Equation 2.22) has an additional regularisation
term compared to that of the autoencoder. Similar to the mean squared error loss of
the autoencoder (Equation 2.21), the first term of the VAE loss, Ez⇠pqe (z|xi)[ln(pqd(xi|z))],

26 Chapter 2. Preliminaries

x xz

Encoder Decoder

FIGURE 2.9: A representation of an autoencoder. The encoder takes
input, x, (in green) and passes it through hidden layers (yellow) to a
lower dimensional latent code, z. The decoder attempts to reconstruct

x from z.

penalises the VAE for a poor reconstruction. This term represents a probability dis-
tribution defined by the decoder for training data point i, which in the case of a
continuous valued output would likely be the gaussian, N (x̂i, I). By optimising the
probability distribution pqd(x|z) to increase the likelihood of the training data, the
reconstruction, x̂, improves in turn.

li(xi; qe, qd) = �Ez⇠pqe (z|xi)[ln(pqd(xi|z))] +DKL(pqe(z|xi)||p(z)) (2.22)

The second term in Equation 2.22 represents the Kullback-Leibler (KL) diver-
gence between the probability distribution over z given the training data (the en-
coder) and a prior distribution over z, p(z). This prior is defined to be the unit
normal distribution with a mean of 0 and standard deviation of 1. One way to con-
ceptualise the KL divergence is as a distance between two probability distributions.
Therefore, the minimisation of the KL divergence results in the distribution over z
conditioned on the training data, pqe(z|xi), approaching the unit normal. This has
the effect of ‘spreading out’ the training data over the latent code, z, resulting in a
code that, when enumerated over, results in all outputs resembling the training data;
this is not a feature of a normal autoencoder. It discourages sections of the latent
code that do not code for data points that have a high likelihood of coming from the
training data distribution. The generative procedure of a VAE consists of sampling
from a unit normal distribution in its latent space and observing the output.

2.5. Generative Models 27

x

mu

sigma

xz

Encoder Decoder

FIGURE 2.10: A representation of a variational autoencoder. The en-
coder maps the input, x, to two vectors µ and ln s. The latent variable
z is sampled from the multivariate isotropic gaussian N (µ, s2 I). The
decoder attempts to reconstruct input x from sampled latent code z.

29

Chapter 3

Indirect Encodings for Continuous
Optimisation

Indirect encodings (IE) map the genotype space to the phenotype space, and have
shown promising results in certain optimisation tasks. They have resulted in greatly
improved search speed, and in some instances, the accuracy of the solutions found.
Recently, data-driven encodings (DDE), which learn an indirect encoding by mod-
elling previously found solutions to a problem using a generative model, have been
proposed [40]. In [40], it is demonstrated that previously located solutions to a set
of source problems can be used to train a VAE to produce an IE. The VAE derived IE
can subsequently be used to solve novel, but similar, optimisation problems to the
source problems in a much shorter amount of time than a direct encoding.

Despite the impressive results of [40], a VAE is the only generative model con-
sidered to construct the IE. Autoencoders (AE) and generative adversarial networks
(GAN) are also promising algorithms that can be used to model distributions of so-
lutions and act as an IE in subsequent evolutionary search. Other works do use
autoencoders [96, 106] and GANs [18, 57, 58] to learn IEs, however none of them
individually perform comparative analyses between the three different generative
model types. It continues to be unclear as to which generative model produces the
most successful IE for a particular task; a successful IE would be that which can lo-
cate an accurate solution faster than a direct encoding on a variety of unseen target
problems.

To this end, in this chapter we perform a comparative empirical analysis of the
ability of autoencoders, VAEs, and GANs to learn IEs and use them to subsequently
find solutions on similar, but unseen target optimisation problems. It is this ability to
leverage knowledge about the search space of the source problems on unseen target
problems that we believe to be the most valuable application of DDEs. In order to
train the generative model, previous solutions to optimisation problems must be lo-
cated using a direct encoding. Despite significant search speed gains demonstrated
in work such as [96], to then subsequently use this IE to solve the same problem
faster seems slightly redundant after it has already been solved many times previ-
ously.

As a result, a significant focus of this chapter is concerned with the comparative
interpolative and extrapolative abilities of the learnt IE types on target problems
different to the source problems whose solutions are used to train the IE. This has
not been a significant aspect of previous works [40, 57, 58], in that it has not been
clear how different the target functions have been to the source functions. Of course,
we do not expect our IEs to incur advantages when the source and target problems
are completely different, in this case our methodology would most likely produce no
advantages. Thus, we restrict our investigations to source and target functions that
are part of the same family of functions, for which we assume only a small part of the

30 Chapter 3. Indirect Encodings for Continuous Optimisation

full search space to contain optima. Despite this sounding artificially constrained,
we believe this is a good proxy for real world problems where slight changes in
the environment result in a similar but different optimisation problem of the same
‘family’.

We compare the performance of autoencoders, VAEs, and GANs of code sizes 1
and 2 at producing IEs for the optimisation of simple bivariate quadratic functions.
We consider 2 different families of bivariate quadratics, one in which the maxima of
the source and target functions are linearly related and another in which the max-
ima are not linearly related. The 2 dimensional nature of these functions means that
we can clearly visualise the manifolds imposed on the search space by the IE and
use this to inform us of the reasons for the behaviours we observe during evolu-
tionary search. It also means that we can run optimisation rapidly, comparing many
different techniques and target functions without having to rely on very powerful
computers. We additionally compare against two baselines that use a direct encod-
ing.

Contributions

1. We perform a comparative empirical analysis of autoencoder, VAE, and GAN
derived IEs on two families of bivariate quadratic functions.

2. We show that for certain target problems all learnt IEs at some point out-
perform two baselines in terms of search speed and accuracy of the solutions
found.

3. We show that the performance of the IEs with respect to the direct encoding
(DE) baselines is highly dependant on the particular target function being op-
timised.

4. We show that the training procedures for AEs and VAEs with a code size of
1 are susceptible to local minima and overfitting such that their respective IEs
extrapolate poorly. This is not the case for the GAN.

5. We highlight a speed accuracy trade off for the code size 1 GAN derived IEs
and suggest an algorithm that retains the speed advantages of the IE and the
accuracy advantages of the DE. This involves running the IE until a fitness
plateau is reached and then switching search back to using a direct encoding.

6. We show that under certain conditions mode collapse occurs during the GAN
training procedure and illustrate that this results in very poor performance of
the respective IE.

7. We show significant manifold folding in the case of the VAE and GAN derived
IEs of code size 2 and hypothesise that this results in lower than optimal ac-
curacy by inducing local maxima in the search space. We suggest a number of
regularisation techniques that may alleviate this effect.

3.1 Mathematical Framework

This section introduces the mathematical framework for which all indirect encod-
ing instances can be embedded into and highlights how the techniques used in this
chapter fit within it. Most of this framework and notation have been conceptualised

3.1. Mathematical Framework 31

before [52, 68, 119], therefore the notation here will be kept as similar to previous
work as possible.

Let us begin by recalling an instance of mathematical optimisation. Given a so-
lution space, S , and a function, f : S ! R, that maps instances from the solution
space to the real numbers, the aim of an optimisation procedure is to find a solution:

x⇤ 2 S s.t.

f (x⇤) f (x) 8x 2 S ‘minimisation’

f (x⇤) � f (x) 8x 2 S ‘maximisation’

Adopting the nomenclature from the field of evolutionary algorithms, the above
optimisation problem is formulated in the following way. Given a genotype space,
G, and a fitness function, f : G! R, an EA aims to find a:

g⇤ 2 G s.t.

f (g⇤) � f (g) 8g 2 G

It does this by applying biologically inspired operators such as: selection, crossover
and mutation to the elements of a subset of G, known as a population P ✓ G, result-
ing in a new P0 ✓ G.

In order to integrate IEs into the above formulation one needs to introduce an
intermediate space, F the phenotype space s.t.

d : G! F

f : F! R

We adopt the notation used in [52] and use d to refer to the maturation func-
tion or the indirect encoding. Given this new space we can reformulate the above
maximisation problem. Given a genotype space G, a phenotype space F, an indirect
encoding d : G! F, and a fitness function f : F! R, an EA aims to find a:

g⇤ 2 G s.t.

f (d(g⇤; q)) � f (d(g; q)) 8g 2 G

For reasons which will become clear, we have conditioned the IE d on an addi-
tional vector of parameters q.

The elements of G are vectors of objects. These objects can take a number of
different forms: real numbers, integers, binary values, characters etc. The EA applies
the evolutionary operators to the elements of G only, it does not apply operators to
F. This may sound odd if one is not explicitly using an IE in their EA, however we
would argue that in this case the identity encoding, dI , was being used resulting in
a one-to-one mapping from G to F, resulting in G = F.

The form of F is dictated by the domain in which the EA is being applied. For
example, if the aim is to evolve a neural network controller for an agent, then F is
forced to be a vector of real numbers, which act as weights for said neural network.
For this reason, an EA practitioner does not have much choice over the form of F,
however they do have freedom over the form of G and d as long as the range of d is
F.

32 Chapter 3. Indirect Encodings for Continuous Optimisation

In this chapter we are performing continuous mathematical optimisation such
that F = R and we set G = R. However, G could also take other forms such as
Z, but one would then have to use an appropriate, d : Z ! R. For the indirect
encoding, d, we use a neural network, hence q would equate to the weights of the
neural network. These weights are optimised before the evolutionary search begins
and are static throughout search. q is not altered by the evolutionary operators, only
the elements of G are.

In Section 3.2, we are concerned with the optimisation of families of functions.
We can view a family of functions as the set of functions, f (d(g; q); t), where t is a
vector of function parameters. For example, a quadratic function of the form f (x) =
ax2 + bx + c can be written in a parameterised form, f (x; a, b, c) = ax2 + bx + c,
where each setting of the values a, b, and c is a different function, but still of the
same quadratic family. In the quadratic example, it is this vector of parameters a, b, c
that is represented by t.

3.2 Methodology

We compare the performance of three generative models, an autoencoder, a VAE,
and a GAN at producing IEs for solving mathematical optimisation problems. We
do this by training the models on a set of solutions to a subset of problem instances,
the source problems, ps ⇢ P f , of a family of functions, P f . A solution here is that
which meets some threshold fitness value. The source solutions are located using a
standard genetic algorithm with a direct encoding. A gaussian mutation with a mu-
tation rate of 0.1 and a mutation power of 0.1, truncation selection with a selection
percentage of 10%, and an initial population distributed according to a uniform dis-
tribution bounded between�1 and 1 was used. A population size of 100 was run for
100 or 250 generations for the linear and non-linear experiments, respectively. The
fitness function for all the experiments is simply the output value of the optimisation
problem, f (x), with the aim being to maximise this function.

The architectures of the generative models vary slightly depending on the exper-
iment, however, if a hidden layer was used, it had 64 hidden nodes with a ReLU
activation function. Experiments are performed using both a code size of 1 and 2.
Each model is trained for 20 000 or 30 000 epochs for the linear and non-linear ex-
periments respectively. An ADAM optimiser is used with a learning rate of 1�3 and
5�4 for the AE and VAE, respectively. For the GAN, RMSprop with respective learn-
ing rates of 2�4 and 5�4 for the generator and discriminator was used. RMSprop
was shown to attain better performance compared to ADAM for the GAN in initial
experiments. For each model type, 5 models were trained for each experiment.

We then test the performance of the trained IEs on a set of target problems, pt ⇢
P f , from the same family of functions as ps, however we adhere to the restriction:
ps \ pt = ∆. By doing this, we demonstrate the ability of the IE to locate solutions
on functions whose solutions it has not been trained upon.

To test the performance of the trained IEs on the target problem instances, pt, we
ran a standard genetic algorithm in the latent space of the decoder, in the case of the
AE and the VAE, or the generator, in the case of the GAN. Five evolutionary runs
were performed for each of the 5 trained models for each model type. Truncation
selection with a selection percentage of 10% was used on a population of size 100
for 100 or 200 generations for the linear and non-linear experiments respectively.
For the VAE and GAN derived IEs gaussian mutation with a mutation rate of 0.5
and a mutation power of 0.1 was used. For the AE derived IE the same mutation

3.3. Experiments 33

rate was used, however the mutation power was reduced to 0.01666 (0.1
6). A unit

gaussian distribution was used to initialise the first population for the VAE and GAN
derived IEs, whereas a uniform distribution with a lower and upper bound of 0 and
1, respectively, was used for the AE derived IE.

The modifications to mutation rate and initial distribution for the AE derived IEs
were due to the fact that the code processed by an AE is different to that of a VAE and
GAN. The encoders of the AEs used in these experiments end with a sigmoid layer,
meaning that all codes are bounded between 0 and 1. This is in contrast to a VAE
and GAN where the code is distributed according to a unit gaussian distribution. It
is therefore unwise to initialise a population using a unit gaussian distribution for
an AE derived decoder because many of the genomes would fall outside the 0 to 1
bound. Given that the AE has not been trained to process codes outside of this range,
the output of the decoder is unlikely to fall within the desired modelled distribution.
We also chose to divide the size of the mutation rate by 6 because the range of a unit
gaussian, [-3, 3] (99.7% of the sampled points) is 6 times larger than the range of the
[0, 1] bounded uniform distribution. It is therefore likely that the same sized change
in code value for an AE derived IE will have a much larger change in the output
space compared to the VAE and GAN derived IEs. We scaled the mutation power in
this way to ensure a fairer comparison between all three types of IE.

For baselines, we used a DE and a DE with an informed start (DEIS). The DEIS is
an alternative way to bootstrap the evolutionary process of the direct encoding using
information from ps. An alternative starting point (in our case this takes the form of
an alternative mean value of the gaussian distribution used to initialise the genomes
of the first population) can be computed by performing an evolutionary search that
attempts to maximise the average fitness of all the source problems, ps, together. This
results in a solution that is located at a point with the minimal summed distance to
all the maxima in ps. It is this solution that is used as the mean for the initial starting
gaussian distribution for the DEIS baseline.

Both the DE and DEIS baselines used a standard genetic algorithm with gaus-
sian mutation and truncation selection. The initial population for the DE baseline
was generated from a unit gaussian distribution. A mutation rate of 0.5 and a muta-
tion power of 0.1 was used. A selection percentage of 10% was used for truncation
selection and a population of 100 was ran for 100 or 200 generations for the linear
and non-linear experiments respectively. For simplicity, no crossover was performed
on any evolutionary runs. This process was repeated 5 times on the target problems,
pt, and the best fitness so far in each of the generations was recorded.

The training of the IEs and the initialisation of the DEIS have additional prepara-
tory overheads compared to evolution using a DE only. To compare techniques ac-
cording to the total number of FLOPS, including pre-training, would be particularly
meticulous and, more importantly, implementation dependent. We have therefore
decided to evaluate with respect to the number of generations inline with evaluation
methods used in [40] (number of generations) and [34] (number of gradient steps).
However, future work could perform timed tests for the entire process and use this
as an additional metric of evaluation.

3.3 Experiments

The following experiments illustrate the performance of an indirect encoding de-
rived from an autoencoder, a VAE, and a GAN at optimising 2 families of bivariate
quadratic functions.

34 Chapter 3. Indirect Encodings for Continuous Optimisation

The general form of a bivariate quadratic function is defined as

f (x, y) = ax2 + by2 + cxy + dx + ey + f (3.1)

where, a, b, c, d, e, f are constants, the modification of which result in a different
quadratic function.

Here, we consider the following family of bivariate quadratic functions:

f (x, y) = �(x� a)2 � (y� b)2 (3.2)

) f (x, y) = �x2 � y2 + 2ax + 2by� a2 � b2 (3.3)

where a and b are constants. This family can be encapsulated by the general form
(eq. 3.1) where a = �1, b = �1, c = 0, d = 2a, e = 2b, f = �a2 � b2. The family of
functions described by equation 3.2 have a unique maxima at (a, b).

3.3.1 Bivariate quadratic linear

The first set of experiments aim to optimise a specific subset of functions, Plin, of
the form of equation 3.2: those where a and b are linearly related, i.e. a = k1b + k2.
We set k1 = 1 and k2 = 0, resulting in a = b. We consider the case where k1 = 1
and k2 = 0, however, we expect that very similar behaviour would be observed for
any values of k1 and k2. It is also worth noting that training a generative model on
solutions of the family where a = b (k1 = 1 and k2 = 0) will not work as an effective
IE on the family where a 6= b even if a and b are still linearly correlated.

In order to train the generative models we generate training data by optimising
three source functions, ps, of the family, Plin, given in equation 3.2 where a = b
using a direct encoding:

(a = 4, b = 4), (a = 0, b = 0), (a = �4, b = �4)

10 solutions were found for each of the 3 source problems, resulting in a training
data size of 30. For these experiments, 0 hidden layers were used in the encoders,
decoders, generators and discriminators of the generative models.

To test the ability of the IEs to generalise and optimise functions for which solu-
tions had not been present in the training data, the following target problem func-
tions, pt ⇢ Plin, were used:

(a = 2, b = 2), (a = �2, b = �2)

Code size 1 IEs

Figure 3.1 shows the comparative performance of the two baselines and both the AE
and VAE derived IEs of code size 1 on the (a = 2, b = 2) target problem. It shows
the significant search speed advantage attributed to using the IEs compared to the
two baselines, despite the IEs never having had access to information regarding the
particular target function being optimised. The IEs were able to interpolate between
the source training functions in order to bootstrap the evolutionary process on a
new target function. This resulted in both IEs finding a well-performing solution in
2 generations compared to 10 generations in the case of the baselines. The difference
in performance between the AE and VAE derived IEs of code size 1 is negligible. In
this experiment the GAN derived IE performed much worse than the baselines and
as a result its respective comparison plot has been moved to the appendix (Figure

3.3. Experiments 35

FIGURE 3.1: 5 evolutionary runs for a DE, a DEIS, an AE derived
IE, and a VAE derived IE with code sizes of 1 on the target problem,
(a = 2, b = 2). The fitnesses plotted are those of the best winner so
far in the evolutionary run. The solid lines are the mean values of the
5 runs, whereas the dotted lines are the fitness values of the highest

performing run.

A.1) in order to more clearly visualise the advantages attributed to the AE and VAE.
The plot for the other target problem is very similar and therefore not shown.

FIGURE 3.2: Enumerated manifold of the best performing AE derived
IE of code size 1. Enumeration occurs over the [0, 1] latent space at
increments of 0.01. Maxima for the source and target problems are
shown as green and red crosses respectively. Training data for the

generative models is shown in yellow.

36 Chapter 3. Indirect Encodings for Continuous Optimisation

FIGURE 3.3: 5 evolutionary runs for a DE, a DEIS, an AE derived
IE, and a VAE derived IE with code sizes of 2 on the target problem,
(a = 2, b = 2). The fitnesses plotted are those of the best winner so
far in the evolutionary run. The solid lines are the mean values of the
5 runs, whereas the dotted lines are the fitness values of the highest

performing run.

Figure 3.2 provides insight into the performance improvements offered by the
AE derived IE by illustrating the search space manifold of the best performing AE
derived IE of code size 1. To generate the image we enumerated across the latent
space of the decoder (between 0 and 1) in increments of 0.01. Figure 3.2 shows how
the search space is greatly reduced (constrained along a 1 dimensional manifold) but
it does intersect the maxima of the target problems (red crosses). The AE is trained
to encapsulate the source function maxima (green crosses), however it in turn en-
capsulates the target function maximas also. The manifold of the VAE derived IE is
very similar to that of the AE but is still illustrated in the appendix (Figure A.2).

Figure A.3 illustrates the manifold enumerated by the code size 1 GAN derived
IE and provides clear evidence that its very poor evolutionary performance can be
attributed to mode collapse occurring at one of the source targets maxima. This
mode collapse results in a manifold that does not intersect with either of the maxima
of the target functions, thereby rendering it impossible to locate an accurate solution.
The inability to locate an accurate solution results in the fitness plateau attributed to
the GAN derived IE in Figure A.1.

Code size 2 IEs

Figure 3.3 shows the comparative performance of the two baselines and both the AE
and VAE derived IEs of code size 2 on the (a = 2, b = 2) target problem. Similar to
the code size 1 experiments, the AE and VAE significantly outperform the baselines
and the GAN performs considerably worse (Figure A.4). Illustrating the respective
AE and VAE manifolds in Figure 3.4 again shows how both the training and test
function maxima are encapsulated by the manifolds. It is interesting to observe the

3.3. Experiments 37

larger spread of the AE derived manifold compared to that of the VAE derived man-
ifold. We hypothesise that this is due to the regularisation effect of the training pro-
cedure of the VAE, which results in a compression of the two dimensional manifold
around the training points. This compression subsequently results in slightly faster
search for the code size 2 VAE derived IE compared to the AE derived IE (Figure 3.3)
and slower search for the code size 2 AE derived IE compared to its code size 1 coun-
terpart (Figure 3.5a). This is because a larger proportion of the AE manifold contains
poor solutions, which takes time to be traversed in order to locate a well-performing
solution. Due to the compression of the code size 2 VAE manifold we do not see as
large of a fitness differential between the code sizes for the VAE IEs (Figure 3.5b) as
we do for the equivalent AE comparison.

(A) AE. Enumeration occurs over the [0, 1] latent
space at increments of 0.03.

(B) VAE. Enumeration occurs over the [-3, 3] latent
space at increments of 0.05.

FIGURE 3.4: Enumerated manifold of the best performing AE and
VAE derived IEs of code size 2. Maxima for the source and target
problems are shown as green and red crosses respectively. Training

data for the generative models is shown in yellow.

(A) AE (B) VAE (C) GAN

FIGURE 3.5: Code size 1 and 2 comparisons for each IE type (5 runs
each) on the (a = 2, b = 2) target problem.

The poor performance of the code size 2 GAN derived IE shown in Figure A.4
is again attributed to mode collapse at one subset of training points (Figure A.5).
However, in contrast to the GAN derived IE with code size 1, the code size 2 coun-
terpart did locate an optimal solution eventually (Figure 3.5c). This is because the
dimensionality of the manifold is the same as that of the search space, therefore the
solution is located within the manifold of the IE.

38 Chapter 3. Indirect Encodings for Continuous Optimisation

3.3.2 Bivariate quadratic non-linear

The second set of experiments aims to optimise another subset of functions, Pnonlin,
of the form of equation 3.2: those where a and b are quadratically related, i.e. b =
k1a2 + k2a + k3. We set k1 = 1, k2 = 0 and k3 = 0, resulting in b = a2.

In order to train the generative models we generate training data by optimising
nine source functions, ps, of the family, Pnonlin, given in equation 3.2 where b = a2

using a direct encoding:

(a = �4, b = 16), (a = �3, b = 9), (a = �2, b = 4),
(a = �1, b = 1), (a = 0, b = 0), (a = 1, b = 1),
(a = 2, b = 4), (a = 3, b = 9), (a = 4, b = 16)

10 solutions were found for each of the 9 source problems, resulting in a training
data size of 90. For each of the three generative models considered, a code size
of both 1 and 2 were used. For these experiments, 1 hidden layer with 64 hidden
neurons was used in the encoders, decoders, generators and discriminators of the
generative models. A hidden layer was essential to capture the non-linear quadratic
relationship between the maxima of the source problems.

To test the ability of the IEs to generalise and optimise functions for which solu-
tions had not been present in the training data, the following target problem func-
tions, pt ⇢ Pnonlin, were used:

(a = 0.5, b = 0.25), (a = �3.5, b = 12.25), (a = 5, b = 25)

The inclusion of the (a = 5, b = 25) target problem exhibits the extrapolative capa-
bilities of the IEs.

Code size 1 IEs

We first compare the performance of the three types of IE with a code size of 1 with
the baselines for each of the 3 target problems, pt. The performance of each technique
varies considerably depending on the target problem in question.

For the first target problem, (a = 0.5, b = 0.25), the DE performed the best of all
the techniques, as shown in Figure 3.6. This is likely because the initial population of
the DE was initialised according to a unit gaussian into which the first target problem
firmly falls. Therefore, a number of solutions in the first generation will already have
been significantly close to this maxima. In contrast, the DE with an informed start
performs significantly worse than all the other techniques (Figure A.6), locating a
solution after 60 generations. This is due to the fact that the initial population for this
baseline is distributed according to a gaussian with µ = (0.67, 12.50) and a standard
deviation of 1.0. It therefore requires many generations for the population to move
towards the (0.5, 0.25) maxima.

All 3 IEs perform well and locate a good solution within the first 4 generations,
in the case of the AE and GAN, or 15 generations in the case of the VAE (Figure
3.6). Despite initially finding a well-performing solution, the fitnesses of the solu-
tions found by the IEs was not as high as those found by the DE, this is evidenced
by the plateauing of their fitnesses between the -0.05 and 0.0 fitness range. Enu-
merating over the manifolds of the 3 IEs (Figure 3.7) illustrates why this is the case.
Each 1-dimensional manifold constructed does not directly intersect with the target
maxima (0.25, 0.5), although they do get close. Search using these manifolds can

3.3. Experiments 39

FIGURE 3.6: 5 evolutionary runs for a DE, and all 3 IEs with a code
size of 1 on the target problem, (a = 0.5, b = 0.25). The fitnesses
plotted are those of the best winner so far in the evolutionary run.
The solid lines are the mean values of the 5 runs, whereas the dotted

lines are the fitness values of the highest performing run.

therefore never find a solution closer than the manifold permits, thereby explaining
the plateauing of fitnesses of the IEs.

