
T H E S I S F O R T H E D E G R E E O F D O C T O R
I N P H I L O S O P H Y
machine learning

I M P R O V E D
R E P R E S E N TAT I O N S F O R
C O O P E R AT I V E
M U LT I - A G E N T
R E I N F O R C E M E N T
L E A R N I N G

J A C O P O C A S T E L L I N I

University of Liverpool

supervised by

P R O F. F R A N S A . O L I E H O E K,
P R O F. R A H U L S AVA N I

june 20 , 2022

Copyright © 2022 Jacopo Castellini

This thesis is primarily my own work. The sources of other materials
are identified. This work has not been submitted for any other degree or
professional qualification except as specified.
This document was typeset using the typographical look-and-feel
smart-thesis developed by Jan Philip Göpfert and Andreas Stöckel.
smart-thesis is available here:
https://github.com/astoeckel/smart-thesis.

https://github.com/astoeckel/smart-thesis

It’s a dangerous business, Frodo, going out your door. You
step onto the road, and if you don’t keep your feet, there’s no
knowing where you might be swept off to.

— john r .r . tolkien, the lord of the rings -
the fellowship of the ring

acknowledgements

Taking on a PhD is an amazing but also very difficult journey. You are faced
with the great challenge of learning how to investigate and possibly push a bit
forward the limits of human knowledge, and, although it is an extremely exciting
and stimulating adventure, there may be moments in which you feel daunted or
even overwhelmed by the task. Personally, I have been lucky enough to not be
alone during this emotional roller-coaster, and count on a multitude of amazing
people that always supported (and sometimes withstood) me. All of my biggest
and sincerest gratitude goes to them all.

I could start with no one else than my two supervisors, Frans and Rahul.
They did not only teach me how to be a researcher, both intellectually and
personally, but also have been the first and foremost source of support and help
for whatever kind of issue I had during these years. I could not even imagine
being the person I am now without the two of you, and I will never stop to
thank you for this. Also, a huge thanks to all the people from the smARTLab
(or gravitating around it): Shan, James, Daniel, Greg, Tom, Guan, Jiaqi and
all of the others that have been part of my University life, thanks for having
been amazing colleagues and friends. I would also like to mention Benjamin, a
brilliant colleague that tragically passed away some years ago: you have been
the first to crack my shell when I was new and and felt alone in the lab. I will
never forget you. A special thank goes to Sam Devlin from Microsoft Research
Cambridge: working with you has been a huge pleasure, and with your kindness
and help you taught me a lot on how to do research and be a scientist.

I met a lot of other people outside the University that made my time in
Liverpool the great time it has been: Tomaso, Alessandro, Jonathan, Andrea,
Carmelo, Luca, Salvo, Alberto, Michael, Shah, Matilde and all of the others,
thanks for having been the perfect fellowship to countless memories and mo-
ments. This whole experience would not have been the same without you. A
special mention goes to my girlfriend Laura: you have been an amazing friend
and flatmate before, and one of the most important persons in my life now. Very
few others know more than her how this whole adventure has been for me: I
cannot even count the hours spent talking about this or that, and you always
provided me your with undisputed attention and help (even when you were
not understanding a single word of what I was talking about). For this I am
extremely grateful to you, I could not have asked for more.

Being a student abroad is exciting, but it is also difficult to relocate and adapt
to a completely new reality without seeing the people you love for months. I wish
to thank all of my friends in Italy: Lorenzo, Leonardo, Michael, Mattia, Gian-
luca, Giacomo, Leone, Tommaso, Andrea, Daniele, Flavio, Michele, Pierpaolo,
Marco, Ramazan, Stefano, Francesco, Diego, Valerio, Lorenzo, Carlo and Ste-
fania just to name a few (but equal gratitude goes to all of the others that have
not been explicitly named here). Every time I came back home, you made me felt
as if no day passed since I left the previous time. Thanks for having always made
me felt a part of your everyday life even when I was kilometres away. Roots are
important, and with roots like you no storm can ever worry me.

Finally and mainly, my most sincere and biggest gratitude goes to my family:
my mom Paola, my dad Stefano, my sister Lucrezia, my aunt Silvia and uncle
Simone with their kids Gerardo and Celeste, my two grandmas Teresa and
Mara. You always believed in me, even before I believed in myself. You always
gave me your complete and unconditioned support for every aspect of this
experience, even when you were not understanding my decisions or problems.
You are the pillars that keep my life up, and every day I wake up knowing that
there is someone, somewhere, that loves me. Nothing has helped me more than
being aware of this. This work is above all dedicated to you.

vii

viii

Post Scrittum: after having passed my VIVA, it would be impossible for me
to not thank the internal examiner John Fearnley and external Ann Nowé. You
made the final step of this long journey an unexpectedly pleasuring one.

abstract

Multi-agent systems [33, 136] are an ubiquitous presence in our everyday
life: our entire society could be seen as a huge multi-agent system in which each
individual has to perform in an environment populated by other entities, each
motivated by its own goals and objectives. In a cooperative system, all of these
entities act towards a common goal. This setting has gained a lot of popularity
in the AI research community, as many real-world situations can naturally be
modelled as such [150, 177, 151, 71, 109, 23]. Still, optimally solving such systems
remains a challenging problem.

Multi-agent reinforcement learning (MARL) is one of the most employed
techniques used to tackle these: agents learn how to behave by repeatedly
interacting with their own environment. Although major key steps have been
taken in this direction, some fundamental issues arising from the presence
of multiple agents that learn and act together remain. In this work, two such
aspects are addressed: team representation and the multi-agent credit assignment
problem.

The former is about the way in which a system designer has to represent
and learn the team of agents: on one hand, representing the whole team as a
single centralized entity may seem compelling, but this solution is not adaptable
to scale to larger systems. On the other hand, learning each agent independently
from the others solves that issue [146, 83, 24, 171], but introduces non-stationarity
in the agent learning experiences due to the now ignored presence of the other
agents. In this work, the focus is on factorization techniques [50, 53, 52], as a
middle ground between these two extremes: this idea has recently gained a
major interest and served as the basis for many recent deep MARL algorithms
[139, 115, 135, 158]. Although well performing in practice, all of these methods
only focused on single-agent decompositions, leaving the idea of “higher-order”
factorizations almost unexplored. Moreover, although factorizations are widely
considered capable of improving performances over the two approaches detailed
above, no wide investigation of the real merits or general applicability of factored
techniques has been conducted so far. This work fills the gap by investigating
a wide array of factored methods on a diverse set of cooperative scenarios, to
assess their performance both in terms of accuracy of the represented functions
and action selection.

About the multi-agent credit assignment problem [20, 94, 178, 168] instead,
many techniques have been proposed, including difference rewards [169, 168]
(one of the most popular family of algorithms used to tackle such problems), but
few have been extended to the deep MARL framework. One of such applications
is Counterfactual Multi-Agent Policy Gradients (COMA) [40], that employs
difference rewards to provide each agent with an individual signal to learn
from. This algorithm have however proved to perform poorly in practice [160,
181, 63, 82]: the reason for such poor performances has to be identified in the
centralized critic used by COMA to estimate such values. Such a critic is difficult
to learn because of compounding factors, and thus may provide inaccurate or
wrong values to the agents. For this reason, in this work two novel algorithms,
named Dr.Reinforce and Dr.ReinforceR, are proposed. These avoid the above
difficulties by applying difference rewards on the system reward function, either
by accessing it directly or by learning it with a centralized network. The results
show the improvements over COMA, pointing out how learning a more accurate
representation is a key factor towards a wider applicability of difference rewards
to solve the multi-agent credit assignment problem.

The original contributions presented in this thesis could deepen the under-
standing of multi-agent reinforcement learning, by providing evidences that
carefully designed alternative representations are indeed useful in improving the
learning of multiple agents and help in contrasting some fundamental problems

ix

x

that characterize this kind of systems. Moreover, novel techniques could build
upon the solutions investigated in this work, and further improve performance
or allow us to tackle increasingly complex problems.

C O N T E N T S

1 Introduction 17
1.1 Motivation . 17
1.2 Learning in Multi-Agent Systems . 19
1.3 Problem Statement . 20
1.4 Contributions & Research Questions . 22
1.5 Published Works . 23

2 Background 25
2.1 Reinforcement Learning . 25

2.1.1 The RL Problem . 25
2.1.2 Partial Observability . 27
2.1.3 Deep Learning . 28
2.1.4 Q-Learning & SARSA . 29
2.1.5 Deep Q-Network . 30
2.1.6 Policy Gradients . 32

2.2 Game Theory . 34
2.2.1 (Cooperative) One-Shot Games 34
2.2.2 Nash Equilibria & Optimal Solutions 35
2.2.3 Graphical Games & Coordination Graphs 36
2.2.4 Bayesian Games . 36
2.2.5 (Partially Observable) Stochastic Games, MMDPs and Dec-

POMDPs . 37
2.3 Cooperative Multi-Agent Reinforcement Learning 38

2.3.1 Centralized Controller vs. Independent Learners 38
2.3.2 IL Pathologies . 39
2.3.3 Centralized Training-Decentralized Execution 40
2.3.4 Factorizations . 40
2.3.5 Multi-Agent Credit Assignment & Difference Rewards 42
2.3.6 Multi-Agent Policy Gradients . 44
2.3.7 Deep Multi-Agent Reinforcement Learning 45

3 Analysing Factorizations of Action-Value Networks for Multi-Agent Re-
inforcement Learning 51
3.1 Investigated Action-Value Factorizations 53

3.1.1 Learning Algorithms . 53
3.1.2 Coordination Graphs . 54
3.1.3 Investigated Games . 55

xi

xii contents

3.2 Experiments . 58
3.2.1 Experimental Setup . 59
3.2.2 Comparison to Baselines . 61
3.2.3 Impact of Factors Size . 73
3.2.4 Scalability . 76
3.2.5 Sample Complexity . 82
3.2.6 Exploratory Policy . 84
3.2.7 Summary of Results . 86

3.3 Discussion . 88

4 Difference Rewards Policy Gradients 91
4.1 Methods . 92

4.1.1 Dr.Reinforce . 92
4.1.2 Online Reward Estimation . 93

4.2 Theoretical Results . 94
4.3 Gridworld Experiments . 98

4.3.1 Comparison to Baselines . 98
4.3.2 Analysis . 101

5 Extending Dr.Reinforce to Partially Observable Settings 105
5.1 Methods . 105
5.2 Theoretical Results . 106
5.3 StarCraft II Experiments . 109
5.4 Discussion . 114

6 Conclusions 117
6.1 Answering the Research Questions . 117
6.2 Summary of Contributions . 122
6.3 Limitations and Future Work . 122

A Additional Policy Gradients Training Details 125
A.1 Hyperparameters and Training Procedure 125

B Additional Results and Plots 127
B.1 Factorizations Complete Results . 127
B.2 Additional Gridworld Analysis Plots . 133
B.3 Additional SMAC Plots . 135

Acronyms 139

Bibliography 141

L I S T O F F I G U R E S

2.1 A schematic view of the RL process: the agent repeatedly interacts with
the environment. Source: Sutton and Barto 2018. 26

2.2 A schematic representation of a recurrent neural network and its unfolding
through time. Source: LeCun et al. 2015. 29

2.3 A schematic representation of the DQN architecture. Source: Mnih et al.,
2015. 31

2.4 A schematic representation of the actor-critic algorithm: the actor selects
actions to interact with the environment, while the critic informs the actor
about the quality of such actions. Source: Sutton and Barto, 2018. 33

2.5 Schematic representation of the QMIX algorithm, with enlarged details of
the mixing network (left) and an agent Q-network. Source: Rashid et al.
2018. 46

2.6 Schematic representation of the QTRAN algorithm. Source: Son et al. 2019. 47

2.7 Schematic representation of the COMA algorithm: (a) the overall archi-
tecture, (b) the actor network, (c) the centralized critic network. Source:
Foerster et al. 2018. 48

3.1 Example coordination graphs for: 3.1(a) random partition, 3.1(b) overlap-
ping factors, 3.1(c) complete factorization. 54

3.2 Reconstructed Q(a) for 3.2(a) the Dispersion Game, and 3.2(b) its sparse
variant. 62

3.3 Reconstructed Q(a) for the Platonia Dilemma. 65

3.4 Reconstructed Q(a) for the Climb Game: 3.4(a) factored Q-function learn-
ing approach, and 3.4(b) mixture of experts learning approach. 66

3.5 Reconstructed Q(a) for the Penalty Game: 3.5(a) factored Q-function learn-
ing approach, and 3.5(b) mixture of experts learning approach. 68

3.6 Firefighters formation with n = 6 agents and Nh = 7 houses. 69

3.7 Reconstructed Q(a) for a single joint type of the Generalized Firefighting
problem. 69

3.8 Reconstructed Q(a) for a different joint type of the Generalized Firefighting
problem. 70

3.9 Islands configuration with n = 6 agents. 71

3.10 Reconstructed Q(a) for Aloha. 72

3.11 Reconstructed Q(a) for the Platonia Dilemma. 74

3.12 Reconstructed Q(a) for the Penalty Game 3.12(a) factored Q-function
learning approach, and 3.12(b) the mixture of experts learning approach. 75

xiii

xiv list of figures

3.13 Reconstructed Q(a) for the Dispersion Game with n = 9 agents. 77

3.14 Firefighters formation with n = 9 agents and Nh = 10 houses. 78

3.15 Reconstructed Q(a) for a single joint type of the Generalized Firefighting
problem with n = 9 agents. 79

3.16 Reconstructed Q(a) for a different joint type of the Generalized Firefighting
problem with n = 9 agents. 80

3.17 Islands configuration for the two larger instances of Aloha. 81

3.18 Reconstructed Q(a) for Aloha with n = 9 agents. 82

3.19 Training curves for the investigated architectures on the two proposed
problems. 83

3.20 Training curves for the investigated architectures on the Dispersion Game
with an increasing number of agents. 84

3.21 Reconstructed Q(a) for the Dispersion Game using the Boltzmann ex-
ploratory policy. 85

4.1 Schematic representation of the Dr.ReinforceR algorithm. 93

4.2 Schematic representation of the two gridworld domains. Agents are green,
landmarks are yellow, and the prey is red. 98

4.3 Training curves on the multi-rover domain (left) and the predator-prey
problem (right), showing the median return and 25− 75% percentiles
across seeds. 99

4.4 Normalized mean prediction error and standard deviation for Dr.ReinforceR
reward network Rψ and COMA critic Qω on the on-policy dataset (first
row) and the off-policy dataset (second row), for the two environments. . 103

4.5 Mean and variance of difference rewards for a set of samples under differ-
ent noise profiles. 104

5.1 Two example SMAC scenarios with different types of units and their
remaining health. Source: Samvelyan et al. 2019. 110

5.2 Training curves on the entire set of SMAC scenarios, showing the median
return and 25− 75% percentiles across seeds. 111

5.2 Training curves on the entire set of SMAC scenarios, showing the median
return and 25− 75% percentiles across seeds. 112

5.3 Training curves on a set of SMAC scenarios, showing the median victory
rate and 25− 75% percentiles across seeds. 114

B.1 Distribution statistics for Dr.ReinforceR reward network Rψ and COMA
critic Qω on the on-policy dataset, normalized by the value of rmax − rmin

(respectively qmax − qmin for COMA critic), for the two environments. . . 133

B.2 Distribution statistics for Dr.ReinforceR reward network Rψ and COMA
critic Qω on the off-policy dataset, normalized by the value of rmax − rmin

(respectively qmax − qmin for COMA critic), for the two environments. . . 133

list of figures xv

B.3 Mean and variance of difference rewards for a set of samples under differ-
ent noise profiles. 134

B.4 Training curves on the entire set of SMAC scenarios, showing the median
victory rate and 25− 75% percentiles across seeds. 135

B.4 Training curves on the entire set of SMAC scenarios, showing the median
victory rate and 25− 75% percentiles across seeds. 136

B.4 Training curves on the entire set of SMAC scenarios, showing the median
victory rate and 25− 75% percentiles across seeds. 137

L I S T O F TA B L E S

3.1 Combinations of coordination graphs and learning rules. 59
3.2 Details of the investigated games in this section. 61
3.3 Best (green) and worst (red) performing methods on the two variants of

the Dispersion Game. 63
3.4 Best (green) and worst (red) performing methods on the Platonia Dilemma. 64
3.5 Best (green) and worst (red) performing methods on the Climb Game. . . 67
3.6 Best (green) and worst (red) performing methods on the Penalty Game. . 67
3.7 Best (green) and worst (red) performing methods on the Generalized

Firefighting problem. 71
3.8 Best (green) and worst (red) performing methods on Aloha. 73
3.9 Combinations of factorizations and learning rules with larger factors. . . 73
3.10 Details of the investigated games in this section. 76
3.11 Best (green) and worst (red) performing methods on the two larger in-

stances of the Dispersion Game. 77
3.12 Best (green) and worst (red) performing methods on the larger instance of

the Generalized Firefighting problem. 79
3.13 Best (green) and worst (red) performing methods on the two larger in-

stances of Aloha. 81

A.1 Value of the learning rates for each method. 125
A.2 Value of λ for each method. 125

B.1 Accuracy results with respect to both action ranking and reconstruction
error for the different games. Best (green) and worst (red) performances
for each game are highlighted. 132

xvi

1I N T R O D U C T I O N

Since its beginning, research on artificial intelligence (AI) [122] has investigated building
machines capable of solving different and complex tasks that were considered sole
prerogative of the human intelligence [44]. This desire of a machine capable of
replicating human behaviours has driven this novel and flourishing field, that is now
widely considered capable of reshaping our everyday life and provide effective and
working solutions to a variety of problems that we consider crucial [64, 147, 62].

Reinforcement learning (RL) [141, 65] is perhaps considered one of the most promis-
ing set of techniques to achieve such goal: an AI agent autonomously learns how
to interact with its environment and how to achieve the desired behaviour through
repeated trials and errors, relying only on a numerical signal to assess its own perfor-
mance with respect to the desired goal. Moreover, the recent increase in the available
computing power (for example, the availability of fast computational resources like
GPUs or TPUs) has allowed the reinforcement learning community to move a step
further: deep learning (DL) [45, 113, 28] and neural networks [58, 48, 22] can be efficiently
used as function approximators to represent reinforcement learning structures and
tables, in what is called deep reinforcement learning (DRL) [41, 3, 12, 72]. Deep neural
networks are capable of identifying and extracting compact features from large-scale,
highly complex inputs and exhibit good generalization capabilities beyond their
training examples [21, 9, 153, 29, 92], thus allowing deep reinforcement learning
to tackle problems that seemed too difficult or too big to be solved with standard
reinforcement learning techniques.

The brief history of deep reinforcement learning is paved with big successes:
as an example, AlphaGo [133, 134] has been the first autonomous agent capable of
defeating the human world champion Lee Sedol at Go, a game known for being
extremely complex for machines to master due to a very large number of possible
board configurations and the careful planning required to play a good game. Other
successful reinforcement learning applications range from super-human scores in
playing Atari games [85, 86] to autonomous navigation of unmanned aerial vehicles
[78, 88, 6], to robot locomotion [173, 176, 61] and manipulation [75, 154, 37].

1 .1 motivation

In many situations, an autonomous agent has to behave in an environment populated
also by other acting agents (or even human beings), whose actions can affect the
environment own dynamics in turn. These settings are known as multi-agent systems
(MASs) [33, 136]. In such systems, the agents can have different types of interactions

17

18 introduction

and interests [144, 145]: they could have totally opposing goals, for example when
playing a game one against the other, as in competitive settings [143]; they can share
a common objective to achieve as in cooperative settings [15, 74, 107], thus requiring
cooperation and coordination among the team; or more generally they can be self
interested but not strictly competing against nor cooperating with any of the other
agents in the system, as in self-interested settings [116]. For the remainder of this
work, the focus is going to be purely on cooperative multi-agent systems.

The study of cooperative multi-agent systems has a long-standing history across
a multitude of different fields: both natural, cognitive and behavioural sciences has
investigated the problem of how cooperation has arisen and helped the shaping of
animal and human communities [4, 148]. Also concerned with the study of rational
behaviours of multiple agents (called players in this context) is the related field of game
theory (GT) [105]: although in general not restricted to such settings only, abundant
work has also been made on how to solve and identify optimal behaviours for
cooperating players [19, 128, 49]. The concept of a suitable (i.e. rational) behaviour for
the players capable of maximizing the team common outcome, called an equilibrium,
is a commonly employed solution concept, and many algorithms have been proposed
to find these, although the problem of identifying an optimal equilibrium is known
to be highly difficult [105]. Such a difficulty is even exacerbated when the number of
agents increases, or when the system dynamics become more complex and a careful
and differentiate decision process in necessary according to the evolving situation of
such a system.

Also AI has been interested in the field of multi-agent systems, especially in the
cooperative setting [70, 98, 43]. Different solution techniques has been proposed so
far: for example, for problems whose dynamics are known in advance, planning
algorithms [43, 98] can be used to find optimal execution strategies for the team of
agents. Also, techniques based on dynamic programming [56, 8], like value or policy
iteration, or existing AI algorithms, like MAA∗ [95], has been adapted to multiple
agents. However, accurately knowing the system dynamics is not often practical (for
example in complex real-world applications), or it may still be difficult to exploit
such a knowledge because of the size of the environment itself.

Reinforcement learning (and its deep incarnation) has been widely applied and
investigated in the multi-agent setting too, resulting in the multi-agent reinforcement
learning (MARL) field [14, 70, 54, 83, 59]. As for single-agent reinforcement learning,
also MARL has achieved significant breakthroughs: AlphaStar [156], combining
techniques from competitive MARL and game theory, has been capable of achieving
the grandmaster rank in StarCraft II, a highly complex and temporally extended
resource management video-game, playing in an online league against professional
human players. It is therefore natural the growing interest that this novel field is
gaining in the research community, with an increasing number of papers on the
subject accepted at top level AI conferences such as AAAI, IJCAI, ICML, NeurIPS

1 .2 learning in multi-agent systems 19

and AAMAS (that is specifically dedicated to this topic) every year.
Cooperative MARL, where agents have to cooperate and coordinate to solve

a common problem by learning only from a shared feedback signal, has seen an
amazing number of real-world applications: examples are air traffic management
[150], packet routing in sensor networks [177], traffic light control [151, 71], emergency
rescue [109] and warehouse management [23], just to name a few. To show its
importance, let’s consider the application of MARL to the traffic light control problem:
the coordination and coexistence of multiple traffic lights that impact on the same
system (the flow at a set of traffic intersections) is intrinsically of a multi-agent
nature. Such a problem is capable of shaping the way in which people use and
even feel driving, and thus it has a great impact of our everyday life. Although a
human operator may have clear ideas on how to regulate traffic lights such as to
allow safe yet fast travel to the vehicles (for example, with intuitive rules such as "no
green lights on empty lanes, as no one would benefit from these"), it is in general
impractical to regulate such a system manually. Also, describing the traffic light
control through a series of hard-coded rules may be difficult: there may be hundreds
of good rules to implement, and some may be contrasting, or perhaps not clearly
applicable or designable. Thus, having a solution that is capable of regulating such
delicate situations by autonomously optimizing their behaviour to allow both fast
and safe travelling, as well as being adaptive to unseen situations (like a different
configuration of the traffic junctions or the number of vehicles), is a great step towards
a suitable solution that may have a positive impact on our society.

1 .2 learning in multi-agent systems

Designing cooperative multi-agent systems presents a set of choices and challenges
that stem from the unique property of having multiple autonomous agents and that
are not usually faced nor addressed by standard reinforcement learning algorithms,
therefore requiring novel and specific solutions. One of the first and most fundamental
decisions that have to be made is that of how to control the team of agents: the two
most common choices are using a centralized controller, that models the entire team
of agents as a single centralized unit, and independent learners [146, 83, 24, 171],
where each agent in the team is modelled and learned independently from the
others. Although being both popular approaches, these are also well-known for
their inherent limitations that may hinder or even impede the learning of proper
cooperative behaviours [83, 24, 171, 108].

Another fundamental difficulty faced by learning agents in cooperative settings is
that of multi-agent credit assignment [20, 94, 178, 168]: with only a shared numerical
feedback to assess the quality of the team performance in the environment, agents do
not have a clear way to figure out their own specific contribution towards the attained
result. This way, each agent can be tricked into thinking that its performance is good,

20 introduction

while in reality the obtained feedback is mainly or solely due to the performances
of the other acting agents, and this overall result could be further improved if that
specific agent changes its behaviour towards a more performing or favourable one.

Both the choice of a suitable team representation and the tackling of the multi-
agent credit assignment are challenges that are strictly inherent to cooperative multi-
agent systems, and thus not directly addressed by standard single-agent reinforcement
learning algorithms. The multi-agent community has already provided possible
solutions to these, but these have been scarcely investigated in the field of multi-
agent deep reinforcement learning yet. This is where the contributions of this work
lay, trying to tackle two fundamental problems that could impede the learning of
proper behaviours for the agents. This work aims at investigating the benefits of such
multi-agent techniques in the field of MARL, and possibly extend these into novel
algorithms that can improve upon current state-of-the-art solutions, and does so by
learning additional or novel representations that could be used to directly address
such limitations.

1 .3 problem statement

In this work, the aim is to explore and design algorithms capable of learning represen-
tations that can help tackling the aforementioned challenges. The use of informative
and correct representations can greatly benefit MARL algorithms: providing struc-
tures that can be easily learned and that are useful to contrast these difficulties have
potential to provide the research community with better tools for designing new
algorithms that can scale more gracefully with the number of agents present in the
system, while at the same time achieving good performances. MARL is a new and
flourishing field, and thus the research community may greatly benefit from such
advances and improvements.

Given the benefits, but also the limitations, showed by both the centralized con-
troller and the independent learners approaches, researchers have tried to identify a
middle ground that could retain most of their benefits while at the same time reduce
the number of possible drawbacks. One of such solutions is factorization [50, 53, 52]
(also known as value-decomposition), in which the centralized controller is broken
down into multiple different components, each only comprising a small subset of the
whole team. This way, although the number of components that need to be learned
is greater than a single centralized one, now each of these is only affected by the
information of few agents, and thus is easier to learn and does not suffer the combi-
natorial explosion in size when the number of total agents increases. In contrast with
independent learners instead, each of such components is still explicitly representing
multiple agents together, and so it should partly ameliorate the non-stationarity issue.

Such an approach is now the underlying idea of a growing number of modern
multi-agent deep reinforcement learning algorithms [139, 115, 135, 158]. However,

1 .3 problem statement 21

most of these algorithms (with some recent exceptions [10, 76, 89], that are indeed
inspired by the original contribution presented in this work) focus only on a single-
agent decomposition, where the centralized controller is divided into components
representing only a single agent, leaving almost unexplored the benefits that using
“higher-order” decompositions may have. Moreover, theoretical analyses in which
general criteria and conditions for these algorithms to work well (i.e. result in selecting
the same actions of a single centralized controller) are usually provided, but it is
not always easy to tell if a given problem respects such conditions and more in
general these analyses does not say anything about the quality of the resulting
learned representations (as opposed to action selection only). With so much interest
in this technique, a more rigorous and systemic empirical analysis, in which different
factorizations are tested and compared on a number of different problems with
varying properties, would be of a great benefit to assess its real strengths and eventual
limitations and to inform future directions in its application.

Also the multi-agent credit assignment has been tackled with a variety of tech-
niques: many value-decomposition methods [139, 115, 135, 158, 175] are indeed
implicitly addressing such a problem [157], but these lack interpretability and it
is in general not clear how the agents’ contributions are computed. Instead, an
explicit technique of noticeable interest and that found a wide application is that
of difference rewards [169, 168]. The idea of difference rewards is to provide each
autonomous agent with an individual shaped reward signal rather than using the
shared feedback provided by the cooperative environment, and many different algo-
rithms have been proposed to compute different expressions for such a shaped value
[178, 169, 114, 26, 25]. With an individual signal to drive their learning process, agents
should be better able to assess how their actions have been really contributing to the
overall performance, and could improve their own behaviour in a way such that the
whole team can benefit from this. There is however a limitation to the applicability
of such methods: complete access to the system reward function is indeed required
in order to compute the shaped signals. This is a strict condition in a reinforcement
learning setting, where usually the reward function is not known in advance and the
agents have access to its samples only through their repeated interactions with the
environment.

As well as “higher-order” factorizations, difference rewards algorithms have not
been widely applied in the field of multi-agent deep reinforcement learning, especially
because of the aforementioned limitation, where the problem of multi-agent credit
assignment has only recently gained a major attention [20, 160, 40, 182, 130]. However,
among other deep MARL algorithms specifically designed to explicitly address such
a problem [159, 174], there is only one that has been proposed that applies the
idea of difference rewards, Counterfactual Multi-Agent Policy Gradients (COMA) [40].
Although the algorithm is cleverly applying the difference rewards mechanism on
a learned representation of action-value function of the entire team, thus allowing

22 introduction

each agent to explicitly reason about the contribution of its own actions, its results
in practice are often poor [160, 181, 63, 82], rendering COMA not practical to use in
larger multi-agent systems. The reasons for these poor performances are probably
to be identified in its centralized representation itself: learning the Q-function is a
difficult problem due to compounding factors such as bootstrapping, the moving
target problem (as target values used in the update rule change over time), and the
Q-function dependence on the joint actions. This makes the approach difficult to
apply with more than a few agents.

1 .4 contributions & research questions

This work aims at making a step further in tackling these two MARL problems,
as considered crucial for the development of the field. First, an in-depth and accu-
rate analysis and comparison of different factorizations on a wide set of diverse
cooperative scenarios, each with its own difficulties and peculiarities, is provided.
Justified by the growing advent of deep reinforcement learning, neural networks are
used to represent and learn these factored methods. The purpose is to foster a clear
and solid understanding of the various benefits and limitations of such techniques,
assessing how various instantiations of this can represent the behaviour of the agents
and how does these scale with the size of the system. In order to assess this, the
proposed analysis has been restricted to the one-shot decision setting (i.e. the team
perform a joint action and the environment immediately reset), as the simplest setting
capturing many of the cooperative multi-agent-related issues, such as the exponential
explosion of the number of actions and the strict coordination requirements, without
hindering the comparison with additional details like sequentiality of decisions or the
representation of states. The hope is to inform future research on the real benefits and
capabilities of using “higher-order” decompositions, and also to provide a practical
guide with results on different settings, on which system designers can rely to choose
a suitable technique for their own problem at hand.

At a high level, the prominent research question (RQ) that this work aims at
addressing is the following:

RQ1: Is the general assumption on “higher-order” factorizations being helpful in
learning improved approximations in the multi-agent setting justified by practi-
cal results?

Chapter 3

Then, multi-agent credit assignment and its application to sequential deep MARL
is considered, by proposing Dr.Reinforce and Dr.ReinforceR, two novel algorithms that
overcome most of the difficulties that limit COMA by combining a difference rewards
mechanism computed on the reward function, either accessible from the environment

1 .5 published works 23

itself or learned with a centralized network, with policy gradient learners, being
able to outperform this state-of-the-art algorithm. Also, an analysis of the learning
problem is performed, in which the benefits of learning the reward function rather
than a centralized action-value critic as in COMA are shown.

RQ2: Can difference rewards applied to the reward function (possibly by learning
a representation of it) provide better learning signals to distributed agents
compared to the same idea applied on a centralized action-value critic?

Chapter 4

RQ3: Can the same idea be extended to partially observable settings and still improve
performances?