Another interesting difference between the manifolds created by the AEs and
VAEs compared to those created by the GANs is that they are locally optimal and
do not accurately reflect the quadratic nature of the underlying training distribu-
tion. Figure 3.7a and 3.7b show an attempt to fit a 1-D manifold to the training data
but the training procedure has become trapped in a local minima. However, the
manifold created by the GAN (Figure 3.7c) is a good approximation of a quadratic
function; the approximation very nearly intersects all the training points. This be-
haviour is seen repeatedly throughout the code size 1 non-linear experiments and
has downstream effects on the extrapolation performance of the IEs as will be shown
for training problem, (a = 5, b = 25).

Target problem (a = �3.5, b = 12.25) also tests the interpolative capabilities of
the IEs. Figure A.7 shows that the DE performs particularly poorly on this problem,
despite performing the best on the previous target problem. It takes nearly 70 gen-
erations for the DE to find a well performing solution. This is because (-3.5, 12.25) is
significantly further from the origin (the starting location of the DE) than (0.5, 0.25).
Although a DE with an informed start performs significantly better than the DE, it
is still outperformed by all 3 IEs.

Figure 3.8 compares the performance of the 3 IEs on the (a = �3.5, b = 12.25)
target problem. Despite the fact that the AE and VAE find a solution on average
faster than the GAN, Figure A.10 illustrates that the particular local minima entered
into by the AE and VAE training procedure resulted in manifolds that closely bypass
the (-3.5, 12.25) target maxima by fortunate chance. If the manifolds were like that
of Figure 3.7b where (-3.5, 12.25) is a significant distance from the manifold, per-
formance would have been significant impaired. This is in contrast to the manifold
created by the GAN which again accurately models the quadratic relationship in the

40 Chapter 3. Indirect Encodings for Continuous Optimisation

(A) Autoencoder, enumeration range = [-0.2, 1.2]
in increments of 0.001.

(B) VAE, enumeration range = [-3, 3] in increments
of 0.01.

(C) GAN, enumeration range = [-3.5, 3.5] in incre-
ments of 0.01.

FIGURE 3.7: Enumerated manifolds over the latent space of all 3 code
size 1 IEs on the target problem, (a = 0.5, b = 0.25). Maxima for
the source and target problems are shown as green and red crosses
respectively. Training data for the generative models is shown in yel-

low.

training data (Figure A.10c).
The target problem, (a = 5, b = 25), tests the extrapolative capabilities of the IEs

because the point (5, 25) is beyond the distribution of the training data. Figure 3.9
shows that the GAN derived IE found a solution within 10 generations on average,
which is the fastest of the all of the techniques considered. The DE performed slower
than every one of its counterparts, finding a solution in 150 generations on average.
The DEIS benefits from its modified initial distribution and found a solution within
75 generations on average. Despite the AE and VAE derived IEs starting evolution
with better performing solutions than the baselines, the fitness quickly plateaus at a
point significantly lower than that of an acceptable solution.

This behaviour can be explained by considering the manifolds in Figure 3.7. Due
to the misrepresentation of the underlying training distribution by the IEs of the AE
and VAE, the resultant manifolds diverge away from the (5, 25) point. This means
that the point closest to (5, 25) on these manifolds is still very far from the (5, 25)
maxima. This large distance results in a poor fitness that is impossible to improve
upon, which subsequently causes the observed fitness plateau. However, the man-
ifold created by the GAN derived IE (Figure 3.7c) captures the quadratic nature of
the underlying training data and therefore creates a manifold that closely passes the

3.3. Experiments 41

FIGURE 3.8: 5 evolutionary runs for each of the 3 IEs with a code
size of 1 on the target problem, (a = �3.5, b = 12.25). The fitnesses
plotted are those of the best winner so far in the evolutionary run.
The solid lines are the mean values of the 5 runs, whereas the dotted

lines are the fitness values of the highest performing run.

point (5, 25). The GAN derived IE is therefore able to find a solution quickly (its
search only occurs on its 1-D manifold rather than the full space) and accurately.

Although the solution is found much quicker using the GAN derived IE, the
solution is less accurate than those found by the baselines due to the fact that the
manifold does not intersect exactly with the point (5, 25). The best solution found by
the GAN derived IE is (5.1531, 24.9785), resulting in a fitness of -0.02389. Whereas,
the solutions found by the baselines are much closer to (5, 25), resulting in fitness
values of �2.6584�8 and �2.2737�11 for the DE and DEIS respectively. It is therefore
clear that there is a speed accuracy trade off when using an IE with a dimensionality
less than that of the original search space. It would be the choice of the practitioner
to determine how to balance this trade off.

Code size 2 IEs

Figure 3.10 shows that on the target problem, (a = 0.5, b = 0.25), the DE still out-
performs all the IEs in terms of finding a solution the fastest and the DEIS performs
the worst (Figure A.8). The AE derived IE locates a solution faster than the other
IEs, despite starting the evolutionary process with the lowest average fitness. Figure
3.11 suggests that the AE derived IE initialises the population with an even spread
across the manifold (Figure 3.11a), which contains many poor performing solutions.
Whereas, the VAE manifold results in an initial population spread sparsely across
areas that do not contain any maxima (3.11b). It is this property of the manifolds
that result in the initial population of the AE having a lower average fitness than
that of the VAE derived IE.

Another interesting result is that the solutions found by the GAN derived IE
plateau below the optimal fitness. This is unexpected because the dimension size of
the manifold is the same as that of the search space, therefore the manifold of the IE

42 Chapter 3. Indirect Encodings for Continuous Optimisation

FIGURE 3.9: 5 evolutionary runs for a DE, a DEIS, and each of the 3
IEs with a code size of 1 on the target problem, (a = 5, b = 25). The
performance of the AE and VAE are so similar that their separation
is not clear on this plot. The fitnesses plotted are those of the best
winner so far in the evolutionary run. The solid lines are the mean
values of the 5 runs, whereas the dotted lines are the fitness values of

the highest performing run.

does cover the entire search space. Figure 3.12 zooms into the manifold created by
the GAN derived IE from Figure 3.11. It shows that folding of the manifold occurs,
which could have the effect of creating local maxima in the search space, this may
be the cause of the GAN derived IE fitness plateauing.

Figure 3.13 shows that for the target problem, (a = �3.5, b = 12.25), again all 3
IEs outperformed both baselines in terms of search speed (Figure A.9 includes the
DE performance also). We similarly observe the fitness plateauing with the GAN
derived IE but Figure A.11c suggests that this could be because the point (-3.5, 12.25)
falls outside of the manifold drawn from a code distributed by a unit gaussian and
as such may take a large number of mutations to locate.

Unlike with the code size 1 IEs (Figure 3.9), all 3 code size 2 IEs beat both base-
lines in term of search speed for the interpolative target problem, (a = 5, b = 25),
as shown in Figure 3.14. No plateauing is observed for the AE and VAE due to the
fact that the dimension size of the IE manifold is the same as that of the search size.
Therefore, the solution is located somewhere within the IE manifold, unlike in the
code size 1 equivalents. The best solutions found by the AE and VAE are closer to
the optima than that found by the DE. We do however see plateauing for the GAN
derived IE for which the best solution found was (5.3515, 24.9453), which is slightly
different to the (5, 25) optima. We again attribute this to the folding behaviour il-
lustrated in Figure 3.12 creating local maxima in the search space. The dominant
superiority of the VAE on this target problem is demonstrated by its ability to find
a good solution within 10 generations with a higher accuracy that the other tech-
niques.

Figure 3.15 compares code size performance for all 3 IE types for all 3 non-linear
target problems. For the AE, it is clear that code size 1 IEs perform evolutionary

3.3. Experiments 43

FIGURE 3.10: 5 evolutionary runs for a DE and all 3 IEs with a code
size of 2 on the target problem, (a = 0.5, b = 0.25). The fitnesses
plotted are those of the best winner so far in the evolutionary run.
The solid lines are the mean values of the 5 runs, whereas the dotted

lines are the fitness values of the highest performing run.

search faster than the code size 2 equivalents, but can plateau if the 1 dimensional
manifold does not intersect with the target maxima. However, a more in depth anal-
ysis into the results (and a closer look at the graphs) reveals that the final solution
found by the code size 2 AE derived IEs have a higher fitness. For the VAE, no clear
pattern can be observed across the different target problems. For the GAN, a similar
pattern to the AE derived IEs can be observed in that the code size 1 IEs find a solu-
tion faster than the code size 2 equivalents. However, in contrast to the AE, the code
size 1 final solutions have a higher fitness than the code size 2 counterparts. Further-
more, the code size 1 GAN derived IEs do not suffer from such extreme plateauing
because the derived manifold successfully extrapolates to unseen target problems.

44 Chapter 3. Indirect Encodings for Continuous Optimisation

(A) Autoencoder, enumeration range = [0.0, 1.0] in
increments of 0.01.

(B) VAE, enumeration range = [-3.0, 3.0] in incre-
ments of 0.03.

(C) GAN, enumeration range = [-3.0, 3.0] in incre-
ments of 0.03.

FIGURE 3.11: Enumerated manifolds over the latent space of all 3
code size 2 IEs on the target problem, (a = 0.5, b = 0.25). Maxima for
the source and target problems are shown as green and red crosses
respectively. Training data for the generative models is shown in yel-

low.

3.3. Experiments 45

FIGURE 3.12: Zoomed enumerated manifold of the GAN derived IE
from Figure 3.11c. It illustrates the folding of the manifold which

might lead to local optima in search.

FIGURE 3.13: 5 evolutionary runs for a DEIS and each of the 3 IEs
with a code size of 2 on the target problem, (a = �3.5, b = 12.25).

46 Chapter 3. Indirect Encodings for Continuous Optimisation

FIGURE 3.14: 5 evolutionary runs for a DE, a DEIS, and each of the 3
IEs with a code size of 2 on the target problem, (a = 5, b = 25).

(A) AE (a = 0.5, b = 0.25) (B) AE (a = �3.5, b = 12.25) (C) AE (a = 5, b = 25)

(D) VAE (a = 0.5, b = 0.25) (E) VAE (a = �3.5, b = 12.25) (F) VAE (a = 5, b = 25)

(G) GAN (a = 0.5, b = 0.25) (H) GAN (a = �3.5, b = 12.25) (I) GAN (a = 5, b = 25)

FIGURE 3.15: IE code size comparisons for each of the 3 IE types on
each of the non-linear target problems. Plots record the mean of the
best winner so far in the evolutionary run and the best of the best

winners so far.

3.4. Discussion 47

3.4 Discussion

The experimental results show that IEs derived from autoencoders, VAEs, and GANs
have the ability to outperform direct encoding baselines on unseen target functions
from the same family as the source functions. These advantages take the form of
both evolutionary search speed and accuracy of the solutions found. These advan-
tages are observed when there are linear and non-linear relations between the max-
ima of the source and target problems in question. This bodes well for real world
problems for which we assume non-linear relationships to exist between maxima in
a particular family of functions. These results illustrate how information from source
functions can be used to craft a search manifold that enables faster and sometimes
more accurate search on similar, but unseen target functions. Given that many ma-
chine learning problems are mathematical optimisation problems under the hood,
the techniques introduced here will be directly transferable to areas such as classifi-
cation, regression, and reinforcement learning, as we show in Chapter 4.

We have also illustrated that the training procedure for AEs and VAEs of code
size 1 is highly susceptible to local minima in the non-linear case, whereby the train-
ing points are not all accurately modelled (Figure 3.7b). The resultant manifolds
therefore generalise to unseen maxima poorly, as evidenced by the poor perfor-
mance of the code size 1 AE and VAE derived IEs on the extrapolative target function
(a = 5, b = 25) (Figure 3.9). This results in extreme fitness plateaus with a fitness
much less than an optimal solution because the manifolds do not intersect the max-
ima of the target problem. This is in contrast to the GAN training procedure, which
does not become trapped in a local minima for a code size of 1, resulting in mani-
folds that extrapolate well to unseen target functions (Figure 3.7c); this has positive
knock on effects on the performance of the respective IE (Figure 3.9). We expect poor
generalisation to be an issue when using AE and VAE derived IEs beyond the code
sizes of 1 and 2 to the general case where the code size is less than the dimensionality
of the search space. Further experiments are required to gather additional evidence
for this hypothesis, however, if true, could result in a heuristic such as, one should
be cautious of malformed manifolds when using IEs derived from AEs and VAEs
with a code size less than that of the search space. Despite the poor generalisation
being a pernicious problem for a code size of 1, this problem disappears for a code
size of 2 where the VAE derived IE of code size 2 extrapolates most successfully of
all the techniques evaluated (Figures 3.11b and 3.14).

We observed a speed accuracy trade off occurring in the non-linear experiments
for the GAN derived IE. Significant evolutionary search speed advantages are re-
alised for the code size 1 IE compared to the baselines (Figure 3.9) and its code size
2 counterpart (Figure 3.15i). However, this comes at a cost to the accuracy of the
final solution, whereby the solution closest to the (5, 25) maxima found is (5.1531,
24.9785). This is a limitation when the manifold with a dimension less than that of
the search space does not intersect directly with the maxima of the target function
(Figure 3.7c). A solution to this would involve switching back to a direct encoding
when the search of the indirect encoding begins to plateau. This would have the
advantage of the search speed gains of the IE without sacrificing the accuracy of the
final solution.

One disadvantage observed when training GAN derived IEs is mode collapse
(Figure A.5). This only occurred for the linearly related source problems, however
it rendered the code size 1 IE unsuitable for locating new target solutions (Figure
A.1) and caused the code size 2 IE to experience extremely long search times (Figure
A.4). Currently, it is unclear why mode collapse occurred in this situation; it could

48 Chapter 3. Indirect Encodings for Continuous Optimisation

have been due to the architecture of the generator and discriminator, or it could have
been because of the distribution of the training data. What is apparent though is the
dramatic negative effects that mode collapse has on the ability of the derived IE to
locate solutions to new target problems.

The GAN derived IEs of code size 2 seem to suffer from a more significant final
solution accuracy problem compared to the AE and VAE derived IEs. On all three
non-linear target problems, the fitness of the solutions found by the GAN derived
IE of code size 2 plateaued at a fitness slightly lower than the optimal fitness (Fig-
ures 3.10, 3.13, and 3.14). The reason for this is not immediately clear because the
manifold created by the code size 2 GAN derived IE is the same size as the search
space and will therefore encapsulate the target maxima somewhere within itself. It
would be understandable for search to be slower, however observing plateauing be-
haviour on a code size 2 IE was surprising. One explanation could be the fact that
the manifold of the GAN derived IE seems to undergo a larger amount of folding,
illustrated in Figure 3.12. This folding would be a natural by-product of the train-
ing procedure in which the GAN needs to compress its output solely around the
training data. However, it may be the case that a large amount of folding can lead
to local maxima in the search space, which in turn results in the fitness plateauing
behaviour. Further experiments are required in order to ascertain whether this is the
sole cause of these observations. If it is, there are certain regularisation techniques
that can be employed during the training procedure of the GAN to alleviate this,
such as weight decay or early stopping.

We saw no advantages of using an IE when the target problem in question has
a maxima very close to solutions produced by the initial population of the DE. This
was the case for the target problem (a = 0.5, b = 0.25) for which neither code size
1 or 2 IEs outperformed the DE (Figures 3.6 and 3.10 respectively). This provides
evidence for the fact that the performance of the DE with respect to the IEs is highly
dependant on the target problem. We therefore cannot say that IEs, if constructed
correctly, will always outperform a DE because it is also fundamentally dependant
on the location of the maxima of the function being optimised.

We provided an alternative baseline, the DEIS, in an attempt to start evolution in
a location close to the maxima of the source problems. Without any additional infor-
mation about the unseen target functions, and under the assumption that they are of
the same family as the source functions, we can assume that this is the most sensible
place to begin search. However, as was observed with the DE, the performance of
the DE with informed search is again highly dependent on the location of the max-
ima of the target problem. If the target function maxima was closer to the centroid
of the source function maximas than the mean of the initial distribution of the DE,
the DE with informed search was shown to perform evolutionary search faster than
the DE. As a result, the informed search brought large advantages over the DE in
certain cases (Figure A.7), whereas in other cases it performed the worst of all the
techniques (Figure A.6).

3.5 Future Work

This current work is greatly limited in that it only explores the proposed techniques
on a small subset of bivariate quadratic functions. We hope that the advantages
offered by generative model derived IEs and the insights gained here generalise to
other function families. We want to test these techniques in other areas for which op-
timisation is a key component, such as classification, regression, and reinforcement

3.6. Conclusion 49

learning (explored in Chapter 4). We particularly believe advantages will be realised
in transfer learning where knowledge from source domains (source problems) can
be utilised via an IE on target domains (target problems).

The experiments carried out here were limited by computational power resulting
in only 5 evolutionary runs for each technique, we would like to repeat the results
with a larger number of runs. We would also like to repeat the experiments with
a sweep over hyperparameters, such as generative model architectures and evolu-
tion parameters. Testing on more than 3 target problems would help us to ascertain
a greater understanding of when IEs give advantages and at which point a direct
encoding performs best.

We would also like to explore some of the remedies presented in 3.4. It would
be interesting to test whether switching back to a direct encoding after realising
the search speed gains of the indirect encoding results in a technique that is both
faster and more accurate than using a DE or IE alone. We would also like to explore
whether performing regularisation techniques on the GAN results in a smoother
search manifold and in turn prevents fitness plateauing.

3.6 Conclusion

In summary, we have compared the performance of indirect encodings derived from
autoencoders, VAEs, and GANs on unseen target functions for two families of bi-
variate quadratic functions. We have shown that all three techniques can produce
IEs that, for certain target functions, outperform baselines. We have provided infor-
mative illustrations that highlight the differences between the different types of IE.
We have shown that the comparative performance of the IEs compared to the DE
baselines is highly dependant on the target function being optimised. We have high-
lighted pitfalls of AE and VAE derived IEs when using a code size of 1, which results
in poor performing IEs. We have suggested remedies to improve the speed accuracy
trade off observed when using a GAN derived IE. Finally, we have highlighted and
suggested remediations to the manifold folding that occurs in the IEs derived from
code size 2 VAEs and GANs, which we have hypothesised cause local maxima in the
search space.

51

Chapter 4

Generative Models over Neural
Controllers for Transfer Learning

Transfer learning refers to the situation where what has been learned on one task
can be exploited in a different but related task [44]. An example from the supervised
learning setting would be to use the initial layers of a classifier trained to detect
pictures of cats in order to initialise or pretrain a classifier used to detect pictures
of dogs. One would assume that the features learned in the first layers to detect
cats such as edges, corners, changes in lighting etc. will also be useful in detecting
dogs. Pretraining a model with a large auxiliary dataset that differs from the target
dataset enhances object detection performance compared to a model trained solely on
the target image dataset [41]; suggesting the features that were useful in classifying
objects in the first dataset were also useful for classification in the second dataset.

In reinforcement learning (RL) tasks, transfer learning consists of leveraging prior
knowledge from a set of source domains to improve learning on some target do-
mains [156]. For example, the ability to walk is a prerequisite for many different
tasks such as hunting, building and evading predators. However, when learning
each of these tasks, animals do not have to relearn how to walk each time, they
reuse the previously learnt walking behaviour that was required for some previous
task (source domain). It would similarly be inefficient for RL agents to relearn prim-
itive actions every time they learn a new, but related, task. To avoid this, there needs
to be some mechanism by which invariant knowledge over the source domains is
gathered and stored.

Evolutionary algorithms (EA) are a set of gradient-free search algorithms that can
be used to find and optimise policies for RL control tasks. EAs also have the abil-
ity to store invariant domain knowledge via an indirect encoding (IE). One way of
producing a domain-dependent IE is by learning a distribution over the parameters
of previously found solutions using a generative model, this is known as a data-
driven encoding (DDE) [40]. Data-driven encodings have been explored in a num-
ber of works referenced in Section 4.1. However, despite the proven link between
evolutionary processes and learning theory suggesting evolution has the ability to
generalise via their IEs [67, 147], to the authors knowledge, no work has yet applied
DDEs to transfer learning in RL tasks. Consequently, in this work we use indirect
encodings to capture the similarities in neural network controller parameter spaces
for a set of source domains, and then reuse these IEs to evolve solutions on a set of
unseen target domains with much greater speed.

We argue that the optimisation of some fitness function of an RL control task
f (d(g; q); t), with respect to, g, the genotype, where d(g; q) is the phenotype - which
in this case would be the weights of a neural network controller - and t is a vector
of some domain parameters, is exactly the same as optimising instances of families
of functions as was done in Chapter 3. Thus, we can directly apply the techniques

52 Chapter 4. Generative Models over Neural Controllers for Transfer Learning

explored in Chapter 3 to learn a generative model over solutions to some subset
ds ⇢ D of source domain instances, and subsequently use this model as an IE, d, to
optimise the fitness function to some target domain instances dt ⇢ D where ds \ dt =
∆ at a much greater speed than without an IE, thereby, performing efficient transfer
learning in RL control tasks.

Three different IEs are explored: the decoders derived from a trained autoen-
coder (AE) and a variational autoencoder (VAE), as well as the generator derived
from a trained generative adversarial network (GAN). Hence, we address the fol-
lowing questions, which are central to transfer learning:

1. What knowledge is relevant for generalisation to future tasks?

2. Which storage mechanism should be used for this knowledge?

For 1., we model the distribution of well-performing solutions in parameter space
over a set of source domain; for 2., we store relevant knowledge in the IE. We demon-
strate the ability of this technique on three OpenAI gym environments: Continuous
Mountain Car, Frozen Lake and Bipedal Walker and give evidence that IEs trained
in this way perform much better than two other baselines.

Contributions

1. We propose a way to perform transfer learning in RL control tasks by capturing
invariant domain knowledge in the neural network controller parameter space
using generative models. The generative part of the model is then used as an
indirect encoding to reevolve on similar but unseen tasks.

2. We provide evidence that our method results in much faster learning speed
compared to two baselines: a direct encoding and a direct encoding with an
informed search start location.

3. We demonstrate these advantages for three different OpenAI gym RL control
tasks.

4. We compare the performance of AEs, VAEs, and GANs on these three different
control tasks.

5. We analyse the failure modes of some of the models and suggest remediations.

4.1 Related Work

An autoencoder and a VAE are used in [106] and [18], respectively, to learn a dis-
tribution over neural network controller parameters for benchmark RL tasks, such
as Bipedal Walker and Cart Pole. Unlike our work, the focus is not on transferring
gained knowledge to unseen target domains, rather, the enumeration and analysis
of behaviours on a single domain instance. Furthermore, the fitness of discovered
solutions is not used as a metric of evaluation in either [106] or [18], whereas our
work considers the fitness of produced solutions of paramount importance.

DDE-Elites [40] uses a VAE to learn a distribution over joint angles for well-
performing solutions to a 2D planar arm inverse kinematics environment. Similar
to our work, evolutionary search is subsequently performed in the latent space of
the VAE decoder, which acts as an IE, and is compared to a direct encoding. Also,
optimisation on novel but similar tasks is performed, akin to the transfer learning

4.2. Conceptual Overview 53

(A) Engine power = 0.0010.
f (dI(g); [0.0010])

(B) Engine power = 0.0015.
f (dI(g); [0.0015])

(C) Engine power = 0.0020.
f (dI(g); [0.0020])

FIGURE 4.1: Fitness function plots for three different engine power
settings in CMC. Plots were generated by producing 1000 random
neural networks and assessing their fitnesses. The axes are the weight
values of the neural networks and the colour represents the fitness.

experiments in our work. However, unlike our work, the technique is not evaluated
on RL control tasks. Furthermore, in [40], the parameters of optimisation are joint
angles as opposed to the parameters of neural network controllers.

Conditional GANs (cGAN) have also been used to construct IEs. The optimi-
sation of high-level control policies for a robotic arm, and the design of buildings,
an energy plant and the respective energy distribution network for an urban neigh-
bourhood is assisted by a cGAN in [57] and [58] respectively. Similar to our work,
[57] tests the generalisation capabilities of the trained generative model on unseen
but related domains. Unlike our work, neither [57] or [58] consider neural network
controllers, nor do they perform any form of search in the latent space of their re-
spective generative models.

COIL [6] applies the ideas of [40] to the concept of constrained mathematical
optimisation problems. AutoMap [96] uses the decoder of an autoencoder as an IE
to re-evolve on a rugged fitness landscape resulting in much faster learning on the
same task.

All of the works cited in Section 4.1 consider only a single type of IE, whereas
our work compares three different types of IE.

4.2 Conceptual Overview

In RL, each domain typically has a reward function that gives a set reward for each
state entered by an agent, an RL agent will try to maximise this cumulative reward
by taking actions resulting in larger rewards. An agent whose policy is optimised by
an EA typically will receive a single valued reward at the end of an environmental
run, which is subsequently used to inform the selection procedure. Step-wise RL
rewards can be converted into a single valued final reward by simply summing the
rewards for all the steps of the episode.

One can imagine that for completely different domains, the fitness functions are
vastly different. For example, a neural network trained on Continuous Mountain
Car (CMC) would not work at all on Bipedal Walker. Aside from the fact that the
number of inputs and number of outputs of the control networks are different, even
if they were not, the likelihood is that a good solution on one domain would not be
a good solution on another. However, for similar domains it may be the case that
the fitness functions are somewhat similar. This similarity between fitness functions
may result in much of the search space for a set of similar domains being of low
fitness, and thus, need not be considered during optimisation.

54 Chapter 4. Generative Models over Neural Controllers for Transfer Learning

For example, CMC can be solved with a very simple neural controller; there are 2
inputs and 1 output and a solution can be found using a linear controller with only 2
weights (no bias). The more complicated fitness function used in this work encour-
ages the car to get as close to the goal as possible whilst also rewarding the car for
getting there in a faster time and for having a lower speed at the goal. There are a
number of adjustable domain parameters, t, within CMC, such as gravity and en-
gine power. For each of these parameterised domain instances, the resulting fitness
function, f (d(g; q); t), will be different.

Figure 4.1 illustrates the fitness functions for three different engine power set-
tings (values of t) and a fixed d (in this case the identity mapping, dI). It can be
observed that despite the fitness functions being different, they contain structural
similarities. For example, no matter what the power value, all networks with a sec-
ond weight value of less than 0, or a first weight value greater than 5, have poor
fitness scores. Information of this kind could be very useful in future search because
we can assume that for domains with similar power values, it will be fruitless to
search within these low valued fitness areas. Similarly, we can see that the higher
fitness solutions are located in a ridge on the top left of the fitness function. This
ridge is at a different place for each power setting but still in the same area of the
weight space.

Without prior information about where good solutions in the weight space are
located, there would not be much reason to start search anywhere other than at 0
with an unknown starting distribution variance. If one were therefore going to con-
strain the search space to [-100, 100] (which is reasonable when searching over neural
network weight space) the areas of interest in Figure 4.1 are a small proportion of the
space. Therefore, without integrating previous information into search, a substantial
amount time and computational power might be required to locate this region.

The main proposition of this chapter is that we can capture the area of good
solutions in neural network controller weight space common to a set of different pa-
rameterised source domains, ds using generative models. These generative models
will then act as an indirect encoding, thereby mapping arbitrary genotype values to
high fitness areas of the phenotype space. We can then evolve again on some unseen
target domains, dt, using this IE, resulting in a much more precise search. As we
have shown in Chapter 3 this proposition can be extended much further than the
neuroevolution experiments presented here and can be used for any parameterised
optimisation problem where there are commonalities amongst the different search
spaces.

4.3 Methodology

We prepared training data for the generative models by using CMA-ES [50] to evolve
solutions on a set of parameterised source domains, ds, using a direct encoding. The
initial centroid of CMA-ES was set to [0.0]n, where n is the number of weights in the
neural network controller, and the initial s was set to 1.0. Each element in the search
space was bound between [�100, 100] 1. A solution was defined as a neural network
controller that achieved some minimal fitness value.

Next, all three generative models were trained using the training data, which
were vectors of neural network controller weights. For all three generative models a
hidden layer of 64 neurons with ReLU activation was used in both the encoder and

1Often CMA-ES can discover solutions with very large values making it more difficult to train a
generative model over.

4.4. Experiments 55

decoder or the discriminator and generator. The hidden layer in the decoders and
generators meant that the respective IE was able to capture non-linear relationships
between the genotype and phenotype space. ADAM [64] was used as the optimiser
for all generative models, with a learning rate of 1�3 used for the autoencoder and
VAE, and learning rates of 2�4 and 5�4 used for the generator and discriminator of
the GAN respectively. For the experiments in Section 4.4 a code size of 1 and 2 was
used in the generative models. Time constraints prevented us from experimenting
with a code size larger than 2, however, it is perfectly reasonable to assume that per-
formance could be positively affected by larger code sizes and it certainly warrants
further investigation. The number of epochs used were 10 000, 10 000, and 40 000
for the autoencoder, VAE, and GAN respectively. Each of the three types of model
were trained 5 separate times.

We then performed evolution using CMA-ES over the latent space of the decoder,
in the case of the AE and VAE, or the generator, in the case of the GAN. For the AE,
the initial centroid was set to [0.5]m, where m is the size of the code. This is because
the learnt code was bound in the range [0, 1] due to the sigmoid activation function
in the pre-code layer. For the VAE and GAN, the initial centroid was set to [0.0]m
because their training procedures are such that the typical code processed by the
latent space is that derived from a unit normal distribution. An initial sigma of 1.0
was used for all the IE experiments. This evolutionary process was performed 5
times for each generative model trained.

For evaluation, we tested the speed of evolution and the fitness of the best winner
found for the three IEs and two baselines on a set of target domains. The two base-
lines were: (1) a direct encoding, and (2) a direct encoding starting evolution from
a controller pre-trained to maximise the average fitness over the full set of source
domains. We call this pre-trained controller a universal controller (UC), which has
been previously used as a baseline for MAML[34]. Each of the two baselines, the DE
and the UC, were ran 10 and 5 times respectively.

4.4 Experiments

4.4.1 Continuous Mountain Car

Continuous Mountain Car (CMC) is a variation of Mountain Car in which a contin-
uous force value is applied to the car instead of a discrete force value. The car begins
the run in a trough of a valley and aims to reach a flag atop one of the two moun-
tains. The simulation ends once 1000 time steps have elapsed or the car reaches the
goal position.

In CMC one can modify the engine power of the car such that the force applied
to the car by the controller, and thereby the acceleration of the car, will be different
given the same control signal. We use this engine power as the modifiable domain
parameter, t, in these experiments. Each instance of engine power will result in
a similar but related fitness function, as in Figure 4.1. A controller trained on one
engine power instance will either overshoot or undershoot the flag.

In order to induce a larger difference in the fitness functions between each en-
gine power setting, we modified the fitness function such that a greater reward is
achieved for having a lower velocity at the moment the flag is reached 2 - shown in
Equation 4.1. The default reward was not influenced by the velocity of the cart at

2The alternative would have been to use environments with larger engine power increments for
training and testing, however, this had large unstable effects on the dynamics of the cart.

56 Chapter 4. Generative Models over Neural Controllers for Transfer Learning

the flag. This has the effect of more drastically penalising an overshooting cart (an
undershooting cart is penalised more greatly by the time component of the fitness
function) as a result of a small increase in engine power. A set of fitness functions
that are too similar fail to highlight that interpolative advantages gained by using
the IE techniques. It would also mean the controller pre-trained to maximise the
average fitness of the set of source domains (the UC) can achieve a much higher fit-
ness, thereby, bootstrapping the informed start DE baseline more significantly; this
subsequently erodes the comparative advantages of the IE techniques.

There are three aspects of the modified fitness function, Equation 4.1: a higher
reward given for a cart achieving a smaller distance to the flag, a higher reward
given for locating the flag in a lesser amount of time, and a higher reward given for
achieving a lower velocity at the moment the flag is reached. The modified fitness
function, f , is given by:

f =

(
pc + (1� t f

tmax
) + (1� v f

vmax
), if flag reached,

pc, otherwise,
(4.1)

where pc is the closest position the cart has come to the flag over the course of
the entire run (this value increases as the car gets closer to the flag, up to a maximum
of 0.45); t f is the number of time steps elapsed when the flag is reached; tmax is the
maximum number of time steps, which is 1000 in this case; v f is the velocity when
the flag is reached; and vmax is the maximum velocity of the cart.

In order to collect training data for the generative models, CMA-ES was used (as
described in Section 4.3) with a direct encoding to evolve 333 solutions for each of
the three source domain instances, ds, with an engine power in the following set:
{0.0008, 0.0012, 0.0016}, giving a total of 999 solutions. A population size of 100 was
evolved for 100 generations. A neural controller with 2 inputs, 1 output, no hidden
layers, and no bias was used, resulting in a weight space size of 2. Once trained, we
used the decoder or generator as the IE for another evolutionary process (as detailed
in Section 4.3) on CMC target domains, dt, with test engine power values in the set:
{0.0010, 0.0014}.

Figure 4.2 shows the fitnesses of the best winner so far for the evolutionary runs
for a test engine power of 0.0014. The plotted IE is derived from a VAE with a code
size of 1 - the best performing of all 3 types of IE. The run using an IE begins the evo-
lutionary run with a much higher fitness than both the DE and the UC, and repeat-
edly finds a solution that beats the baselines after 30 generations. For this particular
IE, the mean of the best winner so far starts above 2.0 in the first generation, which
is considered to be a full solution to this environment. This demonstrates that just
randomly sampling in the latent space of the VAE’s decoder results in neural network
weights that are close to the maximum fitness of this unseen test domain. These re-
sults show that the IE and UC have the ability to integrate information from their
own respective training procedures to bootstrap their evolutionary procedures.

Figure 4.3 compares the performance of an AE, a VAE, and a GAN with code
size 1 for CMC with a test engine power of 0.0014. It shows that both the AE and
VAE derived IEs outperform the UC, however the GAN plateaus at the same fitness
as the UC despite starting with a larger fitness in the earlier generations. Figure 4.4
compares the performance of all 3 IEs for code sizes 1 and 2. It suggests that using a
code size of 1 is preferable in this domain with the settings examined so far for all 3
IEs. It also suggests that using a code size of 2 might lead to premature convergence
in a number of cases in which a higher fitness solution cannot be found despite one
being found in a previous run.

4.4. Experiments 57

FIGURE 4.2: 10 evolutionary runs for a DE, 5 evolutionary runs for
a UC, and 5 evolutionary runs for an IE derived from a VAE with a
code size of 1 on CMC with an engine power of 0.0014. The fitnesses
plotted are those of the best winner so far, this is the best solution
found so far during the evolutionary run. The solid lines are the mean
fitnesses of the runs and the dotted line is the best run according to

the final generation fitness.

Figure 4.5 highlights some key information about the controller’s weight space.
The illustrated training data, which represents the weights of solutions to the source
domains, is shown as lying in regular parabolic shapes for each particular engine
power. The grey dotted line, which represents the enumeration over the latent space
of the IE, shows how the decoder of the VAE learnt to map values from its latent
space to the weight space such that it could reconstruct the training data as accu-
rately as possible using a single dimension. It intersects the weight space near the
center of the source domain solutions, which evidently happens to coincide with
high fitness solutions of the target domains. It is interesting to see how this enumer-
ated weight manifold is more sparse in areas of least interest and more dense in areas
with a higher likelihood of finding a good solution, this is due to the regularisation
effect induced by training procedure of the VAE.

Figure 4.5 also shows the starting positions of evolutionary search for the DE
and the UC as red and green crosses, respectively. Without previous knowledge of
the search space, there is no other information to suggest that the best place to start
search is anything other than the origin; for this reason we start evolutionary search
of the DE at [0.0, 0.0]. However, starting search at the origin results in a significant
amount of time and compute expended as the search distribution maneuvers into
the area of good solutions for every single new domain instance. Alternatively, the
UC has been trained to maximise the average fitness over the three source domains.

58 Chapter 4. Generative Models over Neural Controllers for Transfer Learning

FIGURE 4.3: Comparison of IEs derived from an autoencoder, a VAE,
and a GAN on CMC with test engine power 0.0014. All IEs use a
code size of 1. Universal controller is also shown for comparison but
a direct encoding is left out because its fitness values for the first few
generations are much lower. The fitnesses plotted are those of the
best winner so far, this is the best solution found so far during the
evolutionary run. The solid lines are the mean fitnesses over 5 evolu-
tionary runs and the dotted line is the best run according to the final

generation fitness.

Even though the UC does not achieve perfect fitness on any of the source domains
individually or the newly tested 0.0014 target domain, it allows search to start in a
much more informed position, which leads to much faster convergence to a solution
on the new target domain.

4.4.2 Frozen Lake

Frozen Lake (FL) is a simple, text-based, maze-like environment with a discrete state
and action space. An agent aims to move from a start location to a goal location with-
out falling through a hole into the lake within a designated time limit. By default,
FL is a stochastic environment, however we modify it to be deterministic for these
experiments so that the resulting fitness function is deterministic. The action space
consists of four actions: north, east, south, west. The state space consists of one
integer representing the current tile that the agent is located at.

A neural network controller with 1 input, 4 hidden units with a ReLU activation
function, and 4 output units (one for each of the 4 discrete actions) with a sigmoid
activation was used - this resulted in a neural network weight space size of 28. In
order to select the action of the agent, the index of the output neuron with the largest

4.4. Experiments 59

(A) Autoencoder. (B) VAE. (C) GAN.

FIGURE 4.4: Comparison of IE performance between code sizes 1 and
2 on CMC with test engine power 0.0014. The fitnesses plotted are
those of the best winner so far, this is the best solution found so far
during the evolutionary run. The solid lines are the mean fitnesses
over 5 evolutionary runs and the dotted line is the best run according

to the final generation fitness.

FIGURE 4.5: The weight space of the neural network controller for
the CMC domain. The thistle, gold and dark orange points represent
the training data used to train the generative models. The grey dotted
line labelled ‘IE manifold’ represents an enumeration over the one di-
mensional latent space of the decoder derived from the VAE in Figure
4.2 mapped into the two dimensional weight space. The enumeration
is over the range [-3,3] with increments of 0.05. The blue diamond at
(-3.68, 89.58) represents the best winner found by the decoder. The
red and green crosses represent the initial centroids of search for the
DE and the UC, respectively, with the dotted circles representing the

initial sigma of the search distributions.

output value was used. Not all positions in the maze can be located by a controller
with zero hidden layers, it was for this reason that a hidden layer was included in the
controller. FL is therefore an appropriate domain to demonstrate the ability of our

60 Chapter 4. Generative Models over Neural Controllers for Transfer Learning

FIGURE 4.6: 10 evolutionary runs for the DE and 5 evolutionary runs
for both the UC and all 3 IEs on Frozen Lake with an target goal po-
sition of (1,3). All IEs use a code size of 2. The fitnesses plotted are
those of the best winner so far, this is the best solution found so far
during the evolutionary run. The solid lines are the mean fitnesses
over 5 evolutionary runs (10 for the DE) and the dotted line is the

best run according to the final generation fitness.

learnt IEs to find neural network controllers with a hidden layer and with a larger
number of weights than in the CMC experiments.

For FL, we use goal position as the modifiable domain parameter. The source
domains, ds, consists of those with goal positions in the set: {(1,2), (3,2), (3,3)} and
the target domains, dt, are those with goal positions in the set: {(1,3), (3,0)}. The
reward given is inversely proportional to the manhattan distance between the end
location of the agent and the goal, with an additional reward of -10 given if the agent
falls in a hole.

The training data for the generative models was collected in the same way as in
CMC: 999 solutions were found, 333 for each of the three source domains. These
solutions were found using a random search. In practice, random search found so-
lutions faster and more frequently than a directed search procedure. We hypothesise
that this is because the fitness function used was deceptive [42].

Figure 4.6 shows the results on the (1,3) target goal position for all 3 IEs and the
two baselines. The plot shows that the only IE to achieve a maximum fitness of 0
(locating the goal) is the GAN, which it does repeatedly over the 5 runs. The IE
derived from the GAN has not been trained on controllers that locate this target goal
but it is successfully able to interpolate over the weight space in order to quickly
generate controllers capable of finding this new goal location. The DE encodes no
previous domain knowledge and therefore takes a much longer time to converge to

4.4. Experiments 61

(A) DE generation 1 (B) DE generation 10 (C) DE generation 25

(D) UC generation 1 (E) UC generation 10 (F) UC generation 25

(G) GAN generation 1 (H) GAN generation 10 (I) GAN generation 25

FIGURE 4.7: Representations of the Frozen Lake environment high-
lighting the percentage of the population in a single generation that
ends the episode in a particular tile. Each tile in the 4x4 FL environ-
ment is labeled by one of the following types: S, the starting location;
F, frozen tile (traversable); H, hole; and G, the goal location. The tar-
get domain with goal position (1,3) is shown. The coordinates of the
tile and the aforementioned percentage are also shown. Each subfig-
ure highlights the state of the environment at different generations

for the DE, UC and GAN plotted in Figure 4.6.

a good solution.
Figure 4.6 also shows the very poor performance attributed to the VAE derived

IE. This is interesting considering that the VAE was the highest performing IE in the
CMC domain, however, this could be due to the presence of the hidden layer in the
controller network (further analysis in the Section 4.5). Although the AE derived
IE does not perform as poorly as the VAE derived IE, it never achieves maximum
fitness in this domain, meaning it never locates the target goal of (1,3).

Figure B.1 in Appendix B.1 shows results comparing the performance code sizes
1, 2, and 3 for the AE, VAE, and GAN. The plots illustrate that a code size of 2
performs best for the GAN, the AE seems to gain advantages by using a code size of
3, and the code size best suited to the VAE is 1 - although performance remains very
poor.

Figure 4.7 illustrates that without any information about the solution space the

62 Chapter 4. Generative Models over Neural Controllers for Transfer Learning

DE chooses from the four actions equally in the starting tile resulting in half of the
controllers in generation 1 not moving at all. Alternatively, the GAN derived IE
from Figure 4.6 biases the solution space such that zero individuals in generation 1
choose either the action north or west and end the episode in the start state. This is
because no goal position in the source domains was found by solutions that chose
action north or west in the starting location, therefore, the IE biases search away
from weight space that results in those behaviours. Figure 4.7c shows that as the
number of generations increases the DE gets stuck in a local minima at the deceptive
(0,1) location. In contrast, 23% of the controllers that the GAN derived IE produces
find the goal (Figure 4.7i).

4.4.3 Bipedal Walker

Bipedal Walker (BW) is a simulation that requires the design of a controller that
allows a two legged robot to walk as far as possible in a fixed time without falling
over. It is more complicated than the previously tested domains due to the fact
that there are 24 state inputs and 4 action outputs. In these experiments we use
a controller network with no hidden layers resulting in 100 tunable weights. This
demonstrates the capability of our technique to scale to a one hundred dimensional
RL control problem.

For this domain, we use the knee speed as the modifiable domain parameter. We
collected training data for the IEs using source domains, ds, with the knee speeds:
{2, 4, 6}. The default reward function for BPW is used. Target domains, dt, with knee
speeds of {3, 5} were used to evaluate performance.

Figure 4.8 shows that the best winners for both a GAN derived IE and the UC
start the evolutionary run with a much higher fitness than the DE. Due to the dif-
ficulty of this domain, it takes a significant number of generations for the DE to
generate a solution with fitness greater than 250, however, the IE and UC already
achieve this in the first generation. The GAN finds solutions with a much higher
fitness faster than the UC, however, it begins to plateau after a short amount of time,
and is eventually overtaken by the UC. We hypothesis that this plateauing could be
eased by using a larger code size. It may be the case that a code size of 2 is unable
to fully capture the commonalities between the source domain fitness functions in
weight space and therefore struggles to interpolate.

Figure 4.9 confirms that a GAN derived IE achieves the best performance out of
the other two types of IE. Furthermore, it is the only IE type that achieves a higher
fitness in the initial generations than the UC. However, both the AE and VAE are
able to attain higher fitnesses in the initial generations than the DE which has been
left out due to much lower fitnesses at the beginning of its evolutionary runs.

Comparing a code size of 1, 2, and 3 for the three types of IE - Appendix B.2 -
does not reveal any general pattern. The VAE seems to benefit most greatly from
a code size of 1 (not plotted in Figure 4.9) achieving performance comparable to a
GAN with a code size of 2. It also highlights that the AEs performance is decreased
by using a code size of 3 compared to code sizes 1 and 2.

The code for all the experiments described in Section 4.4 is available at https:
//github.com/jamesbut/IEGymExps-PPSN2022.

https://github.com/jamesbut/IEGymExps-PPSN2022
https://github.com/jamesbut/IEGymExps-PPSN2022

4.5. Discussion 63

FIGURE 4.8: 10 evolutionary runs for the DE and 5 evolutionary runs
for both the UC and a GAN with code size = 2 on Bipedal Walker with
a knee speed of 5. The fitnesses plotted are those of the best winner
so far. The solid lines are the means of the runs and the dotted line is

the best run according to the final generation fitness.

4.5 Discussion

The results in Section 4.4 show clearly that under certain conditions we can learn in-
direct encodings that improve evolutionary search speed compared to two baselines
on unseen target domains. Also, in some cases, such as the CMC experiments, the
VAE derived IE locates a solution with a higher fitness overall than both baselines.
This is the first time in the literature that generative models have been shown to pro-
duce IEs that can find neural network controller solutions for tasks whose solutions
have not been used to train the IE (transfer learning). It has also demonstrated that
one can perform evolutionary search in a much lower dimensional space and, not
only locate viable solutions to known tasks, but interpolate to unseen tasks too.

Due to the improved search speed gains these techniques could provide a way
to scale evolutionary algorithms to optimise neural network controllers with a much
larger number of parameters, a feat EAs have traditionally struggled to achieve.
However, there could be multiple challenges with this. For example, the time saved
using these techniques may be less than the extra time taken to train the genera-
tive models on very large networks. Also, the minimum latent space size needed
to capture all the relevant information in the search space is not known without an
extensive hyperparameter sweep, which would become increasingly timely as the
search space grows and again may erase the search speed gains of using an IE. Fi-
nally, the extrapolative accuracy of the IEs on the target functions may degrade in
higher dimensional spaces without an exponential increase in the amount of training

64 Chapter 4. Generative Models over Neural Controllers for Transfer Learning

FIGURE 4.9: Comparison of IEs derived from an autoencoder, a VAE,
and a GAN on BW with test knee speed 5. All IEs use a code size of 2.
Universal controller is also shown for comparison but a direct encod-
ing is left out because its fitness values for the first few generations
are much lower. The fitnesses plotted are those of the best winner
so far, this is the best solution found so far during the evolutionary
run. The solid lines are the mean fitnesses over 5 evolutionary runs
and the dotted line is the best run according to the final generation

fitness.

data due to the curse of dimensionality. This training data is computationally expen-
sive to generate because it requires the optimisation of similar functions to the target
functions using a direct encoding. The challenges listed above are only hypothetical
and would have to be confirmed with further experiments.

The experiments comparing the performance of different code sizes unfortu-
nately do not provide evidence to prove hypotheses of the form:

(1) As code size increases evolutionary search speed decreases.

(2) As code size increases the fitness of the best performing solutions increases.

(1) would be a reasonable hypothesis to posit because a larger code size would
mean a larger number of parameters to optimise. However, Figure B.2c provides ev-
idence against this because the IE with the lowest code size does not achieve higher
fitnesses quicker than the higher code size IEs. (2) would also be sensible to assume
because one would imagine that as we increase the code size, we increase the size of
solution space available to search within. Again however, the VAE derived IEs with

4.5. Discussion 65

FIGURE 4.10: PCA results for Frozen Lake neural controller weight
space mapping the training data (red) and enumerations over the
GAN (yellow) and VAE (blue) latent spaces to a 2 dimensional space
for visualisation. The latent space enumerations were performed be-

tween -3 and 3 with a step size of 0.05.

a code size of 2 and 3 are shown in Figure B.2b to plateau at a much lower fitness
than the IE with a code size of 1.

For each of the three different types of IE, 5 IEs are trained and for each of those
5 IEs 5 evolutionary runs are performed. This is quite a small sample size, so it may
be the case that more reliable results could be obtained with larger sample sizes, this
may in turn result in evidence that leads to slightly different hypotheses. Further-
more, the IEs used in these experiments all contain 64 hidden nodes, so the results
could vary as the architecture of the IE varies.

We do not observe that one type of generative model is dominant across all three
domains tested. We can however say that the AE is never the best generative model
to use to derive an IE, either the VAE or the GAN perform better (dependant on the
domain).

Finally, we sought more information regarding the poor performance of the VAE
in Frozen Lake (Figure 4.6). To this end, we used principal component analysis
(PCA) to reduce the dimensionality of the training data for FL, and enumerations
over the latent spaces of both the high performing GAN and the low performing
VAE, Figure 4.10 shows the results. It is shown that the generator of the GAN pro-
duces network weights that spread over the entirety of the training data, whereas
the decoder of the VAE produces weights in a very small section of the space and
does not cover the training data at all. It is thus not surprising that no solutions are
produced by the VAE derived IE because all values in its latent space are mapped to

66 Chapter 4. Generative Models over Neural Controllers for Transfer Learning

a part of the weight space that has not been shown to produce any solutions on the
source domains.

A number of pathologies have been shown to exist within the training procedure
of VAEs, one of them being a poor approximation of the data distribution, which is
what we observe in Figure 4.10. In [154], this is attributed to the training objective
of the VAE which consists of both minimising the reconstruction loss and the en-
couragement that the latent variable, z, be distributed according to a unit gaussian
distribution. It is shown in [154] that one of the conditions under which this degen-
eration occurs is when the posterior over z, modelled by the encoder, is difficult to
approximate as a gaussian distribution for many of the training points. This could
be the reason we see such a poor approximation of the training data by the VAE as
shown in Figure 4.10. Potential remedies suggested by [154] are using more complex
distributions over the latent variables of the VAE, or increasing the size of the latent
space. However, results shown in Figure B.1 suggest that a code size of 3 is still not
high enough to resolve this issue. It is however interesting to note that this degener-
ation was not an issue for the VAE in CMC or BW suggesting that the training data
in those instances was easier to model.

One may be tempted to assume that the issues with the VAE here are reminis-
cent of the generalisation issues attribute to autoencoders and VAEs described in
Section 3.4 when the code size is less than that of the search space dimensionality.
However, those generalisation issues mainly affect interpolative and extrapolative
performance, whereas here the VAE is not even able to model its training data, as
evidenced by Figure 4.10.