Chapter 5

The remainder of this work is structured as follows: in Chapter 2 preliminary
notions about game theory, single-agent reinforcement learning and its extension
to cooperative multi-agent systems are provided. This chapter is based on research
made by other people, and relevant citations to identify the original authors and
works are provided. In Chapter 3 we provide a thoughtful comparison and analysis of
different factorizations in representing action-value functions arising from a diverse
set of one-shot multi-agent problems. In Chapter 4 we combine difference rewards
with policy gradients to provide novel deep MARL algorithms that are capable
of addressing the multi-agent credit assignment problem while avoiding many of
the issues encountered with action-value function learning, and in Chapter 5 such
techniques are extended to partially observable settings. Finally, conclusions and
further remarks are provided in Chapter 6.

1 .5 published works

The work in Chapter 3 is based on the following paper:

• Jacopo Castellini, Frans A. Oliehoek, Rahul Savani and Shimon Whiteson. The
Representational Capacity of Action-Value Networks for Multi-Agent Rein-
forcement Learning - Extended Abstract. In Proceedings of the 18th International
Conference on Autonomous Agents and MultiAgent Systems, AAMAS’19, pages
1862–1864. International Foundation for Autonomous Agents and MultiAgent
Systems, 2019,

which has been subsequently extended into:

• Jacopo Castellini, Frans A. Oliehoek, Rahul Savani and Shimon Whiteson.
Analysing Factorizations of Action-Value Networks for Cooperative Multi-
Agent Reinforcement Learning. Autonomous Agents and Multi-Agent Systems,
35(25):53 pages, Springer Nature, 2021.

24 introduction

The work in Chapter 4 is instead based on:

• Jacopo Castellini, Sam Devlin, Frans A. Oliehoek and Rahul Savani. Difference
Rewards Policy Gradients - Extended Abstract. In Proceedings of the 20th Inter-
national Conference on Autonomous Agents and MultiAgent Systems, AAMAS’21,
pages 1475–1477. International Foundation for Autonomous Agents and Multi-
Agent Systems, 2021,

• Jacopo Castellini, Sam Devlin, Frans A. Oliehoek and Rahul Savani. Difference
Rewards Policy Gradients. In AAMAS’21 Autonomous and Learning Agents
Workshop (Best Paper Award Winner), ALA’21, 2021,

Finally, the content of Chapter 5, extending the span of the above works, has been
published into:

• Jacopo Castellini, Sam Devlin, Frans A. Oliehoek and Rahul Savani. Difference
Rewards Policy Gradients. Neural Computing and Applications (ALA’21 Special
Issue) (under review), 2022

2B A C K G R O U N D

In this chapter preliminary notions about single-agent reinforcement learning, game
theory and cooperative multi-agent reinforcement learning are provided, as used
throughout the remainder of this work.

2 .1 reinforcement learning

Reinforcement learning is one of the most popular family of machine learning tech-
niques. It is used to learn a (near-)optimal behaviour for an agent to follow in an
unknown environment, only through repeated interactions with such an environment.
In this section, after a preliminary introduction to the setting, focus is going to be on
its combination with deep learning (called deep reinforcement learning), introducing
both value-based and policy-based algorithms. Finally, a brief excursion on partially
observable settings is provided.

2 .1 .1 The RL Problem

Single-agent reinforcement learning is a class of problems based on trial and error
interactions of an autonomous agent with its environment. The process proceeds in a
discrete fashion, at each time step, the agent perceives the state of the environment,
and based on this perception it internally decides the action that it wants to perform.
When the agent has performed its action, the environment responds to this by
transitioning to a new state based on the previous one and the action chosen by
the agent itself and by providing the agent with a numerical signal, that expresses
the value of its choice in that specific situation, and then the entire process repeats
from the new situation. The aim of the autonomous agent is, through multiple such
interactions with the environment, to learn a mapping from environment states to
actions, called a policy, so that the overall reward accumulated over a sequence of
these is as high as possible. This iterative process is schematically depicted in Figure
2.1.

Formally, a reinforcement learning problem can be defined as a Markov decision
process (MDP) [141, 65, 41, 3, 12]M = 〈S,A,T,R,γ〉, where S is the (usually finite) set
of environment states, A is the set of actions available to the agent, that may be finite
and discrete (as considered in the remainder of this work unless explicitly stated)
or infinite and continuous, T : S× A× S → [0,1] is called the transition function
(also known as transition dynamics, or transition kernel) and expresses, given the
current state s ∈ S and selected action a ∈ A and a candidate future state s′ ∈ S,

25

26 background

Figure 2.1: A schematic view of the RL process: the agent repeatedly interacts with the
environment. Source: Sutton and Barto 2018.

the probability of the environment transitioning to s′ when action a is performed in
state s. Finally, R : S× A → R is the reward function, used to give feedback to the
agent when action a is performed in state s, and γ ∈ (0,1] is a discount factor used to
balance the importance of current and future performances.

A fundamental property of MDPs is the so-called Markov property: the transition
dynamics do not depend on the entire history of the environment, but these can be
determined solely based on the current information. This property allows the agent
to be oblivious about the history of the environment, and it is at the basis of many
algorithms’ convergence proofs [162, 142, 69].

At a given time step t, the agent has to maximize its discounted future return
over a T-steps (with T being possibly infinite when γ 6= 1) trajectory Rt = ∑T

l=0 γlrt+l ,
where rt is the reward obtained at time step t. To select its actions, an agent main-
tains and learns either a stochastic policy π(s,a), mapping environment states to the
corresponding probability value of selecting each available action (when the action
set A is discrete and finite), or a deterministic policy a = π(s), where a fixed action is
selected for each state (usually used in continuous action problems).

An agent policy π induces a value-function Vπ(s) = E [Rt|st = s], expressing how
good it is for the agent to be in state s and follow its policy, and an action-value function
Qπ(s,a) = E [Rt|st = s,at = a] (also called Q-function), that expresses how good it is
for the agent to choose action a in state s and then follow its policy. The aim of the
agent is to learn an optimal policy π∗ = maxπ Vπ(s), ∀s ∈ S.

Both the value function Vπ(s) and the action-value function Qπ(s,a) can be
recursively defined via the Bellman equation [7, 141, 65] as:

Vπ(s) = ∑
a∈A

π(a|s)
(

R(s,a) + γ ∑
s′∈S

T(s,a,s′)Vπ(s′)

)
, (2.1)

Qπ(s,a) = R(s,a) + γ ∑
s′∈S

T(s,a,s′)Vπ(s′), (2.2)

Vπ(s) = ∑
a∈A

π(a|s)Qπ(s,a). (2.3)

2 .1 reinforcement learning 27

These definitions also entail that, if the transition dynamics T(s,a,s′) and the
reward function R(s,a) are known, we can find the optimal value function Vπ∗

induced by π∗ using the value iteration algorithm:

Vπ(s)← max
a∗∈A

(
R(s,a∗) + γ ∑

s′∈S
T(s,a∗,s′)Vπ(s′)

)
. (2.4)

However these quantities are usually unknown in the reinforcement learning
setting, as opposed to planning [43] in which these are instead known in advance,
and so the policy has to be learned by interacting with the environment rather than
using dynamic programming.

One of the intrinsic challenges of reinforcement learning is that of the exploration
vs. exploitation trade-off [141, 18]: on one hand, an agent wants to maximize its accrued
reward, thus choosing at each state the action that seems to maximize such a value
based on its imperfect estimates, but on the other hand it cannot be sure that these
estimates are really accurate enough and that the selected action is really optimal,
and thus need to continue exploring to further refine them. This trade-off is crucial
in allowing the agent to learn proper estimates of the real values of its actions, and
needs to be carefully considered and each action to be sufficiently explored in order
to achieve a really optimal policy.

2 .1 .2 Partial Observability

The MDP framework allows us to model situations in which the agent has a perfect
sensing of the surrounding environment, being able to capture everything it needs to
choose an action. In many real-world situations however this is not the case, as the
agent may have limited or imperfect sensing [35, 6, 141].

A framework capable of modelling such situations is that of partially observ-
able MDPs (POMDPs) [34, 98]. A POMDP can be mathematically defined as M =

〈S,A,T,O,Z,R,γ〉, where S,A,T,R and γ are as in a standard MDP. The main difference
is that now the agent does not perceive the environment state s ∈ S directly, but it is
rather provided with an observation o ∼ Z(s) ∈ O, where O is the observation set,
drawn from the observation function Z : S×O→ [0,1] based on what the real state
is.

In a POMDP, the environment loses the Markov property from the perspective of
the agent: not being able to observe the full state, now the observation alone is not
enough for the agent to determine the complete system dynamics, that thus seems
non-stationary from the agent’s perspective. This property loss disrupts all of the con-
vergence properties of standard reinforcement learning algorithms, as now the agent
has to condition on the action-observation history ht = (o0,a0,o1,a1, . . . ,ot−1,at−1,ot) ∈
(O× A)∗ ×O reached until the current time step t (rather than on the real state s) to
try and figure out the underlying configuration of the environment. However, this

28 background

history can grow unbounded, and this can be problematic when the policy has to
react differently based on each such a history. Dedicated techniques are required to
address this issue, such as truncating the histories to a certain length or using recur-
rent neural networks, with their internal representation, as function approximators
instead of feed-forward ones [57, 166].

2 .1 .3 Deep Learning

Neural networks (NNs) [58] are used to extract salient information from high-
dimensional inputs and process these to obtain the desired output. These have
the capability to generalize beyond the training examples used to learn them, and
therefore can be used as function approximators [45, 72] in many different problems,
from classification to regression and time series analysis [113, 28]. The most basic
type of neural networks are feed-forward neural networks, in which each input it is
passed through a series of L stacked layers, each with its own weights W l and bias bl ,
so that the corresponding output ot is computed as:

ot = σ(WL · σ(WL−1 · . . . σ(W2 · σ(W1 · it + b1) + b2) . . . + bL−1) + bL), (2.5)

where σ is a linear activation function, for example the ReLU activation function
[90]. Networks parameters Π = {W l ,bl}L

l=1 are then adjusted to reduce the difference
between the output ot and a desired target value yt for that specific input under a
given loss function S(ot,yt) (usually the categorical cross-entropy for classification
problems or the mean square error for regression) [45]. Such an adjustment is per-
formed by following the direction of the gradient of the loss function (the set of
first-order derivatives with respect to each network parameter) [11], computed using
the backpropagation algorithm [119], and parameters Π are updated using (a variant of)
the stochastic gradient descent (SGD) algorithm [11, 117]:

Π← Π + η∇ΠS(ot,yt), (2.6)

where η ∈ (0,1) is a suitable learning rate value. If update steps are sufficiently
small, the neural network should iteratively adjust its parameters is a direction that
minimize its error, thus predicting correct outputs for the given inputs.

Another very popular type of neural networks are recurrent neural networks (RNNs)
[120, 72], that have the capability to deal with data of a sequential nature by using
a kind of memory mechanism that allows them to correlate consecutive pieces of
information, rendering them particularly important in tasks such as time series
analysis or natural language processing [113, 28]. This capability is implemented by a
set of self-directed connections W l

R inside each recurrent layer, allowing it to compute
its output hl

t (called its internal state) based on the current input xt (that may be the

2 .1 reinforcement learning 29

Figure 2.2: A schematic representation of a recurrent neural network and its unfolding
through time. Source: LeCun et al. 2015.

output of the previous layer in the network hl−1
t or the initial input it) and its own

previous output hl
t−1 as:

hl
t = W l · xt + W l

R · hl
t−1 + bl . (2.7)

Recurrent neural networks can in principle update their own parameters in
a similar way to that of feed-forward ones, but these now have to also take into
account their own previous outputs when computing the gradient of the loss function,
that in turn depends on the network parameters at the previous steps and so on.
Algorithms such as backpropagation through time [164] have been proposed to learn
these networks by unfolding them along the temporal dimension, although problems
like the vanishing or the exploding gradient are common with the training of vanilla
RNNs (but are ameliorated by the gated mechanisms in extensions such as LSTM
[48] or GRU [22]).

2 .1 .4 Q-Learning & SARSA

One of the most famous reinforcement learning algorithm is Q-learning [162, 65, 141].
Q-learning is a value-based method, i.e. a method that learns the action-value function
Q(s,a) and then uses this to shape the agent policy, for example by acting greedily with
respect to the action-values or using some probability distribution like the Boltzmann
distribution [65]. As the action-values (also called Q-values) are an estimate of the
expected discounted future reward for the agent starting in a certain situation and
choosing a certain action, acting probabilistically according to these would make the
agent focus on actions that seem more valuable and capable of yielding a high overall
reward. However, this does not entirely discard exploration of suboptimal actions,
thus tackling the exploration vs. exploitation trade-off and allowing the agent to keep
refining its estimates.

Q-learning works by maintaining a table in which the entries are all of the state-
action pairs, and for each it stores the estimated action-value that the algorithm learns.

30 background

The algorithm uses bootstrapping to compute the updates: for a given transition
(s,a,r,s′) that the agent experiences, this update is computed using the so-called
temporal-difference (TD-) error δ:

Q(s,a) = Q(s,a) + α

r + γ max
a′∈A

Q(s′,a′)−Q(s,a)︸ ︷︷ ︸
δ

 , (2.8)

where α ∈ (0,1) is the learning rate of the algorithm.

This is an off-policy algorithm [141], as it does not consider the real action performed
by the agent at the next time step (when the environment is in state s′), but considering
instead the action that gives the maximum action-value, as if the agent were going to
behave greedily from the next step on.

The biggest limitation of Q-learning is its use of a table to store the action-values:
if the size of the environment is large (with a large state space for example), the table
can easily become too big to fit in memory. For this reason, function approximation
has been proposed, with techniques such as tile coding [141, 165] or neural networks
[86]. With function approximation, the entire table is approximated by a fixed-size
set of parameters θ, that are learned to reproduce as accurately as possible the same
function learned by tabular Q-learning:

θ = θ + α

(
r + γ max

a′∈A
Qθ(s′,a′)−Qθ(s,a)

)
∇θQθ(s,a). (2.9)

Another popular value-based algorithm is SARSA [121, 65, 141]. This algorithm
is similar to Q-learning in the way it updates the Q-function, but differently from
the former it is an on-policy algorithm [141]: it uses the action a′ that the agent really
chose at the next time step while interacting with the environment to compute the
TD-error δ:

Q(s,a) = Q(s,a) + α

r + γQ(s′,a′)−Q(s,a)︸ ︷︷ ︸
δ

 . (2.10)

2 .1 .5 Deep Q-Network

The use of neural networks as function approximators [149], with their compact
representations and generalization capabilities, has fostered the field of deep rein-
forcement learning in gaining the status of a breakthrough in modern AI. One of
the first and most popular algorithms is deep Q-network (DQN) [86, 152, 161]. DQN
works similarly to the standard version of Q-learning with function approximation
[149], but it uses a couple of tricks to improve the stability of the learning process,
that have been a major issue when using neural networks.

2 .1 reinforcement learning 31

Figure 2.3: A schematic representation of the DQN architecture. Source: Mnih et al., 2015.

This first trick is the use of a large buffer D, called experience replay [86, 124], to
store transitions 〈s,a,r,s′〉 encountered during execution. These transitions are then
uniformly sampled and used for offline learning. This way, the statistical correlation
between subsequent samples, that could lead to poor learning performances [86], is
broken. The second trick is the use of a target network, a copy of the trained neural
network whose parameters θ− are periodically copied from those of the trained
network θ, when computing the updates target, contrasting the moving target problem
[86, 152] (a network update will also change the value of the targets that it is trying
to match, therefore resulting in difficulties in converging to a stable representation).

In DQN the input is the state s of the environment, that is then passed through a
series on neural network layers until the output units, one for each available action
a ∈ A and representing the corresponding Q-value for that action. The architecture is
schematically represented in Figure 2.3.

The updates are computed similarly to Q-learning with function approximation,
but sampling a batch of transitions to use for training from the experience replay
D and using the target network θ− to compute the updates target. The overall loss
function then is:

L(θ) = E〈s,a,r,s′〉∼U(D)

[(
r + γQθ−(s′,a′)−Qθ(s,a)

)2
]

. (2.11)

Different variants of DQN have been proposed [152, 161], and the algorithm has in
general shown the promises of deep reinforcement learning, for example by learning
how to play Atari games at a superhuman level by only learning from raw input
images [85, 86].

32 background

2 .1 .6 Policy Gradients

A different approach to that of value-based methods are policy gradient (PG) methods
[142, 141], a family of algorithms that, instead of learning the action-value function
and then designing a policy on top of that, aim at learning a stochastic parametrized
policy πθ directly. Because the objective of an agent policy is to maximize the ex-
pected future discounted return (the value-function) Vπ(s), policy gradient methods
improve the parameters θ of the policy πθ by maximizing a parametrized version
of such a value-function V(θ) = Es0 [V

πθ (s0)], where s0 ∈ S is the initial state of
the environment. This can be done by performing gradient descent [11, 117] on the
following gradient:

∇θV(θ) = ∇θ ∑
s∈S

dπθ (s)Vπ(s)

= ∇θ ∑
s∈S

dπθ (s) ∑
a∈A

πθ(a|s)Qπθ (s,a), (2.12)

where dπθ (s) is the ergodic state occupancy measure as defined in [142, 141], and the
equality comes from the equivalence in Equation 2.3.

Computing the derivative of this quantity is however problematic, as this measure
is usually unknown and complex to compute directly. However, the policy gradient
theorem [142, 141, 132] reformulates this expression in a way such that the derivative
of dπθ (s) can be avoided. Furthermore, because the gradient with respect to this term
is not further required, the entire expression can be reduced to a practical version
that approximates the required quantities by sampling from the environment, thus
avoiding the expectations in Equation 2.12. The parameters of the policy θ are thus
updated as:

θ ← θ + α
T−1

∑
t=0

Qπθ (st,at)∇θ log πθ(at|st)︸ ︷︷ ︸
g

, (2.13)

where α is the learning rate and g indicates the approximated gradient. Another
problem with policy gradients is that also the action-value function Qπθ (s,a) is
unknown, and thus a practical way to approximate that is required. One of the earliest
policy gradient algorithm, called REINFORCE [167, 141], proposes to approximate the
Q-function using the Monte-Carlo return Gt = ∑T

l=0 γlrt+l as an unbiased estimate of
that. This quantity is simple to compute, as it only involves the reward values obtained
by the environment while interacting, and so it is the corresponding instantiation of
the policy gradient:

θ ← θ + α
T−1

∑
t=0

γtGt∇θ log πθ(at|st)︸ ︷︷ ︸
g

. (2.14)

2 .1 reinforcement learning 33

Figure 2.4: A schematic representation of the actor-critic algorithm: the actor selects actions
to interact with the environment, while the critic informs the actor about the
quality of such actions. Source: Sutton and Barto, 2018.

However, the return has a high variance because of the stochasticity of the envi-
ronment, and this may deteriorate the policy gradients and slow down the algorithm
convergence. For this reason, the use of an unbiased baseline b(s) [47, 141], not depend-
ing on the agent policy, has been proposed to reduce such a variance:

θ ← θ + α
T−1

∑
t=0

γt(Gt − b(s))∇θ log πθ(at|st)︸ ︷︷ ︸
g

. (2.15)

A different class of algorithms, called actor-critic [69, 87, 77], proposes to learn
an approximation of the Q-function (or the value function, for which the following
equations are similar) named the critic and parametrized by ω, together with the
policy πθ . This can be learned by minimizing the on-policy TD-error (but also off-
policy versions exist [77]):

δ = r + γQω(s′,a′)−Qω(s,a). (2.16)

It can then be used to compute the policy gradient of the actor πθ as:

θ ← θ + α
T−1

∑
t=0

Qω(st,at)∇θ log πθ(at|st)︸ ︷︷ ︸
g

. (2.17)

34 background

The critic, by learning an approximation of the expected return, is less prone to
variance than a single Monte-Carlo sample (as used in REINFORCE) and thus can
improve the convergence of the policy gradients, at the cost of introducing some bias.
It is also possible to subtract an unbiased baseline from the critic value Qω(s,a) to
further reduce variance. If such a baseline corresponds to the value function, the
result is the advantage function [47, 87, 141]:

A(s,a) = Q(s,a)−V(s) = r + γV(s′)−V(s). (2.18)

2 .2 game theory

In many settings [150, 73, 129], the interest is on finding a suitable (i.e. rational)
strategy for a team of n agents so that each of them is capable of achieving the
highest possible outcome from a given situation. Such is the context that is studied by
classic game theory. In the following section, a brief introduction to some of its basic
concepts is provided, as serving as a foundation stone for the the study of multi-agent
systems. Also, details on some more specific game-theoretical settings mentioned in
the remainder of this work, such as Bayesian games or partially observable stochastic
games, are given.

2 .2 .1 (Cooperative) One-Shot Games

The simplest possible setting to investigate such rational interactions is that of a one-
shot game [105] (also known as a stateless problem or an n-players normal/strategic
form game in the game theory language), which can be modelled as a tupleM =

〈D,{Ai}i∈D,{Ri}i∈D〉, where D = {1, . . . ,n} is the set of agents (called players) and
Ai is the action set for player i. Each player chooses what to do in the game based on
its own strategy πi, which can be either a pure strategy, if it deterministically defines
an action ai to select for the game πi = ai (so that each player has a set of available
pure strategies corresponding to its action set Ai), or it can be a mixed strategy, if
it defines a probability distribution over the player set of pure strategies ∆i(Ai). A
strategy profile π = 〈π1, . . . ,πn〉 is a set comprising a suitable strategy (either pure or
mixed) for each of the players. Finally, Ri : A→ R is the individual reward function
(or individual payoff function in this setting) for player i, dependent on the joint
action a ∈ A = ×i∈D Ai of the players (a realization of the players strategy profile). In
cooperative one-shot games [105, 19], the payoff function is common to all players,
Ri = R : A→ R, ∀i ∈ D.

It is to note that in such a stateless setting, the shared reward function R(a)
corresponds to the team action-value function Q(a), as there is no possible future
outcome that has to be taken into account. This (and the other reinforcement learning-

2 .2 game theory 35

based nomenclature) is the notation used in Chapter 3 to further highlight the
similarities with standard sequential MARL.

Closely related settings are that of repeated games [105], in which the players are
faced with the same one-shot game for a series of multiple stages and alternate their
actions in turns, conditioning on the joint action history ht = (a1,a2, . . . ,at) to choose
a suitable strategy at every turn, and that of multi-agent bandit problems [129], in
which the agents have to agree on which arm to pull in a classical multi-armed bandit
problem [141] and whose main focus is on minimizing regret [129, 105].

2 .2 .2 Nash Equilibria & Optimal Solutions

In a one-shot game, the aim of each player is to choose a suitable strategy such that it
maximizes its own expected accrued payoff
πi,∗ = arg maxπi Ea∼π

[
Ri(a)

]
, given the other players strategy profile. Given the

common goal of all the players to find such a strategy for themselves, each player has
to consider that the others may switch to a different strategy to increase their own
payoff, so that the player selected strategy πi,∗ is not optimal anymore. A very popular
solution concept that takes this idea into account and has been widely investigated
in game theory is that of a Nash equilibrium (NE) [91, 105]: a Nash equilibrium is a
strategy profile π∗ from which none of the players has the incentive (i.e. can increase
its own payoff) to unilaterally deviate. This means that, given a Nash equilibrium
π∗ = 〈π1,∗, . . . ,πn,∗〉:

6 ∃π′ = 〈π1,∗, . . . ,πi, . . . ,πn,∗〉 : Ea′∼π′

[
Ri(a′)

]
> Ea∼π∗

[
Ri(a)

]
, ∀i ∈ D. (2.19)

Such an equilibrium strategy is guaranteed to exist for finite games [91, 105], and
in general may not be unique. Also, such equilibria are not in general guaranteed to
be the strategy that gives the highest payoff to all of the players (a concept known as
the Pareto optimal solution), as it happens for example in the popular Prisoner Dilemma
[105]. However, in a cooperative one-shot game, where the aim of the players is to
identify and coordinate on a strategy profile that gives the maximum common payoff,
such an optimal solution is also guaranteed to be a Nash equilibrium [19]. Each
strategy πi,∗ is called a best response to the other players’ strategies in π∗, and indeed
a popular algorithm to identify a Nash equilibrium is the Iterated Best Response
method [105]: iteratively each player computes its best response against the fixed
strategies of the other players (usually by solving a linear program [27]), until none
of the players changes its strategy anymore.

36 background

2 .2 .3 Graphical Games & Coordination Graphs

A particular type of one-shot games is graphical games [100]: in a graphical game the
individual payoff of each player Ri is affected only by the actions ae of a subset of
other players e ⊆ D. Thus, in order to maximize its own payoff, the player does not
have to take into account the entire strategy profile π, but has only to consider the
strategies πe = 〈π j〉j∈e to find an equilibrium strategy.

In cooperative settings as well, a player’s decision can only be affected by the
decisions of a subset of all the players, rather than the entire team. Such influences
can be represented as a (hyper-)graph called coordination graph (CG) [53, 50, 52, 67],
in which the nodes represent the players in the team and (hyper-)edges e ∈ E connect
players who are influencing each other. Such a locality of interaction allows us to
break down the team action-value function Q(a) (i.e., the shared payoff function R(a)
using the game theoretic nomenclature) into a sum of smaller local payoff functions Qe,
one for each edge in the coordination graph, called a factorization:

Q(a) = ∑
e∈E

Qe(ae), (2.20)

where ae = 〈ai〉i∈e is called local joint action, formed by the joint action of only
the players comprised in such a local term e, named a factor. Coordination graphs
are a useful tool to represent influences among the players, and message-passing
algorithms, such as variable elimination [50] and max-sum [67, 118], work over
coordination graphs and require good representations of the payoff function to allow
the team to choose an optimal and coordinated joint action a∗.

Such an idea also has been applied to problems that do not present a decompos-
able structure on their own. For these cases, it is possible to resort to an approximate
factorization: a set of factors E is designed beforehand and superimposed over the
problem, that is then decomposed following the resulting factorization as:

Q(a) ≈ Q̂(a) = ∑
e∈E

Q̂e(ae). (2.21)

2 .2 .4 Bayesian Games

Another type of games is Bayesian games [100, 101], in which each player i is given
some private information θi that it can use to condition its strategy πi(θi) on. Thus,
the actions selected by a player strategy (or the probability to select each action for
a mixed strategy) now depend on the value of its private information, and a player
has to consider what kind of private information the other players may have when
evaluating its own strategy.

2 .2 game theory 37

2 .2 .5 (Partially Observable) Stochastic Games, MMDPs and Dec-POMDPs

The most general form of games, called stochastic games (SG) [131, 98], also includes
environment transitions among different states, determined by the players’ actions.
Formally, a stochastic game is defined as a tuple P = 〈D,S,{Ai}i∈D,T,{Ri}i∈D〉,
where D,Ai and Ri are the same as in a one-shot game, S is the environment state set
and T : S× A× S→ [0,1] is the transition function of the environment, depending
on the joint action of the players a ∈ A = ×i∈D Ai. Similarly to repeated games,
players can select their actions either simultaneously or in turns. In these games,
each player observes the environment state s ∈ S and aims at maximizing the
discounted total payoff over a T-step series of stages (where T could possibly be
infinite) υi = ∑T−1

t=0 γtRi(st,at), where γ ∈ (0,1] is a discount factor.

The above model can be adapted to represent cooperative settings: the resulting
multi-agent MDP (MMDP) [98, 13] is defined as a tuple M = 〈D,S,{Ai}i∈D,T,R,γ〉,
where all the components are the same as in a stochastic game, but the reward function
is common to all agents in the team, Ri = R : S × A → R, ∀i ∈ D. In a MMDP,
all the agents usually act simultaneously. Similarly to single-agent reinforcement
learning, the team aims at maximizing the (now shared) discounted future return Rt =

∑T
l=0 γlrt+l : each agent can use the environment state s to condition its own (stochastic

or deterministic) local policy πi(s,ai), and the joint policy π(s,a) = 〈π1, . . . ,πn〉 can be
defined for the entire team. Also, the joint value-function Vπ(s) and joint action-value
function Qπ(s,a) can be defined similarly to the single-agent case. Each agent i cannot
in general access information from the other agents, such as their own actions a−i

they perform: the other agents acting and learning together with the protagonist one
are influencing the transitions and reward values given by the environment, therefore
the agent itself perceives this environment as highly non-stationary [83, 24, 108].

Stochastic games can also be extended to allow for partial observability. A partially
observable stochastic game (POSG) [56, 98] is defined as a tuple P = 〈D,S,{Ai}i∈D,T,
{Ri}i∈D,{Oi}i∈D,Z〉, where everything is as in a standard stochastic game, but now
each player only observes a local observation oi ∈ Oi, where Oi is its local observation
set, and the joint observation o ∼ Z(s) ∈ ×i∈DOi = O is taken from the observation
function Z : S×O → [0,1]. If a (partially observable) stochastic game is finite, it is
also guaranteed to have at least one (possibly mixed) Nash equilibrium [105].

Adapting a partially observable stochastic game to the cooperative setting results
in a decentralized partially observable MDP (Dec-POMDP) [98, 14]. This is defined as
a tuple M = 〈D,S,{Ai}i∈D,T,{Oi}i∈D,Z,R,γ〉, where everything is defined as in a
POSG, but the reward function R : S× A→ R is now shared as in MMDPs. For the
remainder of this work, we assume the action set Ai for each agent i to be discrete and
finite. As in a POMDP, agents do not perceive the full state of the environment, but are
instead provided each with a local observation oi that can be noisy and not enough
informative on the true underlying state of the environment, and so they have to rely

38 background

on their own local action-observation history hi
t = (oi

0,ai
0,oi

1,ai
1, . . . ,oi

t−1,ai
t−1,oi

t) ∈ (Oi ×
Ai)∗ ×Oi up to the current time step t to try and capture what the true environment
state is (a join action-observation history ht = ×i∈Dhi

t can be defined similarly to other
quantities). These are used to condition a joint policy π(h,a) = 〈π1, . . . ,πn〉, where
πi(hi,ai) is the local policy for agent i. The joint policy induces a joint value-function
Vπ(h) and a joint action-value function Qπ(h,a) that are defined similarly to the
MMDP case. The combination of other learning agents and partially observability
only exacerbates the non-stationarity problem already faced in the fully observable
multi-agent case.

2 .3 cooperative multi-agent reinforcement learning

Finally, in the following section, details on multi-agent reinforcement learning and its
deep instantiation are given, together with an explanation of some more advanced
concepts (like coordination graphs or difference rewards) that are investigated in
further detail in this work. Also, a brief survey of some popular and known deep
MARL algorithms mentioned in the following is provided.

2 .3 .1 Centralized Controller vs. Independent Learners

As already discussed in Section 1.2, there are two different ways of representing and
learning the team of agents: on one hand, the multi-agent system can be seen as a
large, single-agent problem, where a single centralized controller learns either the joint
policy π(h,a) or the joint action-value function Qπ(h,a) and uses it to control all of
the agents in the team. This solution is however often impractical, as communication
in the environment could be limited or entirely unavailable, rendering difficult (or
even impossible) to broadcast the actions chosen by the centralized controller to the
agents that have to execute them. Also, tolerance against possible faults in the system
is scarce: if the centralized controller fails, none of the agents is capable of doing
anything on its own. Moreover, this solution does not scale well with the number of
agents in the multi-agent system [24, 171]: when introducing more agents, the size of
the joint action set |A| increases exponentially with respect to the number of these,
thus complicating the learning of an optimal behaviour; and in some situations the
number of agents present in the system may even dynamically change over time,
therefore not allowing for a fixed controller structure. All of the above limitations
drastically reduce the applicability of a centralized controller in practise, although
it may seem compelling because of the convergence guarantees of many standard
single-agent reinforcement learning algorithms that could be applied straight out of
the box [162, 167, 142, 69].