4.6 Future Work

In future work, we would like to further test the interpolation capabilities of the
IE techniques used in this chapter on RL control tasks. It would be interesting to
determine whether the performance gains are maintained as interpolation gets more
severe (i.e. when the target domain parameters, t, are further away from the source
domain parameters). We would also like to test the extrapolation capabilities, where
we would consider how well IEs perform on target domains that have parameters,
t, way beyond those of the source domains. Of course, we expect interpolation and
extrapolation performance to differ depending on the particular domain and fitness
function, however, calculating an average over commonly used benchmarks might
inform us as to when and where these techniques begin to degrade.

Other extensions include a more extensive hyperparameters sweep where code
sizes above 2 are considered and compared to smaller code alternatives. Other hy-
perparameters such as hidden layer size and activation functions used in the de-
coder or generator are bound to affect performance. It would be useful to correlate
hyperparameters to performance on particular fitness functions sets. Also, increas-
ing the size of the hidden layers would in turn test performance on networks with a
larger number of weights than those used in this chapters’ experiments - this would
demonstrate the scaling capabilities of these learnt IEs.

It would also be informative to determine how many training points are need
in order to train a well performing IE. If optimisation on the source domains is ex-
pensive, which would be a fair assumption on many tasks, only a small number of
training points might be able to be generated using a direct encoding; determining
whether the subsequently trained IE would interpolate, extrapolate, and generate

4.7. Conclusion 67

well performing solutions under these constraints is of great importance. We per-
formed some initial experimentation that reduced the training set size, this did not
decrease performance suggesting promising results.

In this work we only used 3 types of generative model, however, there are many
other different types and variations within each type that could be explored. We
hypothesise that a denoising autoencoder would have a similar regularising effect
on the decoder, much like the decoder of the VAE, which could result in better per-
formance. We also believe using conditional GANs (as in [57] and [58]) would result
in a much more precise search manifold outputted by the generator, this could in
turn increase search speed. These are just two of many different types of generative
model that could be explored.

It would be exciting to extend these techniques beyond toy benchmark prob-
lems to real world control problems that are currently typically solved by RL. This
could be applied to any problem in which the environment changes slightly but not
so much that a completely different controller is needed. Examples include multi-
agent interactions in which an adversary or teammate change their policy, control
of robotic systems in a changing environment, financial trading strategies where
external environmental factors affect how well a policy performs, or the control of
industrial processes such as the control of a chemical reaction under some particular
temperature.

Despite the fact that extending these techniques to larger control networks would
be interesting, it is unclear whether the speed advantages of an EA with an gen-
erative model derived IE would be greater than using gradient-based techniques.
Gradient descent is hypothesised to work well in larger networks because the prob-
ability of finding poor local minimum decreases quickly as network size increases
[21]. EAs advantages would most likely be realised on smaller networks where local
minimum are more prevalent and techniques such as crossover and dynamic mu-
tation rates could help this to be overcome. Further advantages on small networks
are likely to come from the techniques introduced in this chapter, with evidence of
our generative model derived IEs assisting in overcoming local minima illustrated
in Section 4.4.2 and Figure 4.7. An important part of future work would therefore be
to determine the network sizes for which our techniques produce advantages over
gradient-based technqiues.

4.7 Conclusion

In summary, we have demonstrated the ability of three generative models, namely
autoencoders, VAEs and GANs, to produce indirect encodings that successfully evolve
neural controller solutions for unseen target domains in transfer learning control
tasks. We have also highlighted certain settings in which these IEs significantly out-
perform two baseline techniques with respect to speed of search. A comparison of
the three different models has been carried out and analyses have been performed
with respect to the poor performance of the VAE in the Frozen Lake environment. Fi-
nally, future work suggests ways in which certain failure modes could be prevented
and how to demonstrate the viability of these techniques on larger real world prob-
lems.

69

Chapter 5

Evolving Navigational Strategies
Using GRUs in NEAT

Smaller robotic platforms such as Micro-Aerial Vehicles (MAVs) have the potential
to carry out tasks in indoor environments that are often too dangerous for a human
to perform. Some of these tasks include: search-and-rescue after natural disasters,
radioactivity monitoring, and the surveillance of safety critical infrastructure. The
size and manoeuvrability of these systems allows them to access areas that would
be inaccessible for larger robots. In order to perform useful tasks in these domains,
the robotic systems need to be equipped with a number of specific algorithms such
as: maximal coverage, collision avoidance, and navigation.

Autonomous navigation is an important task to optimise for many robotic sys-
tems operating autonomously in an unknown environment. Simultaneous Localisa-
tion and Mapping (SLAM) is the process whereby an agent constructs a map of the
environment whilst also localising itself within it. Once a map of the environment
has been generated, the agent can perform path planning through the map to navi-
gate to a desired goal. The success of this navigation is dependent on the success of
SLAM.

Algorithms that perform SLAM as a subroutine are plentiful and can adequately
deal with static, structured and limited size environments [128]. This has been
demonstrated by its success on a number of different robotic platforms including
BigDog [152], Unmanned-Aerial Vehicles (UAVs) [3, 126], helicopters [142] and even
autonomous vehicles [12]. Despite these successes, SLAM is still a relatively compu-
tationally expensive process which can be problematic for smaller robotic platforms
with limited computational power such as Micro-Aerial Vehicles (MAV).

An alternative suite of algorithms known as bug algorithms aim to navigate through
an environment without building an explicit representation (map) of the area, this
is a lot less computationally expensive and memory intensive. Bug algorithms are
designed to work on agents that have limited sensor capabilities and are typically re-
active in nature, responding to local objects such as walls when the agent comes into
contact with them. Bug algorithms typically operate under the assumption that an
agent has a predefined goal position that it is trying to get to. Often, the agent knows
the relative position (or the azimuth angle, or bearing) of the goal but is not aware of
the overall structure of the environment. A number of these algorithms have been
developed for simulation and simple robotic applications, however there is not one
individual algorithm that performs dominantly over all environments; it is often the
case that each algorithm has its own subset of environments that it performs well in.

The fact that bug algorithms are hand designed raises the question as to whether
there exists more effective control policies for navigation that have not yet been con-
ceived of, which are not as computationally expensive as SLAM. The recent surge of
interest in using machine learning methods for optimising agent controllers has led

70 Chapter 5. Evolving Navigational Strategies Using GRUs in NEAT

to success in a wide variety of domains with many breakthroughs coming from the
areas of reinforcement learning (RL) and neuroevolution (NE). Both of these tech-
niques automatically discover control policies for agents situated in an environment,
however the method of optimisation differs considerably. Both methods have been
shown to outperform humans at a number of different tasks with one of the most
widely used benchmarks being the Atari domain [95, 104, 138]. This suggests that
human level skill or policies of an equivalent skill are by no means always a global
optima in the solution space and it is often the case that an undiscovered, better
performing policy exists waiting to be located.

The focus of this chapter is to automatically discover control policies for naviga-
tion that outperform hand designed algorithms, such as bug algorithms, whilst, at
the same time, do not have the same vast computational and memory overheads of
algorithms such as SLAM. We use I-Bug [140] as the baseline bug algorithm due to
its lack of reliance on a global coordinate system (unlike most other bug algorithms),
and only requiring sensors similar to those already implemented on real robots (ex-
plained more thoroughly in Section 5.1.1).

For the automatic discovery of control policies, we again turn to evolutionary
algorithms for assistance, in particular, the neuroevolutionary algorithm Neuroevo-
lution of Augmenting Topologies (NEAT) [137] described in Section 2.4.1. NEAT
evolves the architecture of a network as well as the weights, often resulting in much
smaller networks than those in which the architecture has been hand designed. This
can significantly reduce the computational power and memory load, which is espe-
cially advantageous for smaller robotic systems.

Due to the fact that many environments that we test on consist of corridors with
dead ends, we hypothesised that the inclusion of long term memory cells into NEAT
would result in greater performance. To this end, we extended NEAT into NEAT-
GRU, which has the ability to mutate gated recurrent unit (GRU) cells [19] into the
networks, thereby enhancing its memorisation capabilities. We also further tested
the capabilities of NEAT-GRU on a more complicated task, one in which the bearing
angle to the target is not provided to the agent. It is often the case that robots do not
have sensors with the ability to measure the bearing to a target, only those that mea-
sure distance [13]. This task requires the agent to accumulate long term distance to
the target readings, as well as monitoring in which direction the agent is travelling.

In this chapter, we aim to answer the following research questions:

1. Can NEAT repeatedly generate controllers that outperform a specific bug al-
gorithm know as I-Bug, thereby demonstrating that hand designed bug algo-
rithms can be sub optimal?

2. Does the inclusion of long term memory units, specifically GRUs, into NEAT
lead to increased navigational performances?

3. Can controllers be evolved for a much harder navigational task in which the
bearing to the target is not provided as input to the controller?

Contributions

1. We empirically demonstrate that NEAT can evolve controllers that outperform
I-Bug, thereby proving that I-Bug is not a globally optimal policy on a set of
randomly generated test environments.

5.1. Related Work 71

2. We introduce NEAT-GRU, an extension to the neuroevolutionary technique
NEAT. Within NEAT-GRU, GRUs can be mutated into NEAT networks just
like hidden nodes and their parameters are optimised via mutation operators.

3. We show empirically that NEAT-GRU can also produce control policies that
outperform I-Bug on a large set of randomly generated test environments.

4. We provide evidence which suggests NEAT-GRU is superior than NEAT at
producing solutions for these navigation domains thereby inferring that long
term memory units provide additional assistance to the control networks.

5. We show that NEAT-GRU can produce solutions that solve a much harder nav-
igation task in which bearing information about the target is not provided to
the controller. NEAT was unable to produce any solutions for this task, sug-
gesting the need for more complex memory structures when evolving control
policies for robotic systems that do not have access to bearing information.

6. We design a fitness function for both the bearing and no bearing environments
that encourages NEAT and NEAT-GRU solutions to be repeatedly found.

5.1 Related Work

The most simple maze navigational algorithm is wall following. By continuously
aligning to the wall on either the left or right of the agent, an exit is guaranteed to be
found as long as the maze has no disjoint walls or loops, this is known as a simply
connected maze. Apart from the long run-time of this algorithm, it is also unsuitable
for indoor navigation as indoor environments are often not simply connected - they
contain loops or disjoint sections which can cause wall following to get stuck in an
infinite loop.

5.1.1 Bug Algorithms

Bug algorithms do not require simply connected environments and can deal with
unknown obstacles or arbitrary shapes. Lumelsky and Stepanov [82] pioneered
these algorithms by introducing three: Com, Bug1 and Bug2. The simplest of the
three, Com (Figure 5.1), is carried out as follows:

1. Move along a straight line towards the target until one of the following occurs:

(a) The target is reached.
(b) An obstacle is met. Follow the obstacle boundary in the prespecified local

direction (i.e. left). Go to step 2.

2. Leave the obstacle boundary at a point z if the agent can move along a direct
line towards the target. Go to step 1.

Although Com works successfully in a number of environments, there are a
number of cases in which the agent can get stuck in an infinite loop. Bug1 and
Bug2 are more complex versions of Com which aim to overcome some of its issues
such as infinite loops and long path lengths.

A number of other bug algorithms have been developed [59, 60, 81, 83, 86, 124,
125, 153] each with their own advantages and disadvantages. Most note worthy for
the application of these algorithms to robotics is I-Bug [140]. In I-Bug, the target is

72 Chapter 5. Evolving Navigational Strategies Using GRUs in NEAT

FIGURE 5.1: The ‘Com’ bug algorithm. The agent moves along a
straight line towards the target until an obstacle is met, it will then

follow the obstacle until it can continue on its path to the target.

assumed to have a wireless intensity beacon which continuously provides the dis-
tance to the target. It is also assumed that the agent can detect when it is horizontally
aligned with the target and has some form of short range proximity sensors that can
detect walls. These constraints are most appropriate for use on MAVs due to the
availability of similar physical sensors that can determine these values. Previous
work has demonstrated collision avoidance on MAVs via use of Ultra-Wideband
Frequency chips which are able to communicate intra-drone distances to one an-
other [13]. There is also no requirement for I-Bug to have a global coordinate sys-
tem, whereas this is a requirement for most other bug algorithms but can often be
problematic to implement in real robotic scenarios.

In the following description of I-Bug, ‘intensity’ refers to the intensity of a wire-
less signal with respect to the target, it is assumed to be a maximum of 1 when the
agent is at the target. I-Bug consists of 3 possible actions or movement primitives:

• u f wd : The robot goes straight forward in the direction it is facing, stopping
only if: 1) it contacts an obstacle, 2) hits the target, 3) detects a local maximum
of intensity along its line of motion.

• uori : The robot rotates counterclockwise, stopping only when it is aligned with
the target.

• u f ol : The robot travels around an obstacle boundary counterclockwise, main-
taining contact to its left at all times, stopping only when it reaches a local
maximum intensity.

With this combination of sensors and actions, I-Bug is able to carry out Algo-
rithm 1. In this algorithm hi(x) refers to the intensity of the wireless signal at the

5.1. Related Work 73

Algorithm 1: I-Bug
while not at target do

iL hi(x);
Apply uori;
Apply u f wd;
if hi(x) = 1 then

at_target true;
terminate;

end
if iL 6= hi(x) then

iH hi(x);
end
do

u f ol ;
while hi(x) iH;

end

agents’ current state, x. This algorithm stores two values throughout its execution:
iL and iH. The intensity iH is the intensity recorded when the agent contacts an ob-
stacle following the termination of u f wd and iL is the value recorded just prior to
the execution of u f wd. Conceptually, they are the intensities at which the agent hits
and leaves objects. iL is used to determine whether the agent has moved following
the u f wd action and iH is used to determine when to terminate wall following and
continue to move towards the target. Wall following will only terminate if a local
maximum of intensity is reached (this is part of the movement primitive) and then
conditioned on whether the current intensity is greater than iH - in other words, it
will only stop wall following when it is approaching the target and has now begun
to move away from it (local maximum) then conditioned on whether it is closer to
the target than it was when it first contacted the obstacle.

Further analysis of the I-Bug algorithm and other bug algorithms highlights that
certain variables - in the case of I-Bug: iH - must be stored over long time periods
at certain times. Therefore it is very possible that controllers optimised to carry out
policies of similar or greater performance than I-Bug would require mechanisms that
support the ability to store information over long time periods. This was one of the
main motivations for extending NEAT to include GRUs.

5.1.2 Evolutionary Techniques

A comparative study of generalised maze solvers explored the performance of con-
trollers evolved via NEAT using objective based search, novelty search (NS) and a
hybrid of the two [127]. NS is an evolutionary algorithm that searches the space
of behaviours rather than trying to optimise an explicit objective. It does so by as-
signing a behaviour characteristic (BC) to each individual and then gives a reward
based upon how different the BC of the individual is with respect to an archive of
previously novel individuals. This encourages exploration into novel behavioural
spaces which can help mitigate deception - a problem whereby explicit objectives do
not illuminate a path to the global optima. The aim of [127] was to evolve simulated
robot controllers to solve unseen mazes as oppose to learning a policy to solve the
same maze. It was found that both NS and the hybrid approach solved significantly

74 Chapter 5. Evolving Navigational Strategies Using GRUs in NEAT

more mazes than the objective based approach and were able to generalise to larger
and more difficult mazes. The advantages of NS over objective search are echoed in
the earlier work on NS [76–78] and also in quality diversity algorithms (a hybrid of
NS and objective based methods) [105] in which maze domains are a key benchmark
task.

A common benchmark task used to test a neuroevolutionary algorithms’ mem-
ory capability is the T-Maze domain. This domain has a number of forms: one being
a discrete state and action space and the other being of a more continuous nature.
There also exists the double T-Maze domain that contains more reward locations
than the original maze. The main requirement for success in all these tasks is the
ability to remember the location of a large reward over a significant number of time
steps. It is often the case that standard recurrent connections struggle in this domain
as they are unable to deal with long term dependencies.

A discrete version of the T-maze and double T-maze domains were solved by
using neuromodulated plasticity whereby the synaptic weights of normal neural
network connections were modified online via hebbian rules and modulatory neu-
rons [132]. It was shown that the networks that were evolved using fixed connec-
tions performed significantly worse on both domains whereas networks that were
evolved with modulatory neurons outperformed both fixed weight and hebbian ar-
chitectures in the double T-maze domain achieving a maximum score. Other work
[113, 116] shows the advantages of NS in evolving similar neuromodulatory net-
works on the discrete version of the T-maze domain and [113] argues the reason
is that evolving memory is highly deceptive and proposes a behavioural diversity
technique similar to NS that achieves similar performance gains. An alternative way
to encourage individual neurons to exhibit specific memory functions in the T-maze
domain is by evolving networks and neurons in two separate populations, which
helps due to neurons of different sub functions being prevented from mating [43].

Indirect encoded versions of NEAT have also been tested on these T-maze do-
mains via the Adaptive HyperNEAT [115] and Adaptive ES-HyperNEAT [112] al-
gorithms. The main idea behind the original HyperNEAT algorithm [135] is that the
weights of the synaptic connections are determined by querying a Compositional
Pattern Producing Network (CPPN) with the 2 dimensional coordinates of the con-
nection being queried. Given that the connection strength is a function of its posi-
tion, the CPPN is topologically aware and also has the ability to produce repeating
motifs or symmetries similar to the human brain. Extending HyperNEAT to include
connections that are modified online [112, 115] generates networks that can solve the
continuous T-maze domain by instilling them with memory.

The Evolvable Neural Turing Machine (ENTM) is an algorithmically simpler ver-
sion of the original Neural Turing Machine (NTM) in that it can be trained using evo-
lutionary operators and is not required to be differentiable [48, 84, 85]. It has been
shown in [48] that an ENTM can be trained to solve the continuous T-maze domain
and the continuous double T-maze domain - a task that had not yet been solved by
any other algorithm so far. Also worth of note is [62] in which a GRU with a memory
block is introduced. In this architecture, each GRU has an associated memory block
which it can explicitly read and write to - similar to the ENTM - with the idea being
that the memory block is ‘shielded’ from irrelevant information. Even though this
work does not technically conduct experiments with an agent situated in a T-maze,
one of the experiments carried out is a sequence recall task which is analogous to the
discrete T-maze experiment. It is shown that this new GRU memory block architec-
ture significantly outperforms previous NEAT architectures with long term memory
cells.

5.1. Related Work 75

Another interesting solution to the discrete versions of the T-maze and dou-
ble T-maze tasks is by evolution of Continuous Time Recurrent Neural Networks
(CTRNNs) [9]. The state of the neurons in a CTRNN are described by a set of differ-
ential equations with respect to time. The idea being that the weights of the synapses
are kept constant throughout the run but the internal network dynamics facilitates
long term memory via its dynamic neuron potentials.

Although not benchmarked on the T-maze domains, minimal criteria evolution-
ary techniques are effective in solving other maze domains [10, 79]. These techniques
work by allowing all solutions that meet some minimal criteria into the reproductive
gene pool, which helps to greatly improve the diversity of the population. Interest-
ingly, in [10], minimal criteria methods are used to coevolve both the agents and
mazes, leading to an increasingly complex pool of environments as well as solutions
to these environments.

5.1.3 Reinforcement Learning

Autonomous maze solving has been extensively explored within the RL community
with the most recent work being able to learn navigation policies from raw visual
input [55, 61, 71, 92, 94, 99, 139, 141, 155]. Many of these algorithms can learn to
navigate in complicated mazes with the assistance of Long Short Term Memory units
(LSTM) [4, 55, 92, 94] which allows the agents to store relevant information for a long
period of time. The advantages of using LSTMs over feedforward or pure recurrent
architectures in navigation domains has been repeatedly shown [4, 92, 94]. Despite
there being a small number of examples of RL algorithms (mainly policy gradient
variants) approaching navigation using a continuous action space [102], most of the
current approaches use a discrete action space.

5.1.4 Novelty of our Work

T-maze domains are very effective at evaluating the abilities of evolved solutions at
keeping track of long term dependencies, however they are not aimed at evolving
generalised maze solving agents. Agents or robots operating in a lifelike domain
will come across many types of navigational challenges that were not part of their
training environment. We are more interested in agents that can evolve generalised
behaviours and to this end, training on a T-maze domain would not instill our agents
with the behavioural requirements of interest to us. However, the previous work on
the T-Maze domains does highlight to us the importance of using memory compo-
nents capable of retaining long term information in maze domains and motivated
the use of specific long term memory units in our own work.

The work most similar to ours and the only work that addresses generalised
maze solving is [127]. However, the comparison is based upon one metric: the num-
ber of mazes solved. In our work, we additionally consider the distance it takes each
agent to solve the maze, we believe this to be an equally important metric to con-
sider. Long term memory components are not considered in [127] whereas we aug-
ment our version of NEAT to include GRUs. Furthermore, the techniques studied in
[127] are not compared against hand designed navigational algorithms whereas we
benchmark against I-Bug.

Our domain has a fully continuous state and action space, whereas the action
space in the continuous T-maze domain in [48] consists of 3 discrete action choices
which arguably makes for easier control compared to our continuous wheel speed
range.

76 Chapter 5. Evolving Navigational Strategies Using GRUs in NEAT

w1

Input1

w3

w2

Input2

w4
HN1

w5
w6

HN2

Output1 Output2

(A) An example NEAT network with a recur-
rent connection on the second hidden node.

w1

Input1

w2 w3

Input2

w5

HN2

Output1 Output2

w6
w4

GRU1

(B) An example NEAT-GRU network where
a GRU cell has been mutated in between the

second input and the second output.

FIGURE 5.2: A comparison of an example NEAT and NEAT-GRU net-
work. Inputs and outputs to the network are shown as yellow rectan-
gles. Hidden nodes and GRU nodes are highlighted in blue and green

respectively. Blue text illustrates network weights on connections.

Finally, in a lot of the work on NS and in the work on generalised maze solving
[127], the agent has four pie-slice sensors that informs the agent of the direction
towards the goal. Similarly, in some of the T-maze domains the agent is given some
signal at the beginning of the run that informs it of the direction in which to turn
in order to find the reward. We evaluate our NEAT-GRU on a task in which the
agent does not have access to any information regarding the direction of the goal
and therefore has to determine this based on distance information alone.

5.2 NEAT-GRU

In this work we modify NEAT to include Gated Recurrent Units (GRUs) in a new
system called NEAT-GRU. GRUs were chosen as oppose to LSTMs due to a simi-
lar performance in other domains despite having to optimise a smaller number of
parameters [22]. NEAT-GRU is similar to the NEAT-LSTM introduced in [107], how-
ever there are a number of significant differences.

The implementation of NEAT-LSTM in [107] performs an unsupervised training
procedure on the LSTM blocks before the main evolutionary process begins. It does
this in order to maximise the entropy between adjacent neurons in a layer such that
they each memorise different features of the domain. This enables the freezing of
the parameters inside the LSTM blocks during the subsequent evolutionary process.

5.3. Experimental Setup 77

This unsupervised procedure is time consuming and requires additional data sam-
pling which can be difficult to obtain depending on the domain. One could bypass
the unsupervised training procedure of [107] altogether and use LSTMs instead of
GRUs, however, as shown in subsequent work in Section 5.6, using GRUs in NEAT
results in slightly faster convergence and better generalisation ability.

The GRU cells in our NEAT-GRU are inserted into the networks in the same way
as any other hidden nodes, they are mutated in with some probability. Figure 5.2
shows a comparison between NEAT and NEAT-GRU where a GRU cell has been
mutated into the network. NEAT-GRU has all the same capabilities as NEAT and is
therefore still able to mutate in hidden nodes with or without recurrent connections.
The parameters or weights of the GRUs are modified in the same way as the other
NEAT weights, via a perturbation of the original weight where the perturbation is
drawn from a uniform distribution between the negative and positive of a mutation
power variable. Furthermore, just as in NEAT, there is occasionally a severe muta-
tion in which the perturbation value completely replaces the weight as oppose to
just being appended to it. For simplicity, crossover is not used in NEAT-GRU.

5.3 Experimental Setup

In the following section we describe the setup of 3 experiments:

1. I-Bug on the generalised maze solving task with bearing.

2. Evolution on the generalised maze solving task with bearing.

3. Evolution on the no bearing task with a simplified environment.

I-Bug is not tested on the no bearing experiment due to the fact that it cannot operate
without a bearing sensor.

The robotic simulator ARGoS [103] is used in this work for both the baseline I-
Bug experiments and for the training and testing of the evolved solutions. ARGoS
has been designed to be as accurate of a representation of the real world as possible
providing detailed models of robots commonly used in research labs. In this work
we use the provided Foot-Bot model [30] due to the fact that it is equipped with 24
local laser sensors, a range sensor, and a bearing sensor - these are the same sensors
that are required for the I-Bug algorithm.

5.3.1 I-Bug

I-Bug was evaluated on a simulated Foot-Bot on 209 randomly generated test en-
vironments with a constant size of 14m x 14m. The same 209 environments were
used as the test set throughout all the experiments described in Section 5.3. These
environments were the same test set that was originally used in [89]: a comparative
survey of bug algorithms that similarly uses ARGoS and the same Foot-Bot model as
our work. The maze generation algorithm used in [89] leads to a wide variety of en-
vironments that closely resemble real life indoor office or living environments with
corridor and room like structures. An example of one of these test environments is
shown in Figure 5.3.

The following simulation configuration is the same as in [89]. For the I-Bug eval-
uations the positions of the 24 proximity sensors on the Foot-Bot were modified in
the following way. 20 of the sensors were positioned in a wedge at the front of the
robot to simulate a depth sensor or stereo camera for obstacle detection. There are

78 Chapter 5. Evolving Navigational Strategies Using GRUs in NEAT

FIGURE 5.3: An example of one of the randomly generated environ-
ments used in the test set. The environment has a number of decep-
tive rooms and corridor structures. One of the robots is the target and
is motionless throughout the run whereas the other robot contains the

navigation algorithm and aims to find the other robot.

also 2 sensors at 90 degrees to the front of the robot and 1 sensor directly behind the
robot. The size of the sensors was also increased to two meters. This was modified
due to the fact that a hand designed wall following behaviour was more robust with
a higher density of sensors at the front of the robot. A wall following behaviour
based upon this sensor structure was used as the u f ol motion primitive described in
Section 5.1.1. The rest of the I-Bug algorithm was implemented exactly as in Algo-
rithm 1.

The performance of I-Bug was then tested on the 209 test environments. The
agent had 300 simulated seconds to navigate through each environment - this time
limit seemed sufficient to allow an agent to navigate to a number of dead ends, re-
alise its mistake, and subsequently proceed down an alternative route to the target.
The success percentage of I-Bug was recorded as the number of mazes in which the
target was found as a percentage of the total number of mazes in the test set. Fur-
thermore, the agents’ trajectory lengths were recorded and normalised by divided
through by the A* path length, which represents the shortest possible path through
the maze. This A* length is calculated using a grid connectivity graph approach over
a grid of size 140 × 140 representing the environment. This grid resolution results in
a sufficiently accurate path length.

5.3.2 Evolutionary Setup

Bearing Experiments

In order to encourage a generalised maze solving behaviour the environments used
in training are randomly generated according to the same parameters that generated

5.3. Experimental Setup 79

the test set. All genomes in the population were evaluated on the same set of 10
mazes, however this set of 10 mazes was randomly generated at the beginning of
each new generation. The evolutionary process was ran for 1000 generations with
a population size of 150. Each agent had 300 simulated seconds to find the target.
Every 25 generations, the 3 best genomes from the current generation, the best 2
genomes from previous generation and the best genome from two generations ago
were tested on the test set and their performance was recorded. This genome test
procedure was chosen based upon the idea that the highest performing genomes on
the training set will most likely (but not always) have the highest performance on
the test set. Also, genomes from previous generations were chosen due to the fact
that the procedurally generated training set of the current generation might have
been a set of environments that, by chance, does not give an accurate representation
of the test set. Limited computational resources meant that we could not test every
genome produced by the evolutionary process. 20 runs were performed using both
NEAT and NEAT-GRU.

Given that the evolutionary process could produce wall following behaviour
within the first few generations meant that we could dispose of the dense sensor
wedge and 2m long proximity sensors used in the I-Bug experiments. Instead of 24
proximity sensors, only 12 were used and they are situated equally spaced around
the robot. Also, the size of the sensors was reduced to 0.2m. Using less sensors re-
sults in smaller networks in the first generation by reducing the number of network
inputs. The inputs to the networks were the 12 proximity sensors, 1 range sensor
giving the distance to the target and 2 bearing sensors: the clockwise and counter-
clockwise relative bearing. The network outputs were the speeds of the left and right
wheels of the Foot-Bot.

A fitness function was designed to maximise two different metrics: the number
of mazes solved and the trajectory per A* length. Initially a weighted sum of both
values was used however the evolutionary process only generated policies that max-
imised one of the two metrics despite any configuration of weightings assigned to
each metric. The agents would either evolve a wall following behaviour (maximis-
ing the number of mazes solved but doing so with a relatively large path length)
or evolve a greedy behaviour in which it headed straight for the target (reducing
path length but not arriving at many targets, often due to the agent getting stuck in
rooms).

However, it was noticed that a very small number of policies in the first gen-
eration were capable of finding at least one of the 10 targets of the 10 randomly
generated training mazes by sheer chance. This observation resulted in a sparser
fitness function, f1, which we subsequently used for all the bearing experiments:

f1 =

(
1

l0.5 , if maze solved,
0, otherwise,

(5.1)

where l is the trajectory length per A* length taken to find the target.
This fitness function resulted in the best trade off between the two metrics due to

the fact that the agent must first find the target, and only once it has, is rewarded with
the inverse of the normalised length of the path taken to get there. This prevented
the incentivisation of behaviours that headed straight towards the target regardless
of whether or not the target was arrived at (resulting in a short path length) because
these behaviours would now get a score of 0. An exponent of 0.5 was chosen in order
to ‘flatten’ the function slightly such that a genome was not rewarded too greatly for
doing well in one particular environment.

80 Chapter 5. Evolving Navigational Strategies Using GRUs in NEAT

If the agent crashed into a wall the fitness score was divided by 10 in order to
deter the agents from crashing, resulting in f2:

f2 =

(
f1
10 , if crash,
f1, otherwise.

(5.2)

The median of the f2 scores for each of the 10 randomly generated training envi-
ronments was used as the final fitness value for each individual genome.

Initial experiments revealed that tuning the default NEAT hyperparameters re-
sulted in better performance. Too high of an add node mutation rate resulted in
significant network bloat, we therefore kept these values low: 0.005 and 0.003 for
the hidden node and GRU node add mutation rates respectively. Furthermore, we
increased the survival threshold from the default values of 0.2-0.4 to 0.55 in order to
assist performance by reducing selection pressure. The weight mutation power was
set to 1.5 for both normal weights and the GRU node weights which was slightly less
than the default values of 1.8-2.5. In order to provide a fair comparison, crossover for
the NEAT experiments was turned off to match the lack of crossover used in NEAT-
GRU. A full list of hyperparameters used for the bearing experiments for both the
NEAT and NEAT-GRU experiments can be found in tables C.1 and C.2 respectively
in Appendix C.1.

No Bearing Experiments

A much harder task was designed to further test the cognitive abilities of NEAT-
GRU. For this task, all sensors are removed from the Foot-Bot apart from the dis-
tance sensor. This sensor configuration removes the ability of the agent to know its
relative orientation towards the target, therefore locating the target must be done by
accumulating distance measurements and performing significant cognition in order
to ascertain the direction in which to travel. This sensor configuration commonly
occurs in robotics where a distance sensor - such as an Ultra-Wideband Frequency
chip - provides only distance information with respect to other chips, as in the work
of [13].

Given that this task is much more difficult, the environment used to train and
test the evolved solutions was simplified. An environment of size 10m × 10m was
used that contained no obstacles apart from a wall surrounding its perimeter. This
environmental configuration was complex enough to demonstrate a considerable
performance difference between NEAT and NEAT-GRU. All of the proximity sensors
were disabled for this task due to the fact that the agents could learn a perimeter wall
following behaviour that led them close to the goal without having to learn a more
complex policy.

The agent began in one corner of the 10m × 10m environment and the target in
the opposing corner. Each agent was evaluated on the same environment 5 times
however the starting orientation of the agent is different for each evaluation. This is
to prevent overfitting to a set orientation in which an agent ‘memorises’ a particular
path from a particular starting position to the target. Each agent is given 80 simu-
lated seconds to find the target, this is far less than the bearing sensor experiments
due to the fact that the environment is smaller and there are no obstacles to navigate
around. Like the bearing experiments the network outputs are the left and right
wheel speeds of the Foot-Bot whereas the only network input in these experiments
is the target distance.

5.4. Results 81

The fitness function f1 (Equation 5.1) was not successful in this experiment due to
the fact that none of the genomes in the first generation could locate the target. This
resulted in a fitness of 0 for every individual in the population, thereby providing
no training signal for the evolutionary algorithm. In order to provide a significant
reward gradient, f3 was used:

f3 = (L� d)3 (5.3)

where L is the diagonal length of the arena (the maximum distance the agent can
be from the target) and d is the final distance between the agent and the target at the
end of the run. It was found that cubing the fitness lead to a larger rate of success
by encouraging a greater reward difference between individuals. Like the bearing
experiments, if an agent crashed, the fitness was divided by 10, resulting in f4:

f4 =

(
f3
10 , if crash.
f3, otherwise.

(5.4)

As before, the final fitness for each individual was taken to be the median of its
f4 values from the 5 training environments.

NEAT and NEAT-GRU were ran 10 times each for 5000 generations per run and
with a population size of 150. A slightly higher mutation rate for adding nodes
and GRU nodes was used compared to the bearing experiments: 0.006 and 0.006
respectively. Furthermore, a weight mutation power of 0.5 was used in order to re-
duce significant weight changes within the GRUs. As in the bearing experiments,
crossover is disabled for both NEAT and NEAT-GRU. A full list of the hyperparam-
eters used for the NEAT and NEAT-GRU experiments are shown in tables C.3 and
C.4 in Appendix C.1.

The code for all the experiments described in Section 5.3.2 is available at
https://github.com/jamesbut/neat_gru_bug.

5.4 Results

5.4.1 I-Bug

On the 209 test environments I-Bug achieved a success percentage of 93.3% meaning
that it managed to find the target in the maze 195/209 times. The mean and median
of the trajectory lengths per A* lengths over all the environments were 2.4174 and
1.6900 respectively. I-Bug was not tested on the no bearing experiments because
without the relative angle towards the target I-Bug will not work.

5.4.2 Evolutionary Results

Bearing Experiments

Out of 20 evolutionary runs for NEAT-GRU, 10 of the runs produced genomes (out of
those evaluated on the test set, highlighted in Section 5.3.2) that outperformed I-Bug
in maze success percentage and in the mean of the trajectory length per A* length
values over all the test environments. 5 of the aforementioned 10 runs contained
more than one genome that outperformed I-Bug. However, it was often the case that
they were similar in behaviour to previous genomes in the same run so it is not worth
noting the total number of genomes found that outperformed I-Bug; the number of

https://github.com/jamesbut/neat_gru_bug

82 Chapter 5. Evolving Navigational Strategies Using GRUs in NEAT

(A) All of the solutions outperform I-Bug in terms
of the number of finishes and the trajectory means

per A* mean metrics.

(B) I-Bug has a relatively low trajectory median
compared to the evolved solutions, with only G88

and G89 outperforming it in all 3 metrics.

FIGURE 5.4: Scatter charts showing the performance metrics for I-Bug
and for the 10 genomes produced by NEAT-GRU that outperformed
I-Bug. A smaller trajectory length is more desirable. The 2 solutions
that outperformed I-Bug in all 3 metrics are highlighted in green and
the 8 solutions that outperformed I-Bug in only 2 metrics are high-

lighted in blue.

2 metric winners 3 metric winners
NEAT 3/20 0/20
NEAT-GRU 10/20 2/20

TABLE 5.1: A table highlighting the number of evolutionary runs out
of 20 in which at least one genome outperformed I-Bug on the 209 test

environments for both NEAT and NEAT-GRU.

runs in which evolution could produce at least one outperforming solution is more
significant.

Out of these 20 runs, 2 of the runs produced genomes that outperformed I-Bug
in all 3 metrics: maze success percentage and the mean and median of the trajectory
length per A* length values over all the environments. Despite 2/20 being a small
number of successful number of runs with respect to all of three metrics, the fitness
score during training is optimised according to the mean of the trajectory length per
A* length as oppose to the median.

Figure 5.4 illustrates the performance metrics of the 10 genomes that beat I-Bug
in at least 2 metrics. Some of the solutions produced were significantly better than
I-Bug (p < 0.0001 based upon trajectory lengths per A* length). For example, one
solution named ‘G89’ had a success rate of 196/209 (93.7%), a trajectory length per
a star length mean of 1.9024 and a median of 1.5459. This trajectory length mean is
significantly less than the equivalent I-Bug value meaning that the agent was able
to get to the target in a much shorter path length despite being able to find more
targets than I-Bug. There also exist solutions that have a larger success rate at the ex-
pense of having longer path lengths. For example ‘G8’ had a success rate of 203/209
(97.1%), a trajectory mean of 2.3499 and a median of 2.0212. It therefore locates the
target on a much larger number of occasions than I-Bug, it does so with a mean tra-
jectory length per A* length less than I-Bug, however, it does not outperform I-Bug
on the normalised trajectory length median. A video showing the behaviour of these
genomes is available at https://youtu.be/8EqyeuX_lR0

Out of the 20 evolutionary runs for NEAT, 3 of the runs produced genomes that

https://youtu.be/8EqyeuX_lR0

5.5. Discussion 83

FIGURE 5.5: A graph showing the average population fitness and the
max population fitness during training for both GRU and non-GRU
versions of the bearing experiment. It shows the slight fitness increase
attributed to the inclusion of GRUs. The results are averaged over 20

runs.

outperformed I-Bug at maze success percentage and in the mean of the trajectory
length per A* length values over all the environments. 0 of the winning solutions
beat I-Bug in all 3 metrics. These results are highlighted in table 5.1. Furthermore,
Figure 5.5 highlights the average and maximum fitness of the whole population at
each generation during training for both NEAT and NEAT-GRU. It highlights the
slight advantage in performance offered by GRUs.

No Bearing Experiments

Out of the 10 evolutionary runs for NEAT-GRU, all 10 produced a solution capable
of solving the task from all 5 orientations. In contrast, out of the 10 runs using NEAT,
0 of them produced solutions that could solve the task in all 5 orientations. Figure
5.6 shows the maximum fitness so far for the population during training for the no
bearing task. It shows the dramatic increase in performance due to the inclusion of
GRUs into the NEAT networks.

5.5 Discussion

The results in section 5.4.2 clearly highlight that I-Bug is not a globally optimal so-
lution in the domain of generalised maze solving. It also shows that evolution and
more specifically, NEAT and NEAT-GRU, have the ability to produce better con-
trol policies than those that have been previously hand designed. This continues to
add to the previous body of work that demonstrates the ability of machine learn-
ing techniques to outperform human designed algorithms. Even though the solu-
tions evolved in this work are an improvement on previous bug algorithms, there
is no guarantee - and is highly unlikely - that this work has found globally opti-
mal solutions either. It would be interesting to apply novelty search techniques to

84 Chapter 5. Evolving Navigational Strategies Using GRUs in NEAT

FIGURE 5.6: A graph showing the maximum fitness so far of the
population during training for both GRU and non-GRU versions of
the non-bearing experiment. It shows a dramatic fitness increase
attributed to the inclusion of GRUs and how the non-GRU version
plateaus at a score of 3000. The results were averaged over 10 runs.

the algorithms used in this work in order to attempt to illuminate additional high
performing policies.

This work does highlight that the inclusion of long term memory units into
NEAT leads to a better performance in the bearing experiments and is seemingly
essential for completion of the no bearing experiments. This reinforces the growing
body of evidence [4, 62, 92, 94] suggesting the inclusion of long term memory units
into control networks improves performance in maze like environments. Surpris-
ingly, however, NEAT without GRUs was able to outperform I-Bug despite networks
of this type being unable to store information over long periods. It was also observed
during the experiments that networks without any hidden units performed compar-
atively well, with one genome achieving a success rate of 189/209 (90.4%) and a
mean path length per A* path length of 2.1. This suggests that the maze follow-
ing environments used to test I-Bug and other bug algorithms, and likely many real
indoor environments, do not actually require much cognition to solve.

The results of the no bearing tasks suggests the high relative difficulty of this task
in relation to the bearing version. With only the distance to the target at each point
in time, the agent does not know which way to turn in order to approach it unless it
builds some form of target location model by accumulating distances through time.
Furthermore, the agent additionally must be aware of its own actions in order to
build this model because it needs to know how the distances change as a function of
these actions. NEAT theoretically has the ability to do this via recurrent connections
that can originate at output nodes however the inclusion of GRU nodes into this
greatly helps performance by allowing appropriate information to accumulate. It is
also impressive that this ability can be learned with a continuous state and action
space.

The results from the no bearing tasks are important due to the fact that certain
robotic systems do not have access to relative bearing information, such as [13].
A relative bearing sensor might even be available but it could greatly increase the

5.6. Subsequent Work 85

weight of a robotic system. This can be particularly troublesome in the case of MAVs
where the payload cannot exceed some low threshold value. The results highlighted
here show that it is indeed possible to learn a neural network control policy without
a bearing sensor but the success is highly dependent on the presence of long term
memory units.

5.6 Subsequent Work

A student at KU Leuven, Ruben Broekx, subsequently completed a masters project
[14] extending the work presented in Chapter 5. The causal factors leading to the
significant performance increases for NEAT-GRU in the no bearing environment are
explored in greater detail. It also carries out a more extensive comparison study
between NEAT-GRU and other related algorithmic baselines in order to ascertain
the specific factors attributing to the ability of NEAT-GRU to successfully navigate
without bearing information.

In [14] the performance of NEAT without recurrent units, NEAT with simple
recurrent units, NEAT-LSTM, and NEAT-GRU are compared on the no bearing en-
vironment. As expected NEAT without recurrent units performs very poorly on this
task, NEAT with recurrence performs better than its equivalent without recurrence,
however, both NEAT-GRU and NEAT-LSTM achieve the highest performance, echo-
ing the results in Section 5.4.2. The performance of NEAT-GRU and NEAT-LSTM
are shown to be very similar (no statistical significance). However, it is demon-
strated that NEAT-LSTM does have slightly slower convergence due to the greater
number of parameters requiring optimisation. It is also shown that NEAT-GRU per-
forms slightly better in generalisation experiments compared to NEAT-LSTM. Inter-
estingly, a finer grained look at the internals of the NEAT-GRU solutions revealed
the superfluousness of the reset gate of the GRU in this particular domain. An em-
pirical study was carried out showing statistically comparable performance between
NEAT-GRU and NEAT-GRU with a GRU cell modified such that it does not contain
a reset gate [14].

5.7 Future Work

In future, we would like to extend the work on the no bearing experiments by in-
corporating obstacles back into larger environments and reintroducing proximity
sensors. However, given the difficulty of learning to navigate without bearing infor-
mation, curriculum learning techniques [5] may be required in order to solve more
complex environments with obstacles. We would also like to apply NEAT-GRU to
real robotic navigation tasks, such as with MAVs where the only available sensor in-
formation would be the target distance and small proximity sensors. Given a swarm
of MAVs equipped with these sensors, they could learn to coordinate with respect
to each other and navigate to other members of the swarm in complicated indoor
environments.

It would also be interesting to analyse how one could optimise GRUs via evolu-
tionary operators in a more efficient manner. Rawal and Miikkulainen [107] began
to explore this when they introduced NEAT-LSTM by optimising a secondary objec-
tive that encourages a larger amount of information to be stored in the LSTM unit.
In future work, this info-max objective could be included as part of the NEAT-GRU
loss function and compared against not using this secondary loss function. One

86 Chapter 5. Evolving Navigational Strategies Using GRUs in NEAT

could also explore whether meaningful crossover procedures exist that are benefi-
cial to GRUs undergoing evolutionary optimisation. Equally, more efficient muta-
tion strategies could exist for NEAT-GRUs. Previous work [80] has explored ‘safe
mutations’ for neuroevolution in maze environments, it would be exciting to deter-
mine whether these techniques result in improvements to NEAT-GRU performances
in both the bearing and no bearing environments.

As we have seen in Section 5.6 some parameters or modules within GRU cells
can be shown to be superfluous in particular domains. This realisation was arrived
at via manual investigation, however, we could easily apply the indirect encoding
techniques from chapters 3 and 4 to automatically infer information of this sort about
the parameter space. The cross pollination of indirect encoding techniques and long
term memory cells is explored in more detail in Section 6.3.

5.8 Conclusion

We investigated the ability of evolution, specifically NEAT, to evolve control poli-
cies for generalised navigational environments. We proposed NEAT-GRU which
is a modification of NEAT that has the ability to mutate GRUs into the NEAT net-
works. We compared the solutions produced by NEAT and NEAT-GRU to a partic-
ular type of bug algorithm called I-Bug which is particularly suited for use in real
robotic domains. We showed that the I-Bug algorithm is not a globally optimal so-
lution and that both NEAT and NEAT-GRU can evolve solutions that outperform it
repeatedly. We introduced a harder domain in which only the distance to the target
of the maze is given as sensor input to the network and demonstrated that NEAT-
GRU can successfully evolve solutions to this task, whereas NEAT fails in every run.
This demonstrates that significant cognition is required to solve this task and that
long term memory units greatly assist in these types of tasks found in real robotic
domains. We designed two fitness functions that encourages solutions to be found
repeatedly on both the bearing and no bearing environments: Equations 5.2 and 5.4
respectively.

87

Chapter 6

Conclusion

In this chapter, we revisit the research questions highlighted in Chapter 1 and il-
lustrate how the results of this thesis answers them. We then embed our research
into the wider context and explain what avenues it opens up. We also highlight the
limitations of our work and suggest potential future work.

6.1 Research Questions & Contributions

RQ1: Can we use generative models to construct indirect encodings for evolution-
ary algorithms to perform transfer learning for the optimisation of continuous
functions?

We first set out to explore whether generative models can be used to derive IEs
that would aid with transfer learning for the optimisation of continuous functions.
Although previous works [40, 57, 58] had tested whether IEs derived from genera-
tive models could evolve solutions on unseen problems, the focus had not been on
transfer learning. As a result, no previous work had performed quantifiable inter-
polative or extrapolative analyses with respect to the source and target problems. In
Chapter 3, we sought more information regarding how three different types of gen-
erative model derived IEs performed when the optimisation of the target functions
required interpolation and extrapolation of knowledge via the IE. We experimented
on a two dimensional continuous optimisation problem where the extent of interpo-
lation and extrapolation was clear.

We showed that for certain target problems, all three types of IE outperformed
the DE baselines in terms of speed of search and accuracy of the solutions found.
Therefore, we have shown that, in certain circumstances, using IEs derived from
generative models results in clear advantages over alternative techniques in transfer
learning for continuous optimisation. However, it was shown that the performance
of the IE with respect to the DE baselines was highly dependant on the location of
the target problem maxima. When the target problem maxima was very close to
the starting point of the DE, the DE would locate a solution faster. As the distance
between the target problem maxima and the starting point of the DE grew, the search
speed advantages of the three types of IE were quickly realised.

It is exciting that we have shown that transfer learning can be performed this
way on continuous functions as many modern problems involve the optimisation of
a set of continuous values. Examples include, the optimisation of neural networks
[44], engineering design variables [87, 122], control policies [95], and non-linear re-
gression tasks [73]; illustrating the techniques applicability to the optimisation of
continuous functions unlocks their use on many real world problems.

88 Chapter 6. Conclusion

RQ2: Which generative model type produces an indirect encoding that improves
search performance the most on continuous optimisation problems, and under
what conditions?

A clear limitation of all previous works [18, 40, 57, 58, 96, 106] was that none had
conducted comparative analyses between the different types of generative model
used to derive IEs. It was therefore not clear what the advantages and disadvan-
tages of each generative model were. Nor was it clear whether limitations observed
by one IE type were indicative of an issue with that particular type, or caused by the
particular task being considered. As a result, in Chapter 3 we compared the perfor-
mance of autoencoders, VAEs, and GANs at producing IEs for the optimisation of
simple continuous functions.

We showed that in certain instances GANs can mode collapse, which had the
effect of producing an IE that had terrible performance. Autoencoders and VAEs did
not suffer from mode collapse, although they did model the underlying distribution
of source solutions of a particular family of functions poorly when the code size was
less than the search space dimensionality. As a result, the autoencoder and VAE
derived IEs of code size 1 performed very poorly on the extrapolative experiments
compared to the GAN derived IE of code size 1, which performed the best out of
all the techniques examined. We also showed that all 3 generative model derived IE
types struggled to locate a solution with as high of a fitness as those found by the
DE alternatives (although not by much). However, these solution accuracy issues
seemed to affect the GAN derived IE to a larger degree than the other IE types. We
hypothesised that that was due to the manifold folding that is more extreme in the
GAN derived IEs, as a result we suggested some regularisation techniques that may
alleviate this.

With regards to the question of which model type produced the best IE for some
continuous optimisation problems, the answer is: it depends. It depends on whether
the pernicious issues affecting each type such as mode collapse or poor generality
are present. If the dimensionality of the latent code size is chosen to be less than that
of the search space, a GAN is the clear winner when extrapolating to new problems.
If the latent code size is the same as that of the search space, the VAE seems to outper-
form in extrapolative experiments. Finally, to achieve the search speed advantages
of the IEs without losing accuracy of the solution found, we suggest switching back
to a DE once the fitness of the best solution found begins to plateau.

Knowledge of the pathologies and pitfalls of certain generative model derived
IE types can assist when choosing which algorithm to apply to future problems. It
will also help to debug future issues, and the remedies suggested in Section 3.4 may
help a practitioner find a solution. It is also useful to know which type of generative
model derived IE is more robust to larger extrapolations; if one knows beforehand
that more extreme extrapolation is required, the results in this thesis suggest that it
is more sensible to use a GAN.

RQ3: Can we use generative models to construct indirect encodings for evolution-
ary algorithms to perform transfer learning in reinforcement learning control
tasks?

We have for the first time applied the techniques explored in Chapter 3 (gener-
ative model derived IEs) to perform transfer learning in RL control tasks. We did
this by showing that optimising target functions from the same family as the source
functions (as in Chapter 3) is akin to performing transfer learning in RL control tasks.

6.1. Research Questions & Contributions 89

This allowed us to transfer the techniques used in Chapter 3 to RL tasks with mini-
mal modifications. We demonstrated that there was always at least one IE type that
beat the baselines in terms of search speed and fitness of the solution found for three
OpenAI Gym environments.