On the other hand, each autonomous agent could be modelled independently
from the others, in the so-called independent learners (IL, also known as decentralized

2 .3 cooperative multi-agent reinforcement learning 39

learners) approach [146, 83, 24, 171], and learned using a single-agent reinforcement
learning algorithm on each agent individually. This formulation of the problem looks
compelling and offers various benefits: learning the behaviour of each single agent
individually, either in the form a local policy πi or by defining a local action-value
function Qπi

(hi,ai) (or Qπi
(s,ai) if learning in an MMDP), is a simpler problem than

learning the global behaviour of the entire team all at once, as its size does not scale
exponentially with the number of agents but is instead fixed; also, each agent can
now autonomously take its own decisions without having to rely on any centralized
component, thus being highly resistant against possible faults in the system. Moreover,
adding new agents in the team would just require to learn their own behaviours,
rather than having to learn the entire centralized controller from scratch.

However, these benefits does not come for free: now each autonomous agent is
completely oblivious to what the other agents are doing or perceiving, and treats
them simply as part of the environment. This problem is even exacerbated by the fact
that the numerical feedback used to inform the agents are usually not informative
enough to extrapolate this information, thus leading to a non-stationarity of the
environment from the perspective of each agent [83, 24, 171, 108]: the other agents
are learning as well, possibly changing the way they interact with the environment
in a certain situation over time. Therefore, an agent performing the same action in
the same situations may experience completely different outcomes depending on
what the others agents did in turn. The loss of this stationarity breaks down all of
the convergence guarantees of single-agent reinforcement learning algorithms, so the
resulting behaviours may be arbitrarily bad.

2 .3 .2 IL Pathologies

Although compelling and easy to implement, independent learners have to face a
series of limitations, mainly stemming from the fact that basically each agent learns
its own behaviour totally ignoring the other learning agents, thus rendering the
environment non-stationary from the protagonist agent perspective.

This non-stationarity induces a series of learning pathologies [106, 163] that inde-
pendent learners have to overcome in order to achieve good coordinated behaviours:

• Miscoordination: this happens when two or more agents fail at coordinating on
one of the many available optimal joint actions, thus practically resulting in a
lower reward than expected;

• Relative overgeneralization: this pathology occurs when agents are pushed
towards favouring a suboptimal behaviour because this gives, on average, a
higher reward than the others, although they could have obtained an higher
value if perfectly coordinating on a different behaviour. This happens because
the concurrent learning and the exploration process of the other agents shadows

40 background

the optimal strategy (equilibrium shadowing), rendering it less attractive than
a suboptimal one;

• Alter-exploration: the probability of at least one agent exploring the environ-
ment rather than acting optimally can fool the other agents into underestimating
its optimal actions because of the noise coming from such an exploration;

• Moving target: updating the agents behaviour in parallel renders the used tran-
sitions deprecated, and thus undermines the used single-agent reinforcement
learning algorithm convergence properties;

• Deception: in sequential settings, errors coming from the above pathologies can
propagate through the agents’ updates, thus reducing the chance of transitioning
to higher-return situations.

2 .3 .3 Centralized Training-Decentralized Execution

A technique to mediate the gap between the benefits of a centralized controller and
independent learners is that of the centralized training-decentralized execution (CTDE)
framework [70, 108]. Although having agents that can act in a decentralized fashion
is useful (an often required) because of their many benefits, learning a centralized
controller that is thus capable of coordinating the agent is a great improvement in
many cooperative setting. The idea of CTDE is to get the best of both worlds: training
is often carried out in simulation, even when training for real world problems, where
data and simulations are available at a low cost. Therefore the agents are allowed to
access all of the information they need from the rest of the team during this training
phase, being able to learn and use any required centralized component. During
execution instead, when the agents have to interact with the environment and choose
an action to perform, they are restricted to rely solely on local information, thus
achieving independent execution.

CTDE has gained a lot of success in modern MARL algorithms [139, 115, 135,
158, 40, 10, 160, 181] because the expectation is that, although acting independently
and thus still suffering from the non-stationarity introduced by conditioning only on
local information, each agent can benefit from the centralized information that it has
been exposed to during the training phase and use these to learn better coordinated
policies (although some studies prove that this is not always the case [80]).

2 .3 .4 Factorizations

The factorization framework presented in Section 2.2.3 has been adapted to sequential
settings where the environment has a state s [10, 179]. Similarly to the stateless setting,
a (hyper-)graph can be defined to model the influence of each agent on the others, in

2 .3 cooperative multi-agent reinforcement learning 41

which the nodes represent the agents in the team and (hyper-)edges e ∈ E connect
agents who are influencing each other. The joint action-value function Q(s,a) can
thus be decomposed as:

Q(s,a) = ∑
e∈E

Qe(se,ae), (2.22)

where se is the portion of the entire environment state that affects the decision of the
agents in factor e (similar to a set of local observations oe = 〈oi〉i∈e, but containing
all of the useful information from the true state), and ae = 〈ai〉i∈e is the local joint
action as in the stateless case. Decomposing a problem in such a way allows us to
learn smaller terms compared to a centralized controllers, as each factor comprises
only a subset of all the agents.

Unfortunately, not all the problems exhibit such a locality of interaction, and
indeed there exist many [177, 151, 123] in which the choice of each agent is directly
influenced by the entire team, and thus a direct application of factorization is not
possible. However, it is still possible to resort to an approximate factorization, defined
similarly to the stateless case by superimposing a set of factors E over the team and
use it as:

Q(s,a) ≈ Q̂(s,a) = ∑
e∈E

Q̂e(se,ae). (2.23)

This way, an approximation of the true Q-function is learned based on approx-
imated local terms Q̂e, trading off some accuracy with an easier learning problem.
However, such an approximation may be arbitrarily bad, although it is common belief
in the research community that applying an approximate factorization is usually
useful and results in a good representation [10, 179]. At the current stage however, a
systematic study of this has never been performed.

The idea of using factorization is not new, and it has been proposed to model those
problems that presented such a decomposed structure intrinsically [50, 53, 51, 125,
118]: if an agent can only be affected by the decisions of a small subset of other agents,
it is enough to model these together into one component rather than modelling the
entire team at once. Moreover, this idea has gone further, and has been extended also
to settings that are not presenting such properties, for example in settings with sparse
agents interactions depending on the system state [67, 68, 84, 99, 102, 101, 97, 103, 104].
In such, a factorization works by representing an approximation of the centralized
structure, that can thus be learned efficiently at the expense of some introduced
error. This idea has enabled application of factored approaches to more complex and
general problems [151, 71]. Deep multi-agent reinforcement learning has also widely
applied this idea during the last years, resulting in a number of different algorithms
[139, 115, 135, 158, 175] that proved capable of achieving better performances on
many difficult multi-agent problems.

42 background

It is to note that both centralized controllers and independent learners are limit
cases of (approximate) factorizations, namely:

• A centralized controller corresponds to the coordination graph with a single
hyper-edge connecting all of the agents,

• Independent learners, on the other hand, can be seen as a coordination graph
with no edges at all, and thus each agent is not directly coordinating with any
other.

2 .3 .5 Multi-Agent Credit Assignment & Difference Rewards

In a cooperative multi-agent system, at each time step all of the agents are rewarded
with the same numerical feedback by the environment in response to their actions.
This way, however, none of the agent has a clear and easy way to assess how its own
local decisions had an impact on the overall team performance, and how much of the
feedback depended on these. This issue is called multi-agent credit assignment (MACA)
[20, 94, 178, 168], and it is a key problem unique to this kind of settings. If not carefully
considered, this problem could lead agents towards learning sub-optimal behaviours,
being misled into thinking that their actions are useful and contribute towards the
team objective while instead they could adopt a different strategy and improve the
performance even more. As an example, let’s consider a football match, in which one
of the two teams just won a trophy final with a score of 4-3. All of the players in the
team are rewarded with the trophy medal and part of the prize money, but from the
score it is clear that, while the strikers played a really good game and scored 4 goals,
the defenders and the goalkeeper have not really been able to do their job properly,
allowing the opponents to score 3 goals in turn. However, they all won the game
and got awarded together, so that the whole team could be tricked into thinking that
each of them has played at his best. However, if the defenders and the goalkeeper
were capable of figuring out their own mistakes and play differently, preventing their
opponents from scoring so many goals, their team could have reached a much easier
and less tight victory.

A family of algorithms that has been designed to tackle multi-agent credit assign-
ment is that of difference rewards (DR) methods [169, 168]: the idea of these methods is
to provide each agent with an individual shaped reward value, rather than using the
shared one provided by the environment, to use as the learning signal. This shaped
value is computed in a way such that the contribution of each agent to the overall
performance of the team is marginalized out in some way, so that the agent is capable
of assessing the specific merit of its chosen action against some fixed baseline value.

As for the way in which such a marginalization is computed, various algorithms
have been proposed so far [178, 169, 114, 26, 25]. One of the most popular is called
wonderful life utility (WLU) [169, 94], which is based on the idea of using a default

2 .3 cooperative multi-agent reinforcement learning 43

action ai
d for each agent i. Such a default action replaces the action ai in the joint

action a that has really been selected at state s, thus resulting in a different reward
value than the perceived one r. This way, each agent can now compute an individual
reward value as:

∆Ri(s,a) = r− R(s,〈a−i,ai
d〉), (2.24)

where a−i is the joint action of all the other agents but agent i and R(s,a) is the reward
function. Each agent is going to compute a different ∆Ri. Also, for each agent the
choice of a different local action ai would result is different sampled r, but the same
baseline value R(s,〈a−i,ai

d〉), as this does not depend on the agent’s selected action
ai. Therefore, if an action ai increases r, this is not increasing the baseline value, and
thus results in higher shaped values (the two values are aligned) [1]. However, one
key difficulty of such a method is the choice of the default action: no clear way of
selecting one local action over the others exists, and the meaning of such a choice is
usually unclear but still rather fundamental for the method to work well, as different
actions would result in different difference rewards values and influence the learning
process.

To avoid such a choice, the aristocrat utility (AU) method has been proposed
[169, 94]. Instead of selecting a default action to marginalize out the agent contribution,
now the policy πi(s,ai) of the agent is taken into account, so that the baseline is
computed as the expected reward value obtained by sampling an action from this
policy:

∆Ri(s,a) = r−Ebi∼πi(·|s)

[
R(s,〈a−i,bi〉)

]
. (2.25)

This method entirely avoids such an ambiguous choice by using the agent’s
current policy, but this dependence also comes at a cost: using such a method to
learn with value-based algorithms (for example using independent Q-learning agents
[146]) may lead to instabilities, as changes in the Q-values used to define the policies
corresponds in turn to changes to the target values computed by the aristocrat utility
itself and the selected action a [169].

Nonetheless, both aristocrat utility and wonderful life utility require complete
knowledge of the reward function R(s,a) in order to compute the shaped values.
However, in classical MARL problems, this is a limiting requirement, as the reward
function is usually unknown beforehand (as well as the transition function), and thus
such methods found a barrier to a possible broader application in practical problems
(although some extensions propose to approximate such a function locally [26, 25]).

44 background

2 .3 .6 Multi-Agent Policy Gradients

One of the most popular family of algorithms in multi-agent systems is that of
multi-agent policy gradient (MAPG) methods [112], that naturally allow us to learn
decentralized agents that can act independently. The core idea is akin to that of stan-
dard, single-agent policy gradient methods: each agent optimizes its own policy πθi ,
parametrized by θi, by following the gradient ∇θi V(θ) that maximizes the expected
team future return Vπθ (s) (or Vπθ (h) in a Dec-POMDP setting):

∇θi V(θ) = ∇θi ∑
s∈S

dπθ (s) ∑
a∈A

πθi(ai|s)Qπθ (s,a), (2.26)

where Qπθ (s,a) (Qπθ (h,a) when the state is not observable) is the joint action-value
function induced by the joint (parametrized) policy πθ , as in a cooperative setting the
outcome of the environment is not solely determined by the actions of the considered
agent i, but also by those of the other agents.

With a similar result to that of the policy gradient theorem [142, 141], such gradi-
ents can be approximated via sampling rather than estimating the true expectation
[142, 112], so that the update to the policy parameters θi for agent i can be computed
as:

θi ← θi + α
T−1

∑
t=0

Qπθ (st,at)∇θi log πθi(ai
t|st)︸ ︷︷ ︸

gi

. (2.27)

As in the single-agent case, the Q-function is unknown to the agents, even more
so now that it depends on the actions of the other agents as well, therefore each
agent needs a way to approximate such values before being able to compute its own
policy gradients. The easiest and most straightforward way is to use the cooperative
Monte-Carlo return Gt = ∑T

l=0 γlrt+l , that is common to all agents. Such an approach
is called distributed policy gradient [112]:

θi ← θi + α
T−1

∑
t=0

γtGt∇θi log πθi(ai
t|st)︸ ︷︷ ︸

gi

. (2.28)

However, the same limitations already faced by the single-agent version of this
algorithm (REINFORCE [167]) are also present (and strengthen) in the multi-agent
version: the return suffers from high variance and thus can hinder the policy learning
process, although the use of a baseline function b(s) can help [47].

Another possibility is for each agent i to approximate the joint Q-function by
learning a local critic Qωi(s,ai) (or Qωi(hi,ai)) [40, 80, 126], with parameters ωi, that is
solely conditioned on local actions ai (and local histories hi if the true state s is not
observable) and does not require any information from the other agents. It is easy

2 .3 cooperative multi-agent reinforcement learning 45

to note that this approach corresponds to having independent learners each using
(any variant of) the actor-critic algorithm [69, 87], and it is thus named independent
actor-critics (IAC). As well as in single-agent actor-critic methods, local value-functions
Vωi(hi) can be used to replace local action-value functions.

Finally, the CTDE paradigm can be adopted to retain the decentralized execution
but learn a centralized critic Qω(s,a) or Qωi(h,a), only required during training, to
inform the policy gradients. This approach has found a solid interest in recent MARL
literature [40, 63, 79], although the learning of the centralized component may be
difficult and in general using a centralized critic does not guarantee an improvement
in performance [126, 80]. Also in this case, a centralized value-function Vω(s) (or
Vω(h)) is a suitable choice as a critic to replace the Q-function, and the advantage
function A(s,a) can be used as well to further reduce variance in gradient estimates.

In any case however, the critic(s) is learned by minimizing the same TD-error
used for the single-agent algorithm (presented again for the Q-function in the fully
observable case, but similar expressions hold for the value-function or under partial
observability as well):

δ = r + γQω(s′,a′)−Qω(s,a), (2.29)

δi = r + γQωi(s′,ai ′)−Qωi(s,ai). (2.30)

2 .3 .7 Deep Multi-Agent Reinforcement Learning

In this section some of the most popular deep MARL algorithms are introduced, with
a particular focus on those algorithms that are related to the research topics presented
in the remained of this work. Deep MARL has been used in a variety of different
contexts, and different kinds of techniques have been investigated so far. This section
is not intended to provide a complete survey on the field (for which [59, 108] are two
recent and extremely valid options), and many interesting and flourishing topics, like
the use of agents communication [38, 138] or opponent modelling [39], are completely
overlooked (although these are not less important nor interesting that the algorithms
presented here). The aim of this brief selection is rather to provide the basis on some
commonly known algorithms, as well as showing the connections of these to the
problems and research questions that this work aims at addressing.

VDN. Inspired by [50, 53, 67], one of the first and most popular value-decomposi-
tion method are Value-Decomposition Networks (VDN) [139]. In this, each agent i
independently learns a local action-value function Qi

θi(hi,ai), that it uses to select
actions. These independent networks are however all optimized together to minimize
the off-policy TD-error [162, 7] of the reconstructed joint Q-function, that is obtained
as the sum of such components:

Q(h,a) = ∑
i∈D

Qi
θi(hi,ai). (2.31)

46 background

Figure 2.5: Schematic representation of the QMIX algorithm, with enlarged details of the
mixing network (left) and an agent Q-network. Source: Rashid et al. 2018.

Additivity of local terms is a sufficient condition (but not strictly required) to
ensure the so-called individual-global maximum (IGM) property [135, 158], under which
the joint action that maximizes the joint Q-function is the same that is obtained by
individually maximizing each local term:

arg max
a∈A

Q(s,a) =

arg maxa1∈A1 Q1(s,a1)

...
arg maxan∈An Qn(s,an)

 , ∀s ∈ S, (2.32)

As the maximization step over the joint action-value function may be computa-
tionally expensive (as it is over an exponential number of joint actions), respecting
the IGM property means that the same maximization can be solved individually
over some smaller sets (the local action sets of the agents), and thus allow for faster
computation.

QMIX. The linear decomposition imposed by VDN is simple but limited in the
class of problems that it can accurately represent. To extend such a class, QMIX [115]
proposes a new decomposition based on the concept of monotonicity of the local
terms:

∂Q
∂Qi > 0, ∀i ∈ D. (2.33)

This condition is more general than that of VDN to ensure the IGM property
(sufficient although not strictly required), and allows for a non-linear combination of
the agents’ Q-values. In QMIX, this non-linear combination is done with a learnable
mixing network fω, that is additionally conditioned on the full state s following the
CTDE paradigm:

Q(h,a) = fω(s,Q1
θ1(h1,a1), . . . ,Qn

θn(hn,an)). (2.34)

2 .3 cooperative multi-agent reinforcement learning 47

Figure 2.6: Schematic representation of the QTRAN algorithm. Source: Son et al. 2019.

In order to ensure that the monotonicity constraint is always satisfied, the weights
and biases for each layer of the mixing network ω = {Wl ,bl}L

l=1 have to be non-
negative, and thus are produced by a set of hyper-networks [55], one for each layer.

QTRAN. Although more general than VDN, also QMIX is limited in its represen-
tational capacity. QTRAN [135] aims at addressing this limitation by representing
the entire class of factorizable functions so that the necessary condition for the IGM
property is respected:

∑
i∈D

Qi(s,ai)−Q(s,a) + V(s) =

= 0, a = ā,

≥ 0, a 6= ā,
(2.35)

where V(s) = maxa∈A Q(s,a)−∑i∈D Qi(s,āi) is the value function and āi is the locally
optimal action for agent i āi = arg maxai∈Ai Qi(s,ai).

QTRAN enforces such a constraint by defining a transformed joint action-value
function Q′(h,a) = ∑i∈D Qi(hi,ai), so that the IGM property holds for that because
of additivity, and noting that this function, corrected with the value function V(h),
corresponds to an affine transformation of the original Q(h,a), and thus that the
optimal actions of the two are the same. The algorithm works by learning the
individual terms Qi

θi(hi,ai), maintaining a joint Q-function Qω(h,a) learned with
the above observation, and a value function Vψ(h). Two different variants of this
algorithm are proposed, differing in the way in which the loss function for the whole
architecture is done.

DCG. All of the algorithms introduced above are based on an agent-wise de-
composition of the joint Q-function. Deep Coordination Graphs (DCG) [10] instead, by
heavily relying on the idea of “higher-order” factorizations as studied and analysed in
the original work in Chapter 3 [16, 17], goes a step further. Here the joint Q-function
is divided into a set of individual utilities Qi

θi(hi,ai), one for each agent, and a set of
pairwise payoff terms Qij

ωij(hi,hj,ai,aj), defined by a given coordination graph [53, 52].

48 background

Figure 2.7: Schematic representation of the COMA algorithm: (a) the overall architecture, (b)
the actor network, (c) the centralized critic network. Source: Foerster et al. 2018.

Moreover, to further improve sample efficiency, parameter sharing [54] is used,
i.e. all the neural networks have the same parameter set. Furthermore, all of the
agents utilities and payoff terms are conditioned on a shared embedding function,
represented as a recurrent neural network [48, 22] ei

t = RNNψ(·|ei
t−1,oi

t,a
i
t−1), rather

than on agents local histories hi
t.

The joint Q-function is finally reconstructed as a sum of the agents utilities and
the payoff terms:

Q(h,a) =
1
|D| ∑

i∈D
Qi

θ(e
i,ai) (2.36)

+
1

2|E | ∑
ij∈E

(
Qij

ω(ei,ej,ai,aj) + Qji
ω(ej,ei,aj,ai)

)
.

COMA. Counterfactual Multi-Agent Policy Gradients (COMA) [40] addresses the
problem of multi-agent credit assignment by combining decentralized policy gradients
with a particular centralized critic, following the CTDE paradigm, that allows for an
easy calculation of a difference rewards mechanism.

Such a centralized critic Qω receives as an input the state of the environment s
and the join action a−i

t for all the agents except agent i, and outputs the Q-values for
each of its possible local action ai ∈ Ai. With such values available in a single pass
through the neural network, agent i policy πθi is updated by following the individual
gradient:

θi ← θi + α Ai(s,a)∇θi log πθi(ai|hi)︸ ︷︷ ︸
gi

, (2.37)

where Ai(s,a) = Qω(s,a)−∑bi∈Ai πθi(bi|hi)Qω(s,〈a−i,bi〉) is a counterfactual advantage
function, that resembles the idea of aristocrat utility [169], but applies the marginal-
ization on the centralized Q-function rather than on the reward function as usual.

The algorithm uses parameters sharing [54], and also optimizes the critic at each
time step t using a different formulation of the TD-error based on the TD(λ) algorithm
[141, 140]:

2 .3 cooperative multi-agent reinforcement learning 49

δ = y(λ) −Qω(st,at), (2.38)

y(λ) = (1− λ)
∞

∑
k=1

λk−1G(k)
t , (2.39)

G(k)
t =

k

∑
l=1

γl−1rt+l + γkQω(st+k,at+k). (2.40)

This optimization technique, although not strictly related to the underlying idea
in COMA, is a crucial implementation detail and even the authors of [40] states its
importance and that of a well-tuned parameter λ.

MADDPG. MAPG methods have been also applied to continuous action problems
(the set of actions for each agent Ai is continuous and infinite rather than being
discrete and finite), and Multi-Agent Deep Deterministic Policy Gradients (MADDPG)
[79] has been proposed specifically for this kind of problems. Moreover, MADDPG
allows us to solve also non-cooperative problems, as it does not require a shared
reward signal in order to work.

The idea of this algorithm is that DDPG [132, 77] can be applied to each agent
independently to train a deterministic policy µθi(oi) (policies in [79] are reactive and
condition on the agents’ observations oi rather than on their complete histories hi as
usual) by using a individual centralized critic Qωi(o,a), so that the resulting policy
gradients are:

∇θi V(θ) = Eo,a∼D
[
∇θi µθi(oi)∇ai Qωi(o,a)|ai=µ

θi (oi)

]
, (2.41)

where D is a replay buffer to store previously encountered transitions [86, 77]. Each
centralized critic Qωi(o,a) is trained to minimize the off-policy TD-error:

δi = ri + γQ
ωi−(o′,a′)|a′=µθ− (o′)

−Qωi(o,a), (2.42)

where µθ(o) = 〈µθ1(o1), . . . ,µθn(on)〉 is the joint policy, and ωi
− and θ− are the

parameters of the target networks [86, 132] for the agent individual critic and the
joint policy respectively. The centralized critics should ensure a stable learning to the
decentralized agents, that should thus converge to an equilibrium.

3
A N A LY S I N G FA C T O R I Z AT I O N S O F A C T I O N - VA L U E
N E T W O R K S F O R M U LT I - A G E N T R E I N F O R C E M E N T
L E A R N I N G

It is a widespread idea in the multi-agent community that learning the action-value
function with a factored method should in general result in a good approximation
(or it can be improved by introducing additional components, similarly to what
happens when expanding a function approximation via the Taylor series), although
this idea has never specifically been tested in a systematic way. Recently, and with
the advent of multi-agent deep reinforcement learning, a novel interest flourished
around the idea of factorization: many algorithms have been proposed that exploit
this approach [139, 115, 135, 158, 175, 111, 10, 76, 137, 160, 181, 89], achieving robust
performances in many difficult multi-agent problems and rendering factorization
one of the most used and interesting ideas in modern MARL. As already discussed,
most of these algorithms actually employ only a single-agent decomposition of the
action-value function, where the centralized controller is divided into components
representing only a single agent, while the idea of “higher-order” decompositions
has remained mostly unexplored. With the growing interest in this technique from
deep MARL, it is of the foremost importance to understand and assess the true
benefits of factorizations on a wide set of different cooperative multi-agent settings,
to investigate their general applicability, as well as to highlight the potential pitfalls
that these may have on certain problems. Such an analysis could potentially inform
and direct future research on what aspects of factorizations could be exploited to
improve learning in multi-agent systems, and foster a wider application of such a
technique to a broader set of problems.

In this chapter, centralized learning of factored value-based MARL approaches for
cooperative multi-agent systems is investigated. Although the usual focus of MARL
is on decentralized execution [139, 115, 40, 82], proper centralized learning is still
useful in cases in which centralized execution is also available or as a mean to inform
decentralized agents under the centralized training-decentralized execution (CTDE)
learning framework [70], for example when learning a centralized critic to inform
decentralized policies [40] or in methods that involve bootstrapping [162] or message
passing schemes [67]. The learning capacity of these various factored approaches is
examined by studying the accuracy of their learned Q-function approximations Q̂.
Motivated by the deep MARL popularity of factored approaches, neural networks
are used to represent the different components of the investigated methods. The
main contribution consists of a wide set of diverse experiments across different
axes, and an in-depth analysis of the results to assess the potential benefits of these
methods, as well as their possible drawbacks. Amongst the others, this chapter aims

51

52 analysing factorizations for marl

at investigating the following points:

• How do factored methods compare to baseline algorithms,

• Impact of factors size on the learned representations,

• Scalability to larger systems,

• Sample efficiency,

• Effects of using an exploratory policy.

To minimise confounding factors, the investigation is restricted to one-shot (i.e.,
non-sequential) problems [105] and a completely exploratory policy (i.e., uniform
sampling of the actions). Specifically, the learning power of various network archi-
tectures is investigated on a series of one-shot games that require a high level of
coordination. Some of these games have an underlying factored structure (that is not
assumed to be known in advance) and some do not. Despite their simplicity, these
games capture many of the crucial problems that arise in the multi-agent setting,
such as an exponential number of joint actions.

Problem Statement: Given the original action-value function Q(a) and a learned
representation Q̂(a), the interest is on investigating the quality of this learned repre-
sentation, both in terms of action ranking, i.e.,

σ(R(Q),R(Q̂)),

where σ is a similarity measure and R is a partial ordering of the joint actions
according to their action-values, so that the learned function can reliably be used for
decision making; and in terms of reconstruction error of the representation, computed
using the mean squared error (MSE):

MSE =
1
|A| ∑

a∈A
(Q(a)− Q̂(a))2.

As the results show, factored methods prove extremely effective on a variety of
such games, achieving correct reconstructions even on those games that do not present
a true underlying factored structure, and outperform both independent learners and
centralized approaches in terms of learning speed. These benefits are even more
apparent when the size of such systems grow larger, and a completely centralized
solution proves impractical or even infeasible. Thus, an empirical evaluation to assess
the accuracy of various representations in one-shot problems is key to understand and
improve deep MARL techniques, and the provided takeaways can help the community
in taking informed decisions when developing solutions for multi-agent systems.
Additional links to standard sequential MARL are also discussed in Section 3.3, as
well as depicting some possible future directions to further clarify the understanding
of action-value function factorizations in this setting.

3 .1 investigated action-value factorizations 53

3 .1 investigated action-value factorizations

Most current value-based deep MARL approaches (of which a noticeable exception is
[10]) are either based on the assumption that the joint action-value function Q(s,a) can
be represented efficiently by a single neural network (when, in fact, the exponential
number of joint actions can certainly make a good approximation hard to learn), or
that it suffices to represent (approximated) individual action-values Qi(s,ai) [83]. The
aim is to investigate to what degree these assumptions are valid by exploring them
in the one-shot case, as well as assessing if higher-order factorizations may result in
an improved representation of such functions, while speeding up learning (as only
small factors need to be learned). When a problem presents an underlying factored
structure, knowing such a structure beforehand and being able to exploit it properly
can be of the greatest benefit both in terms of learning speed and accuracy, but it is
argued that resorting to an approximate factorization can still be beneficial in many
cases.

Neural networks are used as function approximators to represent the various
components of these factorizations. In this analysis, two distinct aspects of the problem
are varied. Firstly, two learning algorithms are studied, which are described in Section
3.1.1. Secondly, different coordination graph structures are proposed, which capture
how the team of agents is modelled, presented in Section 3.1.2. Finally, the full set of
investigated games is presented in Section 3.1.3.

3 .1 .1 Learning Algorithms

Here the two different learning algorithms that are investigated in the proposed
experiments are introduced. The specific choice of these two was taken because
these are highly related to many standard sequential MARL algorithms: the mixture
of experts learning rule follows the same idea of standard independent learning
approach used by early works [146], while the factored Q-function rule uses a joint
optimization process resembling that of value decomposition networks [139], but it is
also similar to the QMIX algorithm [115], using a linear constant mixing instead of
an additional mixing network.

• Mixture of experts [2]: each factor network optimizes its own output Q̂e individ-
ually to predict the global reward, thus becoming an “expert” on its own field
of action. The loss for the network representing factor e ∈ E is defined as:

Le(ae) =
1
2
(
Q(a)− Q̂e(ae)

)2
, (3.1)

where Q(a) is the common reward signal received after selecting joint action a
and Q̂e(ae) is the output of the network for local joint action ae. As the aim is

54 analysing factorizations for marl

1

2 3

4

56

e0 e1

e2

(a)

1

2 3

4

56

e0

e1e2

e3

e4

e5

(b)

1

2 3

4

56

e0 e1

e2

e3e4

e5

e6

e7e8

e9

e10e11

e12e13

e14

(c)

Figure 3.1: Example coordination graphs for: 3.1(a) random partition, 3.1(b) overlapping
factors, 3.1(c) complete factorization.

to assess how good the approximated action-value function Q̂ is, after training
the reconstruction obtained from the factors is computed as the mean over the
appropriate local Q-values (the “opinion” of each expert is weighted equally):

Q̂(a) =
1
|E | ∑

e∈E
Q̂e(ae), ∀a ∈ A. (3.2)

• Factored Q-function [51, 139]: the algorithm jointly optimizes the factor networks
to predict the global reward as a sum of their local Q-values Q̂e. The loss for a
given interaction is identical for all factor networks:

L(a) =
1
2

(
Q(a)− ∑

e∈E
Q̂e(ae)

)2

. (3.3)

It is to note that, rather than learning proper action-value functions, the opti-
mization problem in Equation 3.3 learns an utility function for each factor, that
does not really represent the values of actions on their own, while Equation
3.1 learns individual Q-values for each factor. After learning, the approximated
joint action-value function Q̂ is reconstructed by summing the appropriate local
Q-values (the components collectively reconstruct the approximation):

Q̂(a) = ∑
e∈E

Q̂e(ae), ∀a ∈ A. (3.4)

3 .1 .2 Coordination Graphs

Four different coordination graphs are proposed and analysed here. Their structures
differ both in the number of components and the degree of connection for each
agent. This empirical study considers all eight combinations of the two learning rules
described above and the four coordination graphs described below.

3 .1 investigated action-value factorizations 55

• Single agent decomposition: each agent i is represented by an individual neural
network and computes its own individual action-values Q̂i(ai), based on its
local action ai. Under the mixture of experts learning rule, this corresponds to
the standard independent Q-learning (IQL) approach in MARL [146], in which
local agent-wise components are learned, while under the factored Q-function
approach this corresponds to value decomposition networks (VDN) [139].

• Random partition: agents are randomly partitioned to form factors of size f ,
with each agent i involved in only one factor1. Each of the |E | = n

f factors has
a different neural network that represents local action-values Q̂e(ae) for that
factor.

• Overlapping factors: a fixed number of factors |E | is picked at random from the
set of all possible factors of size f . The sampled set does not include duplicate
factors (only distinct components are used) and that every agent i appears in at
least one factor. Every factor e ∈ E is represented by a different neural network
learning local action-values Q̂e(ae) for the local joint action ae. In the proposed
experiments |E | = n, to keep the number of networks to be the same than that
of the single agent decomposition.

• Complete factorization: each agent i is grouped with every possible combination
of the other agents in the team D \ i to form factors of size f , resulting in
|E | = (n

f) factors, each represented by a network. Each of these networks learns
local action-values Q̂e(ae).

A fundamental problem in MARL is that there is currently no method capable of
predicting the accuracy of a factored representation on a certain problem in advance.
Therefore, assessing the performance and eventual advantages of different structures
and approaches is a fundamental step for MARL research, as it can further improve
the understanding of these settings and existing algorithms. In this empirical study,
factors of size f ∈ {2,3} are primarily considered. The small size of these factors
allows us to effectively explore the improvements in the complexity of learning; if
the size of each factor is similar to the size of the full team of agents, no significant
improvement over a full joint learner in terms of sample complexity and scalability is
likely to be achieved (although some experiments on this aspect are also reported in
Section 3.2.3).

3 .1 .3 Investigated Games

The proposed methods are investigated on a number of cooperative one-shot games
that require a high degree of coordination. Some of these games do not present an

1 If f is not a divisor of n, the random partition factorization would partition into factors that are all of
size close to f .

56 analysing factorizations for marl

underlying factored structure, while others are truly factored games. For the latter,
none of the methods exploits prior knowledge of their true factored structure (but
results for the true underlying factorization are also reported, to show the possible
benefits when that is known beforehand).

Non-Factored Games

Dispersion Games: In the Dispersion Game, also known as Anti-Coordination Game,
the team of agents must divide as evenly as possible between the two local actions
that each agent can perform [49]. Think of a town with two different pubs: the
inhabitants like both the same, but the two are quite small and cannot contain all
the people in the town at once, so the customers have to split up across the two
pubs in order to enjoy the situation and not overcrowd them. This game requires
explicit coordination, as none of the local actions is good per se, but the obtained
reward depends on the decision of the whole team. Two versions of this game are
investigated: in the first one the agents obtain reward proportional to their dispersion
coefficient (i.e., the difference in the number of agents selecting an action rather than
the other). The reward function Q(a) for this game with n agents, each with a local
action set Ai = {a0,a1} is:

Q(a) = n−max{#a0, #a1}. (3.5)

In the second version, which is dubbed Sparse Dispersion Game, the agents
receive a reward (which is set to the maximum dispersion coefficient with n agents:
n
2) only if they are perfectly split:

Q(a) =

 n
2 if #a0 = #a1,

0 otherwise.
(3.6)

Platonia Dilemma: In the original Platonia Dilemma [60], an eccentric trillionaire
gathers 20 people together and tells them that if one and only one of them sends him
a telegram by noon the next day, that person will receive a billion dollars. In this
cooperative version the reward is set to the number of agents n and is received by
the whole team, not just a single agent. Thus, the reward function for n agents with
local action sets Ai = {send,idle} is:

Q(a) =

n if #send = 1,

0 otherwise.
(3.7)

Climb Game: In the Climb Game [163], each agent has three local actions Ai =

{a0,a1,a2}. Action a0 yields a high reward if all the agents choose it, but no reward if
only some do. The other two are suboptimal actions that give lower reward but do
not require precise coordination. This game enforces a phenomenon called relative
overgeneralization, [163] that pushes the agents to underestimate a certain action (in

3 .1 investigated action-value factorizations 57

the example, a0) because of the low rewards they usually receive, while they could
get a higher reward by perfectly coordinating on it. The reward function Q(a) is:

Q(a) =

n if #a0 = n,
n
2 #a1 + #a2 = n,

0 otherwise.

(3.8)

Penalty Game: Similarly to the Climb Game, in the Penalty Game [163] each agent
has three local actions Ai = {a0,a1,a2}. In this game, two local actions (for example,
action a0 and a2) give a high reward if the agents perfectly coordinate on one of
them, but also give a negative penalty if they mix them together. The third action a1

is suboptimal and gives a lower reward when the team coordinates on it, but also
no penalty if at least one of the agents uses it. This game could also lead to relative
overgeneralization, as the suboptimal action is perceived as giving a higher reward
than the optimal ones on average. The following reward function is used:

Q(a) =

n if #a0 = n, or #a2 = n,
n
2 if #a1 = n,

0 if 0 < #a1 < n,

−n otherwise.

(3.9)

Factored Games

Generalized Firefighting: The Generalized Firefighting problem [100] is an extension
of the standard two-agent firefighting problem to n agents. This is a cooperative
graphical Bayesian game, so each agent i has some private information, called its
local type θi ∈ Θi, on which it can condition its decisions. The combination of the
various agents types θ = 〈θ1, . . . ,θn〉 determines the value of the reward function
Q(a,θ). The team is composed of n firefighters that have to fight possible fires at
Nh different houses. Each house j can be burning, Fj, or not, Nj. Each agent i has a
limited observation and action field: it can observe only No houses (so its local type
is θi ∈ {Fj,Nj}No) and can fight the fire only at Na houses (the sets of the observed
and reachable houses are fixed beforehand and are part of the problem specification,
with No and Na being their cardinality respectively). Each house h yields a reward
component qh: if one and only one agent fights the fire at a burning house, that
house gives a positive reward qh = 2; if the house is not burning (or if it is burning
but no-one is fighting the fire at it) it does not provide any reward qh = 0. The
reward function is sub-additive: if two agents fight the fire at the same burning house,
this gives a reward qh = 3 < 2 · 2. The overall value of the reward function Q(a,θ)
experienced by agents for a given joint type θ and joint action a is the sum of the
rewards given by each house qh:

58 analysing factorizations for marl

Q(a,θ) = ∑
h∈Nh

qh. (3.10)

Therefore, the optimal strategy for the n agents is to split as evenly as possible
across all the burning houses Fj ∈ θ. If the number of burning houses is more than
that of the agents, each agent should attend at a different house and fight the fire
there, while if there are less burning houses than agents, the remaining agents should
exploit sub-additivity and help their colleagues at already attended houses.

In the experiments, the local types θi are not given as an input to the neural
networks, but are instead used to increase the size of the local action sets (and the
joint one thereby) by considering the cardinal product Ai ×Θi as the new action set
for agent i, where the agent choose the action ai ∈ Ai and the problem chooses the
local type θi ∈ Θi. In practice, this corresponds to individually consider each local
action for each possible local type, as if the agents are playing a different game (a
different joint type) chosen by the environment every time, and they model the values
of their actions on each game separately.

Aloha: In Aloha [97] there is a set of nearby islands, each provided with a radio
station, trying to send messages to their inhabitants. A slightly altered one-shot
version is instead presented here, in which the ruler of each island wants to send a
radio message to its inhabitants, but, given that some of the islands are near one to
another, if they all send the message the radio frequencies interfere and the messages
are not correctly received by the respective populations. Given that all the rulers
are living in peace and they want to maximize the number of received messages
by their populations, the reward signal is shared and thus the game is cooperative.
It is a graphical game, as the result of each island transmission is affected only by
the transmissions of nearby islands. Every ruler i has two possible actions: send a
message or not. If he does not send a message, he does not contribute to the total
reward. If he sends one and the message is correctly received by his population (no
interference occurs) he gets a reward qi = 2, but if he interferes with someone else,
he gets a penalty of qi = −1. The common reward that all the rulers receive at the
end is the sum of their local contributions:

Q(a) = ∑
i∈n

qi. (3.11)

3 .2 experiments

The aim of the proposed analysis is investigating the following research questions:

RQ1: Comparison to baselines: how well can the investigated methods represent the
action-value function of different cooperative multi-agent systems (both truly

3 .2 experiments 59

factored or not)? How do these compare to both independent learners and joint
learners?

RQ2: Impact of factors size: how small can the factors of these methods be with respect
to the team size? How is the factor size affecting the learned representations?

RQ3: Scalability: how do the compared methods scale in the number of agents?

RQ4: Sample efficiency: how is the sample efficiency of these methods compared to
both independent learners and joint learners?

RQ5: Exploratory policy: how do the same investigated methods behave with a
non-uniform, time-varying policy used to select actions?

The remainder of this Section is organized as follows: RQ1 is addressed in Section
3.2.2 by comparing the methods against both independent learners and a joint learner
on a variety of different games, RQ2 is investigated by selecting one of the games and
comparing the effect of using small factors versus larger ones in Section 3.2.3, a couple
of games with an increasing number of agents is then investigated in Section 3.2.4 to
address RQ3, while RQ4 is tackled in Section 3.2.5. An initial step towards RQ5 is
made in Section 3.2.6 and finally, a summary of the results and general takeaways
are given in Section 3.2.7.

3 .2 .1 Experimental Setup

Table 3.1 defines the abbreviations and acronyms of the combinations of learning
approach, coordination graph structure, and factor size used throughout the analysis
(other than where differently stated). In the empirical evaluation, these combinations
are investigated on the one-shot coordination games presented above.

Mix. of Experts Factored Q

Single agent M1(=IQL [146]) F1(=VDN [139])
Random partition (f = 2,3) M2R, M3R F2R, F3R

Complete factorization (f = 2,3) M2C, M3C F2C, F3C
Overlapping factors (f = 2,3) M2O, M3O F2O, F3O
True (Factored games only) MTF FTF

Table 3.1: Combinations of coordination graphs and learning rules.

A hypothesis is that factored representations, by avoiding the combinatorial
explosion in the number of joint actions and allowing for some internal coordination
inside each factor, are going to produce representations closer to the original action-
value function for these multi-agent problems. These are also expected to be sample
efficient due to this small size of the factors, speeding up the required training time
and learning good representations faster than the other approaches.

60 analysing factorizations for marl

The neural networks of the factored representations are trained to reproduce
action-value functions for the detailed cooperative one-shot games, using the loss
functions and coordination graph structures described in Section 3.1 as combined
in Table 3.1. Although a tabular representation for the agents factors would have
worked the same in such a one-shot setting (no large state space to make learning
impractical), the focus has been kept on neural network representations to strengthen
the connection with modern deep MARL value-decomposition methods [139, 115,
135, 158]. After training, the representation Q̂(a) is reconstructed from the factor
components’ outputs and compared with the original action-value function Q(a)
(complete knowledge of this function is withheld from the networks during training,
but only samples corresponding to the selected joint action a are provided at every
step) to assess the quality of such a representation, both in terms of action ranking
and reconstruction error, as defined in the Problem Statement at the beginning of this
chapter.

The same hyperparameters are kept for all the investigated representations to
favour a fair comparison of the learned representations: using the same learning rates
ensures that no method can learn faster than the others, while using the same structure
for all the neural network guarantees that none is given with more representational
power. Every neural network has a single hidden layer with 16 hidden units2 using
the leaky ReLU activation function [172], while all output units are linear and output
local action-values Q̂e(ae) for every local joint action ae. Given the absence of an
environment state to feed to the networks as an input, at every time step these just
receive a constant scalar value. The mean square error (MSE) is used as the loss
function and RMSprop [46] as the training algorithm with a learning rate of η = 10−5.
For every game, the networks are trained with 100,000 examples (to ensure proper
and stable convergence of the learned representations) by sampling a joint action a
uniformly at random3. Then, the gradient update is propagated through each network
e from the output unit Q̂e(ae). The loss function minimizes the squared difference
between the collected reward Q(a) at each training step and the approximation
computed by the networks. After training, the learned action-value function Q̂ is
compared to the original Q. Also, a baseline joint learner (a single neural network with
an exponential number |A| = |Ai|n of output units) is considered. Every experiment
was repeated 10 times with random initialization of weights, each time sampling
different factors for the random partition and the overlapping factors factorizations;
the averages of these 10 runs are reported.

2 Also, some preliminary experiments were performed with deeper networks with 2 and 3 hidden layers,
but did not provide improvements for the considered problems.

3 The choice not to use ε-greedy is because the interest is on representing the whole action-value function
Q and not just the best performing action at every training step and collecting its reward Q(a), as noted
in the Problem Statement.

3 .2 experiments 61

3 .2 .2 Comparison to Baselines

The aim here is to show that factored methods are suitable to represent a wide variety
of games, including many that do not present any real underlying decomposition,
and that these can perform better than both independent learners and a joint learner
baseline. This section starts by discussing the approximate action-value functions ob-
tained by the investigated representations, with the following Table 3.2 summarizing
the games that are used and their associated parameters.

Game n |Ai| |A| Optimal Factored

Dispersion Game 6 2 64 20 No
Platonia Dilemma 6 2 64 6 No

Climb Game 6 3 729 1 No
Penalty Game 6 3 729 2 No

Generalized FF 6 2 64 (8192 total) 779 Yes
Aloha 6 2 64 2 Yes

Table 3.2: Details of the investigated games in this section.

In the following plots, the x-axis enumerates the joint actions a ∈ A and the
y-axis shows the corresponding values Q̂(a) for the reconstructed functions, with the
heights of the bars encoding the magnitude of the action-values Q̂(a). As defined
in the Problem Statement, the quality of the computed reconstructions are analysed
considering two aspects: the total reconstruction error of Q̂(a) with respect to the true
reward function Q(a), and whether a reconstruction produces a correct ranking of the
joint actions. For a good reconstruction, the bars have to have the same relative heights,
indicating that the representation correctly ranks the joint actions with respect to their
values, and to be of a similar magnitude to those in the original one (the representation
can reconstruct a correct value for that joint action). However, reconstruction error
alone is not a good accuracy measure because lower reconstruction error does not
imply better decision making, as a model could lower the total error by over- or
underestimating the value of certain joint actions.

Dispersion Games: Figure 3.2 shows the approximations reconstructed by the
proposed coordination graphs and learning approaches for the two variants of the
Dispersion Game. Figure 3.2(a) shows that the proposed complete factorizations are
able to almost perfectly reconstruct the relative ranking between the joint actions,
meaning that these architectures can be reliably used for decision making in this kind
of problems. Moreover, the ones using the factored Q-function (F2C and F3C in the
plot) are also able to produce a generally good approximation of the various values
(expressed by the height of the bars), while those based on the mixture of experts
produce a less precise reconstruction: the joint optimization of the former gives an
advantage in this kind of extremely coordinated problems.

62 analysing factorizations for marl

0

2

Or
ig

in
al

0

2

Jo
in

t

2.0

2.1

F1
2.0

2.1

M
1

1.5

2.0F2
R 2.00

2.25

M
2R

1

2

F3
R

1.5

2.0

M
3R

0

2

F2
C

1.8

2.0

2.2

M
2C

0

2

F3
C

1.5

2.0

M
3C

1

2

F2
O

1.8

2.0

2.2
M

2O

0 10 20 30 40 50 60
0

2

F3
O

0 10 20 30 40 50 60
1.5

2.0

M
3O

Joint Actions a (enumerated)

Re
co

ns
tru

ct
ed

 Q
(a

)

(a)

0

2

Or
ig

in
al

0

2

Jo
in

t

0.9

1.0

F1 0.9

1.0

M
1

0.5

1.0

F2
R

0.75

1.00

M
2R

0

1

F3
R

0.5

1.0

M
3R

1
0
1

F2
C

0.75

1.00

M
2C

1
0
1

F3
C

0.5

1.0

M
3C

0

1

F2
O

0.75

1.00

M
2O

0 10 20 30 40 50 60
1
0
1

F3
O

0 10 20 30 40 50 60

0.5

1.0

M
3O

Joint Actions a (enumerated)

Re
co

ns
tru

ct
ed

 Q
(a

)

(b)

Figure 3.2: Reconstructed Q(a) for 3.2(a) the Dispersion Game, and 3.2(b) its sparse variant.

3 .2 experiments 63

Smaller factorizations, like the random pairings, are not sufficient to correctly
represent this function, probably because a higher degree of connection is required
to achieve good coordination. Figure 3.2(b) is similar but in this case the recon-
structions are less accurate, with reconstructed action-values that are quite different
from the original ones. This is possibly due to the sparsity of the original function,
requiring the networks to correctly approximate quite different values with the same
output components. In this case, the sparsity of the function to represent fools the
approximations into being similar to those of the non-sparse version.

Table 3.3 (as well as the similar ones for the other games) reports the best and
worst performing methods on the two variants of this game against a set of different
measures that explore the results in terms of the Problem Statement at the beginning
of this chapter: the MSE tells us how far is each reconstructed action-value function
with respect to the original one, while the number of optimal joint actions found (Opt.
Found, i.e. how many of the true optimal actions are also ranked as optimal by such
a reconstruction), and the total number of correctly ranked actions (Ranked) points
out how reliably these reconstructions can be used for decision making. Methods
performing not too bad but also not the best are left out for compactness, for more
data and measures on this game (and similarly for the following ones) please see the
Appendix.

Model MSE Opt. Found Ranked

Dispersion Game

Joint 0.00± 0.0 20± 0 64± 0
F1 0.62± 0.0 5± 2 21± 2

F2R 0.52± 0.0 8± 0 24± 1
F2C 0.09± 0.0 20± 0 64± 0
F3C 0.09± 0.0 20± 0 64± 0
F3O 0.19± 0.0 13± 1 47± 3
M1 0.62± 0.0 6± 1 24± 2

M2R 0.56± 0.0 8± 0 24± 1
M2C 0.55± 0.0 20± 0 64± 0
M3C 0.43± 0.0 20± 0 64± 0
M2O 0.56± 0.0 10± 2 36± 4

Dispersion Game (sparse)

Joint 0.00± 0.0 20± 0 64± 0
F1 1.93± 0.0 7± 1 37± 1

F2R 1.83± 0.0 8± 0 40± 0
F2C 1.41± 0.0 20± 0 64± 0
F3C 1.41± 0.0 20± 0 64± 0
M1 1.93± 0.0 6± 1 37± 2

M2R 1.88± 0.0 8± 0 40± 0
M2C 1.87± 0.0 20± 0 64± 0
M3C 1.74± 0.0 20± 0 64± 0
M2O 1.87± 0.0 10± 1 44± 2

Table 3.3: Best (green) and worst (red) performing methods on the two variants of the
Dispersion Game.

It can be observed how the joint learner can easily learn and represent the entire

64 analysing factorizations for marl

action-value function for this small setting, resulting in a perfect ranking and a very
small error. However, methods using the complete factorization are also able to do so,
with the mixture of experts achieving a larger reconstruction error but still a correct
ranking of actions, including identifying all of the optimal ones, on both variants of
this game. Independent learners instead do not seem able to correctly identify all of
the optimal actions, also achieving a very large reconstruction error.

Platonia Dilemma: Figure 3.3 shows the reconstructed action-value functions for
the Platonia Dilemma. For this problem, none of the proposed factorizations seems
able to correctly represent the action-value function. In fact, while these are perfectly
able to correctly learn all the optimal actions (the ones in which only a single agent
sends the telegram) at the same level, they all fail to correctly rank and reconstruct
the same joint action (the one in which none of the agents sends the telegram). In
fact, the unique symmetric equilibrium for the team in this game is that each of them
sends the telegram with probability 1

n , so the agents usually gather more reward by
not sending it themselves, but relying on someone else to do so. This results in an
‘imbalanced’ action-value function in which the high reward is more often obtained,
from an agent perspective, by choosing a certain action instead of the other, thus
resulting in overestimating one of the joint actions (the one in which all the agents
perform the same action, i.e., not sending the telegram).

This imbalance in the reward given by the two actions is probably the cause
of the incorrect reconstructions. Thus, for this kind of tightly coupled coordination
problems, none of the techniques to approximate action-values currently employed
in deep MARL suffices to guarantee a good action is taken, even if the coordination
problem is conceptually simple. Table 3.4 reports the best and worst performing
methods on this game.

Model MSE Opt. Found Ranked

Joint 0.00± 0.0 6± 0 64± 0
M1 2.80± 0.0 5± 0 62± 0

M2O 2.54± 0.0 4± 0 61± 1
M3O 2.28± 0.0 4± 0 61± 1

Table 3.4: Best (green) and worst (red) performing methods on the Platonia Dilemma.

All of the methods using the factored Q-function learning approach are left out,
as these achieve average performances. As already showed by Figure 3.3, here only
the joint learner is able to correctly identify all of the optimal actions. The mixture of
experts with the overlapping factors are the ones that perform the worst, possibly
because the connectivity of this structure is too sparse to help in such an imbalanced
reward game.

Climb Game: Figure 3.4 shows the results obtained on the Climb Game. The joint
network is not able to learn the correct action-value function in the given training
time, due to the large number of joint actions. This highlights again how joint learners

3 .2 experiments 65

0

5

Or
ig

in
al

0

5

Jo
in

t

0.0

2.5

F1 0.5

1.0

M
1

0.0

2.5

F2
R

0

1

M
2R

0.0

2.5

F3
R

0

2

M
3R

0

5

F2
C

0

1
M

2C

0

5

F3
C

0

2

M
3C

0.0

2.5

F2
O

0

1

M
2O

0 10 20 30 40 50 60
0

5

F3
O

0 10 20 30 40 50 60
0

2

M
3O

Joint Actions a (enumerated)
Re

co
ns

tru
ct

ed
 Q

(a
)

Figure 3.3: Reconstructed Q(a) for the Platonia Dilemma.

are not suited for this kind of even moderately large multi-agent systems. By contrast,
all the other architectures correctly rank the suboptimal actions.

The methods using the factored Q-function and a complete factorization are also
able to correctly reconstruct the values for most of the joint actions, as can be seen
from the bars. However, only F2C correctly ranks and reconstructs the optimal action
(the coordinated one), while even F3C fails to do so and gives it a large negative value.
A likely cause for this effect is that, when optimizing the loss function, assigning a
negative value to the components forming the optimal joint action reduces the overall
mean squared error, even if then one of the reconstructed values gets totally wrong.
It can also be observed how the mixture of experts plot looks somewhat comparable
to the one for the factored Q-function learning approach, but more ‘compressed’ and
noisy. Table 3.5 reports the best and worst performing methods on the Climb Game.

With a larger joint action space, the joint learner begins to struggle and achieves
a larger reconstruction error than some of the factored methods. Interestingly, F2C
is the only method capable of identifying the optimal action of this game, where

66 analysing factorizations for marl

0

5

Or
ig

in
al

0

2

Jo
in

t

1
0
1

F1

0

1

F2
R

0

1

F3
R

0

2

F2
C

2.5

0.0

2.5

F3
C

0

1

F2
O

0 100 200 300 400 500 600 700
0

2

F3
O

Joint Actions a (enumerated)

Re
co

ns
tru

ct
ed

 Q
(a

)

(a)

0

5

Or
ig

in
al

0

2

Jo
in

t

0.00
0.25M

1

0.0

0.5

M
2R

0.0

0.5

M
3R

0.0

0.5

M
2C

0.0

0.5

M
3C

0.0

0.5

M
2O

0 100 200 300 400 500 600 700
0.0

0.5

M
3O

Joint Actions a (enumerated)

Re
co

ns
tru

ct
ed

 Q
(a

)

(b)

Figure 3.4: Reconstructed Q(a) for the Climb Game: 3.4(a) factored Q-function learning
approach, and 3.4(b) mixture of experts learning approach.

3 .2 experiments 67

Model MSE Opt. Found Ranked

Joint 0.17± 0.1 0± 0 727± 1
F2C 0.25± 0.0 1± 0 729± 0
F3C 0.17± 0.0 0± 0 726± 0
M1 0.71± 0.0 0± 0 726± 0

Table 3.5: Best (green) and worst (red) performing methods on the Climb Game.

also F3C fails. An hypothesis is that this happens because the larger factors push the
overall representation to further improve the reconstructed values for the other local
joint actions at the expense of these forming the optimal action itself. This points out
how, although generally a larger factor size entails a better representation, it may not
always be so. On the other hand however, it also shows how small factors can result
in a good representation that is also easier and faster to learn.

Penalty Game: Figure 3.5 presents the representations obtained by the investigated
approximations on this problem. Given the high level of coordination required, all of
the architectures using the mixture of experts learn a totally incorrect approximation,
biased by the larger number of joint actions that yield a penalty rather than a positive
reward.

For this game, none of the architectures can correctly reconstruct the whole
structure of the action-value function, and they all fail at the two optimal joint actions
(at the two sides of the bar plots). This is probably due to the large gap in the
reward values that the agents can receive when choosing one of their coordinated
actions: they can get a high reward if all the agents perfectly coordinate, but it is
more common for them to miscoordinate and receive a negative penalty, resulting
in an approximation that ranks those two joint actions as bad in order to correctly
reconstruct the other cases. Furthermore, the suboptimal action is hard to correctly
approximate because, similarly to the optimal ones, it also usually results in a smaller
reward than the one it gives when all the agents coordinate on it. Only F1 and F3C
rank it as better than the other, but surprisingly only F1 is also able to reconstruct the
correct value. Table 3.6 reports the best and worst performing methods on this game.

Model MSE Opt. Found Ranked

Joint 1.60± 0.4 1± 0 727± 1
F1 2.18± 0.0 0± 0 722± 0

F2C 1.29± 0.0 0± 0 722± 0
F3C 0.54± 0.0 0± 0 724± 0
F3O 1.27± 0.0 0± 0 723± 0
M1 2.71± 0.0 0± 0 722± 0

Table 3.6: Best (green) and worst (red) performing methods on the Penalty Game.

For this setting as well, the joint learner is struggling to represent the entire
action-value function, although it is the only method capable of correctly identify one
of the optimal joint actions. All the other methods fail in doing so, even though some

68 analysing factorizations for marl

5
0
5

Or
ig

in
al

2

0Jo
in

t
0.0

2.5
F1

2

0

F2
R

2

0

F3
R

2.5
0.0

F2
C

5
0
5

F3
C

2.5

0.0

F2
O

0 100 200 300 400 500 600 700

2.5

0.0

F3
O

Joint Actions a (enumerated)

Re
co

ns
tru

ct
ed

 Q
(a

)

(a)

5
0
5

Or
ig

in
al

2

0Jo
in

t

0.5

0.0

M
1

1

0

M
2R

1

0

M
3R

1

0

M
2C

1

0

M
3C

1

0

M
2O

0 100 200 300 400 500 600 700

1

0

M
3O

Joint Actions a (enumerated)

Re
co

ns
tru

ct
ed

 Q
(a

)

(b)

Figure 3.5: Reconstructed Q(a) for the Penalty Game: 3.5(a) factored Q-function learning
approach, and 3.5(b) mixture of experts learning approach.

3 .2 experiments 69

H1 H2 H3 H4 H5 H6 H7

1 2 3 4 5 6

Figure 3.6: Firefighters formation with n = 6 agents and Nh = 7 houses.

of those that use the factored Q-function learning approach achieve a very small
MSE.

Generalized Firefighting: In this experiment, a team of n = 6 agents have to fight
fire at Nh = 7 houses. Each agent can observe No = 2 houses and can fight fire at the
same set of locations (Na = 2), disposed as shown in Figure 3.6. Figure 3.7 shows the
representations learned for the single joint type θ = {N1,F2,N3,F4,N5,N6,F7}.

0

5

Or
ig

in
al

0

5

Jo
in

t

2.5
5.0
7.5

F1

4.5
5.0
5.5

M
1

2.5
5.0
7.5

F2
R

4

6

M
2R

2.5
5.0
7.5

F3
R

2.5

5.0

M
3R

0

5

F2
C

4

6

M
2C

0

5

F3
C

2.5

5.0

M
3C

2.5
5.0
7.5

F2
O

4

6

M
2O

2.5
5.0
7.5

F3
O

4

6

M
3O

0 10 20 30 40 50 60
0

5

FT
F

0 10 20 30 40 50 60
4

6

M
TF

Joint Actions a (enumerated)

Re
co

ns
tru

ct
ed

 Q
(a

)

Figure 3.7: Reconstructed Q(a) for a single joint type of the Generalized Firefighting
problem.

This game requires less coordination than those studied earlier (agents have to
coordinate only with other agents that can fight fire at the same locations), and every

70 analysing factorizations for marl

investigated architecture correctly ranks all the joint actions, even the single agent
factorizations F1 and M1. However, while those using the factored Q-function can
also correctly reconstruct the value of each action, those using the mixture of experts
are less precise in their approximations. Overall, this experiment demonstrates that
there exist non-trivial coordination problems that can effectively be tackled using
small factors, including even individual learning approaches. Also, it is to note how
both learning approaches, when coupled with the true underlying factorization, are
achieving very good reconstructions and can rank all of the joint actions correctly.

Figure 3.8 shows the results for a different joint type, θ = {F1,F2,F3, F4,F5N6,F7}.

7.5
10.0

Or
ig

in
al

6

8

Jo
in

t
7.5

10.0

F1

6.0

6.5M
1

7.5

10.0

F2
R

7

8
M

2R

7.5

10.0

F3
R

7
8
9

M
3R

7.5
10.0

F2
C

7

8

M
2C

7.5
10.0

F3
C

7
8
9

M
3C

7.5

10.0

F2
O

7

8

M
2O

7.5
10.0

F3
O

7
8

M
3O

0 10 20 30 40 50 60

7.5
10.0

FT
F

0 10 20 30 40 50 60
6

7

M
TF

Joint Actions a (enumerated)

Re
co

ns
tru

ct
ed

 Q
(a

)

Figure 3.8: Reconstructed Q(a) for a different joint type of the Generalized Firefighting
problem.

This type presents multiple adjacent houses burning at the same time, so the
agents have to correctly estimate the value of fighting fire at a certain location both on
their own or collaborating with other agents. The joint learner is not able to correctly
learn the values for this type in the given training time, ranking as optimal actions that
are not. Simpler factorizations like F1 or M1 on the other hand fail as well, ranking
suboptimal actions as optimal. However, the other factored representations are quite

3 .2 experiments 71

4

1

5

2

6

3

Figure 3.9: Islands configuration with n = 6 agents.

accurate and correctly represent the value of coordination: even simpler factorizations
using overlapping factors with both learning approaches or random pairing coupled
with the factored Q-function learning approach, can correctly identify the optimal
joint action. Again, the representations obtained with the factored Q-function learning
approach are more accurate in terms of values of the actions. Table 3.7 is showing
the best and worst performing methods on this game. On this type as well, both FTF
and MTF are achieving very good reconstructions, with FTF also approximating the
values of the joint actions correctly.

Model MSE Opt. Found Ranked

Joint 1.29± 2.5 656± 123 6,893± 1,475
F3R 0.09± 0.0 743± 25 7,288± 558
F2C 0.00± 0.0 779± 0 8,192± 0
F3C 0.00± 0.0 779± 0 8,192± 0
F2O 0.09± 0.0 747± 18 7,333± 382
F3O 0.03± 0.0 778± 4 8,149± 130
FTF 0.00± 0.0 779± 0 8,192± 0
M1 3.55± 0.0 700± 6 6,220± 30

M2C 1.82± 0.0 777± 0 7,826± 0
M3C 0.85± 0.0 778± 1 8,151± 4
M2O 1.97± 0.1 741± 13 5,628± 249
M3O 1.73± 1.2 738± 55 5,867± 682
MTF 2.60± 0.0 779± 0 8,177± 2

Table 3.7: Best (green) and worst (red) performing methods on the Generalized Firefighting
problem.