A current bottleneck in deep RL is long training times [120, 138]. By demonstrat-
ing a way to perform transfer learning to reduce search times on RL control tasks,
we offer an alternative way to reduce long training times. Given that RL is used in
a wide variety of areas, such as nuclear fusion [29], robotics [66], optimising cool-
ing systems [151], and algorithm creation [33], the techniques introduced here could
have a large impact on the time taken to solve many important problems.

RQ4: Does the inclusion of gated recurrent units into NEAT result in improved evo-
lutionary search performance on generalised maze solving tasks?

Autonomous navigation is an important subroutine in a number of different
tasks, such as search-and-rescue, surveillance, and radioactivity monitoring. Of-
ten these tasks are dangerous or time consuming for humans to perform, thereby
creating a demand for robotic systems that can perform these tasks instead. De-
spite the ability of algorithms like SLAM to create explicit map representations over
which path planning can be performed, these algorithms are very computationally
expensive. Larger robots are often unsuitable for tasks such as search-and-rescue
and surveillance where smaller, more agile robots, such as MAVs would be more
successful. However, MAVs only have a small payload and therefore cannot carry
computational devices capable of performing SLAM in real time. Furthermore, even
if they could carry these devices, the power required to serve such intensive compu-
tation would drain valuable battery life needed to power flight. Due to this, there is
a demand for navigational algorithms that are much less computationally expensive
and have a smaller memory footprint than SLAM.

Alternative navigational algorithms with a reduced computation and memory
footprint exist, such as Bug Algorithms. Inspired by works that use machine learn-
ing to improve upon hand designed algorithms for agent control policies [95, 104,
138], we explored whether EAs can produce computationally light navigational poli-
cies that outperform Bug Algorithms. NEAT is an appropriate choice of EA because
it optimises the weights and the architecture of the neural network controller, often
resulting in much smaller networks than those where the architecture is hand de-
signed. These smaller networks require less memory and floating point operations
to run. However, navigation can often require the memorisation of information over
long term horizons so that robots do not reexplore already discovered paths. Al-
though NEAT can remember information via its recurrent connections, these often
struggle to remember information over long term horizons [53].

In Chapter 5, we explored whether the inclusion of GRUs into NEAT improved
performance on generalised maze solving tasks, which can be viewed as a proxy
for navigation. GRUs do have the ability to remember information over long time
horizons, much like LSTMs, however they consist of less parameters than an LSTM,
resulting in reduced memory and computational requirements.

Firstly, we showed that NEAT outperformed hand designed navigational algo-
rithms. However, we were particularly interested in whether a modified version of
NEAT with long term memory cells affected performance. We designed and imple-
mented a novel algorithm, namely NEAT-GRU, that has the ability to mutate GRU

90 Chapter 6. Conclusion

cells into NEAT networks. For generalised maze solving, NEAT-GRU improved per-
formance over baselines and the original NEAT algorithm. We also designed a fit-
ness function which resulted in the locating of high fitness solutions repeatedly and
reliably.

RQ5: Does the inclusion of gated recurrent units into NEAT result in improved evo-
lutionary search performance on a much harder navigational task whereby
bearing information is not available?

It is often the case that robots have sensors that can provide distance information
to a target but not information regarding its relative angle [13]. Therefore, it is im-
portant to have computationally cheap navigational algorithms that do not require
explicit information with respect to the bearing. In Chapter 5, we explained that
previous hand designed algorithms do not have that ability, and demonstrated that
NEAT cannot evolve a controller that can locate a target under these conditions. To
this end, we applied our newly created NEAT-GRU to this much harder navigational
task. This task required the utilisation of previous distance to the goal readings in
order to ascertain which direction the agent to steer towards. As a result, it was
shown the NEAT-GRU greatly outperformed NEAT in this task due to its ability to
remember information over much longer time periods.

6.2 Wider Impact

The overall aim of this thesis was to explore techniques to improve the search speed
of evolutionary algorithms. The hope was that if we could do this, we could provide
more credence to the argument that EAs should be taken seriously for continuous
optimisation problems, especially for the optimisation of neural networks. Further-
more, a higher search speed reduces the amount of computational resources, and
in turn the cost, needed to run EAs. Given that EAs are used in many real world
applications, their improvement will have a significant impact.

In this thesis, we have improved the search speed of EAs in two distinct ways.
We showed that one can use generative models to produce IEs that greatly improve
search speed when performing transfer learning in both continuous function opti-
misation and RL control tasks. We also showed that one can greatly improve evo-
lutionary search speed and unlock new fitness plateaus in certain navigational tasks
by adapting a previous algorithm, NEAT, to include GRU cells. The evidence for
EAs as a competitor to gradient based techniques for optimising neural networks
has been growing [123, 138], and the present work contributes to this growing body
of evidence.

Using generative models to create IEs, as we have done in Chapters 3 and 4, is
actually a technique that can be combined with other black box optimisation tech-
niques apart from EAs. The technique essentially transforms the search space prior
to the main optimisation process, which does not actually dictate the algorithm used
for subsequent search in the latent space. Other black box optimisation techniques
such as Particle Swarm Optimisation or Simulated Annealing could be used instead
of an EA. Additionally, gradient based techniques could perform the main optimi-
sation process as long as gradients through the IE could be calculated.

Furthermore, in this thesis we highlighted the fact that transfer learning can be
viewed as a particular type of optimisation procedure. The procedure consists of
reusing knowledge gained from optimising source problems to optimise target prob-
lems from the same function ‘family’. We showed how this can be applied to RL

6.3. Limitations & Future Work 91

control tasks. However, given that many modern machine learning techniques can
be viewed as instances of continuous optimisation, the techniques considered here
can be applied to a wide variety of areas.

In this thesis, we only considered IEs of the form f : Rn ! Rm. However, one
can also use the techniques presented here to create IEs of the form f : Rn ! Zm

or f : Rn ! {0, 1}m. A post processing step mapping the real numbered output of
the IE neural network to Zm or {0, 1}m, respectively, must be performed, although,
this would consist of a trivial rounding operation. In this way, the ideas in this thesis
could be opened up to the field of combinatorial optimisation as well, such as routing,
supply chain optimisation and time tabling.

We additionally posit that the work in Chapter 5 unlocks a way to perform com-
putationally inexpensive navigation on robots with limited sensor capabilities. This
in turn enables small robotic systems such as MAVs to perform important tasks such
as search-and-rescue, surveillance and monitoring.

6.3 Limitations & Future Work

One of the main limitations throughout all of the experiments in this thesis is the
relatively small number of evolutionary runs that were performed. For example, in
Chapters 3 and 4, each experiment was run five times. This small number of runs
can lead to empirical mean fitnesses that are quite far from the true mean fitnesses.
If they are too far apart, it may even give the impression that one algorithm outper-
forms another with respect to the mean fitnesses, when in fact the opposite is true.
In the experiments performed in this thesis, when an algorithm has outperformed
other algorithms, it has done by a large margin. Therefore, we expect algorithm
ranking issues to not have been a problem in this thesis.

There are a number of ways to combat the small number of evolutionary runs.
Additional computing power is the first obvious choice. EAs scale well with the
number of CPU cores, so providing more CPU cores can provide near linear speed
ups. Recently, software frameworks that run EAs on the GPU have been created,
one of which is called EvoTorch [143]. Not only are the EA algorithms carried out on
the GPU, but vectorized OpenAI Gym environments are supported, which can also
be carried out on the GPU. Future experiments would benefit from using these new
EA frameworks so they can produce more runs and gather more accurate results.

This thesis aimed primarily to show a proof-of-concept with respect to the power
of generative models for producing IEs for transfer learning. We have shown a num-
ber of control problems and a small set of continuous optimisation problems for
which generative model derived IEs greatly outperform baselines. However, the
problems tested on are only a small handful and may not be indicative of the per-
formance of these techniques on different types of problems. Additionally, due to
computational limitations, the search space dimensionality of the problems consid-
ered in this thesis never exceeded 100. In the future, it would be interesting to test
whether using IEs derived from generative models scale to larger neural networks
such as those with convolutional architectures or small transformers, however, we
do foresee scaling issues such as those hypothesised in Section 4.5. More efficient
software such as EvoTorch could assist with performance issues regarding larger
search spaces.

One of the main arguments of this thesis is that by increasing the speed of EAs
using our introduced techniques we make EAs more competitive with respect to
gradient-based methods. A limitation of this thesis is that our techniques are never

92 Chapter 6. Conclusion

compared directly against gradient-based techniques to give quantifiable evidence
of this claim; it would be informative to perform this comparison in future work.
Performing this direct comparison would give us information regarding whether
our technique is preferable over gradient-based techniques, and, under which cir-
cumstances. If the results of those comparisons find situations under which our
techniques outperform gradient-based techniques, this could have a disruptive im-
pact on how certain optimisation problems are solved.

One unoptimised hyperparameter throughout all of the experiments in this the-
sis has been the population size used in the EAs. The population size can have a
large effect on the optimisation time of the EA and the fitness of the solution found
[56, 117]. Given that one of the main metrics used to compare the techniques in this
thesis was the optimisation time, a more fair comparative analysis should appropri-
ately set the population size of each technique to realise its full potential. Without
an optimised population size it is unclear whether one technique underperforms
compared to the others due to an unoptimised population size or because of the
fundamental limitations of the algorithm. It is also observed in [56] that as the num-
ber of dimensions of a problem grows a larger population size is required to achieve
the same number of successful runs in which a solution is found in a set number
of generations. In our work the optimisation speed in the lower dimensional la-
tent space of the generative models was compared against the higher dimensional
space of the direct encodings using the same population size. The results of [56] sug-
gest that this comparison unfairly disadvantages the direct encoding by not increas-
ing the population size to account for the larger number of optimisable parameters.
Computational resource limitations prevented the optimisation of population sizes
in this thesis, however, important future work would be to determine whether the
conclusions of this thesis still hold when population sizes are appropriately set.

One interesting avenue of future work that would somewhat link the work in
all 3 chapters of this thesis would be to use generative models to produce IEs for
long term memory cells, such as GRUs. Despite a number of attempts to improve
the architecture of long term memory cells [108], and large studies being carried out
that attempted to determine which architecture performed the best on a wide variety
of tasks [47], the GRU and LSTM architectures still outperform many alternatives.
Nevertheless, it may be that case that within these architectures the weights of op-
timised cells are similar to the weights of other optimised cells. In other words, it
may be that for well performing GRUs, on a number of different tasks, the weight
values exist on a lower dimensional manifold. One could use a generative model to
construct this manifold, and subsequently use the generative part as an IE in evolu-
tionary search (as was done in Chapters 3 and 4). This would result in faster search
due to a smaller number of parameters to optimise, and due to a more focused area
of search.

Only three types of generative model were used to construct IEs in this thesis
but there are more that could be used. Variations of those used in this thesis exist
such as denoising autoencoders [146], Wasserstein GANs [2], and conditional VAEs
[131] and GANs [93]. We hypothesis that a denoising autoencoder would have a
similar regularisation effect on the manifold created by the IE as the VAE did. As
we have seen, a more regularised manifold results in slightly faster search speeds.
A Wasserstein GAN could decrease the frequency of mode collapse, which resulted
in the GAN derived IE performing very poorly in Section 3.3.1. An IE could also
perform a more focused search by conditioning on the domain parameters, t, as in
Chapter 4, or function parameters, such as a and b, in Chapter 3. This conditioning

6.4. Final Remarks 93

could be achieved by using either a conditional VAE or a conditional GAN. Condi-
tioned search would have the effect of reducing the search space to only the areas
containing solutions to one particular function, as opposed to areas containing solu-
tions to the entire family of functions. Generative models that are quite different in
nature to the ones considered in this thesis could also be considered, such as diffu-
sion models [130]. Diffusion models have recently produced impressive results with
text-to-image models, namely Stable Diffusion [1]. These impressive results may
also be able to be realised in the context of creating IEs.

6.4 Final Remarks

Overall, this work is the first to show that autoencoders, variational autoencoders
(VAE), and generative adversarial networks (GAN) can be used for performing ef-
ficient transfer learning within RL tasks. It does so by narrowing the entire neu-
ral network controller weight space to a much smaller space containing the corre-
lated optima of a family of RL tasks. This work is also the first work to perform a
comparative analysis of these generative model derived IE types on both RL tasks
and more general mathematical function optimisation tasks. Additionally, we pro-
posed a novel algorithm capable of improving performance in a number of naviga-
tional tasks as compared to current techniques. In doing so, we add to the growing
body of evidence that EAs are a competitive technique for real valued optimisation
and demonstrate their applicability at creating controllers for RL control tasks and
robotic navigational tasks.

95

Appendix A

Additional Mathematical
Optimisation Results

A.1 Bivariate quadratic linear results

FIGURE A.1: 5 evolutionary runs for a DE, a DE with informed start,
and a GAN derived IE with a code size of 1 on the target problem,
(a = 2, b = 2). The fitnesses plotted are those of the best winner so
far in the evolutionary run. The solid lines are the mean values of the
5 runs, whereas the dotted lines are the fitness values of the highest

performing run.

96 Appendix A. Additional Mathematical Optimisation Results

FIGURE A.2: Enumerated manifold of the best performing VAE de-
rived IE of code size 1. Enumeration occurs over the [-3, 3] latent
space at increments of 0.01. Maxima for the source and target prob-
lems are shown as green and red crosses respectively. Training data

for the generative models is shown in yellow.

A.1. Bivariate quadratic linear results 97

FIGURE A.3: Enumerated manifold of the best performing GAN de-
rived IE of code size 1. Enumeration occurs over the [-30, 30] latent

space at increments of 0.05.

98 Appendix A. Additional Mathematical Optimisation Results

FIGURE A.4: 5 evolutionary runs for a DE, a DE with informed start,
and all 3 IE types with a code size of 2 on the target problem, (a =
2, b = 2). The fitnesses plotted are those of the best winner so far
in the evolutionary run. The solid lines are the mean values of the
5 runs, whereas the dotted lines are the fitness values of the highest

performing run.

A.1. Bivariate quadratic linear results 99

FIGURE A.5: Enumerated manifold of the best performing GAN de-
rived IE of code size 2. Enumeration occurs over the [-3, 3] latent
space at increments of 0.05. Mode collapse has occured over the train-

ing points situated at (0, 0).

100 Appendix A. Additional Mathematical Optimisation Results

A.2 Bivariate quadratic non-linear results

FIGURE A.6: 5 evolutionary runs for a DE, a DE with informed start,
and all 3 IEs with a code size of 1 on the target problem, (a = 0.5, b =
0.25). The fitnesses plotted are those of the best winner so far in the
evolutionary run. The solid lines are the mean values of the 5 runs,
whereas the dotted lines are the fitness values of the highest perform-

ing run.

A.2. Bivariate quadratic non-linear results 101

FIGURE A.7: 5 evolutionary runs for a DE, a DE with informed start,
and each of the 3 IEs with a code size of 1 on the target problem,
(a = �3.5, b = 12.25). The fitnesses plotted are those of the best
winner so far in the evolutionary run. The solid lines are the mean
values of the 5 runs, whereas the dotted lines are the fitness values of

the highest performing run.

102 Appendix A. Additional Mathematical Optimisation Results

FIGURE A.8: 5 evolutionary runs for a DE, a DE with informed start,
and all 3 IEs with a code size of 2 on the target problem, (a = 0.5, b =
0.25). The fitnesses plotted are those of the best winner so far in the
evolutionary run. The solid lines are the mean values of the 5 runs,
whereas the dotted lines are the fitness values of the highest perform-

ing run.

A.2. Bivariate quadratic non-linear results 103

FIGURE A.9: 5 evolutionary runs for a DE, a DE with informed start,
and each of the 3 IEs with a code size of 2 on the target problem,
(a = �3.5, b = 12.25). The fitnesses plotted are those of the best
winner so far in the evolutionary run. The solid lines are the mean
values of the 5 runs, whereas the dotted lines are the fitness values of

the highest performing run.

104 Appendix A. Additional Mathematical Optimisation Results

(A) Autoencoder, enumeration range = [-0.2, 1.2]
in increments of 0.001.

(B) VAE, enumeration range = [-3, 3] in increments
of 0.01.

(C) GAN, enumeration range = [-3.5, 3.5] in incre-
ments of 0.01.

FIGURE A.10: Enumerated manifolds over the latent space of all 3
code size 1 IEs on the target problem, (a = �3.5, b = 12.25). Maxima
for the source and target problems are shown as green and red crosses
respectively. Training data for the generative models is shown in yel-

low.

A.2. Bivariate quadratic non-linear results 105

(A) Autoencoder, enumeration range = [0.0, 1.0] in
increments of 0.01.

(B) VAE, enumeration range = [-3, 3] in increments
of 0.03.

(C) GAN, enumeration range = [-3.0, 3.0] in incre-
ments of 0.03.

FIGURE A.11: Enumerated manifolds over the latent space of all 3
code size 2 IEs on the target problem, (a = �3.5, b = 12.25). Maxima
for the source and target problems are shown as green and red crosses
respectively. Training data for the generative models is shown in yel-

low.

107

Appendix B

Additional Control Domain
Results

B.1 Frozen Lake results

108 Appendix B. Additional Control Domain Results

(A) Autoencoder.

(B) VAE.

(C) GAN.

FIGURE B.1: Comparison of IE performance between code sizes 1, 2,
and 3 on FL with test goal position (1,3). The fitnesses plotted are
those of the best winner so far, this is the best solution found so far
during the evolutionary run. The solid lines are the mean fitnesses
over 5 evolutionary runs and the dotted line is the best run according

to the final generation fitness.

B.2. Bipedal Walker results 109

B.2 Bipedal Walker results

(A) Autoencoder.

(B) VAE.

(C) GAN.

FIGURE B.2: Comparison of IE performance between code sizes 1, 2
and 3 on BW with test knee speed 5. The fitnesses plotted are those
of the best winner so far, this is the best solution found so far during
the evolutionary run. The solid lines are the mean fitnesses over 5
evolutionary runs and the dotted line is the best run according to the

final generation fitness.

111

Appendix C

Hyperparameters

C.1 NEAT-GRU experiment hyperparameters

The following four tables describe the NEAT hyperparameter settings used in the
evolutionary experiments in Section 5.3.2. There is a table for both NEAT and NEAT-
GRU on both the bearing and non-bearing environments.

112 Appendix C. Hyperparameters

trait_param_mut_prob 0.5
trait_mutation_power 1.0
linktrait_mut_sig 1.0
nodetrait_mut_sig 0.5
weight_mut_power 1.5
gru_weight_mut_power 1.5
recur_prob 0.05
disjoint_coeff 1.0
excess_coeff 2.0
mutdiff_coeff 0.0
gru_compat_coeff 0.0
compat_thresh 3.0
age_significance 1.0
survival_thresh 0.55
mutate_only_prob 1.0
mutate_random_trait_prob 0.1
mutate_link_trait_prob 0.1
mutate_node_trait_prob 0.1
mutate_link_weights_prob 0.8
mutate_gene_rate_prob 0.1
mutate_gru_link_weights_prob 0.5
mutate_gru_gene_rate_prob 0.1
mutate_toggle_enable_prob 0.01
mutate_gene_reenable_prob 0.01
mutate_add_node_prob 0.005
mutate_gru_add_node_prob 0.0
mutate_add_link_prob 0.04
interspecies_mate_rate 0.001
mate_multipoint_prob 0.6
mate_multipoint_avg_prob 0.4
mate_singlepoint_prob 0.0
mate_only_prob 0.2
recur_only_prob 0.2
pop_size 150
dropoff_age 25
newlink_tries 20
print_every 199
babies_stolen 0
num_runs 1
num_gens 1000
num_trials 10

TABLE C.1: A table of NEAT hyperparameters used for the NEAT (no
GRU) bearing experiments.

C.1. NEAT-GRU experiment hyperparameters 113

trait_param_mut_prob 0.5
trait_mutation_power 1.0
linktrait_mut_sig 1.0
nodetrait_mut_sig 0.5
weight_mut_power 1.5
gru_weight_mut_power 1.5
recur_prob 0.05
disjoint_coeff 1.0
excess_coeff 2.0
mutdiff_coeff 0.0
gru_compat_coeff 0.0
compat_thresh 3.0
age_significance 1.0
survival_thresh 0.55
mutate_only_prob 1.0
mutate_random_trait_prob 0.1
mutate_link_trait_prob 0.1
mutate_node_trait_prob 0.1
mutate_link_weights_prob 0.8
mutate_gene_rate_prob 0.1
mutate_gru_link_weights_prob 0.5
mutate_gru_gene_rate_prob 0.1
mutate_toggle_enable_prob 0.01
mutate_gene_reenable_prob 0.01
mutate_add_node_prob 0.005
mutate_gru_add_node_prob 0.003
mutate_add_link_prob 0.04
interspecies_mate_rate 0.001
mate_multipoint_prob 0.6
mate_multipoint_avg_prob 0.4
mate_singlepoint_prob 0.0
mate_only_prob 0.2
recur_only_prob 0.2
pop_size 150
dropoff_age 25
newlink_tries 20
print_every 199
babies_stolen 0
num_runs 1
num_gens 1000
num_trials 10

TABLE C.2: A table of NEAT hyperparameters used for the NEAT-
GRU bearing experiments. Note the non-zero probability of mu-

tate_gru_add_node_prob.

114 Appendix C. Hyperparameters

trait_param_mut_prob 0.5
trait_mutation_power 1.0
linktrait_mut_sig 1.0
nodetrait_mut_sig 0.5
weight_mut_power 0.5
gru_weight_mut_power 0.0
recur_prob 0.05
disjoint_coeff 1.25
excess_coeff 1.25
mutdiff_coeff 0.0
gru_compat_coeff 0.0
compat_thresh 3.0
age_significance 1.0
survival_thresh 0.4
mutate_only_prob 1.0
mutate_random_trait_prob 0.1
mutate_link_trait_prob 0.1
mutate_node_trait_prob 0.1
mutate_link_weights_prob 0.7
mutate_gene_rate_prob 0.5
mutate_gru_link_weights_prob 0.0
mutate_gru_gene_rate_prob 0.0
mutate_toggle_enable_prob 0.01
mutate_gene_reenable_prob 0.01
mutate_add_node_prob 0.006
mutate_gru_add_node_prob 0.0
mutate_add_link_prob 0.04
interspecies_mate_rate 0.001
mate_multipoint_prob 0.6
mate_multipoint_avg_prob 0.4
mate_singlepoint_prob 0.0
mate_only_prob 0.2
recur_only_prob 0.2
pop_size 150
dropoff_age 25
newlink_tries 20
print_every 199
babies_stolen 0
num_runs 1
num_gens 5000
num_trials 5

TABLE C.3: A table of NEAT hyperparameters used for the NEAT (no
GRU) no bearing experiments.

C.1. NEAT-GRU experiment hyperparameters 115

trait_param_mut_prob 0.5
trait_mutation_power 1.0
linktrait_mut_sig 1.0
nodetrait_mut_sig 0.5
weight_mut_power 0.5
gru_weight_mut_power 0.5
recur_prob 0.05
disjoint_coeff 1.25
excess_coeff 1.25
mutdiff_coeff 0.0
gru_compat_coeff 0.0
compat_thresh 3.0
age_significance 1.0
survival_thresh 0.4
mutate_only_prob 1.0
mutate_random_trait_prob 0.1
mutate_link_trait_prob 0.1
mutate_node_trait_prob 0.1
mutate_link_weights_prob 0.7
mutate_gene_rate_prob 0.5
mutate_gru_link_weights_prob 0.5
mutate_gru_gene_rate_prob 0.3
mutate_toggle_enable_prob 0.01
mutate_gene_reenable_prob 0.01
mutate_add_node_prob 0.006
mutate_gru_add_node_prob 0.006
mutate_add_link_prob 0.04
interspecies_mate_rate 0.001
mate_multipoint_prob 0.6
mate_multipoint_avg_prob 0.4
mate_singlepoint_prob 0.0
mate_only_prob 0.2
recur_only_prob 0.2
pop_size 150
dropoff_age 25
newlink_tries 20
print_every 199
babies_stolen 0
num_runs 1
num_gens 5000
num_trials 5

TABLE C.4: A table of NEAT hyperparameters used for the NEAT-
GRU no bearing experiments.

117

Bibliography

[1] Stability AI. Stable Diffusion. 2022. URL: https : / / github . com / CompVis /
stable-diffusion (visited on 10/29/2022).

[2] Martin Arjovsky, Soumith Chintala, and Léon Bottou. “Wasserstein Gener-
ative Adversarial Networks”. In: Proceedings of the 34th International Confer-
ence on Machine Learning. Ed. by Doina Precup and Yee Whye Teh. Vol. 70.
Proceedings of Machine Learning Research. PMLR, 2017, pp. 214–223. URL:
https://proceedings.mlr.press/v70/arjovsky17a.html.

[3] A Bachrach et al. “RANGE - robust autonomous navigation in GPS-denied
environments”. In: 2010 IEEE International Conference on Robotics and Automa-
tion. May 2010, pp. 1096–1097.

[4] Bram Bakker. “Reinforcement Learning with Long Short-term Memory”. In:
Proceedings of the 14th International Conference on Neural Information Processing
Systems: Natural and Synthetic. MIT Press, 2001, pp. 1475–1482.

[5] Yoshua Bengio et al. “Curriculum Learning”. In: Proceedings of the 26th Annual
International Conference on Machine Learning. ICML ’09. Montreal, Quebec,
Canada: Association for Computing Machinery, 2009, 41–48. ISBN: 9781605585161.
DOI: 10.1145/1553374.1553380. URL: https://doi.org/10.1145/1553374.
1553380.

[6] Peter J Bentley et al. “COIL: Constrained Optimization in Learned Latent
Space - Learning Representations for Valid Solutions”. In: CoRR abs/2202.02163
(2022). DOI: 10.48550/arXiv.2202.02163.

[7] Hans-Georg Beyer and Hans-Paul Schwefel. “Evolution strategies–a compre-
hensive introduction”. In: Natural computing 1.1 (2002), pp. 3–52.

[8] Garrett Bingham, William Macke, and Risto Miikkulainen. “Evolutionary Op-
timization of Deep Learning Activation Functions”. In: Proceedings of the 2020
Genetic and Evolutionary Computation Conference. GECCO ’20. Cancún, Mexico:
Association for Computing Machinery, 2020, 289–296. ISBN: 9781450371285.
DOI: 10.1145/3377930.3389841. URL: https://doi.org/10.1145/3377930.
3389841.

[9] Jesper Blynel and Dario Floreano. “Exploring the T-Maze: Evolving Learning-
Like Robot Behaviors Using CTRNNs”. In: Applications of Evolutionary Com-
puting. Springer Berlin Heidelberg, 2003, pp. 593–604. ISBN: 978-3-540-36605-
8.

[10] Jonathan C. Brant and Kenneth O. Stanley. “Minimal criterion coevolution: a
new approach to open-ended search”. In: Proceedings of the Genetic and Evolu-
tionary Computation Conference 2017. 2017, pp. 67–74.

[11] Hans J Bremermann et al. “Optimization through evolution and recombina-
tion”. In: Self-organizing systems 93 (1962), p. 106.

https://github.com/CompVis/stable-diffusion
https://github.com/CompVis/stable-diffusion
https://proceedings.mlr.press/v70/arjovsky17a.html
https://doi.org/10.1145/1553374.1553380
https://doi.org/10.1145/1553374.1553380
https://doi.org/10.1145/1553374.1553380
https://doi.org/10.48550/arXiv.2202.02163
https://doi.org/10.1145/3377930.3389841
https://doi.org/10.1145/3377930.3389841
https://doi.org/10.1145/3377930.3389841

118 Bibliography

[12] G Bresson et al. “Simultaneous Localization and Mapping: A Survey of Cur-
rent Trends in Autonomous Driving”. In: IEEE Transactions on Intelligent Ve-
hicles 2 (3 Sept. 2017), pp. 194–220.

[13] Bastian Broecker, Karl Tuyls, and James Butterworth. “Distance-based multi-
robot coordination on pocket drones”. In: IEEE International Conference on
Robotics and Automation (ICRA). 2018.

[14] Ruben Broekx. “An Empirical Investigation of Using Gated Recurrent Units
in Evolved Robotic Controllers”. MSc Thesis. Katholieke Universiteit Leuven,
2020.

[15] James Butterworth, Rahul Savani, and Karl Tuyls. “Evolving Indoor Navi-
gational Strategies Using Gated Recurrent Units in NEAT”. In: Proceedings
of the Genetic and Evolutionary Computation Conference Companion. GECCO ’19.
Prague, Czech Republic: Association for Computing Machinery, 2019, 111–112.
ISBN: 9781450367486. DOI: 10.1145/3319619.3321995. URL: https://doi.
org/10.1145/3319619.3321995.

[16] James Butterworth, Rahul Savani, and Karl Tuyls. “Generative Models over Neu-
ral Controllers for Transfer Learning”. In: Parallel Problem Solving from Nature
– PPSN XVII. Ed. by Günter Rudolph et al. Cham: Springer International
Publishing, 2022, pp. 400–413. ISBN: 978-3-031-14714-2.

[17] James Butterworth et al. “Evolving Coverage Behaviours For MAVs Using
NEAT”. In: Proceedings of the 17th International Conference on Autonomous Agents
and MultiAgent Systems. AAMAS ’18. Stockholm, Sweden: International Foun-
dation for Autonomous Agents and Multiagent Systems, 2018, 1886–1888.

[18] Oscar Chang et al. “Agent Embeddings: A Latent Representation for Pole-
Balancing Networks”. In: Proceedings of the 18th International Conference on
Autonomous Agents and MultiAgent Systems. AAMAS ’19. Richland, SC: Inter-
national Foundation for Autonomous Agents and Multiagent Systems, 2019,
656–664. ISBN: 9781450363099. URL: https://dl.acm.org/doi/10.5555/
3306127.3331753.

[19] Kyunghyun Cho et al. “Learning Phrase Representations using RNN Encoder-
Decoder for Statistical Machine Translation”. In: CoRR (2014). URL: http://
arxiv.org/abs/1406.1078.

[20] Kyunghyun Cho et al. “On the Properties of Neural Machine Translation:
Encoder-Decoder Approaches”. In: CoRR abs/1409.1259 (2014). URL: http:
//arxiv.org/abs/1409.1259.

[21] Anna Choromanska et al. “The Loss Surfaces of Multilayer Networks”. In:
Proceedings of the Eighteenth International Conference on Artificial Intelligence and
Statistics. Ed. by Guy Lebanon and S. V. N. Vishwanathan. Vol. 38. Proceed-
ings of Machine Learning Research. San Diego, California, USA: PMLR, 2015,
pp. 192–204. URL: https://proceedings.mlr.press/v38/choromanska15.
html.

[22] Junyoung Chung et al. “Empirical Evaluation of Gated Recurrent Neural
Networks on Sequence Modeling”. In: CoRR (2014). URL: http://arxiv.
org/abs/1412.3555.

[23] Dan Ciresan, Ueli Meier, and Jurgen Schmidhuber. “Multi-column Deep Neu-
ral Networks for Image Classification”. In: 2012 IEEE Conference on Computer
Vision and Pattern Recognition. June 2012, pp. 3642–3649. DOI: 10.1109/CVPR.
2012.6248110.

https://doi.org/10.1145/3319619.3321995
https://doi.org/10.1145/3319619.3321995
https://doi.org/10.1145/3319619.3321995
https://dl.acm.org/doi/10.5555/3306127.3331753
https://dl.acm.org/doi/10.5555/3306127.3331753
http://arxiv.org/abs/1406.1078
http://arxiv.org/abs/1406.1078
http://arxiv.org/abs/1409.1259
http://arxiv.org/abs/1409.1259
https://proceedings.mlr.press/v38/choromanska15.html
https://proceedings.mlr.press/v38/choromanska15.html
http://arxiv.org/abs/1412.3555
http://arxiv.org/abs/1412.3555
https://doi.org/10.1109/CVPR.2012.6248110
https://doi.org/10.1109/CVPR.2012.6248110

Bibliography 119

[24] Jeff Clune et al. “On the Performance of Indirect Encoding Across the Con-
tinuum of Regularity”. In: IEEE Transactions on Evolutionary Computation 15.3
(2011), pp. 346–367. DOI: 10.1109/TEVC.2010.2104157.

[25] Charles Darwin. On the Origin of Species by Means of Natural Selection, or the
Preservation of Favoured Races in the Struggle for Life. Ed. by John Murray. 1859.

[26] Charles Darwin and Alfred Wallace. “On the Tendency of Species to form
Varieties; and on the Perpetuation of Varieties and Species by Natural Means
of Selection”. In: Zoological Journal of the Linnean Society 3.9 (July 1858), pp. 45–
62. ISSN: 0024-4082. DOI: 10.1111/j.1096-3642.1858.tb02500.x.

[27] Yann Dauphin et al. “Identifying and attacking the saddle point problem in
high-dimensional non-convex optimization”. In: NIPS 27 (June 2014).

[28] Kenneth De Jong. Evolutionary Computation – A Unified Approach. Jan. 2006.
ISBN: 978-0-262-04194-2.

[29] Jonas Degrave et al. “Magnetic control of tokamak plasmas through deep
reinforcement learning”. In: Nature 602 (Feb. 2022), pp. 414–419. DOI: 10 .
1038/s41586-021-04301-9.

[30] M Dorigo et al. “Swarmanoid: A Novel Concept for the Study of Heteroge-
neous Robotic Swarms”. In: IEEE Robotics Automation Magazine 20 (4 2013),
pp. 60–71.

[31] A. E. Eiben and James E. Smith. Introduction to Evolutionary Computing. 2nd.
Springer Publishing Company, Incorporated, 2015. ISBN: 3662448734.

[32] Agoston E Eiben, James E Smith, et al. Introduction to evolutionary computing.
Vol. 53. Springer, 2003.

[33] Alhussein Fawzi et al. “Discovering faster matrix multiplication algorithms
with reinforcement learning”. In: Nature 610.7930 (2022), pp. 47–53. ISSN: 1476-
4687. DOI: 10.1038/s41586-022-05172-4. URL: https://doi.org/10.1038/
s41586-022-05172-4.

[34] Chelsea Finn, Pieter Abbeel, and Sergey Levine. “Model-Agnostic Meta-Learning
for Fast Adaptation of Deep Networks”. In: Proceedings of the 34th Interna-
tional Conference on Machine Learning - Volume 70. ICML’17. Sydney, NSW,
Australia: JMLR.org, 2017, 1126–1135. URL: https://dl.acm.org/doi/10.
5555/3305381.3305498.

[35] Dario Floreano and Stefano Nolfi. Evolutionary Robotics. Cambridge: MIT Press,
2000.

[36] David B. Fogel. “An Introduction to Evolutionary Computation”. In: Evolu-
tionary Computation: The Fossil Record. 1998, pp. 1–28. DOI: 10.1109/9780470544600.
ch1.

[37] Gary B. Fogel. Evolutionary Programming. Ed. by Grzegorz Rozenberg, Thomas
Bäck, and Joost N. Kok. Springer Berlin Heidelberg, 2012, pp. 699–708. ISBN:
978-3-540-92910-9. DOI: 10.1007/978-3-540-92910-9_23.

[38] L. J. Fogel, A. J. Owens, and M. J. Walsh. “Artificial Intelligence through a
Simulation of Evolution”. In: Biophysics and Cybernetic Systems: Proc. of the 2nd
Cybernetic Sciences Symp. Washington, DC: Spartan Books, 1965, pp. 131–155.

[39] Richard M Friedberg. “A learning machine: Part I”. In: IBM Journal of Research
and Development 2.1 (1958), pp. 2–13.

https://doi.org/10.1109/TEVC.2010.2104157
https://doi.org/10.1111/j.1096-3642.1858.tb02500.x
https://doi.org/10.1038/s41586-021-04301-9
https://doi.org/10.1038/s41586-021-04301-9
https://doi.org/10.1038/s41586-022-05172-4
https://doi.org/10.1038/s41586-022-05172-4
https://doi.org/10.1038/s41586-022-05172-4
https://dl.acm.org/doi/10.5555/3305381.3305498
https://dl.acm.org/doi/10.5555/3305381.3305498
https://doi.org/10.1109/9780470544600.ch1
https://doi.org/10.1109/9780470544600.ch1
https://doi.org/10.1007/978-3-540-92910-9_23

120 Bibliography

[40] Adam Gaier, Alexander Asteroth, and Jean-Baptiste Mouret. “Discovering
Representations for Black-Box Optimization”. In: Proceedings of the 2020 Ge-
netic and Evolutionary Computation Conference. GECCO ’20. Cancún, Mexico:
Association for Computing Machinery, 2020, 103–111. ISBN: 9781450371285.
DOI: 10.1145/3377930.3390221.

[41] Ross Girshick et al. “Rich Feature Hierarchies for Accurate Object Detection
and Semantic Segmentation”. In: 2014 IEEE Conference on Computer Vision and
Pattern Recognition. 2014, pp. 580–587. DOI: 10.1109/CVPR.2014.81.

[42] David E. Goldberg. “Simple genetic algorithms and the minimal, deceptive
problem”. In: Genetic algorithms and simulated annealing. Ed. by Lawrence Davis.
Research Notes in Artificial Intelligence. London: Pitman, 1987, pp. 74–88.

[43] Faustino J Gomez and Jürgen Schmidhuber. “Co-evolving Recurrent Neu-
rons Learn Deep Memory POMDPs”. In: Proceedings of the 7th Annual Confer-
ence on Genetic and Evolutionary Computation. ACM, 2005, pp. 491–498.

[44] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. MIT
Press, 2016. URL: http://www.deeplearningbook.org.

[45] Ian Goodfellow et al. “Generative Adversarial Nets”. In: Advances in Neural
Information Processing Systems. Ed. by Z. Ghahramani et al. Vol. 27. Curran
Associates, Inc., 2014. URL: https://proceedings.neurips.cc/paper/2014/
file/5ca3e9b122f61f8f06494c97b1afccf3-Paper.pdf.

[46] F. Gray. Pulse code communication. US Patent 2,632,058. 1953. URL: http://
www.google.com/patents/US2632058.

[47] Klaus Greff et al. “LSTM: A Search Space Odyssey”. In: IEEE Transactions on
Neural Networks and Learning Systems 28.10 (2017), pp. 2222–2232. DOI: 10.
1109/TNNLS.2016.2582924.

[48] Rasmus Boll Greve, Emil Juul Jacobsen, and Sebastian Risi. “Evolving Neural
Turing Machines for Reward-based Learning”. In: Proceedings of the Genetic
and Evolutionary Computation Conference 2016. ACM, 2016, pp. 117–124.

[49] Nikolaus Hansen. “The CMA Evolution Strategy: A Tutorial”. In: CoRR abs/1604.00772
(2016). arXiv: 1604.00772. URL: http://arxiv.org/abs/1604.00772.

[50] Nikolaus Hansen and Andreas Ostermeier. “Completely derandomized self-
adaptation in evolution strategies”. In: Evolutionary computation 9.2 (2001),
pp. 159–195.

[51] Nikolaus Hansen et al. “Comparing results of 31 algorithms from the black-
box optimization benchmarking BBOB-2009”. In: Proceedings of the 12th annual
conference companion on Genetic and evolutionary computation. 2010, pp. 1689–
1696.

[52] William E Hart, Thomas E Kammeyer, and Richard K Belew. “The Role of
Development in Genetic Algorithms”. In: Foundations of Genetic Algorithms.
Ed. by L DARRELL WHITLEY and MICHAEL D VOSE. Vol. 3. Foundations
of Genetic Algorithms. Elsevier, 1995, pp. 315–332. DOI: https://doi.org/
10.1016/B978-1-55860-356-1.50019-4. URL: http://www.sciencedirect.
com/science/article/pii/B9781558603561500194.

[53] Sepp Hochreiter and Jürgen Schmidhuber. “Long Short-Term Memory”. In:
Neural Computation 9.8 (Nov. 1997), pp. 1735–1780. ISSN: 0899-7667. DOI: 10.
1162/neco.1997.9.8.1735. URL: https://doi.org/10.1162/neco.1997.9.
8.1735.

https://doi.org/10.1145/3377930.3390221
https://doi.org/10.1109/CVPR.2014.81
http://www.deeplearningbook.org
https://proceedings.neurips.cc/paper/2014/file/5ca3e9b122f61f8f06494c97b1afccf3-Paper.pdf
https://proceedings.neurips.cc/paper/2014/file/5ca3e9b122f61f8f06494c97b1afccf3-Paper.pdf
http://www.google.com/patents/US2632058
http://www.google.com/patents/US2632058
https://doi.org/10.1109/TNNLS.2016.2582924
https://doi.org/10.1109/TNNLS.2016.2582924
https://arxiv.org/abs/1604.00772
http://arxiv.org/abs/1604.00772
https://doi.org/https://doi.org/10.1016/B978-1-55860-356-1.50019-4
https://doi.org/https://doi.org/10.1016/B978-1-55860-356-1.50019-4
http://www.sciencedirect.com/science/article/pii/B9781558603561500194
http://www.sciencedirect.com/science/article/pii/B9781558603561500194
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1162/neco.1997.9.8.1735

Bibliography 121

[54] John H Holland. Adaptation in natural and artificial systems: an introductory
analysis with applications to biology, control, and artificial intelligence. MIT press,
1992.

[55] Max Jaderberg et al. “Reinforcement Learning with Unsupervised Auxiliary
Tasks”. In: CoRR abs/1611.0 (2016). URL: http://arxiv.org/abs/1611.
05397.

[56] Thomas Jansen, Kenneth A. De Jong, and Ingo Wegener. “On the Choice of
the Offspring Population Size in Evolutionary Algorithms”. In: Evolutionary
Computation 13.4 (Dec. 2005), pp. 413–440. ISSN: 1063-6560. DOI: 10.1162/
106365605774666921. URL: https://doi.org/10.1162/106365605774666921.

[57] Marija Jegorova, Stéphane Doncieux, and Timothy Hospedales. “Behavioral
Repertoire via Generative Adversarial Policy Networks”. In: IEEE Transac-
tions on Cognitive and Developmental Systems (2020), p. 1. DOI: 10.1109/TCDS.
2020.3008574.

[58] Pouya Rezazadeh Kalehbasti, Michael D. Lepech, and Samarpreet Singh Pand-
her. “Augmenting High-Dimensional Nonlinear Optimization with Condi-
tional GANs”. In: Proceedings of the Genetic and Evolutionary Computation Con-
ference Companion. GECCO ’21. Lille, France: Association for Computing Ma-
chinery, 2021, 1879–1880. ISBN: 9781450383516. DOI: 10.1145/3449726.3463675.

[59] I Kamon and E Rivlin. “Sensory-based motion planning with global proofs”.
In: IEEE Transactions on Robotics and Automation 13 (6 Dec. 1997), pp. 814–822.

[60] I Kamon, E Rivlin, and E Rimon. “A new range-sensor based globally con-
vergent navigation algorithm for mobile robots”. In: Proceedings of IEEE In-
ternational Conference on Robotics and Automation. Vol. 1. Apr. 1996, 429–435
vol.1.

[61] Michal Kempka et al. “ViZDoom: A Doom-based AI Research Platform for
Visual Reinforcement Learning”. In: CoRR (2016). URL: http://arxiv.org/
abs/1605.02097.

[62] Shauharda Khadka, Jen Jen Chung, and Kagan Tumer. “Evolving memory-
augmented neural architecture for deep memory problems”. In: Proceedings
of the Genetic and Evolutionary Computation Conference 2017. 2017, pp. 441–448.

[63] Diederik Kingma and Jimmy Ba. “Adam: A Method for Stochastic Optimiza-
tion”. In: International Conference on Learning Representations (Dec. 2014).

[64] Diederik Kingma and Jimmy Ba. “Adam: A method for stochastic optimiza-
tion”. In: International Conference on Learning Representations, 2015.

[65] Diederik P Kingma and Max Welling. Auto-Encoding Variational Bayes. 2013.
DOI: 10.48550/ARXIV.1312.6114. URL: https://arxiv.org/abs/1312.6114.

[66] Jens Kober, J. Andrew Bagnell, and Jan Peters. “Reinforcement learning in
robotics: A survey”. In: The International Journal of Robotics Research 32.11 (2013),
pp. 1238–1274. DOI: 10.1177/0278364913495721. eprint: https://doi.org/
10.1177/0278364913495721. URL: https://doi.org/10.1177/0278364913495721.

[67] Kostas Kouvaris et al. “How evolution learns to generalise: Using the princi-
ples of learning theory to understand the evolution of developmental organ-
isation”. In: PLOS Computational Biology 13.4 (2017), pp. 1–20. DOI: 10.1371/
journal.pcbi.1005358.

http://arxiv.org/abs/1611.05397
http://arxiv.org/abs/1611.05397
https://doi.org/10.1162/106365605774666921
https://doi.org/10.1162/106365605774666921
https://doi.org/10.1162/106365605774666921
https://doi.org/10.1109/TCDS.2020.3008574
https://doi.org/10.1109/TCDS.2020.3008574
https://doi.org/10.1145/3449726.3463675
http://arxiv.org/abs/1605.02097
http://arxiv.org/abs/1605.02097
https://doi.org/10.48550/ARXIV.1312.6114
https://arxiv.org/abs/1312.6114
https://doi.org/10.1177/0278364913495721
https://doi.org/10.1177/0278364913495721
https://doi.org/10.1177/0278364913495721
https://doi.org/10.1177/0278364913495721
https://doi.org/10.1371/journal.pcbi.1005358
https://doi.org/10.1371/journal.pcbi.1005358

122 Bibliography

[68] Taras Kowaliw et al. “Artificial Neurogenesis: An Introduction and Selective
Review”. In: Growing Adaptive Machines: Combining Development and Learning
in Artificial Neural Networks. Ed. by Taras Kowaliw, Nicolas Bredeche, and
René Doursat. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014, pp. 1–
60. ISBN: 978-3-642-55337-0. DOI: 10.1007/978- 3- 642- 55337- 0_1. URL:
https://doi.org/10.1007/978-3-642-55337-0_1.

[69] John R. Koza. “Genetic programming as a means for programming com-
puters by means of natural selection”. In: Statistics and Computing 4 (1994),
pp. 87–112. DOI: 10.1007/BF00175355.

[70] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. “ImageNet Classi-
fication with Deep Convolutional Neural Networks”. In: Advances in Neural
Information Processing Systems. Ed. by F. Pereira et al. Vol. 25. Curran Asso-
ciates, Inc., 2012. URL: https://proceedings.neurips.cc/paper/2012/
file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf.

[71] Tejas D. Kulkarni et al. “Deep Successor Reinforcement Learning”. In: CoRR
(2016). URL: https://arxiv.org/abs/1606.02396.

[72] Raz Lapid and Moshe Sipper. “Evolution of Activation Functions for Deep
Learning-Based Image Classification”. In: Proceedings of the Genetic and Evolu-
tionary Computation Conference Companion. GECCO ’22. Boston, Massachusetts:
Association for Computing Machinery, 2022, 2113–2121. ISBN: 9781450392686.
DOI: 10.1145/3520304.3533949. URL: https://doi.org/10.1145/3520304.
3533949.

[73] Robin J. Leatherbarrow. “Using linear and non-linear regression to fit bio-
chemical data”. In: Trends in Biochemical Sciences 15.12 (1990), pp. 455–458.
ISSN: 0968-0004. DOI: https://doi.org/10.1016/0968-0004(90)90295-M.
URL: https://www.sciencedirect.com/science/article/pii/096800049090295M.

[74] Yann LeCun. “Generalization and Network Design Strategies”. In: Connec-
tionism in Perspective. Ed. by R. Pfeifer et al. Zurich, Switzerland: Elsevier,
1989.

[75] Yann LeCun, Y. Bengio, and Geoffrey Hinton. “Deep Learning”. In: Nature
521 (May 2015), pp. 436–44. DOI: 10.1038/nature14539.

[76] Joel Lehman and Kenneth O Stanley. “Abandoning Objectives: Evolution Through
the Search for Novelty Alone”. In: Evolutionary Computation 19 (2 June 2011),
pp. 189–223.

[77] Joel Lehman and Kenneth O Stanley. “Exploiting open-endedness to solve
problems through the search for novelty”. In: Proceedings of the Eleventh Inter-
national Conference on Artificial Life (Alife XI). MIT Press, 2008.

[78] Joel Lehman and Kenneth O Stanley. “Novelty Search and the Problem with
Objectives”. In: Genetic Programming Theory and Practice IX. Ed. by Rick Ri-
olo, Ekaterina Vladislavleva, and Jason H Moore. Springer New York, 2011,
pp. 37–56. ISBN: 978-1-4614-1770-5. DOI: 10.1007/978-1-4614-1770-5_3.
URL: https://doi.org/10.1007/978-1-4614-1770-5_3.

[79] Joel Lehman and Kenneth O Stanley. “Revising the Evolutionary Compu-
tation Abstraction: Minimal Criteria Novelty Search”. In: Proceedings of the
12th Annual Conference on Genetic and Evolutionary Computation. ACM, 2010,
pp. 103–110.

https://doi.org/10.1007/978-3-642-55337-0_1
https://doi.org/10.1007/978-3-642-55337-0_1
https://doi.org/10.1007/BF00175355
https://proceedings.neurips.cc/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf
https://proceedings.neurips.cc/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf
https://arxiv.org/abs/1606.02396
https://doi.org/10.1145/3520304.3533949
https://doi.org/10.1145/3520304.3533949
https://doi.org/10.1145/3520304.3533949
https://doi.org/https://doi.org/10.1016/0968-0004(90)90295-M
https://www.sciencedirect.com/science/article/pii/096800049090295M
https://doi.org/10.1038/nature14539
https://doi.org/10.1007/978-1-4614-1770-5_3
https://doi.org/10.1007/978-1-4614-1770-5_3

Bibliography 123

[80] Joel Lehman et al. “Safe mutations for deep and recurrent neural networks
through output gradients”. In: Proceedings of the Genetic and Evolutionary Com-
putation Conference (2018).

[81] V Lumelsky and T Skewis. “A paradigm for incorporating vision in the robot
navigation function”. In: Proceedings. 1988 IEEE International Conference on
Robotics and Automation. Apr. 1988, 734–739 vol.2.

[82] V Lumelsky and A Stepanov. “Dynamic path planning for a mobile automa-
ton with limited information on the environment”. In: IEEE Transactions on
Automatic Control 31 (11 Nov. 1986), pp. 1058–1063.

[83] V J Lumelsky and T Skewis. “Incorporating range sensing in the robot navi-
gation function”. In: IEEE Transactions on Systems, Man, and Cybernetics 20 (5
Sept. 1990), pp. 1058–1069.