Although the joint action space is very large here (more than 8000 joint actions),
most of the factored methods achieve very good performances both in terms of MSE
(factored Q-function learning approach methods) and action ranking. Also smaller
factorizations like the overlapping factors ones are able to identify almost all of the
optimal actions and produce a very good ranking. Both methods using the true
underlying factorization are doing very well, with also the mixture of experts one
identifying all of the optimal actions. On the other hand, the joint learner is failing
in this task, being outperformed even by M1 (that has a higher MSE but a better
ranking).

Aloha: This experiment uses a set of n = 6 islands disposed in a 2× 3 grid as in
Figure 3.9, with each island affected only by the transmissions of the islands on their
sides and in front of them (islands on the corner of the grid miss one of their side
neighbours). Representations learned for this game are reported in Figure 3.10.

72 analysing factorizations for marl

5
0
5

Or
ig

in
al

5
0
5

Jo
in

t

5

0F1

2

1M
1

5

0

F2
R

2

0

M
2R

5

0

F3
R

2.5

0.0

M
3R

5
0
5

F2
C

2

0

M
2C

5
0
5

F3
C

2.5

0.0
M

3C

5

0

F2
O

2

0

M
2O

5
0

F3
O

2.5

0.0

M
3O

0 10 20 30 40 50 60
5
0
5

FT
F

0 10 20 30 40 50 60

2.5
0.0

M
TF

Joint Actions a (enumerated)

Re
co

ns
tru

ct
ed

 Q
(a

)

Figure 3.10: Reconstructed Q(a) for Aloha.

The plot shows clearly how this game is challenging for the proposed factor-
izations to learn, with only three of them (plus the joint learner) able to correctly
represent the action-value function. The structure of the game is similar to that of
Generalized Firefighting, with an agent depending directly only on a small subset of
the others, but the different properties of its Q-function make it more challenging
to correctly represent. This is possibly due to the large difference between the two
rewards an agent can get when transmitting the radio message, depending on a
potential interference. Observing only the total reward, this action looks neutral per
se, similarly to what happens for the two actions in the Dispersion Game, its outcome
depending on the action of the neighbouring agents, thus possibly fooling many of
the proposed factorizations, especially those using the mixture of experts approach.
Table 3.8 is showing the best and worst performing methods on this game.

On this more difficult game, all of the mixture of experts methods are not able to
identify the optimal actions and achieve a very large MSE. However, the complete
factorizations using the factored Q-function learning approach are able to do so, with

3 .2 experiments 73

Model MSE Opt. Found Ranked

Joint 1.13± 0.0 2± 0 51± 1
F2R 4.05± 0.4 0± 0 22± 4
F3R 3.16± 0.5 0± 0 26± 4
F2C 0.91± 0.0 2± 0 42± 0
F3C 0.07± 0.0 2± 0 64± 0
F2O 3.27± 0.3 0± 0 23± 4
F3O 1.46± 0.3 1± 1 29± 5
FTF 0.00± 0.0 2± 0 64± 0
M1 8.26± 0.0 0± 0 27± 1

M2R 6.52± 0.2 0± 0 25± 4
M2O 6.63± 0.4 0± 0 22± 5
M3O 4.71± 0.3 0± 0 25± 4

Table 3.8: Best (green) and worst (red) performing methods on Aloha.

F3C also ranking correctly all of the other joint actions. Again, FTF is performing
the best, with a perfect ranking and a very low reconstruction error, outperforming
even the joint learner. This once more shows how beneficial would it be to exploit an
appropriate factored structure when that is known beforehand.

3 .2 .3 Impact of Factors Size

Although this chapter mainly focuses on factors of small size, it is also interesting
to investigate how the size of the factors is affecting the final representation, and
if using factors of larger size can help to overcome some of the issues encountered
with small factors. To investigate this, the methods defined in Table 3.9 are tested on
the Platonia Dilemma and Penalty Game with n = 6 agents, two of the games that
proved more problematic to correctly represent.

Mix. of Experts Factored Q

Random partition (f = 4,5) M4R, M5R F4R, F5R
Complete factorization (f = 4,5) M4C, M5C F4C, F5C

Overlapping factors (f = 4,5) M4O, M5O F4O, F5O

Table 3.9: Combinations of factorizations and learning rules with larger factors.

Platonia Dilemma: Figure 3.11 shows the reconstructed action-value functions
for the Platonia Dilemma. It can be seen how this game, that none of the factored
methods in Figure 3.3 was able to correctly approximate, remains very challenging
even with factors comprising more agents. Indeed, only methods with a factor size
f = 5, thus very close to the entire team size n = 6, and using the factored Q-function
learning approach (F5C and F5O), are able to correctly reconstruct the action-value
function. The same factorizations using the mixture of experts learning approach are
instead consistently ranking one of the suboptimal actions (the one in which none of

74 analysing factorizations for marl

the agents is sending the telegram) as an optimal one, the same as with factors of
smaller size.

0.0

2.5

5.0

Or
ig

in
al

0.0

2.5

5.0

Jo
in

t

0

2

F4
R

0

2

M
4R

0

2

F5
R

0

2

M
5R

0
2
4

F4
C

0

2
M

4C

0.0

2.5

5.0

F5
C

0

2

M
5C

0

2

4

F4
O

0

2

M
4O

0 10 20 30 40 50 60
0.0

2.5

5.0

F5
O

0 10 20 30 40 50 60
0

2

M
5O

Joint Actions a (enumerated)
Re

co
ns

tru
ct

ed
 Q

(a
)

Figure 3.11: Reconstructed Q(a) for the Platonia Dilemma.

Penalty Game: Figure 3.12 presents the representations obtained by the new in-
vestigated approximations. Even with larger factors, none of the methods is able to
reconstruct any of the optimal actions, but they only are able to discern the value
of the sub-optimal one like F1 and F3C in Figure 3.5 (that is seen as optimal). The
same kind of problems that arose with smaller factors are also present here, with
the mixture of experts methods tending to underestimate values for all the joint
actions and generally none of the methods being able to represent the true value of
coordination for this problem. However, the methods using the factored Q-function
learning approach and f = 5 agents into each factor are reconstructing small yet
positive values for these optimal actions, meaning that the resulting reconstruction is
at least identifying these as good actions that the agents may desire to perform.

3 .2 experiments 75

5

0

5

Or
ig

in
al

2

0Jo
in

t

2

0

F4
R

2

0

F5
R

5

0

F4
C

5

0

F5
C

5

0

F4
O

0 100 200 300 400 500 600 700
5

0

F5
O

Joint Actions a (enumerated)

Re
co

ns
tru

ct
ed

 Q
(a

)

(a)

5

0

5

Or
ig

in
al

2

0Jo
in

t

2

0

M
4R

2

0

M
5R

2

0

M
4C

2

0

M
5C

2

0

M
4O

0 100 200 300 400 500 600 700
2

0

M
5O

Joint Actions a (enumerated)

Re
co

ns
tru

ct
ed

 Q
(a

)

(b)

Figure 3.12: Reconstructed Q(a) for the Penalty Game 3.12(a) factored Q-function learning
approach, and 3.12(b) the mixture of experts learning approach.

76 analysing factorizations for marl

3 .2 .4 Scalability

A fundamental aspect for a multi-agent algorithm is how well it can scale with the
size of the system, i.e. when more agents are introduced and therefore the size of the
joint action set exponentially increases. In this section it is investigated how using a
factored representation helps when such systems get larger, as well as analyse how
this affects the performance of both independent learners and joint learners. Table
3.10 illustrates the games used to investigate this aspect.

Game n |Ai| |A| Optimal Factored

Dispersion Game 9 2 512 252 No
Dispersion Game 12 2 4096 924 No
Generalized FF 9 2 512 (524.288 total) 17.682 Yes

Aloha 9 2 512 1 Yes
Aloha 12 2 4096 2 Yes

Table 3.10: Details of the investigated games in this section.

Dispersion Games: Figure 3.13 shows the action-value function reconstructed by the
proposed factorizations and learning approaches for the Dispersion Game with n = 9
agents (a similar figure for the case when n = 12 would have rendered unreadable
and is thereby not included). It can be observed that the complete factorizations are
able to almost perfectly reconstruct the relative ranking between the joint actions even
in this larger setting, showing how reliable and general can this kind of approach be.
As usual, the ones using the factored Q-function are also able to produce a generally
good approximation of the various components, while those based on the mixture of
experts produce a less precise reconstruction: the joint optimization of the former
seems to have an even bigger benefit when more agents are present.

It is interesting to note how both independent learners and the joint learner are
failing here, but for different reasons: both types of independent learners seem not
able to correctly learn the value of coordination with the others (something already
appearing on the smaller instance shown in Figure 3.2), while the latter is struggling
because of the increased number of agents that makes the function that has to be
represented too big to be reliably learned in the given training time. The other
factored approaches instead are capturing the value of such a coordination up to
some extent (especially these using the overlapping factors), but the small number of
factors is probably not sufficient to completely represent such a function. However,
the resulting MSE is still lower than the joint learner and some of the optimal actions
are still ranked correctly, making these approaches still viable for decision making.
Table 3.11 reports the best and worst performing methods on the two instances of
this game, both in terms of action ranking and reconstruction error.

As already stated, when the size of the system increase both independent learners
and the joint learner struggle in representing the corresponding action-value function

3 .2 experiments 77

0.0

2.5

Or
ig

in
al

0

2

Jo
in

t

3.2

3.3

F1

3.2

3.3

M
1

3.0

3.5

F2
R

3.2

3.4

M
2R

2

3

F3
R

3.0

3.5

M
3R

0.0

2.5

F2
C

3.1
3.2
3.3

M
2C

0.0

2.5

F3
C

3.00
3.25

M
3C

2

3

F2
O

3.2

3.4

M
2O

0 100 200 300 400 500
1
2
3

F3
O

0 100 200 300 400 500

3.00
3.25

M
3O

Joint Actions a (enumerated)

Re
co

ns
tru

ct
ed

 Q
(a

)
Figure 3.13: Reconstructed Q(a) for the Dispersion Game with n = 9 agents.

Model MSE Opt. Found Ranked

Dispersion Game n = 9

Joint 0.93± 0.5 162± 30 307± 77
F1 0.74± 0.0 124± 1 191± 3

F2C 0.06± 0.0 252± 0 512± 0
F3C 0.06± 0.0 252± 0 512± 0
M1 0.74± 0.0 124± 1 192± 4

M2C 0.70± 0.0 252± 0 512± 0
M3C 0.63± 0.0 252± 0 512± 0

Dispersion Game n = 12

Joint 19.48± 0.7 210± 8 1,108± 34
F1 1.17± 0.0 186± 39 1,137± 37

F3R 0.99± 0.0 351± 7 1,364± 20
F2C 0.17± 0.0 924± 0 4,096± 0
F3C 0.20± 0.0 774± 194 3,711± 510
M1 1.17± 0.0 187± 30 1,134± 36

M3R 1.09± 0.0 350± 9 1,363± 24
M2C 1.14± 0.0 813± 69 3,831± 246
M3C 1.08± 0.0 920± 5 4,089± 10

Table 3.11: Best (green) and worst (red) performing methods on the two larger instances of
the Dispersion Game.

78 analysing factorizations for marl

H1 H2 H3 H4 H5 H6 H7 H8 H9 H10

1 2 3 4 5 6 7 8 9

Figure 3.14: Firefighters formation with n = 9 agents and Nh = 10 houses.

correctly. The latter especially, that was achieving a perfect reconstruction for the
same game with only n = 6 agents, is now resulting in a higher reconstruction error
and fail in identifying all of the optimal joint actions. Methods using a complete
factorization with both learning approaches instead are still able to identify most
of them (all, when n = 9), while at the same time reducing the MSE considerably.
Smaller factorizations are not reported because these are not achieving such good
performances (as in the smaller case with n = 6), showing that on this kind of
very tightly coordinated problems these may not suffice for a completely correct
representation.

Generalized Firefighting: In this larger experiments, a team of n = 9 agents is fight-
ing fire at Nh = 10 houses. As in the previous setting, each agent can observe No = 2
houses and can fight fire at the same set of locations (Na = 2), as shown in Figure 3.14.
Reconstruction results for the single joint type θ = {N1,F2,F3,N4,F5,F6,N7,N8,F9,F10}
are reported in Figure 3.15.

From these results, it can be observed how, although the problem is very large
(with more than half a million total joint actions with the described formulation) most
of the factored methods are perfectly representing the corresponding Q-function.
While methods using the complete factorization or exploiting the true underlying
structure with both learning approaches are capable of achieving a perfect recon-
struction, even simpler methods like random pairing with the factored Q-function
learning approach are capable or almost perfectly reconstruct the values for this joint
type. Conversely, the joint learner seems not capable of doing so, resulting in a totally
wrong representation that is not close to the original function. Things are similar for
a second joint type, θ = {F1,F2,N3,N4,N5,N6,N7,F8,F9,N10}, whose resulting learned
representations are shown in Figure 3.16:

Again, the joint learner is not capable of achieving a good representation, but
also some of the simpler factorizations are not resulting in a perfect reconstruction,
although still capable of correctly identifying the optimal joint actions. Complete
factorizations are instead perfectly representing the original Q-function for this joint
type as well, even with the mixture of experts learning approach. General metrics
and results for the best and worst performing methods on this problem are reported
in Table 3.12.

As expected, the methods provided with the true underlying factorization are
performing best, with that using the factored Q-function learning approach capable of

3 .2 experiments 79

7.5
10.0
12.5

Or
ig

in
al

0.2

0.4

Jo
in

t

7.5
10.0
12.5

F1

8.0

8.5

M
1

7.5
10.0
12.5

F2
R

8

9

M
2R

7.5
10.0
12.5

F3
R

8

10

M
3R

7.5
10.0
12.5

F2
C

8

9
M

2C

7.5
10.0
12.5

F3
C

8

10

M
3C

7.5
10.0
12.5

F2
O

8

9

M
2O

7.5
10.0
12.5

F3
O

8

10

M
3O

0 100 200 300 400 500
7.5

10.0
12.5

FT
F

0 100 200 300 400 500
8

9

M
TF

Joint Actions a (enumerated)

Re
co

ns
tru

ct
ed

 Q
(a

)
Figure 3.15: Reconstructed Q(a) for a single joint type of the Generalized Firefighting

problem with n = 9 agents.

Model MSE Opt. Found Ranked

Joint 69.98± 0.9 2,556± 50 94,559± 522
F2C 0.00± 0.0 17,682± 0 524,288± 0
F3C 0.00± 0.0 17,682± 0 524,288± 0
F3O 0.09± 0.0 16,939± 415 464,893± 26,119
FTF 0.00± 0.0 17,682± 0 524,288± 0
M2C 4.30± 0.0 17,680± 0 465,019± 2
M3C 2.71± 0.0 17,680± 0 465,090± 2
M3O 2.96± 0.1 16,783± 303 298,182± 26,364
MTF 5.30± 0.0 17,682± 0 512,022± 810

Table 3.12: Best (green) and worst (red) performing methods on the larger instance of the
Generalized Firefighting problem.

80 analysing factorizations for marl

5.0

7.5

Or
ig

in
al

0.2

0.4

Jo
in

t

5.0

7.5

F1

7.25
7.50
7.75

M
1

5.0

7.5

F2
R

6.5
7.0
7.5

M
2R

5.0

7.5

F3
R

6

7

M
3R

5.0

7.5

F2
C

7.0
7.5

M
2C

5.0

7.5

F3
C

6.5
7.0
7.5

M
3C

5.0

7.5

F2
O

7.0
7.5

M
2O

5.0

7.5

F3
O

6

7

M
3O

0 100 200 300 400 500
5.0

7.5

FT
F

0 100 200 300 400 500
7

8

M
TF

Joint Actions a (enumerated)

Re
co

ns
tru

ct
ed

 Q
(a

)

Figure 3.16: Reconstructed Q(a) for a different joint type of the Generalized Firefighting
problem with n = 9 agents.

achieving a perfect reconstruction and ranking of the actions even on this very large
problem. Also complete factorizations are always identifying all of the optimal joint
actions and producing correct ranking (perfect for those using the factored Q-function
learning approach). It is interesting to note that even methods using overlapping
factors, when coupled with larger factors, are performing very well, and can produce
a good ranking of the actions. As expected, the mixture of experts methods are
resulting in a larger MSE, although being comparable on the other metrics with their
counterparts, but are still capable of learning more accurate representations than the
joint learner, that is instead achieving the highest MSE and worst ranking among all
the compared methods.

Aloha: The experiments reported here use n = 9 and n = 12 islands disposed in a
3× 3 and 4× 3 grid respectively, as shown in Figure 3.17. Representations learned
for this game with n = 9 islands are reported in Figure 3.18 (for identical reasons to
those of the Dispersion Game, the figure with n = 12 agents is not included).

3 .2 experiments 81

7

4

1

8

5

2

9

6

3

(a) n = 9

10

7

4

1

11

8

5

2

12

9

6

3

(b) n = 12

Figure 3.17: Islands configuration for the two larger instances of Aloha.

Again, this game proves to be challenging for almost all of the proposed fac-
torizations. Indeed, other than the true underlying factorization coupled with the
factored Q-function learning approach (that achieve a perfect reconstruction, showing
how beneficial would it be to know and exploit such an underlying factorization in
advance), only the complete factorizations seems able to learn something useful. All
the other methods struggle to correctly identify the optimal action, probably because
not enough coordination is achieved in order to discriminate between the two local
actions for each agent (that seems similar from the agent’s perspective). Also on this
game, the joint learner is not capable of correctly approximating the action-value
function because of the increasing number of agents. Table 3.13 is showing the best
and worst performing methods on this game.

Model MSE Opt. Found Ranked

Aloha n = 9

F2R 6.97± 0.4 0± 0 100± 11
F2C 2.25± 0.0 1± 0 187± 1
FTF 0.00± 0.0 1± 0 512± 0
M1 11.93± 0.0 0± 0 126± 1

M2R 10.45± 0.2 0± 0 105± 11
M2C 10.31± 0.0 0± 0 140± 1
M2O 10.48± 0.2 0± 0 114± 10

Aloha n = 12

Joint 23.98± 0.6 0± 0 700± 13
F2C 2.18± 0.0 2± 0 1,380± 5
F3C 0.81± 0.0 1± 0 2,488± 10
FTF 0.00± 0.0 2± 0 4,096± 0
M1 15.37± 0.0 0± 0 845± 26

M2O 13.94± 0.2 0± 0 671± 58
M3O 12.56± 0.3 0± 0 752± 87

Table 3.13: Best (green) and worst (red) performing methods on the two larger instances of
Aloha.

The table shows how, except for FTF (always capable of correctly representing
the entire Q-function), all the methods start deteriorating their performance when
the system size increases on this particular problem. Particularly, the joint learner

82 analysing factorizations for marl

0

10

Or
ig

in
al

2.5
0.0
2.5

Jo
in

t

10

0

F1

3

2M
1

5
0

F2
R

3
2
1

M
2R

10

0

F3
R 2.5

0.0

M
3R

10

0

F2
C

4

2

M
2C

5
0
5

F3
C

2.5

0.0

M
3C

10

0

F2
O

3
2
1

M
2O

10

0

F3
O

2.5

0.0

M
3O

0 100 200 300 400 500

0

10

FT
F

0 100 200 300 400 500
5

0

M
TF

Joint Actions a (enumerated)

Re
co

ns
tru

ct
ed

 Q
(a

)

Figure 3.18: Reconstructed Q(a) for Aloha with n = 9 agents.

achieves a very high reconstruction error and is not able to identify any of the optimal
joint actions. On the other hand, although the corresponding ranking is not perfect,
complete factorizations using the factored Q-function learning approach are able
to identify such optimal actions. The mixture of experts instead are performing
worse here, probably because the benefits of a coordinated optimization is crucial to
correctly represent this problem.

3 .2 .5 Sample Complexity

Another important consideration in multi-agent learning is sample complexity, as for
example training data could be limited or expensive to obtain. Therefore it is a crucial
aspect how efficiently such data can be used and how long does it take for a given
representation to converge, especially when the system grows larger in the number
of agents. The expectation is that factored representations can improve training
efficiency, reducing the number of samples required to learn a good representation,

3 .2 experiments 83

as the size of the multiple components that have to be learned is small compared to
that of the overall problem. To show the benefits of using a factored representation,
here in Figure 3.19 the training curves for two of the proposed games, the Dispersion
Game and the Generalized Firefighting, both with n = 6 agents, are reported.

0 20000 40000 60000 80000 100000
Training Samples

0

25

50

75

100

125

150

175

Re
co

ns
tru

ct
io

n
Er

ro
r

Joint
M1
F1
M2R
F2R
M3R
F3R
M2C
F2C
M3C
F3C
M2O
F2O
M3O
F3O

(a) Dispersion Game, n = 6

0 100000 200000 300000 400000 500000 600000 700000
Training Samples

0

10000

20000

30000

40000

Re
co

ns
tru

ct
io

n
Er

ro
r

Joint
M1
F1
M2R
F2R
M3R
F3R
M2C
F2C
M3C
F3C
M2O
F2O
M3O
F3O
MTF
FTF

(b) Generalized Firefighting, n = 6

Figure 3.19: Training curves for the investigated architectures on the two proposed problems.

Even for these problems of moderate size, factored approaches achieve a stable
approximation of the action-value function with just a fraction of the given training
time, while a full joint learner requires many more samples to get the same result.
Especially, for the Generalized Firefighting problem (that has got more than 8000
overall joint actions), the joint learner achieves an accurate representation only after a
much longer training time, while almost every factored architecture achieves a nearly
perfect approximation with few samples, showing how the size of the joint action
space is a critical problem that factored representations can help to tackle. On one
hand the mixture of experts approaches learn slower than the factored Q-function
ones: each factor acts as an expert on its own, thus experiencing higher variance in the
received rewards when performing a certain action. On the other hand, larger models
learn more quickly, achieving the same final result as the smaller representations but
with fewer samples. This could be due to the internal coordination happening inside
each factor, helping the agents figure out their own contribution to the global reward,
so that a stable representation is learned more easily. When the number of agents
is larger, this benefit is even more apparent. Figure 3.20 shows the reconstruction
error during the training process obtained on instances of the Dispersion Game with
n = {9,12,20} agents respectively.

It can be observed how the joint learner is struggling to achieve a good represen-
tation in the given training time when the size of the system increases, resulting in
a higher reconstruction error. The increasingly large number of joint actions (more
than 1 million with n = 20 agents) prevents it from converging in a reasonable time,
while the factored representations, although only approximating the original function,
converge faster, as the size of each factor is small compared to that of the overall
problem, and result in a lower reconstruction error.

84 analysing factorizations for marl

0 20000 40000 60000 80000 100000
Training Samples

500

1000

1500

2000
Re

co
ns

tru
ct

io
n

Er
ro

r

Joint
M1
F1
M2R
F2R
M3R
F3R
M2C
F2C
M3C
F3C
M2O
F2O
M3O
F3O

(a) n = 9

0 20000 40000 60000 80000 100000
Training Samples

5000

10000

15000

20000

25000

Re
co

ns
tru

ct
io

n
Er

ro
r

Joint
M1
F1
M2R
F2R
M3R
F3R
M2C
F2C
M3C
F3C
M2O
F2O
M3O
F3O

(b) n = 12

0 20000 40000 60000 80000 100000
Training Samples

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Re
co

ns
tru

ct
io

n
Er

ro
r

1e7
Joint
M1
F1
M2R
F2R
M3R
F3R
M2C
F2C
M3C
F3C
M2O
F2O
M3O
F3O

(c) n = 20

Figure 3.20: Training curves for the investigated architectures on the Dispersion Game with
an increasing number of agents.

3 .2 .6 Exploratory Policy

Although the focus is on a stationary uniform sampling of the actions throughout
most of the chapter, some preliminary results with a different, non-stationary action
selection mechanism are also provided, more closely resembling those used in se-
quential MARL [110, 96]. The choice is to use a Boltzmann policy [141, 65] that, given
a reconstruction of the action-value function Q̂(a), defines the probability for each
joint action a ∈ A to be selected as:

π(a) =
eQ̂(a)/τ

∑b∈A eQ̂(b)/τ
, (3.12)

where τ is a temperature parameter governing the exploration rate. In this experiment,
τ = 1 for all methods. These are tested on the Dispersion Game with n = 6 agents, as
many of the methods (including the joint learner) are doing reasonably well and thus
any decrease in performance would be solely due to the new exploratory policy. For
the factored methods and the independent learners, Q̂(a) is reconstructed at every
step and then the Boltzmann policy is applied on this reconstruction. Figure 3.21
shows the learned reconstructions on this game.

If the above is compared to Figure 3.2(a), it can be observed how the results are
very much in line with those obtained under a uniform sampling. Even if the joint
action space is small enough to select each action a reasonable number of time, the

3 .2 experiments 85

0

2

Or
ig

in
al

0

2

Jo
in

t

2.0

2.1

F1

2.0

2.1

M
1

1.5

2.0

2.5

F2
R

2.00

2.25

M
2R

1

2

F3
R

1.75
2.00
2.25

M
3R

2.5
0.0
2.5

F2
C

2.0

2.2
M

2C

2.5
0.0
2.5

F3
C

1.75
2.00
2.25

M
3C

1.5
2.0
2.5

F2
O

2.00

2.25

M
2O

0 10 20 30 40 50 60
0

2

F3
O

0 10 20 30 40 50 60

1.75
2.00
2.25

M
3O

Joint Actions a (enumerated)

Re
co

ns
tru

ct
ed

 Q
(a

)
Figure 3.21: Reconstructed Q(a) for the Dispersion Game using the Boltzmann exploratory

policy.

fact that the policy is more frequently selecting the actions that look better is not
providing any benefits in term of accuracy of the final representations, especially for
the independent learners, that are still not able to clearly identify any of the optimal
joint actions. The joint learner and the complete factorizations are still able to correctly
rank all of the optimal actions, and those using the factored Q-function learning
approach are achieving a smaller reconstruction error as under the uniform sampling.
Although supported just by a preliminary result, this is an important observation, as
it gives more value to the previous results: if a method is not learning an accurate
representation under the uniform sampling of actions (thus experiencing enough
samples for each such actions), it is unlikely that it can do better with a non-stationary,
time-varying sampling mechanism like this.

86 analysing factorizations for marl

3 .2 .7 Summary of Results

Many useful insights can be gained from the analysed results: first, it can be observed
that the factorizations using mixture of experts learning approach, although generally
achieving higher reconstruction errors than their factored Q-function counterparts,
in many cases still result in a good approximation in terms of ranking of actions,
therefore being a reliable choice for decision making. For example, on the two variants
of the Dispersion Game, both M2C and M3C are able to correctly rank all of the joint
actions, achieving better accuracy than some smaller factorizations like F2O or F3O,
even with a higher mean square error of the reconstruction. This is probably due
to the higher number of factors involved in their coordination graphs, allowing for
better approximation of the true action-value function and coordination among the
agents. Therefore, it can be deduced how the number of factors used to learn an
approximation is playing a major role in achieving accurate representations in terms
of coordination and action ranking.

Also, the size of these factors is an important aspect: as expected, with more agents
comprised into each factor, the resulting approximation is more reliable because the
agents into each factor are able to share information and thus better coordinate. This
is reflected by both learning approaches, but it is even more apparent with the mixture
of experts one, with the factorizations with 3 agents per factor usually achieving
smaller reconstruction error and a better ranking of actions than their counterparts
with only 2 agents in each. However, factors that are too large (with a size very similar
to that of the entire team) do not always result in a better representation, but instead
can present some of the difficulties associated with joint learners. This suggests that
one can find an optimal trade-off between the totally independent learners and the
full joint learner extremes that is capable of achieving a reliable representation in a
reasonable training time. Of course, depending on the intended use of such a learned
representation, such a trade-off may differ: for example, if one is only interested in
selecting an optimal joint action from this reconstruction after the training process
(i.e. with a factored centralized joint Q-function agent for the entire team of agents) a
smaller factorization with fewer factors and agents per factor, that is faster to train and
still able to correctly rank some of these optimal joint actions, may suffice. Conversely,
if one is to approximate the critic of an actor-critic method, in which the values of
the selected actions are in turn influencing the policies of the agents, he may prefer a
bigger factorization with a lower reconstruction error.

Generally speaking, it can be observed how the value of coordination is well
captured by the factored Q-function learning approach, that usually produces good
approximations and reduces the training time with respect to a joint learner, allowing
to learn even in games in which there is no underlying factorization and complete
team coordination is required, like the Dispersion Game. This becomes even more
important with larger systems, as now more agents have to coordinate and thus a

3 .2 experiments 87

more accurate representation of such coordination requirements is needed. However,
when these requirements are less tight, also the mixture of experts learning approach
is showing benefits, being faster to train and not requiring inter-factor communication
during the training phase to optimize its objective. Overall, the results showed how
the choice of a suitable factorization to efficiently learn in a multi-agent system is
a difficult decision that needs to be taken considering the problem structure and
requirements. While many aspects can influence the learning outcome, the provided
results have five main takeaways:

• There are some problematic examples, like the Platonia Dilemma, where all
types of factorization with small factors result in selecting the worst possible
joint action. Given that only joint learners (and certain factorizations with larger
factors to some extent) seem to be able to address such problems, currently no
scalable deep reinforcement learning methods for dealing with such systems
seems to exist. A hypothesis is that this is due to an imbalance in the frequency
with which each local action for the agents leads to the optimal reward value
(i.e., is part of an equilibrium strategy). In the Platonia Dilemma, each agent
is more frequently experiencing the positive reward if it does not send the
telegram itself and leave this action to someone else. However, if all the agents
do this kind of reasoning, no-one is sending the telegram, and the resulting
reward is not the optimal one. Breaking this tie is possible when behaving
greedily (as the first agent correctly sending the telegram will keep sending
it more frequently), but learning a complete and correct representation of the
entire Q-function remains challenging.

• Beyond those, “complete factorizations” of modest factor size coupled with the
factored Q-function learning approach yield near-perfect reconstructions and
rankings of the actions, also for non-factored action-value functions. Moreover,
these methods scale much better than joint learners: for a given training time, it
can be seen that these complete factorizations already outperform fully joint
learners on modestly sized problems, resulting in a correct ranking of the actions
and a low reconstruction error. This is a compelling property that renders these
methods more suited for large multi-agent systems with a large joint action
space and justify the recent interest in factored methods from the research
community.

• For many problems with less tight coordination requirements such as Aloha
and the Generalized Firefighting problem, random overlapping factors also
achieve excellent performances, comparable to those of more computationally
complex methods like joint learners and complete factorizations. This suggests
that such approaches are a promising direction forward for scalable deep MARL
in many problem settings.

88 analysing factorizations for marl

• Factorizations with the mixture of experts learning approach usually perform
somewhat worse than the corresponding factored Q-function approaches, as
these are less able to capture the coordination requirements of certain problems.
However, in some cases they perform better or comparably (Dispersion Game,
Generalized Firefighting), in which M2R and M3R still outperform F1 (i.e.,
VDNs). This is promising, because the mixture of experts learning approach
does not require to share the learning gradients among the neural networks,
thus potentially facilitating learning in settings with communication constraints,
and making it easier to parallelize across on multiple CPUs/GPUs.

• The provided results show that, when facing larger multi-agent systems, fac-
tored representations retain many of their benefits and can still represent the
action-value function correctly in many settings (or at least identify most if not
all of the optimal joint actions), while both independent learners and central-
ized approaches tend to quickly deteriorate, resulting in wrong or incomplete
representations. The reasons however are different: while independent learners
still decompose the entire function into small components that can easily be
learned, these fail in representing the value of coordinated decisions when more
agents are comprised into the system. On the other hand instead, a joint learner
that is representing the centralized action-value function as a single component
(and thus does not introduce any approximation), is now struggling to learn
a correct representation because of the exponential number of joint actions.
Factored representations instead learn small components easily, but take into
account the value of coordination into each component, allowing for better final
representations. This is an extremely desirable property that once more points
out how these methods deserve attention as holding a great potential.

These observations also shed some light on the performance of independent
learners in MARL, as used by many modern deep MARL algorithms [139, 115]: while
these can outperform joint learners on large problems, the degree of independence
and the final outcome is hard to predict and is affected by different factors. Designing
algorithms that are able to overcome these difficulties should be a primary focus of
MARL research.

3 .3 discussion

The aim of this analysis was to investigate the learning capabilities of factored
representations and compare them to both independent learners and joint learners, to
assess eventual benefits of such techniques both in terms on learning speed and final
accuracy of the reconstructed approximations. In order to do so, different aspects of
these learned representations Q̂ have been considered: the optimality of the greedy
joint action, which is important when using Q̂ to select actions. Also, the distance to

3 .3 discussion 89

the optimal value ∆Q = |Q− Q̂|, since verifying the optimality of the greedy action
requires to have a limited ∆Q. Although the proposed approach focus on centralized
learning, a correct representation of the joint action-value function can be used in the
CTDE framework [70] to learn improved decentralized policies. Indeed, minimising
∆Q is important for deriving good policy gradients in actor-critic architectures (for
example when computing the counterfactual baseline in [40], requiring very accurate
estimates of many sub-optimal Q-values) and for sequential value estimation in any
approach that relies on bootstrapping (such as Q-learning [162]) or message passing
of local payoff values (like the max-sum algorithm [67]), where such values are used
to update other values and thus need to be as accurate as possible.

This analysis is focused on cooperative one-shot games. These have been chosen
because, although they are a simpler setting than standard sequential problems, they
still capture many of the aspects that can be problematic in MARL, like the exponen-
tially large number of joint actions. Also, the shared reward observed by all the agents
depends on the joint action of the whole team, and thus seems non-stationary from
an agent perspective. Therefore, all of the problems that arise from these conditions
are directly translated into this setting, and by removing the hindering effect of
states, one is better able to analyse how the different methods can tackle these issues.
Moreover, the main focus is on using a stationary uniform sampling mechanism to
select joint actions, thus not directly considering the exploration-exploitation trade-off
usually faced in MARL problems. There are multiple reasons for this: on one hand,
using such a simple mechanism makes the comparison easier, as the interest is on
the reconstruction of the values for the entire action-value function (and not only on
identifying the greedy action). On the other hand, if a network architecture is not
suited to learn and represent accurate action-values under the stationary uniform
sampling, it is extremely unlikely that the same is going to perform better under a
more complex, time-changing policy as in sequential MARL. This is validated by
the preliminary results with a Boltzmann policy, in which none of the methods is
achieving better accuracy than under the stationary uniform mechanism. However,
while good performances in such one-shot settings does not necessarily imply good
performances in the sequential setting, value-based approaches aim to transform the
sequential MARL problem to precisely the investigated one-shot decision making
problem, as the sequential problem simply becomes a one-shot maximization over
the action-values. This implies that any found limitation is likely to directly transfer
to such approaches.

Obviously, the opposite is not immediately true: good performances on this
setting does not directly imply also good performances on general MARL problems.
However, if a given representation is able to correctly capture the value of coordination
and deal with the joint action set size in one-shot games, it can be hypothesized
that these benefits are likely to hold in sequential problems as well, where the
same requirements usually bring similar challenges to the investigated setting and

90 analysing factorizations for marl

thus can be tackled with similar solutions. Neural networks are known to be very
good at dealing with large input spaces, but it is not so well known how these can
deal with large output ones, like those resulting from exponential joint action sets.
Therefore, this analysis moves an important step in this direction in the field of
MARL, and has to be considered as an initial step towards a proper understanding
of action-value functions in multi-agent settings. Of course, a direct investigation
in the full sequential setting is an interesting future direction, with key questions
that are orthogonal to those addressed here, like the presence of an input state of
the exploration-exploitation trade-off. Nonetheless, these results can still help taking
informed decisions in such problems as well, as they give interesting insights and
takeaways that practitioners of the field may take into account when taking informed
decisions in designing multi-agent systems.

4D I F F E R E N C E R E WA R D S P O L I C Y G R A D I E N T S

One key problem that agents face that is not directly tackled by many MAPG methods
is multi-agent credit assignment [20, 94, 178, 168]. With a shared reward signal, an agent
cannot readily tell how its own actions affect the overall performance. This can lead
to sub-optimal policies even with just a few agents. Difference rewards [169, 114, 26, 25]
were proposed to tackle this problem: agents learn from a shaped reward that allows
them to infer how their actions contributed to the shared reward value.

Only one MAPG method has incorporated this idea so far: Counterfactual Mul-
tiagent Policy Gradients (COMA) [40] is a state-of-the-art algorithm that does the
differencing with a learned action-value function Qω(s,a). However, there are poten-
tial disadvantages to this approach: learning a proper representation that accurately
represents the true approximated function is crucial, and it is especially so when the
critic is used to predict values that goes beyond its training set as done in COMA
to compute the difference rewards values. The learning process of a centralized
action-value function is a difficult problem in general, because of some compounding
factors:

• As with every other centralized controller, it scales poorly in the number of
agents. When more agents are introduced, the complexity of the function that
has to be represented grows exponentially with this number, rendering the
learning problem more difficult (for example, requiring a larger a representation
and more training samples) [24],

• Because of its learning target, bootstrapping may be problematic: in order to
update a certain value estimates of other values are required, and if these are
not accurate in turn the update to the considered value may be arbitrarily bad.
This problem is even exacerbated by the use of neural networks as function ap-
proximators, as convergence guarantees of single-agent reinforcement learning
algorithms does not generally hold for non-linear function approximation such
as these [162, 86],

• Even if the values are indeed accurate, the moving target problem may still hinder
the learning process. With neural networks as function approximators, a small
update to the network weights may result in a totally different action to be
selected by the agent, thus constantly changing the learning target of the action-
value function. This problem can be partially eased by using a target network
[86], but careful choice of its parameters may still be a difficulty.

To overcome these potential difficulties, this chapter takes inspiration from [25]
and incorporates the differencing of the reward function into MAPG. Difference rewards

91

92 difference rewards policy gradients

REINFORCE (Dr.Reinforce), a new MARL algorithm that combines decentralized
policies learned with policy gradients via difference rewards that are used to provide
gradients with information on each agent’s individual contribution to the overall
performance, is proposed. Additionally, Dr.ReinforceR, a version for settings where
the reward function is not known upfront, is also presented here. In contrast to [25],
Dr.ReinforceR exploits the CTDE paradigm and learns a centralized reward network
to estimate difference rewards. Although the dimensionality of the reward function
is the same as the Q-function, and similarly depends on joint actions, learning the
reward function is a simple regression problem. It does not suffer from the moving
target problem, which allows for faster training and improved performance. The
obtained empirical results show that the proposed approaches can significantly
outperform other MAPG methods, particularly with more agents.

4 .1 methods

COMA learns a centralized action-value function critic Qω(s,a) to do the differencing
and drive agents’ policy gradients. However, learning such a critic using the TD-
error in Equation 2.30 presents a series of challenges that may dramatically hinder
final performance if they are not carefully tackled. The Q-values’ updates rely on
bootstrapping that can lead to inaccurate updates. Moreover, the target values for
these updates are constantly changing because the other estimates used to compute
them are also updated, leading to a moving target problem. This is exacerbated when
function approximation is used, as these estimates can be indirectly modified by the
updates of other Q-values. Target networks are used to try and tackle this problem
[86], but these require careful tuning of additional parameters and may slow down
convergence with more agents.

The proposed algorithm, named Dr.Reinforce, combines the REINFORCE [167]
policy gradient method with a difference rewards mechanism to deal with credit
assignment in cooperative multi-agent systems, thus avoiding the need of learning a
critic.

4 .1 .1 Dr.Reinforce

If the shared reward function R(s,a) is known, difference rewards can directly be
used with policy gradients. Let us define the difference return ∆Gi

t for agent i as the
discounted sum of the difference rewards ∆Ri(ai

t|st,a−i
t) from time step t onward as:

∆Gi
t(ai

t:T|st:T,a−i
t:T) ,

T−t−1

∑
l=0

γl∆Ri(ai
t+l |st+l ,a−i

t+l), (4.1)

where T is the length of the sampled trajectory and ∆Ri(ai
t|st,a−i

t) is the difference
rewards for agent i, computed using the aristocrat utility [169] as in Equation 2.25.

4 .1 methods 93

Centralized Reward Network

Agent 1 Agent N

st ,rt

…

at
Nat

1

Rψ(st ,at
-1) …

πθ
1

ΔGt
1

Environment

⨂

−

+

ΔRt
1

DR

 πθ
N

ΔGt
N

⨂

−

+

ΔRt
N

DR

Rψ(st ,at
-N)

Figure 4.1: Schematic representation of the Dr.ReinforceR algorithm.

Please note that the subscript t : T in the notation is a shorthand used to identify the
sequence of values of given quantity from time step t up to (but not including) time
step T.

To learn the decentralized policies πθi , the proposed algorithm follows a modified
version of the distributed policy gradient in Equation 2.28 that uses the difference
return, optimizing each policy by using the update target:

θi ← θi + α
T−1

∑
t=0

γt∆Gi
t(ai

t:T|st:T,a−i
t:T)∇θi log πθi(ai

t|st)︸ ︷︷ ︸
gDR,i

, (4.2)

where ∆Gi
t is the difference return defined in Equation 4.1. This way, each policy

is guided by an update that takes into account its individual contribution to the
shared reward, and thus an agent takes into account the real value of its own actions.
This signal is expected to drive the policies towards regions in which individual
contributions are higher, and thus also the shared reward, since a sequence of actions
improving ∆Gi

t also improves the global return Gt [1].

4 .1 .2 Online Reward Estimation

In many settings, complete access to the reward function to compute the differ-
ence rewards is not available. Thus, Dr.ReinforceR is proposed, which is similar to
Dr.Reinforce but additionally learns a centralized reward network Rψ, with parameters
ψ, that is used to estimate the value R(s,〈ai,a−i〉) for every local action ai ∈ Ai for

94 difference rewards policy gradients

agent i. Following the CTDE paradigm, this centralized network is only used during
training to provide policies with learning signals, and is not needed during execution,
when only the decentralized policies are used. The reward network receives as input
the environment state st and the joint action of the agents at at time t, and is trained
to reproduce the corresponding reward value rt ∼ R(st,at) by minimizing a standard
MSE regression loss:

Lt(ψ) =
1
2
(
rt − Rψ(st,at)

)2 . (4.3)

Although the dimensionality of the function R(s,a) that is learned with the
reward network is the same as that of Q(s,a) learned by the COMA critic, growing
exponentially with the number of agents as both depend of the joint action a ∈ A =

×|D|i=1Ai, learning Rψ is a regression problem that does not involve bootstrapping
or moving targets, thus avoiding many of the problems faced with an action-value
function critic. Moreover, alternative representations of the reward function can be
used to further improve learning speed and accuracy, e.g., by using factorizations
[53].

The learned Rψ can then be used to compute the difference rewards ∆Ri
ψ using

the aristocrat utility [169] as:

∆Ri
ψ(ai

t|st,a−i
t) , rt − ∑

ci∈Ai

πθi(ci|st)Rψ(st,〈ci,a−i
t 〉). (4.4)

The second term of the r.h.s. of Equation 4.4 can be estimated for each agent i
with a number of network evaluations that is linear in the size of the local action set
Ai, as the actions of the other agents a−i

t remains fixed, avoiding an exponential cost.

Let now redefine the difference return ∆Gi
t from Equation 4.1 as the discounted

sum of the estimated difference rewards ∆Ri
ψ:

∆Gi
t(ai

t:T|st:T,a−i
t:T) ,

T−t−1

∑
l=0

γl∆Ri
ψ(ai

t+l |st+l ,a−i
t+l). (4.5)

4 .2 theoretical results

REINFORCE [167] suffers from high variance of gradients estimates because of
the sampled estimation of the return. This can be accentuated in the multi-agent
setting. Using an unbiased baseline is crucial to reducing this variance and improving
learning [47, 141]. Here these concerns are addressed by showing that using difference
rewards in policy gradient methods corresponds to subtracting an unbiased baseline
from the policy gradient of each individual agent. Since this unbiased baseline does
not alter the expected value of the update targets, applying difference rewards policy
gradients to a common-reward MARL problem turns out to be same in expectation
as using distributed policy gradient update targets. Such gradients’ updates have

4 .2 theoretical results 95

been shown to be equivalent to those of a joint gradient [112], which under some
technical conditions is known to converge to a local optimum [142, 69].

Lemma 1. In an MMDP, using difference return ∆Gi
t(ai

t:T|st:T,a−i
t:T) as the learning signal for

policy gradient in Equation 4.2 is equivalent to subtracting an unbiased baseline Bi(st:T,a−i
t:T)

from the distributed policy gradients in Equation 2.28.

Proof. Let start by rewriting ∆Gi
t(ai

t:T|st:T,a−i
t:T) from Equation 4.1 as:

∆Gi
t(ai

t:T|st:T,a−i
t:T) =

T−t−1

∑
l=0

γlrt+l

−
T−t−1

∑
l=0

γl ∑
ci∈Ai

πθi(ci|st+l)R(st+l ,〈ci,a−i
t+l〉). (4.6)

Note that the first term on the r.h.s. of Equation 4.6 is the return Gt used in
Equation 2.28. The second term on the r.h.s. of Equation 4.6 is defined as the baseline
Bi(st:T,a−i

t:T):

Bi(st:T,a−i
t:T) =

T−t−1

∑
l=0

γl ∑
ci∈Ai

πθi(ci|st+l) · R(st+l ,〈ci,a−i
t+l〉). (4.7)

The total expected update target for agent i can thus be rewritten as:

Eπθ

[
ĝDR,i

]
= Eπθ

[
T−1

∑
t=0

(
∇θi log πθi(ai

t|st)
)

∆Gi
t(ai

t:T|st:T,a−i
t:T)

]
(4.8)

(by definition of ∆Gi
t)

= Eπθ

[
T−1

∑
t=0

(
∇θi log πθi(ai

t|st)
) (

Gt − Bi(st:T,a−i
t:T)
)]

(4.9)

(distributing the product)

= Eπθ

[
T−1

∑
t=0

(
∇θi log πθi(ai

t|st)
)

Gt

−
(
∇θi log πθi(ai

t|st)
)

Bi(st:T,a−i
t:T)
]

(4.10)

(by linearity of the expectation)

= Eπθ

[
T−1

∑
t=0

(
∇θi log πθi(ai

t|st)
)

Gt

]

−Eπθ

[
T−1

∑
t=0

(
∇θi log πθi(ai

t|st)
)

Bi(st:T,a−i
t:T)

]

96 difference rewards policy gradients

= Eπθ

[
ĝi
]
+ Eπθ

[
ĝB,i
]

. (4.11)

In order for the baseline to be unbiased, it has to be shown that the expected
value of its update Eπθ

[
ĝB,i] with respect to the policy πθ is 0. Let Pπθ

t (st) =

∑st−1∈S Pπθ
t−1(st−1)∑at−1∈A πθ(at−1|st−1) T(st|at−1,st−1) be the probability of the state

at time step t to be st under the joint policy πθ (with Pπθ
0 (s0) = ρ(s0) and ρ is the

initial state distribution), it follows that:

Eπθ

[
ĝB,i
]
, −Eπθ

[
T−1

∑
t=0

(
∇θi log πθi (ai

t|st)
)

Bi(st:T ,a−i
t:T)

]
(4.12)

(by expanding the expectation)

= −
T−1

∑
t=0

∑
st∈S

Pπθ
t (st) ∑

a−i
t ∈A−i

πθ−i (a−i
t |st) ∑

ai
t∈Ai

πθi (ai
t|st)

(
∇θi log πθi (ai

t|st)
)

∑
st+1:T ,at+1:T

T−t−1

∏
l=1

T(st+l |at+l−1,st+l−1) · πθ(at+l |st+l) Bi(st:T ,a−i
t:T)

(4.13)

(by applying the inverse log trick)

= −
T−1

∑
t=0

∑
st∈S

Pπθ
t (st) ∑

a−i
t ∈A−i

πθ−i (a−i
t |st) ∑

ai
t∈Ai

(
∇θi πθi (ai

t|st)
)

∑
st+1:T ,at+1:T

T−t−1

∏
l=1

T(st+l |at+l−1,st+l−1) · πθ(at+l |st+l) Bi(st:T ,a−i
t:T)

(4.14)

(by moving the gradient outside the policy sum)

= −
T−1

∑
t=0

∑
st∈S

Pπθ
t (st) ∑

a−i
t ∈A−i

πθ−i (a−i
t |st)

∇θi ∑
ai

t∈Ai

πθi (ai
t|st)

∑

st+1:T ,at+1:T

T−t−1

∏
l=1

T(st+l |at+l−1,st+l−1) · πθ(at+l |st+l) Bi(st:T ,a−i
t:T)

(4.15)

(policy probabilities sum up to 1)

= −
T−1

∑
t=0

∑
st∈S

Pπθ
t (st) ∑

a−i
t ∈A−i

πθ−i (a−i
t |st) ∇θi 1

∑
st+1:T ,at+1:T

T−t−1

∏
l=1

T(st+l |at+l−1,st+l−1) · πθ(at+l |st+l) Bi(st:T ,a−i
t:T)

= 0. (4.16)

Therefore, using the baseline in Equation 4.7 reduces the variance of the updates
[47] but does not change their expected value, as it is unbiased and its expected
update target Eπθ

[
ĝB,i] = 0.

4 .2 theoretical results 97

Corollary. Using the estimated reward network Rψ to compute the baseline in Equation 4.7
still results in an unbiased baseline.

Proof. Let rewrite ∆Gi
t(ai

t:T|st:T,a−i
t:T) from Equation 4.5 as:

∆Gi
t(ai

t:T|st:T,a−i
t:T) =

T−t−1

∑
l=0

γlrt+l

−
T−t−1

∑
l=0

γl ∑
ci∈Ai

πθi(ci|st+l)Rψ(st+l ,〈ci,a−i
t+l〉). (4.17)

for which the second term on the r.h.s. of Equation 4.17 is defined as the baseline
Bi

ψ(st:T,a−i
t:T):

Bi
ψ(st:T,a−i

t:T) =
T−t−1

∑
l=0

γl ∑
ci∈Ai

πθi(ci|st+l) · Rψ(st+l ,〈ci,a−i
t+l〉). (4.18)

It can be observed that the derivation of Equation 4.16 still holds, as the use of
the reward network Rψ rather than the true reward function R(s,a) does not alter it.
Therefore, the baseline Bi

ψ(st:T,a−i
t:T) is again unbiased and does not alter the expected

value of the updates.

Theorem 1. In an MMDP, given the conditions on function approximation detailed in
[142], using Dr.Reinforce update target as in Equation 4.2, the series of parameters {θt =

〈θ1
t , . . . ,θN

t 〉}k
t=0 converges in the limit such that the corresponding joint policy πθt is a local

optimum:

lim
k→∞

inf
{θt}k

t=0

||ĝDR|| = 0 w.p. 1.

Proof. To prove convergence, it needs to be proved that:

Eπθt

[
ĝDR

]
= Eπθt

[
N

∑
i=0

ĝDR,i

]
= ∇θt V(θt). (4.19)

Let rewrite the total expected update target as:

Eπθt

[
ĝDR,i

]
= Eπθt

[
ĝi
]
+ Eπθt

[
ĝB,i
]

(4.20)

as in Equation 4.11, and by Lemma 1 it results that Eπθt

[
ĝB,i] = 0. Therefore, the

overall expected update Eπθt

[
ĝDR,i] for agent i reduces to Eπθt

[
ĝi], that is equal to

the distributed policy gradient update target in Equation 2.28. These updates for all
the agents have been proved to be equal to these of a centralized policy gradient
agent Eπθt

[ĝ] by Theorem 1 in [112], and therefore converge to a local optimum of
∇θt V(θt) by Theorem 3 in [142].

98 difference rewards policy gradients

(a) Multi-Rover (b) Predator-Prey

Figure 4.2: Schematic representation of the two gridworld domains. Agents are green,
landmarks are yellow, and the prey is red.

4 .3 gridworld experiments

The interest of this work is on investigating the following research questions:

RQ1: How does Dr.Reinforce compare to existing approaches?

RQ2: How does the use of a learned reward network Rψ instead of a known reward
function affect performance?

RQ3: Is learning the Q-function (as in COMA) more difficult than learning the reward
function R(s,a) (as in Dr.ReinforceR)?

To investigate these questions, the proposed methods are tested on two gridworld
environments with shared reward: the multi-rover domain, an established multi-agent
cooperative domain [26], in which agents have to spread across a series of landmarks,
and a variant of the classical predator-prey problem with a randomly moving prey
[146].

4 .3 .1 Comparison to Baselines

The proposed methods are compared to a range of other policy gradient methods:
independent learners using REINFORCE to assess the benefits of using a difference
rewards mechanism, labelled PG. These also compared against a standard actor-critic
algorithm [69] with decentralized actors and a centralized action-value function critic
to show that their improvements are not only due to the centralized information pro-
vided to the agents during training, denoted as CentralQ here. The main comparison
is with COMA [40], a state-of-the-art difference rewards method using the Q-function

4 .3 gridworld experiments 99

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
T (mil)

400

300

200

100

M
ed

ia
n

Te
st

 R
et

ur
n

Multi-Rover, N = 3

Dr.Reinforce
Dr.ReinforceR
COMA
Colby
CentralQ
PG

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
T (mil)

0

200

400

600

M
ed

ia
n

Te
st

 R
et

ur
n

Predator-Prey, N = 3

Dr.Reinforce
Dr.ReinforceR
COMA
Colby
CentralQ
PG

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
T (mil)

700

600

500

400

300

200

M
ed

ia
n

Te
st

 R
et

ur
n

Multi-Rover, N = 5

Dr.Reinforce
Dr.ReinforceR
COMA
Colby
CentralQ
PG

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
T (mil)

0

200

400

600

800

1000

M
ed

ia
n

Te
st

 R
et

ur
n

Predator-Prey, N = 5

Dr.Reinforce
Dr.ReinforceR
COMA
Colby
CentralQ
PG

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
T (mil)

1200

1000

800

600

400

M
ed

ia
n

Te
st

 R
et

ur
n

Multi-Rover, N = 8

Dr.Reinforce
Dr.ReinforceR
COMA
Colby
CentralQ
PG

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
T (mil)

0

500

1000

1500

M
ed

ia
n

Te
st

 R
et

ur
n

Predator-Prey, N = 8

Dr.Reinforce
Dr.ReinforceR
COMA
Colby
CentralQ
PG

Figure 4.3: Training curves on the multi-rover domain (left) and the predator-prey problem
(right), showing the median return and 25− 75% percentiles across seeds.

for computing the differences. Finally, these methods are compared against the algo-
rithm proposed in [25], to show the benefit of learning a centralized reward network
to estimate the difference rewards as in Dr.ReinforceR. This method has been adapted
to use policy gradients instead of evolutionary algorithms to optimise the policies to
not conflate the comparisons with the choice of a policy optimizer where possible,
and only focus on the effect of using difference rewards during learning.

Multi-Rover Domain

In this domain, a team of N agents is placed into a 10× 10 gridworld with a set of N
landmarks. The aim of the team is to spread over all the landmarks and cover them
(which agent covers which landmark is not important): the reward received by the
team depends on the distance of each landmark to its closest agent, and a penalty if
two agents collide (reach the same cell simultaneously) during their movements is
also applied. Each agent observes its relative position with respect to all the other
agents and landmarks, and can move in the four cardinal directions or stand still
(actions are deterministic and do no fail). Figure 4.3 (left) reports the median return
and 25 − 75% percentiles (shaded area in the plots) across 10 independent runs
obtained by the compared methods on a team of increasing size, to investigate scaling

100 difference rewards policy gradients

to larger multi-agent systems.

It can be observed that both Dr.Reinforce and Dr.ReinforceR are always outper-
forming all of the other compared baselines on this domain. Also, Dr.ReinforceR
is generally matching the upper bound given by Dr.Reinforce (that represents a
limit case when the centralized reward network Rψ has perfectly converged to the
true reward function). However, the wide gap between these two algorithms and
the other baselines when N = 3 reduces when more agents are introduced in the
system, possibly pointing out that also these methods start to struggle in achieving
optimal and coordinated behaviours on larger instances of this domain. When more
agents are present, the gridworld becomes quite crowded: an explanation for this
loss in performance is that the difference rewards signal pushes each agent towards
the landmark that is furthest from all of the agents, and thus contributing the most
to the negative reward value, in an attempt to mitigate this problem, but letting
another landmark increase its negative contribution in turn. Coordination is key to
efficiently solve this domain, and achieving such a coordination may be difficult in
larger settings.

Moreover, even if the reward network learns a good representation, the synergy
between this and the agents’ policies has to be carefully considered: the reward
network has to converge properly before the policies got stuck into a local optimum,
or it could be the case that these will not be able to escape it even if the gradients
signals are then accurate enough. However, the simpler learning problem used to
provide signals to the agents’ policies, as opposed to the very complex learning of the
action-value function critic used by COMA, proves effective in speeding up learning
and achieve higher returns, even in difficult settings with many agents where all the
other policy gradient methods seem to fail as well. Computing the difference rewards
requires very accurate reward estimates, so if the reward network does not exhibit
appropriate generalization capabilities it may end up overfitting on the reward values
encountered during training but not being able to give correct predictions beyond
those. It is true however that also difference rewards methods using the action-value
function have the same requirements.

Predator-Prey

In this version of the classical predator-prey problem, a team of N predators has to
pursue a single prey for as long as possible in a 10× 10 gridworld. Each predator
has a range of sight of one cell in each direction from its current position: if the prey
is into this range, the whole team receives a positive reward bonus, otherwise they
do not receive any reward. Each agent observes its relative position with respect to
the other agents and the prey itself and can move in the four cardinal directions or
stand still. The prey selects actions uniformly at random (actions for both the agents
and the prey are again guaranteed to succeed). Figures 4.3 (right) shows median

4 .3 gridworld experiments 101

return and 25− 75% percentiles across 10 independent runs with teams comprising
an increasing number of predators.

Also in this environment, Dr.ReinforceR is outperforming all the other compared
methods, achieving performance that is equal or close to these of the Dr.Reinforce
upper bound. On one hand, some of the other baselines are also performing well:
PG and Colby are almost performing or-par with the two above algorithms, even on
larger instances of the problem. This is probably due to the less strict coordination
requirements of the predator-prey problem compared to the previous multi-rover
domain: each agent is independently contributing towards the common goal, and
thus simply needs to optimize its own behaviour by learning how to reach and stay
on the prey in order to improve global performances.

On the other hand, COMA is performing extremely poorly, being outperformed
even by the simple CentralQ (that has slowly learned something in the simpler case
with N = 3). This points out how accurately learning an optimal Q-function may be
problematic in many settings, even more so on a sparse setting such as this, in which
the agents are only perceiving rewards if some of them are effectively on the prey. If
the Q-function converges to a sub-optimal solution and keeps pushing the agents
towards a local optimum, the policies may struggle to escape from it afterwards and
in turn push the action-value function towards a worst approximation. Moreover,
to compute the counterfactual baseline in COMA, estimates of Q-values need to
be accurate even on state-action pairs that the policies do not visit often, further
exacerbating this problem. From this side, learning the reward function to compute
the difference rewards is an easier learning problem, cast as a regression task and not
involving bootstrapped estimates or a moving target, and thus can improve policy
gradient performance providing them with better learning signals in achieving high
return behaviours with no further drawback.

4 .3 .2 Analysis

The results of the proposed experiments show the benefits of learning the reward
function over the more complex Q-function, leading to faster policy training and
improved final performances, but also that this is not always an easy task and it
can present issues on its own that can hinder the learning of an optimal joint policy.
Indeed, although not suffering from the moving target problem and no bootstrapping
is involved, learning the reward function online together with the policies of the
agents can lead to biases of the learned function due to the agents behaviours. These
biases could push the training samples towards a specific region of the true reward
function, hindering the generalization capacity of the learned reward network and in
turn leading to worst learning signal for the policies themselves, that can get stuck
into a sub-optimal region. Similarly, this problem can appear when a centralized
action-value critic is used to drive the policy gradients.

102 difference rewards policy gradients

To investigate the claimed benefits of learning the reward function rather the
Q-function, let us now analyse the accuracy of the learned representations on the
two proposed gridworld domains by sampling a set of different trajectories from the
execution of the corresponding policies and comparing the predicted values from
the reward network Rψ(s,a) of Dr.ReinforceR and the Qω(s,a) critic from COMA to
the real ground-truth values of the reward function and the Q-function respectively.
This has been called the on-policy dataset, representing how correctly can the reward
network and the critic represent the values of state-action pairs encountered during
their training phase. Moreover, both Dr.ReinforceR and COMA rely on a difference
rewards mechanism and thus need to estimate values for state-action pairs that are
only encountered infrequently (or not at all) in order to compute correct values to
drive the policy gradients. To investigate the generalization performances of the
learned representations, let also analyse the prediction error on a off-policy dataset, by
sampling uniformly across the entire action-state space S× A and again comparing
the predicted values from the learned reward function Rψ(s,a) of Dr.ReinforceR and
the Qω(s,a) critic from COMA to their corresponding ground-truth values. Please note
that, not knowing the true Q-function for the proposed problems to compare against,
these have been approximated that via 100 rollouts sampled starting from the current
state-action sample and following the corresponding learned policies afterwards.
Figure 4.4 shows the mean and standard deviation of the prediction error (PE)
distribution of these networks. All the prediction errors have been normalized by the
value of rmax − rmin (respectively qmax − qmin for COMA critic) for each environment
and number of agents individually, so that the resulting values are comparable across
the two different methodologies and across different settings.

These plots give us some insights on the performance reported in Section 4.3.1.
Dr.ReinforceR is in general achieving improved performances with respect to the
compared baselines, and the low prediction error of its reward network on the two
problems may be an explanation for this: with correct value estimates, the learning
signals provided to the policy gradients are better in turn, and thus lead to higher-
return behaviours. Also the variance is low, meaning that most of the sampled values
are consistently predicted correctly and the network exhibits good generalization
performances across the increasing number of agents on both datasets. This general-
ization capacity of the learned approximation also explains why Dr.ReinforceR is in
general matching the Dr.Reinforce upper bound: the difference rewards mechanism
requires multiple predictions to compute the agents’ signals and, if these are not
accurate enough, the resulting values may be completely wrong and push the agents
towards sub-optimal policies in turn.