[84] Benno Lüders, Mikkel Schläger, and Sebastian Risi. “Continual Learning through
Evolvable Neural Turing Machines”. In: Proceedings of the NIPS 2016 Workshop
on Continual Learning and Deep Networks (CLDL 2016). 2016.

[85] Benno Lüders et al. “Continual and One-Shot Learning Through Neural Net-
works with Dynamic External Memory”. In: EvoApplications. 2017.

[86] E Magid and E Rivlin. “CautiousBug: a competitive algorithm for sensory-
based robot navigation”. In: 2004 IEEE/RSJ International Conference on Intelli-
gent Robots and Systems (IROS) (IEEE Cat. No.04CH37566). Vol. 3. Sept. 2004,
2757–2762 vol.3.

[87] Steven Manos and Leon Poladian. “Optical fibre design using evolutionary
strategies”. In: Engineering Computations 21 (Sept. 2004), pp. 564–576. DOI: 10.
1108/02644400410545164.

[88] Warren Mcculloch and Walter Pitts. “A Logical Calculus of Ideas Immanent
in Nervous Activity”. In: Bulletin of Mathematical Biophysics 5 (1943), pp. 127–
147.

[89] K.N. McGuire, G.C.H.E. de Croon, and K. Tuyls. “A comparative study of
bug algorithms for robot navigation”. In: Robotics and Autonomous Systems
121 (2019), p. 103261. ISSN: 0921-8890. DOI: https://doi.org/10.1016/
j.robot.2019.103261. URL: https://www.sciencedirect.com/science/
article/pii/S0921889018306687.

[90] Risto Miikkulainen et al. “Chapter 15 - Evolving Deep Neural Networks”.
In: Artificial Intelligence in the Age of Neural Networks and Brain Computing.
Ed. by Robert Kozma et al. Academic Press, 2019, pp. 293–312. ISBN: 978-
0-12-815480-9. DOI: https : / / doi . org / 10 . 1016 / B978 - 0 - 12 - 815480 -
9.00015- 3. URL: https://www.sciencedirect.com/science/article/
pii/B9780128154809000153.

[91] Marvin Minsky and Seymour A. Papert. Perceptrons: An Introduction to Com-
putational Geometry. The MIT Press, 1969. ISBN: 978-0-262-63022-1.

[92] Piotr W Mirowski et al. “Learning to Navigate in Complex Environments”.
In: CoRR (2016). URL: https://arxiv.org/abs/1611.03673.

[93] Mehdi Mirza and Simon Osindero. “Conditional Generative Adversarial Nets”.
In: CoRR abs/1411.1784 (2014). arXiv: 1411.1784. URL: http://arxiv.org/
abs/1411.1784.

https://doi.org/10.1108/02644400410545164
https://doi.org/10.1108/02644400410545164
https://doi.org/https://doi.org/10.1016/j.robot.2019.103261
https://doi.org/https://doi.org/10.1016/j.robot.2019.103261
https://www.sciencedirect.com/science/article/pii/S0921889018306687
https://www.sciencedirect.com/science/article/pii/S0921889018306687
https://doi.org/https://doi.org/10.1016/B978-0-12-815480-9.00015-3
https://doi.org/https://doi.org/10.1016/B978-0-12-815480-9.00015-3
https://www.sciencedirect.com/science/article/pii/B9780128154809000153
https://www.sciencedirect.com/science/article/pii/B9780128154809000153
https://arxiv.org/abs/1611.03673
https://arxiv.org/abs/1411.1784
http://arxiv.org/abs/1411.1784
http://arxiv.org/abs/1411.1784

124 Bibliography

[94] Volodymyr Mnih et al. “Asynchronous Methods for Deep Reinforcement Learn-
ing”. In: Proceedings of The 33rd International Conference on Machine Learning.
Ed. by Maria Florina Balcan and Kilian Q Weinberger. Vol. 48. PMLR, 2016,
pp. 1928–1937.

[95] Volodymyr Mnih et al. “Human-level control through deep reinforcement
learning”. In: Nature 518 (Feb. 2015), p. 529.

[96] Matthew Andres Moreno, Wolfgang Banzhaf, and Charles Ofria. “Learning
an Evolvable Genotype-Phenotype Mapping”. In: Proceedings of the Genetic
and Evolutionary Computation Conference. GECCO ’18. Kyoto, Japan: Associ-
ation for Computing Machinery, 2018, 983–990. ISBN: 9781450356183. DOI:
10.1145/3205455.3205597.

[97] Gregory Morse and Kenneth O. Stanley. “Simple Evolutionary Optimization
Can Rival Stochastic Gradient Descent in Neural Networks”. In: Proceedings of
the Genetic and Evolutionary Computation Conference 2016. GECCO ’16. Denver,
Colorado, USA: Association for Computing Machinery, 2016, 477–484. ISBN:
9781450342063. DOI: 10.1145/2908812.2908916. URL: https://doi.org/10.
1145/2908812.2908916.

[98] H. Mühlenbein, M. Gorges-Schleuter, and O. Krämer. “Evolution algorithms
in combinatorial optimization”. In: Parallel Computing 7.1 (1988), pp. 65–85.
ISSN: 0167-8191. DOI: https://doi.org/10.1016/0167-8191(88)90098-1.
URL: https://www.sciencedirect.com/science/article/pii/0167819188900981.

[99] Junhyuk Oh et al. “Control of Memory, Active Perception, and Action in
Minecraft”. In: Proceedings of the 33rd International Conference on International
Conference on Machine Learning - Volume 48. JMLR.org, 2016, pp. 2790–2799.

[100] Lauren Parker, James Butterworth, and Shan Luo. “Fly Safe: Aerial Swarm
Robotics using Force Field Particle Swarm Optimisation”. In: CoRR abs/1907.07647
(2019). arXiv: 1907.07647. URL: http://arxiv.org/abs/1907.07647.

[101] F. Pezzella, G. Morganti, and G. Ciaschetti. “A genetic algorithm for the Flex-
ible Job-shop Scheduling Problem”. In: Computers & Operations Research 35.10
(2008). Part Special Issue: Search-based Software Engineering, pp. 3202–3212.
ISSN: 0305-0548. DOI: https://doi.org/10.1016/j.cor.2007.02.014. URL:
https://www.sciencedirect.com/science/article/pii/S0305054807000524.

[102] Mark Pfeiffer et al. “Reinforced Imitation: Sample Efficient Deep Reinforce-
ment Learning for Map-less Navigation by Leveraging Prior Demonstrations”.
In: CoRR (2018). URL: http://arxiv.org/abs/1805.07095.

[103] C Pinciroli et al. “ARGoS: A Modular, Parallel, Multi-Engine Simulator for
Multi-Robot Systems”. In: Swarm Intelligence 6 (4 2012), pp. 271–295.

[104] Tobias Pohlen et al. “Observe and Look Further: Achieving Consistent Per-
formance on Atari”. In: CoRR (2018). URL: https://arxiv.org/abs/1805.
11593.

[105] Justin K Pugh, Lisa B Soros, and Kenneth O Stanley. “Quality Diversity: A
New Frontier for Evolutionary Computation”. In: Frontiers in Robotics and AI
3 (2016), p. 40.

[106] Nemanja Rakicevic, Antoine Cully, and Petar Kormushev. “Policy Manifold
Search: Exploring the Manifold Hypothesis for Diversity-Based Neuroevo-
lution”. In: Proceedings of the Genetic and Evolutionary Computation Conference
(2021), pp. 901–909. DOI: 10.1145/3449639.3459320.

https://doi.org/10.1145/3205455.3205597
https://doi.org/10.1145/2908812.2908916
https://doi.org/10.1145/2908812.2908916
https://doi.org/10.1145/2908812.2908916
https://doi.org/https://doi.org/10.1016/0167-8191(88)90098-1
https://www.sciencedirect.com/science/article/pii/0167819188900981
https://arxiv.org/abs/1907.07647
http://arxiv.org/abs/1907.07647
https://doi.org/https://doi.org/10.1016/j.cor.2007.02.014
https://www.sciencedirect.com/science/article/pii/S0305054807000524
http://arxiv.org/abs/1805.07095
https://arxiv.org/abs/1805.11593
https://arxiv.org/abs/1805.11593
https://doi.org/10.1145/3449639.3459320

Bibliography 125

[107] A Rawal and R Miikkulainen. “Evolving Deep LSTM-based Memory Net-
works Using an Information Maximization Objective”. In: GECCO 2016. 2016,
pp. 501–508.

[108] Aditya Rawal and Risto Miikkulainen. “From Nodes to Networks: Evolving
Recurrent Neural Networks”. In: CoRR abs/1803.04439 (2018). arXiv: 1803.
04439. URL: http://arxiv.org/abs/1803.04439.

[109] Esteban Real et al. “Regularized Evolution for Image Classifier Architecture
Search”. In: Proceedings of the Thirty-Third AAAI Conference on Artificial In-
telligence and Thirty-First Innovative Applications of Artificial Intelligence Con-
ference and Ninth AAAI Symposium on Educational Advances in Artificial Intel-
ligence. AAAI’19/IAAI’19/EAAI’19. Honolulu, Hawaii, USA: AAAI Press,
2019. ISBN: 978-1-57735-809-1. DOI: 10.1609/aaai.v33i01.33014780. URL:
https://doi.org/10.1609/aaai.v33i01.33014780.

[110] Ingo Rechenberg. “Evolutionsstrategie: Optimierung technischer Systeme nach
Prinzipien der biologischen Evolution”. PhD thesis. Technical University of
Berlin, 1971.

[111] Mark Ridley. Evolution. John Wiley & Sons, Ltd., 2000.

[112] S Risi and K O Stanley. “A unified approach to evolving plasticity and neu-
ral geometry”. In: The 2012 International Joint Conference on Neural Networks
(IJCNN). June 2012, pp. 1–8.

[113] Sebastian Risi, Charles E Hughes, and Kenneth O Stanley. “Evolving Plastic
Neural Networks with Novelty Search”. In: Adaptive Behavior - Animals, Ani-
mats, Software Agents, Robots, Adaptive Systems 18 (6 Dec. 2010), pp. 470–491.

[114] Sebastian Risi and Kenneth O. Stanley. “Deep neuroevolution of recurrent
and discrete world models”. In: Proceedings of the Genetic and Evolutionary
Computation Conference (2019).

[115] Sebastian Risi and Kenneth O Stanley. “Indirectly Encoding Neural Plasticity
As a Pattern of Local Rules”. In: Proceedings of the 11th International Conference
on Simulation of Adaptive Behavior: From Animals to Animats. Springer-Verlag,
2010, pp. 533–543. ISBN: 3-642-15192-2, 978-3-642-15192-7. URL: http://dl.
acm.org/citation.cfm?id=1884889.1884945.

[116] Sebastian Risi et al. “How Novelty Search Escapes the Deceptive Trap of
Learning to Learn”. In: Proceedings of the 11th Annual Conference on Genetic and
Evolutionary Computation. ACM, 2009, pp. 153–160. ISBN: 978-1-60558-325-9.
DOI: 10.1145/1569901.1569923.

[117] Olympia Roeva, Stefka Fidanova, and Marcin Paprzycki. “Influence of the
population size on the genetic algorithm performance in case of cultivation
process modelling”. In: 2013 Federated Conference on Computer Science and In-
formation Systems. 2013, pp. 371–376.

[118] Frank Rosenblatt. “The Perceptron: A Probabilistic Model for Information
Storage and Organization in The Brain”. In: Psychological Review (1958), pp. 65–
386.

[119] Franz Rothlauf. “Representations for Genetic and Evolutionary Algorithms”.
In: Representations for Genetic and Evolutionary Algorithms. Vol. 104. 2006, pp. 73–
96. DOI: 10.1007/978-3-642-88094-0.

https://arxiv.org/abs/1803.04439
https://arxiv.org/abs/1803.04439
http://arxiv.org/abs/1803.04439
https://doi.org/10.1609/aaai.v33i01.33014780
https://doi.org/10.1609/aaai.v33i01.33014780
http://dl.acm.org/citation.cfm?id=1884889.1884945
http://dl.acm.org/citation.cfm?id=1884889.1884945
https://doi.org/10.1145/1569901.1569923
https://doi.org/10.1007/978-3-642-88094-0

126 Bibliography

[120] Marc Rothmann and Mario Porrmann. “A Survey of Domain-Specific Archi-
tectures for Reinforcement Learning”. In: IEEE Access 10 (2022), pp. 13753–
13767. DOI: 10.1109/ACCESS.2022.3146518.

[121] D. E. Rumelhart, G. E. Hinton, and R. J. Williams. “Learning Internal Rep-
resentations by Error Propagation”. In: Parallel Distributed Processing: Explo-
rations in the Microstructure of Cognition, Vol. 1: Foundations. Cambridge, MA,
USA: MIT Press, 1986, 318–362. ISBN: 026268053X.

[122] Anooshiravan Saboori, Guofei Jiang, and Haifeng Chen. “Autotuning Con-
figurations in Distributed Systems for Performance Improvements Using Evo-
lutionary Strategies”. In: July 2008, pp. 769 –776. ISBN: 978-0-7695-3172-4.
DOI: 10.1109/ICDCS.2008.11.

[123] Tim Salimans et al. Evolution Strategies as a Scalable Alternative to Reinforcement
Learning. 2017. DOI: 10.48550/ARXIV.1703.03864. URL: https://arxiv.org/
abs/1703.03864.

[124] A Sankaranarayanan and M Vidyasagar. “A new path planning algorithm for
moving a point object amidst unknown obstacles in a plane”. In: Proceedings.,
IEEE International Conference on Robotics and Automation. May 1990, 1930–1936
vol.3.

[125] A Sankaranarayanar and M Vidyasagar. “Path planning for moving a point
object amidst unknown obstacles in a plane: a new algorithm and a general
theory for algorithm development”. In: 29th IEEE Conference on Decision and
Control. Dec. 1990, 1111–1119 vol.2.

[126] Shaojie Shen and Vijay Kumar. “3D Indoor Exploration with a Computation-
ally Constrained MAV”. In: Robotics: Science and Systems. 2011.

[127] D Shorten and G Nitschke. “Evolving Generalised Maze Solvers”. In: Appli-
cations of Evolutionary Computation. Ed. by Antonio M Mora and Giovanni
Squillero. Springer International Publishing, 2015, pp. 783–794. ISBN: 978-3-
319-16549-3.

[128] Bruno Siciliano and Oussama Khatib. Springer Handbook of Robotics. Berlin,
Heidelberg: Springer-Verlag, 2007. ISBN: 354023957X.

[129] B. Sigl, M. Golub, and V. Mornar. “Solving timetable scheduling problem us-
ing genetic algorithms”. In: Proceedings of the 25th International Conference on
Information Technology Interfaces, 2003. ITI 2003. 2003, pp. 519–524. DOI: 10.
1109/ITI.2003.1225396.

[130] Jascha Sohl-Dickstein et al. “Deep Unsupervised Learning using Nonequilib-
rium Thermodynamics”. In: Proceedings of the 32nd International Conference on
Machine Learning. Ed. by Francis Bach and David Blei. Vol. 37. Proceedings of
Machine Learning Research. Lille, France: PMLR, 2015, pp. 2256–2265. URL:
https://proceedings.mlr.press/v37/sohl-dickstein15.html.

[131] Kihyuk Sohn, Honglak Lee, and Xinchen Yan. “Learning Structured Output
Representation using Deep Conditional Generative Models”. In: Advances in
Neural Information Processing Systems. Ed. by C. Cortes et al. Vol. 28. Curran
Associates, Inc., 2015. URL: https://proceedings.neurips.cc/paper/2015/
file/8d55a249e6baa5c06772297520da2051-Paper.pdf.

[132] Andrea Soltoggio et al. “Evolutionary Advantages of Neuromodulated Plas-
ticity in Dynamic, Reward- based Scenarios”. In: ALIFE (2008).

https://doi.org/10.1109/ACCESS.2022.3146518
https://doi.org/10.1109/ICDCS.2008.11
https://doi.org/10.48550/ARXIV.1703.03864
https://arxiv.org/abs/1703.03864
https://arxiv.org/abs/1703.03864
https://doi.org/10.1109/ITI.2003.1225396
https://doi.org/10.1109/ITI.2003.1225396
https://proceedings.mlr.press/v37/sohl-dickstein15.html
https://proceedings.neurips.cc/paper/2015/file/8d55a249e6baa5c06772297520da2051-Paper.pdf
https://proceedings.neurips.cc/paper/2015/file/8d55a249e6baa5c06772297520da2051-Paper.pdf

Bibliography 127

[133] Kenneth Stanley et al. “Designing neural networks through neuroevolution”.
In: Nature Machine Intelligence 1 (Jan. 2019). DOI: 10.1038/s42256-018-0006-
z.

[134] Kenneth O. Stanley. “Compositional pattern producing networks: A novel
abstraction of development”. In: Genetic Programming and Evolvable Machines
8 (2007), pp. 131–162.

[135] Kenneth O Stanley, David B D’Ambrosio, and Jason Gauci. “A Hypercube-
based Encoding for Evolving Large-scale Neural Networks”. In: Artificial Life
15.2 (Apr. 2009), pp. 185–212.

[136] Kenneth O Stanley and Risto Miikkulainen. “A Taxonomy for Artificial Em-
bryogeny”. In: Artificial Life 9.2 (2003), pp. 93–130. URL: http : / / nn . cs .
utexas.edu/?stanley:alifej03.

[137] Kenneth O Stanley and Risto Miikkulainen. “Evolving Neural Networks Through
Augmenting Topologies”. In: Evolutionary Computation 10 (2 2002), pp. 99–
127.

[138] Felipe Petroski Such et al. “Deep Neuroevolution: Genetic Algorithms Are a
Competitive Alternative for Training Deep Neural Networks for Reinforce-
ment Learning”. In: CoRR (2017). URL: https://arxiv.org/abs/1712.06567.

[139] Lei Tai and Ming Liu. “Towards Cognitive Exploration through Deep Re-
inforcement Learning for Mobile Robots”. In: CoRR (2016). URL: https://
arxiv.org/abs/1610.01733.

[140] K Taylor and S M LaValle. “I-Bug: An intensity-based bug algorithm”. In:
2009 IEEE International Conference on Robotics and Automation. May 2009, pp. 3981–
3986.

[141] Chen Tessler et al. “A Deep Hierarchical Approach to Lifelong Learning in
Minecraft”. In: CoRR (2016). URL: https://arxiv.org/abs/1604.07255.

[142] Sebastian Thrun, Mark Diel, and Dirk Hähnel. “Scan Alignment and 3-D Sur-
face Modeling with a Helicopter Platform”. In: Field and Service Robotics: Re-
cent Advances in Reserch and Applications. Ed. by Shin’ichi Yuta et al. Springer
Berlin Heidelberg, 2006, pp. 287–297.

[143] Nihat Engin Toklu et al. EvoTorch: a scalable evolutionary computation library
based on PyTorch. 2022. URL: https : / / github . com / nnaisense / evotorch
(visited on 10/30/2022).

[144] Paul Tonelli and Jean-Baptiste Mouret. “On the Relationships between Gen-
erative Encodings, Regularity, and Learning Abilities when Evolving Plastic
Artificial Neural Networks”. In: PLOS ONE 8.11 (Nov. 2013), pp. 1–12. DOI:
10.1371/journal.pone.0079138. URL: https://doi.org/10.1371/journal.
pone.0079138.

[145] Alan Mathison Turing. Intelligent machinery. 1948.
[146] Pascal Vincent et al. “Extracting and composing robust features with denois-

ing autoencoders”. In: Jan. 2008, pp. 1096–1103. DOI: 10 . 1145 / 1390156 .
1390294.

[147] Richard A Watson and Eörs Szathmáry. “How Can Evolution Learn?” In:
Trends in Ecology & Evolution 31 (2 Feb. 2016), pp. 147–157. ISSN: 0169-5347.
DOI: 10.1016/j.tree.2015.11.009.

[148] P. J. Werbos. “Beyond Regression: New Tools for Prediction and Analysis in
the Behavioral Sciences”. PhD thesis. Harvard University, 1974.

https://doi.org/10.1038/s42256-018-0006-z
https://doi.org/10.1038/s42256-018-0006-z
http://nn.cs.utexas.edu/?stanley:alifej03
http://nn.cs.utexas.edu/?stanley:alifej03
https://arxiv.org/abs/1712.06567
https://arxiv.org/abs/1610.01733
https://arxiv.org/abs/1610.01733
https://arxiv.org/abs/1604.07255
https://github.com/nnaisense/evotorch
https://doi.org/10.1371/journal.pone.0079138
https://doi.org/10.1371/journal.pone.0079138
https://doi.org/10.1371/journal.pone.0079138
https://doi.org/10.1145/1390156.1390294
https://doi.org/10.1145/1390156.1390294
https://doi.org/10.1016/j.tree.2015.11.009

128 Bibliography

[149] Daan Wierstra et al. “Natural Evolution Strategies”. In: Journal of Machine
Learning Research 15.27 (2014), pp. 949–980. URL: http://jmlr.org/papers/
v15/wierstra14a.html.

[150] Dennis Wilson, Kalyan Veeramachaneni, and Una-May O’Reilly. “Cloud Scale
Distributed Evolutionary Strategies for High Dimensional Problems”. In: Ap-
plications of Evolutionary Computation. Ed. by Anna I. Esparcia-Alcázar. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2013, pp. 519–528. ISBN: 978-3-642-
37192-9.

[151] William Wong et al. Optimizing Industrial HVAC Systems with Hierarchical Re-
inforcement Learning. 2022. DOI: 10.48550/ARXIV.2209.08112. URL: https:
//arxiv.org/abs/2209.08112.

[152] D Wooden et al. “Autonomous navigation for BigDog”. In: 2010 IEEE Inter-
national Conference on Robotics and Automation. May 2010, pp. 4736–4741.

[153] Qi-Lei Xu and Gong-You Tang. “Vectorization path planning for autonomous
mobile agent in unknown environment”. In: Neural Computing and Applica-
tions 23 (7 Dec. 2013), pp. 2129–2135.

[154] Y. Yacoby, W. Pan, and F. Doshi-Velez. “Failures of Variational Autoencoders
and their Effects on Downstream Tasks”. In: ICML Workshop on Uncertainty in
Deep Learning 1 (2020), pp. 1–39.

[155] Yuke Zhu et al. “Target-driven Visual Navigation in Indoor Scenes using
Deep Reinforcement Learning”. In: CoRR (2016). URL: https://arxiv.org/
abs/1609.05143.

[156] Zhuangdi Zhu, Kaixiang Lin, and Jiayu Zhou. “Transfer Learning in Deep
Reinforcement Learning: A Survey”. In: CoRR abs/2009.07888 (2020). URL:
https://arxiv.org/abs/2009.07888.

http://jmlr.org/papers/v15/wierstra14a.html
http://jmlr.org/papers/v15/wierstra14a.html
https://doi.org/10.48550/ARXIV.2209.08112
https://arxiv.org/abs/2209.08112
https://arxiv.org/abs/2209.08112
https://arxiv.org/abs/1609.05143
https://arxiv.org/abs/1609.05143
https://arxiv.org/abs/2009.07888

	Declaration of Authorship
	Abstract
	Acknowledgements
	Introduction
	Research Questions
	Contributions
	Published Material
	Structure

	Preliminaries
	Evolutionary Computation
	Evolution by Natural Selection
	Evolutionary Algorithms
	A Canonical Evolutionary Algorithm
	Brief history
	Genetic Algorithms
	Evolution Strategies
	Evolutionary Programming
	Genetic Programming

	CMAES

	Indirect Encodings
	Neural Networks
	Brief history
	Backpropagation
	Gated Recurrent Units (GRU)

	Neuroevolution
	NEAT

	Generative Models
	Generative Adversarial Networks (GAN)
	Autoencoders
	Variational Autoencoders (VAE)

	Indirect Encodings for Continuous Optimisation
	Contributions
	Mathematical Framework
	Methodology
	Experiments
	Bivariate quadratic linear
	Code size 1 IEs
	Code size 2 IEs

	Bivariate quadratic non-linear
	Code size 1 IEs
	Code size 2 IEs

	Discussion
	Future Work
	Conclusion

	Generative Models over Neural Controllers for Transfer Learning
	Contributions
	Related Work
	Conceptual Overview
	Methodology
	Experiments
	Continuous Mountain Car
	Frozen Lake
	Bipedal Walker

	Discussion
	Future Work
	Conclusion

	Evolving Navigational Strategies Using GRUs in NEAT
	Contributions
	Related Work
	Bug Algorithms
	Evolutionary Techniques
	Reinforcement Learning
	Novelty of our Work

	NEAT-GRU
	Experimental Setup
	I-Bug
	Evolutionary Setup
	Bearing Experiments
	No Bearing Experiments

	Results
	I-Bug
	Evolutionary Results
	Bearing Experiments
	No Bearing Experiments

	Discussion
	Subsequent Work
	Future Work
	Conclusion

	Conclusion
	Research Questions & Contributions
	Wider Impact
	Limitations & Future Work
	Final Remarks

	Additional Mathematical Optimisation Results
	Bivariate quadratic linear results
	Bivariate quadratic non-linear results

	Additional Control Domain Results
	Frozen Lake results
	Bipedal Walker results

	Hyperparameters
	NEAT-GRU experiment hyperparameters

	Bibliography