The prediction errors for COMA action-value critic instead are higher, especially
on the multi-rover domain, where the errors do not scale so gracefully in the number
of agents even on the on-policy dataset. It can be observed that the critic network is
biased towards overestimating most of the samples for the multi-rover domain, while

4 .3 gridworld experiments 103

0

10

20

Multi-Rover

1.5

1.0

0.5

0.0

Predator-Prey

N = 3 N = 5 N = 8
0

5

10

15

20

Multi-Rover

N = 3 N = 5 N = 8
0.8

0.6

0.4

0.2

0.0

0.2
Predator-Prey

Dr.ReinforceR R (s, a) COMA Q (s, a)

Figure 4.4: Normalized mean prediction error and standard deviation for Dr.ReinforceR
reward network Rψ and COMA critic Qω on the on-policy dataset (first row) and
the off-policy dataset (second row), for the two environments.

instead underestimates them for predator-prey (especially more so on the off-policy
dataset, where non-encountered state-action pairs may be sampled), thus resulting in
bad estimations of the counterfactual baseline. On the predator-prey environment,
it seems that COMA critic quickly overfits to the Q-function of a sub-optimal joint
policy, resulting in a very low prediction error on the off-policy dataset when the
number of agents increases (and most of the samples indeed lead to no rewards
trajectories), that does not seem able to give good signals to the agents’ policies
and leads them to get stuck into this poor local optimum in turn. These results
can also explain why COMA is performing worse than CentralQ on this domain: if
the critic is not accurate or is representing the value of a poor policy (as it can be
hypothesized for the above results), COMA requirement of more estimations from it
in order to compute the counterfactual baseline only exacerbates this problem and
further hinders the final performance.

Finally, the effect of noise on computation of the difference rewards are inves-
tigated. Generally, an accurate reward value for every agent’s action is needed to
compute correct difference rewards. The reward network Rψ is an approximation of
the true reward function R(s,a) and can therefore give noisy estimates that could
dramatically affect the resulting computation. To investigate this, noise sampled from
different processes is added to the reward values of the agent’s different actions that
are obtained from the environment. These are used to compute the baseline (the
second term of the r.h.s. in Equation 2.25, as this is the only term for which Rψ is used
in Equation 4.4), and the resulting difference rewards are compared with the true
ones for a generic agent i under a uniform policy πθi(ai|s) = 1

|Ai | . Figure 4.5 reports

104 difference rewards policy gradients

15

10

5

0

Multi-Rover

SA1 SA2 SA3 SA4 SA5 SA6 SA7 SA8 SA9
SA10

SA11
SA12

SA13
SA14

SA15
SA16

0.0

2.5

5.0

7.5

10.0
Predator-Prey

Di
ffe

re
nc

e
Re

wa
rd

s

True Normal (= 1) Uniform (b a = 10) 0-Masked (p = 0.5)

Figure 4.5: Mean and variance of difference rewards for a set of samples under different
noise profiles.

the mean value and variance over 1000 noise samples of a set of sampled state-action
pairs from the reward function of the two investigated domains with N = 3 agents.

It can be observed how different noise processes differently affect the resulting
difference rewards. For example, in both environments, the difference rewards mech-
anism is quite resistant against noise from a normal or a uniform distribution. This is
probably due to the symmetricity of these noises, that tends to cancel out with each
other. However, a masking kind of noise seems to be more detrimental for difference
rewards evaluation: cancelling out some of the reward values definitely changes the
computation and gives wrong estimates. This is worse in the multi-rover domain, in
which the reward function is dense, while for the predator-prey environment and its
sparse reward function it seems to be less harming.

These two observations together help explain why Dr.ReinforceR outperforms
COMA on the two proposed environments: learning the reward function R(s,a) is
easier than learning the Q-function and, although function approximation introduces
noise, the difference rewards mechanism is resistant against common types of noise
and still provides useful signals to policy gradients. Therefore, if one is able to learn
a good approximation of the reward, the proposed algorithm learns better and more
reliable policies than other policy gradient algorithms, without the difficulties of
learning the Q-function.

5E X T E N D I N G D R . R E I N F O R C E T O PA RT I A L LY
O B S E RVA B L E S E T T I N G S

Full observability of the environment as in MMDPs is a desirable property, but in
many real-world situations [177, 151, 123] such a strong assumption is often unrealis-
tic. The complexity of the environment itself or the limited sensing or communication
capabilities available are usually transforming such problems into partially observ-
able settings from the perspective of the agents. In these, the agents cannot directly
observe the state of the environment, but instead are provided with a local and
possibly noisy observation that represents only a limited amount of information
about the underlying environmental state itself. Policy gradient methods are one of
the most used family of algorithms to tackle partially observable settings, because
of their straightforward applicability and little changes required in order to work
[166, 40, 79, 126, 180, 170].

Chapter 4 introduced Dr.Reinforce, an algorithm that tackles the multi-agent
credit assignment problem by combining policy gradients and a difference rewards
mechanism and computing such a differencing on the true reward function of the
system (as opposed to COMA, that uses the Q-function instead), and Dr.ReinforceR,
that additionally learns a centralized reward network to estimate the values required
to compute the differencing when complete knowledge of the reward function is not
available. Theoretical results showed the convergence properties of these algorithms
to an optimal solution in the fully observable case, as in practice the difference
rewards mechanism corresponds to subtracting an unbiased baseline to the standard
distributed policy gradient.

In this chapter the two proposed algorithms are extended to address the partially
observable case, and similar theoretical guarantees are proved to be lost when the
agents’ policies condition on their local action-observation histories rather than on the
environment state. Nonetheless, improved empirical performances over COMA and
other common policy gradient baselines are shown on the popular SMAC domain
[123], highlighting the applicability of such methods even when the convergence
guarantees are lost.

5 .1 methods

Policy gradient algorithms can easily be adapted to work under partial observability
by simply replacing the environment state s used by the agents policies πθi with
the corresponding agent’s local action-observation history hi

t. The distributed policy

105

106 extending dr .reinforce to po settings

gradient in Equation 2.28 thus becomes:

θi ← θi + α
T−1

∑
t=0

γtGt∇θi log πθi(ai
t|hi

t)︸ ︷︷ ︸
ĝi

. (5.1)

Similarly, it is straightforward to also adapt Dr.Reinforce to work in Dec-POMDPs
by simply adjusting the policy terms that appear in Equation 4.1 and Equation 4.2
to condition on the agents’ local action-observation history hi

t. The difference return
∆Gi

t in thus defined as:

∆Gi
t(ai

t:T|st:T,a−i
t:T,hi

t:T) ,
T−t−1

∑
l=0

γl∆Ri(ai
t+l |st+l ,a−i

t+l ,h
i
t+l), (5.2)

while the decentralized policies are learned by using the update target:

θi ← θi + α
T−1

∑
t=0

γt∆Gi
t(ai

t:T|st:T,a−i
t:T,hi

t:T)∇θi log πθi(ai
t|hi

t)︸ ︷︷ ︸
gDR,i

. (5.3)

When complete access to the reward function is not available, a modified version
of Dr.ReinforceR can be applied. The centralized reward network Rψ, by following
the CTDE paradigm, can still be learned in the same way as in Equation 4.3 and
condition on the environment state s ∈ S, as it is not required during execution.
While centralized state-based critics like COMA one have been proved to not always
improve performances and introduce bias or variance in the policy gradients [80, 5,
81], learning a centralized reward network that conditions on the true state of the
environment even in a partially observable setting is theoretically sound, as the true
reward function of the environment does indeed depend on the state and the joint
action of the agents.

To use the centralized reward network for estimates, it is enough to adapt Equation
4.4 as done before, thus obtaining:

∆Ri
ψ(ai

t|st,a−i
t ,hi

t) , rt − ∑
ci∈Ai

πθi(ci|hi
t)Rψ(st,〈ci,a−i

t 〉), (5.4)

and consequently adjust Equation 4.5 as:

∆Gi
t(ai

t:T|st:T,a−i
t:T,hi

t:T) ,
T−t−1

∑
l=0

γl∆Ri
ψ(ai

t+l |st+l ,a−i
t+l ,h

i
t). (5.5)

5 .2 theoretical results

Above, Dr.Reinforce has been adapted to partially observable settings, and intuitively
it can improve learning by providing individual agents with a better learning signal.

5 .2 theoretical results 107

In these settings, using difference rewards as the agents’ learning signal induces a par-
tially observable stochastic game [56, 98] P̂ = 〈D,S,{Ai}|D|i=1,T,{∆Ri}|D|i=1,{Oi}|D|i=1,Z〉
in which the cooperating agents do not receive the same reward after each time step.
Even though difference rewards are aligned with the true reward values [1, 93], for
these games convergence to an optimal solution is not immediate.

When agents are required to base their decisions on their local action-observation
history hi

t, the same result on an unbiased baseline derived in Section 4.2 for the
fully observable case does not hold anymore. Generally speaking, this is due to the
Monte-Carlo nature of the difference return ∆Gi

t, that requires future quantities in
order to compute the value of the baseline. The local histories for the episode time
steps (used to compute the aristocrat utility values in the r.h.s. of Equation 5.2) are
now strictly depending on the actions selected at the previous time steps, and thus
break this independence of the baseline from the currently selected action.

Observation. In a Dec-POMDP setting, using difference return
∆Gi

t(ai
t:T|st:T,a−i

t:T,hi
t:T) as the learning signal for policy gradients in Equation 5.3 is in gen-

eral not equivalent to subtracting an unbiased baseline Bi(st:T,a−i
t:T,hi

t:T) from the distributed
policy gradient in Equation 2.28.

Proof. Let start by rewriting ∆Gi
t(ai

t:T|st:T,a−i
t:T,hi

t:T) from Equation 5.2 as:

∆Gi
t(ai

t:T|st:T,a−i
t:T,hi

t:T) =
T−t−1

∑
l=0

γlrt+l

−
T−t−1

∑
l=0

γl ∑
ci∈Ai

πθi(ci|hi
t+l)R(st+l ,〈ci,a−i

t+l〉). (5.6)

Note that the first term on the r.h.s. of Equation 5.6 is the return Gt used in
Equation 2.28. Let us then define the second term on the r.h.s. of Equation 5.6 as the
baseline Bi(st:T,a−i

t:T,hi
t:T):

Bi(st:T,a−i
t:T,hi

t:T) =
T−t−1

∑
l=0

γl ∑
ci∈Ai

πθi(ci|hi
t+l) · R(st+l ,〈ci,a−i

t+l〉). (5.7)

The total expected update target for agent i can thus be rewritten as:

Eπθ

[
ĝDR,i

]
= Eπθ

[
T−1

∑
t=0

(
∇θi log πθi(ai

t|hi
t)
)

∆Gi
t(ai

t:T|st:T,a−i
t:T,hi

t:T)

]
(5.8)

(by definition of ∆Gi
t)

= Eπθ

[
T−1

∑
t=0

(
∇θi log πθi(ai

t|hi
t)
) (

Gt − Bi(st:T,a−i
t:T,hi

t:T)
)]

(5.9)

108 extending dr .reinforce to po settings

(distributing the product)

= Eπθ

[
T−1

∑
t=0

(
∇θi log πθi(ai

t|hi
t)
)

Gt

−
(
∇θi log πθi(ai

t|hi
t)
)

Bi(st:T,a−i
t:T,hi

t:T)
]

(5.10)

(by linearity of the expectation)

= Eπθ

[
T−1

∑
t=0

(
∇θi log πθi(ai

t|hi
t)
)

Gt

]

−Eπθ

[
T−1

∑
t=0

(
∇θi log πθi(ai

t|hi
t)
)

Bi(st:T,a−i
t:T,hi

t:T)

]
= Eπθ

[
ĝi
]
+ Eπθ

[
ĝB,i
]

. (5.11)

In order to show that the baseline is unbiased the expected value of its update
Eπθ

[
ĝB,i] with respect to the policy πθ should be 0. Let

Pπθ (ht) = Pπθ (ht−1) · πθ(at−1|ht−1)∑st∈S Pπθ
t (st) · Z(ot,st) (with

Pπθ (h0) = ∑s0∈S Z(o0|s0)ρ(s0) and ρ(s0) the initial state distribution) be the joint
action-observation history distribution. Let also define the complete system history
ĥt = 〈ht,at,s0:t〉 ∈ Ĥt, so that Pπθ (ĥt) = Pπθ (ht) · πθ(at|ht) ·∏t

l=0 Pπθ

l (sl), it follows
that:

Eπθ

[
ĝB,i
]
, −Eπθ

[
T−1

∑
t=0

(
∇θi log πθi(ai

t|hi
t)
)

Bi(st:T,a−i
t:T,hi

t:T)

]
(5.12)

(by expanding the expectation)

= −
T−1

∑
t=0

∑
ĥt∈Ĥt

Pπθ (ĥt)
(
∇θi log πθi(ai

t|hi
t)
)

∑
ĥT∈ĤT

Pπθ (ĥT|ĥt) Bi(st:T,a−i
t:T,hi

t:T)

(5.13)

(by applying the inverse log trick)

= −
T−1

∑
t=0

∑
ht∈Ht

Pπθ (ht) ∑
a−i

t ∈A−i

πθ−i(a−i
t |h−i

t)

∑
ai

t∈Ai

(
∇θi πθi(ai

t|hi
t)
)

∑
ĥT∈ĤT

Pπθ (ĥT|ĥt) Bi(st:T,a−i
t:T,hi

t:T)

(5.14)

(by moving the gradient outside the policy sum)

5 .3 starcraft ii experiments 109

6= −
T−1

∑
t=0

∑
ht∈Ht

Pπθ (ht) ∑
a−i

t ∈A−i

πθ−i(a−i
t |h−i

t)

∇θi ∑
ai

t∈Ai

πθi(ai
t|hi

t)

 ∑
ĥT∈ĤT

Pπθ (ĥT|ĥt) Bi(st:T,a−i
t:T,hi

t:T)) (5.15)

(5.16)

The gradient cannot be moved outside of the sum now (as done in Equation 4.16),
because of the baseline Bi depending on the policy parameters via the agent action ai

t

included in the histories hi
t+1:T. The sum over the policy term is therefore a weighted

summation over different baseline values, and these in general do not sum up to 0,
and thus the baseline is in general not unbiased (although problems for which the
summation is 0 in any case may exist, and in these special cases the baseline is still
unbiased).

The result in the above Lemma shows that using the baseline in Equation 5.7
alter the expected value of the overall gradient, as the baseline Bi(st:T,a−i

t:T,hi
t:T) is not

unbiased, and thus the policy gradients are not guaranteed to converge to the same
local optimum of the distributed policy gradient [112].

5 .3 starcraft ii experiments

Although there is no theoretical guarantee on the convergence of the proposed
methods under partial observability, these might still work well in practice. There-
fore, application of the proposed methods on the StarCraft II multi-agent challenge
(SMAC1) [123] has been investigated to show good empirical performances. StarCraft
II2 is an highly complex strategic game from Blizzard3 in which two opposing factions
(either player vs. player or player vs. game AI) compete to gather resources, build
structures and fight against the opponent army to win the game. The game can be
divided into two different aspects:

1. Macromanagement: the set of choices that involves resource management and
the game economy;

2. Micromanagement: the fine-grained control of army units during a fight.

SMAC focuses on the micromanagement aspect of the game, by providing a wide
set of diverse scenarios, each with a different number and different types of units
fighting against an opposing team controlled by the game AI. Each of the player’s
units is controlled by an individual agent (no centralized controller is allowed), and

1 SMAC is available at https://github.com/oxwhirl/smac
2 StarCraft II official website: https://starcraft2.com/
3 Blizzard official website: https://www.blizzard.com/

https://github.com/oxwhirl/smac
https://starcraft2.com/
https://www.blizzard.com/

110 extending dr .reinforce to po settings

(a) 2c_vs_64zg

(b) so_many_baneling

Figure 5.1: Two example SMAC scenarios with different types of units and their remaining
health. Source: Samvelyan et al. 2019.

has to select one of its available actions based only on its local view of the battlefield.
Such a view is composed of information on the ally and enemy units that are within a
limited observation radius, that is the range of sight for a given unit. The other units
that are outside such a range are not observed directly, and thus the environment is
partially observable from each agent’s own perspective. Units have a given amount
of health (and some types also have an additional shied) that is reduced when hit
by opposing fire, and after which a unit is considered dead and removed from the
game. Agents are rewarded with a small positive value for killing an enemy unit,
and with a larger one for winning a battle (although the reward function can be
configured to also give penalties for a dead ally or even be entirely sparse and only
reward agents at the end of the episode). All the agents share the same reward value,
as the environment is cooperative. Agents are required to learn highly complex and
coordinated strategies in order to maximize their damage to opposing units and
reduce the incoming damage, in order to kill all of these (before the opposing team

5 .3 starcraft ii experiments 111

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
T (mil)

0

5

10

15

20

M
ed

ia
n

Te
st

 R
et

ur
n

3m

Dr.ReinforceR
COMA
Colby
CentralQ
PG

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
T (mil)

0

5

10

15

20

M
ed

ia
n

Te
st

 R
et

ur
n

8m

Dr.ReinforceR
COMA
Colby
CentralQ
PG

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
T (mil)

0

5

10

15

20

M
ed

ia
n

Te
st

 R
et

ur
n

25m

Dr.ReinforceR
COMA
Colby
CentralQ
PG

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
T (mil)

0

5

10

15

20

M
ed

ia
n

Te
st

 R
et

ur
n

2s3z

Dr.ReinforceR
COMA
Colby
CentralQ
PG

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
T (mil)

2.5

5.0

7.5

10.0

12.5

15.0

M
ed

ia
n

Te
st

 R
et

ur
n

3s5z

Dr.ReinforceR
COMA
Colby
CentralQ
PG

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
T (mil)

0

5

10

15

20

M
ed

ia
n

Te
st

 R
et

ur
n

MMM

Dr.ReinforceR
COMA
Colby
CentralQ
PG

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
T (mil)

0

2

4

6

8

M
ed

ia
n

Te
st

 R
et

ur
n

5m_vs_6m

Dr.ReinforceR
COMA
Colby
CentralQ
PG

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
T (mil)

0

2

4

6

8

10

12

M
ed

ia
n

Te
st

 R
et

ur
n

8m_vs_9m

Dr.ReinforceR
COMA
Colby
CentralQ
PG

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
T (mil)

0.0

2.5

5.0

7.5

10.0

12.5

15.0

M
ed

ia
n

Te
st

 R
et

ur
n

10m_vs_11m

Dr.ReinforceR
COMA
Colby
CentralQ
PG

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
T (mil)

0

2

4

6

8

10

M
ed

ia
n

Te
st

 R
et

ur
n

3s5z_vs_3s6z

Dr.ReinforceR
COMA
Colby
CentralQ
PG

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
T (mil)

0

2

4

6

8

10

12

M
ed

ia
n

Te
st

 R
et

ur
n

MMM2

Dr.ReinforceR
COMA
Colby
CentralQ
PG

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
T (mil)

0

1

2

3

4

5

M
ed

ia
n

Te
st

 R
et

ur
n

2m_vs_1z

Dr.ReinforceR
COMA
Colby
CentralQ
PG

Figure 5.2: Training curves on the entire set of SMAC scenarios, showing the median return
and 25− 75% percentiles across seeds.

112 extending dr .reinforce to po settings

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
T (mil)

0

5

10

15

20
M

ed
ia

n
Te

st
 R

et
ur

n

2s_vs_1sc

Dr.ReinforceR
COMA
Colby
CentralQ
PG

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
T (mil)

0

2

4

6

8

10

M
ed

ia
n

Te
st

 R
et

ur
n

3s_vs_3z

Dr.ReinforceR
COMA
Colby
CentralQ
PG

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
T (mil)

0

1

2

3

4

5

6

M
ed

ia
n

Te
st

 R
et

ur
n

3s_vs_4z

Dr.ReinforceR
COMA
Colby
CentralQ
PG

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
T (mil)

0

1

2

3

4

M
ed

ia
n

Te
st

 R
et

ur
n

3s_vs_5z

Dr.ReinforceR
COMA
Colby
CentralQ
PG

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
T (mil)

4

6

8

M
ed

ia
n

Te
st

 R
et

ur
n

6h_vs_8z

Dr.ReinforceR
COMA
Colby
CentralQ
PG

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
T (mil)

1.5

2.0

2.5

3.0

3.5

4.0
M

ed
ia

n
Te

st
 R

et
ur

n
corridor

Dr.ReinforceR
COMA
Colby
CentralQ
PG

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
T (mil)

10

12

14

16

18

M
ed

ia
n

Te
st

 R
et

ur
n

bane_vs_bane

Dr.ReinforceR
COMA
Colby
CentralQ
PG

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
T (mil)

7.5

10.0

12.5

15.0

17.5

20.0

M
ed

ia
n

Te
st

 R
et

ur
n

so_many_baneling

Dr.ReinforceR
COMA
Colby
CentralQ
PG

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
T (mil)

8

10

12

14

16

18

M
ed

ia
n

Te
st

 R
et

ur
n

2c_vs_64zg

Dr.ReinforceR
COMA
Colby
CentralQ
PG

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
T (mil)

5

10

15

20

M
ed

ia
n

Te
st

 R
et

ur
n

1c3s5z

Dr.ReinforceR
COMA
Colby
CentralQ
PG

Figure 5.2: Training curves on the entire set of SMAC scenarios, showing the median return
and 25− 75% percentiles across seeds.

5 .3 starcraft ii experiments 113

is able to do it in turn). Some of these scenarios present an heterogeneous team
(comprising different types of units), require to fight against an asymmetric team of
opponents or to learn specific and coordinated strategies in order to succeed.

As with the current game back-end [155] it has not been possible to obtain all the
reward values for the possible agents’ actions, Dr.Reinforce has not been investigated
here, and thus only Dr.ReinforceR is investigated. Figure 5.2 shows median return
and 25− 75% percentiles across 10 independent runs on the whole set of available
scenarios, with the difficulty level of the opponent team set to Very Hard.

In this setting, Dr.ReinforceR is almost never underperforming with respect to
all the other baselines, with significant improvements over COMA on heterogeneous
scenarios like 3s5z, 1c3s5z or MMM. This shows how learning the Q-function may
be difficult in complex settings with large state and action spaces and multiple
agents, while the centralized reward network can be learned more easily and in
turn produces better policies. Also, it is worth mentioning that the severe partial
observability of this setting is well addressed in practice by the use of the CTDE
paradigm, with the reward network conditioned on the true state s: these results show
how advantageous it is to resort to centralized training of the reward representation
over a local approximation as in the algorithm from [25]. In particular, the good
performance on the 25m scenario, involving a large number of agents, shows again
the better scalability of the proposed centralized reward network with respect to
a centralized Q-function critic, where the effects of bootstrapping and the moving
target problem become even more severe.

A noticeable exception is represented by the so_many_baneling scenario, where
COMA is achieving a good result while neither Dr.ReinforceR nor any of the other
baselines are capable of outperforming it. An hypothesis for this is that the difference
return ∆Gi

t is driving each agent into performing the more rewarding actions at each
step (for example, hit an opponent if possible), but in the long run this strategy is not
a winning one on this particular scenario, with the agents never experiencing the high
reward for winning and thus never being able to change their learned behaviours.
Reasoning on the more complex Q-function here could be helpful to drive the policies
towards a winning situation at the cost of performing actions that seem suboptimal
at the current step.

Another commonly used metric to evaluate agents in SMAC is the win rate,
i.e. how many battles the learned team of agents is capable of winning against the
opposing team. This metric gives a proper understanding of the behaviour of the
agents, and in general an increase in the win rate also entails an increase in the overall
return (as the agents are receiving a very high reward for winning a battle). Policy
gradient methods are known to perform poorly on the most challenging SMAC
scenarios, where value-based methods are generally preferred [115, 158] (although
some more recent and complex multi-agent policy gradient algorithms are also
achieving significant performances [180, 126]). Dr.ReinforceR, although in general

114 extending dr .reinforce to po settings

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
T (mil)

0

20

40

60

80

100

M
ed

ia
n

Ba
ttl

e
W

on
 %

25m

Dr.ReinforceR
COMA
Colby
CentralQ
PG

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
T (mil)

0

20

40

60

80

M
ed

ia
n

Ba
ttl

e
W

on
 %

2s3z

Dr.ReinforceR
COMA
Colby
CentralQ
PG

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
T (mil)

0

10

20

30

40

M
ed

ia
n

Ba
ttl

e
W

on
 %

3s5z

Dr.ReinforceR
COMA
Colby
CentralQ
PG

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
T (mil)

0

20

40

60

80

100

M
ed

ia
n

Ba
ttl

e
W

on
 %

MMM

Dr.ReinforceR
COMA
Colby
CentralQ
PG

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
T (mil)

0

20

40

60

80

100

M
ed

ia
n

Ba
ttl

e
W

on
 %

2s_vs_1sc

Dr.ReinforceR
COMA
Colby
CentralQ
PG

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
T (mil)

0

20

40

60

80

100
M

ed
ia

n
Ba

ttl
e

W
on

 %
1c3s5z

Dr.ReinforceR
COMA
Colby
CentralQ
PG

Figure 5.3: Training curves on a set of SMAC scenarios, showing the median victory rate and
25− 75% percentiles across seeds.

improving the win rate over COMA on some of the simpler scenarios, still struggles
to achieve significant victories on most of the hardest ones, like 6h_vs_8z or MMM2,
even though the median return for these is significantly higher than that of the other
baselines. Complete results for this metric are reported in Appendix B.3, while only
some of the settings in which a significant improvement is achieved are shown in
Figure 5.3. Similarly to above, the plots show the median win rate and 25− 75%
percentiles across 10 independent runs.

Dr.ReinforceR is greatly improving performances over COMA on some scenar-
ios, including heterogeneous ones like 1c3s5z or MMM and the asymmetric 2s_vs_1sc,
where it is achieving a perfect winning strategy. Interesting is the result on the 25m sce-
nario, one of the larger instances provided with SMAC: this once more demonstrates
the improved scalability of the reward representation, and how this is positively
affecting agents’ learned behaviours.

5 .4 discussion

Despite the good empirical results obtained by Dr.ReinforceR in the experiments
detailed above, Lemma 5.2 clearly shows that the combination of difference rewards

5 .4 discussion 115

and policy gradients in a partially observable setting has in general no theoretical
guarantees of convergence, as the baseline that is subtracted from the distributed
policy gradient is not unbiased. This means that experimental performances could be
unstable or arbitrarily bad.

Here possible alternatives to the currently investigated formulation that are
capable of restoring the theoretical convergence guarantees are eventually identified.
This could be ensured by replacing the current baseline Bi(st:T,a−i

t:T,hi
t:T) in Equation

5.7 with a new B̃i(st:T,a−i
t:T,hi

t) that does not depend on the currently selected action ai
t

via the local histories hi
t+1:T. A couple of possible solutions are proposed, that are not

however investigated in the current work:

1. Replace the current agent policy πθi(ai
t|hi

t) with a fixed policy µ(ai
t) (a type of

difference rewards also proposed in [169]):

B̃i(st:T,a−i
t:T) =

T−t−1

∑
l=0

γl ∑
ci∈Ai

µ(ci) · R(st+l ,〈ci,a−i
t+l〉).

This idea however would require to fix beforehand a policy µ(ai
t) to use, a

choice similar to that of the default action ai
d in Equation 2.24 [169, 114].

2. Use the current agent policy πθi(ai
t|hi

t), but do not condition on the local histories
for the episode time steps hi

t+1:T, but only on the current local history hi
t:

B̃i(st:T,a−i
t:T,hi

t) =
T−t−1

∑
l=0

γl ∑
ci∈Ai

πθi(ci|hi
t) · R(st+l ,〈ci,a−i

t+l〉).

3. Use a potential-based reward shaping mechanism to replace the baseline. These
are known to retain policy invariance in single-agent reinforcement learning,
both under full observability [93] as well as partial one [36], while in multi-agent
systems converge to the same set of Nash Equilibria of the policies learned
with the shared reward alone [30, 31], while improve learning performance. In
general, a potential-based reward shaping mechanism provides the agents with
a shaped reward r̂:

r̂ , rt + F(st,st+1)︸ ︷︷ ︸
B̃i

, (5.17)

where F(st,st+1) = γφ(st+1)−φ(st), and φ(s) is a suitable function that provides
additional information on the state s, so that F(st,st+1) is unbiased in expectation
with respect to the policy gradients, and thus keep the convergence guarantees.

A particular form of potential-based reward shaping, that combines its benefits
with those of difference rewards, is Counterfactual as Potential [32], in which
the potential-based reward shaping function is:

116 extending dr .reinforce to po settings

φ(s) = R(s−i), (5.18)

and R(s−i) is a reward term that marginalizes out the presence of agent i. It is to
note that, while in general such a term needs to be provided by the environment
itself via the use of a simulator (as with difference rewards), with a learned
reward network that issue could be overcome.

Another crucial aspect of Dr.ReinforceR is that it resorts to the CTDE framework
[70, 108] to learn its centralized reward network. Although CTDE is a widely used
and accepted methodology [108, 40, 79], it indeed restricts the training procedure to
be carried out offline and in a separate step from the agents execution. There are
settings however in which being able to retain decentralized execution while being
able to learn during real interactions with the environment may be required. In such
cases, it may be appropriate to replace the centralized reward network Rψ with a
set of individual reward networks Rψi(s,ai) (or Rψi(hi

t,a
i) when learning in a Dec-

POMDP), one for each agent i, to approximate the difference rewards computation.
These local networks are learning the expected value of the reward for each agent
when performing a certain action in a given situation, independently of what the
others are doing:

Rψi(s,ai) ≈ Eπ
θ−i

[
Rψ(s,〈ai,a−i〉)

]
. (5.19)

This additional approximation is suitable to break the dependence from the
CTDE paradigm, although it may introduce approximation error in the local reward
terms via the expectation over the other agents policies (while the centralized reward
network Rψ is in principle capable of perfectly approximate the reward function
R(s,a) and thus provide the policy gradients with perfect difference rewards values).

6C O N C L U S I O N S

In this final chapter the research questions introduced in Section 1.4 are finally
answered, relating them with the various aspects of the original work presented here.
Following, a summary of the original contributions of this thesis is provided, and
finally some possible future directions and current limitations of the presented work
are outlined.

6 .1 answering the research questions

RQ1: Is the general assumption on “higher-order” factorizations being helpful in
learning improved approximations in the multi-agent setting justified by practi-
cal results?

Chapter 3

Although it is widely assumed in literature that factored approaches can im-
prove the learning accuracy and efficiency in cooperative multi-agent systems,
no systematic study with a broad investigation of their applicability and perfor-
mance has ever been carried out before this work. In Chapter 3 such a lack of
investigation has been addressed in the deep reinforcement learning setting,
by comparing different factorizations, represented by neural networks, and
learning approaches on a diverse set of highly-coordinated one-shot problems.
These have been chosen as the minimum setting presenting most of the issues
related to the presence of multiple learning agents, as an exponential number
of joint actions. Different degrees of interconnection among the agents in the
coordination graph has been investigated, to assess how the structure of such a
graph is affecting the final performance, as well as trying to identify common
structures that perform well across different problems. Also, two learning rules,
one in which the agents jointly optimize their objective, the other in which
each component learns independently from the others, have been used. The
obtained results support the widely spread intuition that factorizations are
really of an help when learning in multi-agent systems: factorizations seem
to be in general capable of learning a good approximation of the action-value
function in many different coordination problems, even in situations where no
such a decomposable structure is suggested by the problem itself, and thus in
principle each agent needs to explicitly coordinate with all of the others in the
team to learn a correct behaviour. Moreover, when the problem can indeed be
decomposed into smaller components, the use of factorizations is of a great
benefit even when the coordination graph structure does not resemble the

117

118 conclusions

true underlying decomposition of such a problem (as done in the proposed
experiments, where the factored games were indeed treated as black-boxes
with unknown properties). Action-value functions approximated via a factored
representation based on neural networks are generally close to their original
counterparts both in terms of mean prediction error and ranking of the actions.

Both independent learners and centralized controllers can be seen as the two
opposite extreme cases of a factorization: the first one resembles the case where
each agent is not explicitly coordinating with any of the others, while the latter
is the case where all the agents can explicitly coordinate and learn jointly. Both
approaches however are known to have issues: while independent learners
are easy to learn because each agent only has to rely on local information, the
environment becomes non-stationary from each agent’s own perspective, and
thus achieving complex coordination becomes difficult. On the other hand, a
centralized controller allows all the agent to learn the value of their joint actions,
but it scales exponentially in the number of agents, and thus quickly becomes
impractical to be applied to growingly large multi-agent systems. Factorizations
offer a suitable middle ground between these two approaches: on one hand
these allow for some degree of explicit coordination among the subset of agents
comprised into each factor, while on the other hand these approximate the
joint action-value function by mean of a set of such factors, each one being
considerably smaller than a centralized controller itself. This results in improved
approximations over both the extremes: the coordination inside each component
allows a factored approach to learn the value of coordination more easily than
independent learners, while the reduced size of each such components speeds
up their learning and eases the exponential explosion of the joint action set.

As many problems do not present a decomposable structure, it is often useful to
resort to an approximate factorization to try and learn an approximated action-
value function. This approximation however can be done in many different
ways, and the choice of a particular coordination graph used to connect the
agents is going to affect also the overall learned approximation. In Chapter 3 an
array of different possibilities has been proposed (although many other can be
imagined and tested), with the aim of general applicability as one of the main
goals. The results highlight some fundamental aspects that system designers
can keep in mind when resorting to this kind of techniques:

1. The number of factors seem to be a choice of the primary importance.
As expected, introducing more components in which the agents can ex-
plicitly coordinate with a subset of the others is helpful in reducing the
approximation error and identify the optimal joint actions. Although the
use of a complete coordination graph has proved effective on almost every
problem, there are situations in which such a solution may be redundant: it

6 .1 answering the research questions 119

may suffice to use a smaller coordination graph, where fewer components
are used and learned, to still obtain a useful action-value function, while at
the same time making the learning faster. The number of factors can thus
be seen as a trade-off value between accuracy and speed, and a careful
tuning of such a parameter may be crucial, and still tied to the problem at
hand to some extent.

2. On the other hand, the experiments show that the largeness of these factors
is less crucial a choice. Although it may be useful to have more agents
into each component, thus allowing them to coordinate explicitly, good
results can be obtained in many situations even with just two agents into
each factor. This intuition is in accordance to the one above: if agents are
comprised into multiple factors, such factors can be of a small size, as
the agents are still going to adjust the values for their actions considering
those of the others.

3. The choice of the learning approach places somewhere in-between these
two aspects: a joint optimization of the objective is beneficial in many
situations, and in general reduces the mean square error of the learned
approximation. This setting is for example a common choice under the
CTDE paradigm [139, 115, 135, 158], where agents are trained centrally in
simulation before being deployed. But, especially if the main interest is
on the ranking of the actions rather than a perfect representation, it may
simply suffice to optimize each component independently from the others.
This situation is not unrealistic: for example, if the overall representation
is used in couple with an (ε-)greedy policy to drive the behaviours of the
agents, recognizing the optimal actions is enough to achieve good policies.

However, there are some problem-specific aspects that none of the investigated
representations seems able to deal with, such as an unbalance in the reward
function (as in the Platonia Dilemma). For these, factored approaches do not
seem to offer the same level of improvement achieved on other problems, and
could indeed lead to wrong representations.

Another crucial aspect that has been investigated is how these approaches scale
in the number of agents: in many situations the system may comprise a signifi-
cant number of agents, and this in turn may exacerbate the problem of both
independent learners (more ignored agents that render the environment even
more noisy) and centralized controller (because of the exponential explosion
of the number of joint actions). Factorizations however are less prone to suffer
from this: the proposed coordination graph structures seem to scale gracefully
when more agents are present in the system, retaining their good accuracy
and speed-up in learning. This is an extremely desirable property, and partly
justifies the recent interest in value-decomposition methods from the research

120 conclusions

community. Because of the small number of agents comprised into each factor
with respect to the overall team size, also sample efficiency scales better than
that of a centralized controller: when simulators are not available and training
samples are difficult to gather, this is a crucial benefit.

RQ2: Can difference rewards applied to the reward function (possibly by learning
a representation of it) provide better learning signals to distributed agents
compared to the same idea applied on a centralized action-value critic?

Chapter 4

In cooperative multi-agent settings, the agents usually share the same reward
value given by the environment after each interaction. Although this signal is
useful to represent problems with a common goal, it does not tell anything to
the agents about their own contribution to the team performance: indeed, with
an high reward signal, an agent may be fooled into thinking that its policy is
good and it is performing well, although there may be more suitable behaviours
leading to even higher rewards. Difference rewards are a family of algorithms
that allow each agent to learn from a shaped reward signal that reflects its own
actual contribution to the shared reward. This way, an agent can change its
own behaviour towards regions that improves its own shaped reward signal,
and in turn the overall reward of the whole team. In Chapter 4 difference
rewards have been combined with distributed policy gradients, a multi-agent
algorithm that allows us to learn decentralized policies via policy gradients. The
proposed algorithm, Dr.Reinforce, that has full access to the reward function
and thus may retrieve all the required reward values needed to compute the
difference rewards, has proved effective on a variety of multi-agent problems.
In comparison to standard distributed policy gradients, the difference rewards
mechanism proves extremely effective in driving the learning of the agents,
and allows them to achieve higher return policies with just little computational
burden. Also, such a mechanism seem capable of dealing with a sparse reward
function (as in the predator-prey problem), and thus could possibly be adapt to
tackle delayed rewards in a realistic control setting. The presented theoretical
results show how the use of difference rewards corresponds to subtracting an
unbiased baseline from these policy gradients, that in fully observable settings
has been proved to converge. Such a baseline thus reduces the variance of
the gradients without altering the expected value of the gradients themselves.
Counterfactual Multi-Agent Policy Gradients (COMA) [40] is a state-of-the-
art multi-agent algorithm that applies the idea of difference rewards to the
Q-function by providing each agent with a counterfactual advantage function
that marginalizes out the agent own contribution. This idea seems to be widely
applicable and should ease the multi-agent credit assignment problem that
arises in cooperative settings, but empirical performance of COMA has been

6 .1 answering the research questions 121

shown to be quite weak in a number of problems. In contrast, the proposed
Dr.Reinforce seems to be applicable to a variety of settings with good results
when the reward function is known.

The second proposed algorithm, Dr.ReinforceR, overcomes the dependence
of Dr.Reinforce on the capability of fully accessing the environment reward
function in order to compute the difference rewards values. To do so, an
additional centralized reward network is learned following the CTDE paradigm,
together with the agents’ policies, to represent such a reward function, and is
then used to estimate the required values. Empirical performances show that
Dr.ReinforceR is performing well, and it is generally matching the performances
of Dr.Reinforce (that represents an upper bound for the case in which the
reward function has perfectly converged to the real one). The reasons for
these performances have been investigated by comparing the learned reward
approximation with COMA action-value function critic. Both functions depend
on the joint action of the team, and thus suffer from the exponential explosion
of such actions with the number of agents. However, the centralized reward
network of Dr.ReinforceR achieves better representations that COMA critic,
resulting in a lower normalized prediction error and lower variance. This is due
to a number of reasons: first, the reward function can be learned via supervised
learning, and does not involve bootstrapping as with the action-value function,
so that wrong or inaccurate predictions cannot influence the value of other
predictions via updates. Moreover, no moving target problem arises: the reward
function is fixed and can be correctly learned since the very beginning, while the
action-value function that needs to be learned changes depending on the agents
policies and the learned approximation itself. Although target networks are
used to ease this problem, this still remains a significant challenge in multi-agent
settings.

RQ3: Can the same idea be extended to partially observable settings and still improve
performances?

Chapter 4 & 5

Policy gradient methods can be straightforwardly extended to address partially
observable settings [166], and thus are a popular choice for these problems.
Both Dr.Reinforce and Dr.ReinforceR can be similarly extended without too
many algorithmic changes, although this way the theoretical guarantees that
were derived for the fully observable case are not valid anymore. Nonetheless,
on the challenging SMAC domain, an highly-complex partially observable
setting where no knowledge of the reward function is available, Dr.ReinforceR
outperforms COMA on almost all the available maps in terms of achieved
return (and in some cases, also in terms of win rate). This shows how the
idea of applying a difference rewards mechanism to tackle multi-agent credit

122 conclusions

assignment is indeed still effective also under partial observability, and how
using it with the reward function as proposed seems to solve a number of
weaknesses that deem COMA.

6 .2 summary of contributions

This thesis work investigated the effects that learning different representations may
have on performance in cooperative multi-agent systems. The focus has been on two
fundamental aspects: the team representation and the problem of multi-agent credit
assignment. About the former, the research community has long gained interest in
factored representations [50, 53, 52], a middle ground between the two more classical
approaches of independent learners and centralized controllers. While these have
been assumed to result in improved approximations of the action-value function
(with a multitude of recent deep MARL algorithms relying on this idea [139, 115,
135, 158, 175, 111, 10, 76, 137, 160, 181, 89]), no proper investigation of the real
merits and limitations of factored methods has been carried out so far. This work
somehow bridges this gap, by comparing different factorizations, with a special focus
on “higher-order” decompositions, on a wide set of one-shot multi-agent problems
requiring coordination, investigating both the approximation accuracy and the action
ranking produced by different instantiations of these methods, to provide a clearer
understanding of which situations can be tackled with factored approaches and
which cannot, as well as trying to provide common guidelines for system designers
for their implementation choices. As for multi-agent credit assignment, difference
rewards methods [169, 168, 178, 114, 26, 25] have been proposed to tackle it. Although
these have been also applied to deep MARL algorithms, with COMA [40] as the main
example, the focus has been of applying the differencing mechanism to the Q-function
(learned with a centralized critic), with empirical performances that usually do not
match the expectations. This is possibly due to the inherent difficulties of learning
the Q-function in a multi-agent setting, such as the dependence on the exponentially
many joint actions or the use of bootstrapping. In this work two novel algorithms have
been proposed to tackle multi-agent credit assignment while at the same time avoid
the pitfalls of learning an action-value function critic. The core idea is to combine
decentralized policy gradients with the use of the true reward function to compute
the differencing (or to learn it through a centralized reward network in case that is
not known beforehand), and the proposed results and analysis show that this is a
viable approach to learn an accurate representation and apply difference rewards.

6 .3 limitations and future work

While the analysis carried out in Chapter 3 has shed some light on a proper un-
derstanding of factorizations applicability and general performance, still a lot could

6 .3 limitations and future work 123

be done. For example, only one-shot settings has been considered, to try and limit
possible sources of interference with the main difficulties that arise in the cooperative
multi-agent setting (namely, the exponential number of joint actions leading to a very
large function to approximate and the tight coordination requirements). However,
many problems are indeed of a sequential nature, and thus agents need to coordinate
differently on each state. Although our general results are still valid in these settings
(every sequential setting can be reduced to a one-shot problem where the agents
have to select their optimal policy), a deeper analysis to understand the impact of the
environment state would be beneficial for the research community. Algorithms like
DCG [10] already showed an empirical applicability of “higher-order” factorizations
in practice, but what kind of approximations these are really learning and how accu-
rate these are is still unclear. Moreover, the proposed results provided some general
guidelines and trends that can be followed when implementing a factored approach,
but also showed how there is no general "suitable-for-all-needs" configuration that
can always be used and provides good results. This points out that the choice of a
suitable factorization is a delicate problem, and although these are shown to help
in general, such a choice requires careful thinking and depends on the problem at
hand. Finally, the use of centralized training could be seen as somehow limiting:
while the proposed factored approaches can be useful under the CTDE paradigm,
for example to represent a centralized action-value critic in a multi-agent actor critic
method, these would require also centralized execution if used for decision making,
a possibility that is usually not available and may result problematic in any case (in
cases of a failure of the centralized component or when more agents need to enter the
environment). A possible future direction to extend such a work could be a broader
investigation of other coordination graph structures, or even investigating adaptive
coordination graphs that can be learned together with the action-values. Coordination
graph learning algorithm (like that proposed in [76], that uses graph networks) can
be used to remove the burden of the graph architectural choice, possibly expanding
the applicability of “higher-order” factorizations also to unseen situations and to
more general problems.

Also the novel algorithms proposed in Chapter 4 and 5 have some possible
limitations that could be tackled: for example, although the empirical performances on
partially observable settings (as those on the StarCraft II challenge) are satisfactory, the
issue of the proposed baseline not being unbiased in such settings may potentially lead
to completely wrong behaviours on other problems. As it is a common assumption
to model a cooperative multi-agent problem as a partially observable environment, a
potential solution to this issue could result in a wider applicability of such algorithms.
Possible alternative baselines has been proposed in Section 5.4, and in future work a
comparison of these may lead to improved performances and theoretical guarantees.
Also, the proposed centralized reward network used by Dr.ReinforceR, although it
has been shown to be easier to learn than a centralized critic, has still the same

124 conclusions

dependence of the exponentially large joint action set, and thus may be problematic
to learn as well in some settings. Possible solutions to this would be to resort to
either factorization techniques (as these have been shown to help in Chapter 3) or
to learn an individual reward network for each agent, a solution that also break
the dependence of the proposed algorithm on the CTDE paradigm. Single-agent
decompositions like those used in VDN [139] or QMIX [115] could result in better
approximations of the reward function, and in turn to better difference rewards
signals (as the computation of difference rewards values strongly depends on the
accuracy of the approximated values, even those of unseen state-action pairs). Finally,
it is to note that the two algorithms could also benefit from a series of improvements
that have been proposed in literature and are orthogonal to the issue addressed
here: as an example, multi-agent policy gradients based on the proximal policy
optimization (PPO) [127] algorithm, with its clipped objective for the policy gradients
that is known to limit policy distance between consecutive updates and improve
performances, are gaining increasing attention in the cooperative multi-agent field
[126, 180, 170]. It is not difficult to apply such techniques to the two algorithms
proposed here, that could possibly lead to even better results.

AA D D I T I O N A L P O L I C Y G R A D I E N T S T R A I N I N G D E TA I L S

a .1 hyperparameters and training procedure

For the implementation, the pymarl [123] framework1 has been extended, as already
providing many useful tools and the official implementation of COMA to compare
against. The policy networks are either feed-forward networks for the two gridworld
problems or GRU [22] to deal with partial observability on SMAC, and both use
parameter sharing across agents [54] to reduce training time, while the critics and
reward networks always use feed-forward networks instead.

On each of the three problems independently, the optimal values for the policy
learning rate αθ and the critic or reward network one αω/ψ [42] have been found for
each method through a gridsearch over a common set of standard values. The setting
with N = 3 agents for the two gridworld environments and the map 2s3z on SMAC
has been used, and the values obtained this way have been subsequently used for the
other instances of the same domain respectively. Table A.1 reports the value of the
used learning rates αθ and αω/ψ for each compared method on each problem.

Multi-Rover Predator-Prey SMAC
Method αθ αω/ψ αθ αω/ψ αθ αω/ψ

Dr.Reinforce 25 · 10−4 N.A. 25 · 10−4 N.A. N.A. N.A.
Dr.ReinforceR 25 · 10−4 25 · 10−4 5 · 10−4 25 · 10−4 25 · 10−4 25 · 10−4

COMA 1 · 10−2 5 · 10−4 1 · 10−2 5 · 10−4 25 · 10−4 5 · 10−4

[25] 5 · 10−3 25 · 10−4 5 · 10−4 1 · 10−2 5 · 10−4 5 · 10−4

CentralQ 5 · 10−4 25 · 10−4 5 · 10−4 5 · 10−3 5 · 10−4 5 · 10−4

PG 5 · 10−4 N.A. 5 · 10−4 N.A. 5 · 10−4 N.A.

Table A.1: Value of the learning rates for each method.

COMA [40] and CentralQ critics have been trained using the TD(λ) [140, 141]
variant presented in [40]. For these, the optimal value for the parameter λ with the
learning rates already found by the gridsearches has also been identified following
the same procedure detailed above, resulting in the values in Table A.2:

Method Multi-Rover Predator-Prey SMAC

COMA 0.4 0.8 0.8
CentralQ 0.2 0.8 0.8

Table A.2: Value of λ for each method.

1 pymarl is available at https://github.com/oxwhirl/pymarl

125

https://github.com/oxwhirl/pymarl

126 additional policy gradients training details

All the methods have been trained for the same amount of steps and all their other
hyperparameters are set to the corresponding default values provided by the pymarl

framework, without being optimized: the reward network Rψ and the critic network
Qω for CentralQ and COMA all have the same structure, that is a two-layer feed-
forward neural network with 128 hidden units using the ReLU activation function
[90] before the final linear layer, as the size of the functions these have to represent is
analogous. Every experiment has been repeated 10 times with different random seeds
to assess variance across multiple runs, and in each episode the initial configuration
has been randomly reset to avoid the policies to overfit.

BA D D I T I O N A L R E S U LT S A N D P L O T S

b .1 factorizations complete results

Table B.1 presents the accuracy of all the investigated representations using vari-
ous measures, both in terms of action ranking and reconstruction error, as well as
evaluating the action selection that these representations result in:

• To evaluate the reconstruction error, the mean square error is computed over
all the joint actions (1st column);

• Also, the same measure but restricted only to those actions that are optimal in
the original action-value function in analysed (2nd column);

• It is assessed how many optimal actions are correctly identified by the recon-
structions (3rd column);

• The value loss (regret) obtained by following the represented value functions
when doing decision making (4th column);

• It is also provided a different version of this regret, that is dubbed Boltzmann
value loss which expresses the value loss obtained by the expected reward
accrued by defining a softmax distribution over all the joint actions (5th column).
This gives an indication of value loss among all good actions; and

• Finally, the number of correctly ranked actions (accounting for ties where
needed) is computed and the corresponding Kendall τ-b coefficient [66] between
the computed ranking and the original one (6th and 7th columns respectively).

A low value on the first two columns indicates that a representation is close to
the original action value function: especially when the value of on second column
is low in combination with the value of the third one, the learned representation
tends to correctly reconstruct and identify the optimal joint actions. The fourth and
fifth columns tell how reliably these representations can be used to perform decision
making (i.e. when applying a greedy policy with respect to the joint action-value
function during the evaluation phase) under two different kinds of policy. In fact, if
the regret is low, even if the representation is not accurate, the model can still be used
to pick actions for the team resulting in high rewards. Finally, the last two columns
point out if the reconstructed values of the joint actions match the same hierarchy
that these have in the original action-value function: even if the representation is not
accurate in terms of mean squared error, a correct ranking of the actions points out
that it has the same structure of the original one, and thus the two are similar except

127

128 additional results and plots

for the magnitude of the values themselves. All of these measures are interlinked
and express how similar a learned representation is to the original, but these all
highlight different aspects that can help in analysing the benefits and drawbacks of
these methods.

For every measure, mean value and standard error across 10 runs are reported.
For every game, the best (green) and worst (red) performances of the investigated
methods on some of the proposed measures are highlighted.

Model Mean square
error

MSE on
optimal
actions

Optimal
actions found

Value loss Boltzmann
value loss

Correctly ranked Kendall τ

Dispersion Game n = 6 (64 joint actions, 20 optimal)

Joint 0.00± 0.0 0.00± 0.0 20± 0 0.00± 0.0 0.00± 0.0 64± 0 1.00± 0.0
F1 0.62± 0.0 0.88± 0.0 5± 2 1.70± 1.0 0.49± 0.0 21± 2 0.00± 0.0

F2R 0.52± 0.0 0.82± 0.0 8± 0 0.00± 0.0 0.38± 0.0 24± 1 0.27± 0.0
F3R 0.41± 0.0 0.72± 0.0 10± 1 0.60± 0.5 0.31± 0.0 31± 3 0.39± 0.0
F2C 0.09± 0.0 0.14± 0.0 20± 0 0.00± 0.0 0.16± 0.0 64± 0 1.00± 0.0
F3C 0.09± 0.0 0.14± 0.0 20± 0 0.00± 0.0 0.16± 0.0 64± 0 1.00± 0.0
F2O 0.41± 0.0 0.64± 0.0 10± 1 0.60± 0.5 0.32± 0.0 36± 2 0.44± 0.0
F3O 0.19± 0.0 0.30± 0.0 13± 1 0.20± 0.4 0.20± 0.0 47± 3 0.70± 0.0
M1 0.62± 0.0 0.88± 0.0 6± 1 1.30± 0.8 0.49± 0.0 24± 2 0.02± 0.0

M2R 0.56± 0.0 0.82± 0.0 8± 0 0.00± 0.0 0.46± 0.0 24± 1 0.27± 0.0
M3R 0.46± 0.0 0.73± 0.0 10± 1 0.40± 0.5 0.39± 0.0 31± 2 0.39± 0.0
M2C 0.55± 0.0 0.81± 0.0 20± 0 0.00± 0.0 0.46± 0.0 64± 0 1.00± 0.0
M3C 0.43± 0.0 0.68± 0.0 20± 0 0.00± 0.0 0.40± 0.0 64± 0 1.00± 0.0
M2O 0.56± 0.0 0.81± 0.0 10± 2 0.50± 0.5 0.46± 0.0 36± 4 0.46± 0.0
M3O 0.44± 0.0 0.69± 0.0 11± 1 0.30± 0.5 0.40± 0.0 40± 3 0.58± 0.1

Dispersion Game (sparse) n = 6 (64 joint actions, 20 optimal)

Joint 0.00± 0.0 0.00± 0.0 20± 0 0.00± 0.0 0.00± 0.0 64± 0 1.00± 0.0
F1 1.93± 0.0 4.25± 0.0 7± 1 1.50± 1.5 1.77± 0.0 37± 1 0.02± 0.0

F2R 1.83± 0.0 3.95± 0.0 8± 0 0.00± 0.0 1.64± 0.0 40± 0 0.13± 0.0
F3R 1.72± 0.0 3.60± 0.0 11± 1 1.80± 1.5 1.55± 0.0 45± 1 0.31± 0.0
F2C 1.41± 0.0 2.25± 0.0 20± 0 0.00± 0.0 1.32± 0.0 64± 0 1.00± 0.0
F3C 1.41± 0.0 2.26± 0.0 20± 0 0.00± 0.0 1.32± 0.0 64± 0 1.00± 0.0
F2O 1.72± 0.0 3.53± 0.0 10± 1 1.50± 1.5 1.56± 0.0 45± 3 0.30± 0.1
F3O 1.52± 0.0 2.71± 0.1 12± 1 0.60± 1.2 1.41± 0.0 49± 2 0.45± 0.1
M1 1.93± 0.0 4.27± 0.0 6± 1 2.10± 1.4 1.77± 0.0 37± 2 0.01± 0.1

M2R 1.88± 0.0 4.13± 0.0 8± 0 0.00± 0.0 1.73± 0.0 40± 0 0.13± 0.0
M3R 1.77± 0.0 3.88± 0.0 10± 1 1.50± 1.5 1.66± 0.0 44± 3 0.27± 0.1
M2C 1.87± 0.0 4.11± 0.0 20± 0 0.00± 0.0 1.73± 0.0 64± 0 1.00± 0.0
M3C 1.74± 0.0 3.83± 0.0 20± 0 0.00± 0.0 1.66± 0.0 64± 0 1.00± 0.0
M2O 1.87± 0.0 4.13± 0.0 10± 1 1.20± 1.5 1.73± 0.0 44± 2 0.26± 0.1
M3O 1.75± 0.0 3.84± 0.0 12± 1 0.60± 1.2 1.67± 0.0 47± 2 0.38± 0.1

Platonia Dilemma n = 6 (64 joint actions, 6 optimal)

Joint 0.00± 0.0 0.03± 0.1 6± 0 0.00± 0.0 0.01± 0.0 64± 0 1.00± 0.0
F1 2.22± 0.0 15.55± 0.1 5± 0 6.00± 0.0 4.19± 0.0 62± 0 0.82± 0.0

F2R 2.11± 0.0 14.17± 0.1 5± 0 6.00± 0.0 4.09± 0.0 62± 0 0.82± 0.0
F3R 2.00± 0.0 12.90± 0.1 5± 0 6.00± 0.0 4.04± 0.0 62± 0 0.82± 0.0
F2C 1.69± 0.0 8.92± 0.1 5± 0 6.00± 0.0 4.39± 0.0 62± 0 0.82± 0.0
F3C 1.69± 0.0 8.97± 0.1 5± 0 6.00± 0.0 4.52± 0.0 62± 0 0.82± 0.0
F2O 2.00± 0.0 12.83± 0.1 5± 0 6.00± 0.0 3.94± 0.0 62± 1 0.78± 0.1

b .1 factorizations complete results 129

Model Mean square
error

MSE on
optimal
actions

Optimal
actions found

Value loss Boltzmann
value loss

Correctly ranked Kendall τ

F3O 1.78± 0.0 10.10± 0.4 5± 0 6.00± 0.0 4.15± 0.1 62± 0 0.82± 0.0
M1 2.80± 0.0 27.01± 0.0 5± 0 6.00± 0.0 5.15± 0.0 62± 0 0.82± 0.0

M2R 2.53± 0.0 23.93± 0.0 5± 0 6.00± 0.0 4.93± 0.0 62± 0 0.82± 0.0
M3R 2.28± 0.0 20.51± 0.1 5± 0 6.00± 0.0 4.64± 0.0 62± 0 0.82± 0.0
M2C 2.52± 0.0 23.90± 0.0 5± 0 6.00± 0.0 4.92± 0.0 62± 0 0.82± 0.0
M3C 2.25± 0.0 20.54± 0.0 5± 0 6.00± 0.0 4.62± 0.0 62± 0 0.82± 0.0
M2O 2.54± 0.0 23.93± 0.1 4± 0 6.00± 0.0 4.92± 0.0 61± 1 0.69± 0.1
M3O 2.28± 0.0 20.60± 0.1 4± 0 6.00± 0.0 4.61± 0.0 61± 1 0.71± 0.1

Climb Game n = 6 (729 joint actions, 1 optimal)

Joint 0.17± 0.1 18.45± 4.9 0± 0 2.70± 0.9 1.52± 0.3 727± 1 1.00± 0.0
F1 0.58± 0.0 52.29± 0.1 0± 0 3.00± 0.0 2.16± 0.0 726± 0 0.98± 0.0

F2R 0.52± 0.0 40.95± 0.0 0± 0 3.00± 0.0 2.06± 0.0 726± 0 0.98± 0.0
F3R 0.44± 0.0 36.51± 0.2 0± 0 3.00± 0.0 1.92± 0.0 726± 0 0.98± 0.0
F2C 0.25± 0.0 7.86± 0.1 1± 0 0.00± 0.0 1.40± 0.0 729± 0 1.00± 0.0
F3C 0.17± 0.0 70.77± 0.7 0± 0 3.00± 0.0 0.96± 0.0 726± 0 0.98± 0.0
F2O 0.45± 0.0 30.83± 0.1 0± 0 3.00± 0.0 1.94± 0.0 726± 0 0.98± 0.0
F3O 0.30± 0.0 28.89± 1.9 0± 0 3.00± 0.0 1.54± 0.0 726± 0 0.98± 0.0
M1 0.71± 0.0 35.91± 0.0 0± 0 3.00± 0.0 2.36± 0.0 726± 0 0.98± 0.0

M2R 0.63± 0.0 35.77± 0.0 0± 0 3.00± 0.0 2.30± 0.0 726± 0 0.98± 0.0
M3R 0.53± 0.0 35.34± 0.1 0± 0 3.00± 0.0 2.20± 0.0 726± 0 0.98± 0.0
M2C 0.62± 0.0 35.77± 0.0 0± 0 3.00± 0.0 2.30± 0.0 726± 0 0.98± 0.0
M3C 0.51± 0.0 35.30± 0.1 0± 0 3.00± 0.0 2.20± 0.0 726± 0 0.98± 0.0
M2O 0.63± 0.0 35.74± 0.0 0± 0 3.00± 0.0 2.30± 0.0 726± 0 0.98± 0.0
M3O 0.52± 0.0 35.31± 0.1 0± 0 3.00± 0.0 2.20± 0.0 726± 0 0.98± 0.0

Penalty Game n = 6 (729 joint actions, 2 optimal)

Joint 1.60± 0.4 18.21± 4.3 1± 0 0.90± 1.4 3.24± 0.1 727± 1 1.00± 0.0
F1 2.18± 0.0 63.71± 0.1 0± 0 3.00± 0.0 3.31± 0.0 722± 0 0.91± 0.0

F2R 2.00± 0.0 65.95± 0.3 0± 0 3.00± 0.0 3.33± 0.0 723± 0 0.92± 0.0
F3R 1.75± 0.0 66.27± 1.0 0± 0 3.00± 0.0 3.31± 0.0 723± 0 0.94± 0.0
F2C 1.29± 0.0 79.66± 0.0 0± 0 6.00± 0.0 3.30± 0.0 722± 0 0.92± 0.0
F3C 0.54± 0.0 82.77± 0.0 0± 0 3.00± 0.0 2.06± 0.0 724± 0 0.97± 0.0
F2O 1.82± 0.0 68.81± 0.3 0± 0 6.00± 0.0 3.32± 0.0 723± 0 0.95± 0.0
F3O 1.27± 0.0 73.48± 1.4 0± 0 6.00± 0.0 3.29± 0.0 723± 0 0.95± 0.0
M1 2.71± 0.0 45.27± 0.1 0± 0 3.00± 0.0 3.66± 0.0 722± 0 0.91± 0.0

M2R 2.43± 0.0 49.11± 0.2 0± 0 3.00± 0.0 3.54± 0.0 723± 0 0.93± 0.0
M3R 2.09± 0.0 52.23± 0.8 0± 0 3.00± 0.0 3.43± 0.0 723± 0 0.94± 0.0
M2C 2.41± 0.0 49.12± 0.1 0± 0 3.00± 0.0 3.54± 0.0 724± 0 0.97± 0.0
M3C 2.02± 0.0 52.45± 0.2 0± 0 3.00± 0.0 3.43± 0.0 724± 0 0.97± 0.0
M2O 2.43± 0.0 49.11± 0.1 0± 0 3.00± 0.0 3.54± 0.0 724± 0 0.97± 0.0
M3O 2.06± 0.0 52.56± 0.5 0± 0 3.00± 0.0 3.43± 0.0 723± 2 0.96± 0.0

Generalized FF n = 6 (8192 joint actions, 779 optimal)

Joint 1.29± 2.5 4.96± 7.2 656± 123 61.60± 68.2 46.42± 48.4 6,893± 1,475 0.85± 0.2
F1 0.16± 0.0 0.20± 0.0 700± 7 26.20± 7.3 6.38± 0.1 6,236± 38 0.88± 0.0

F2R 0.12± 0.0 0.15± 0.0 722± 19 16.80± 8.5 4.78± 1.4 6,777± 383 0.91± 0.0
F3R 0.09± 0.0 0.11± 0.1 743± 25 11.10± 10.2 3.42± 1.7 7,288± 558 0.94± 0.0
F2C 0.00± 0.0 0.00± 0.0 779± 0 0.00± 0.0 0.00± 0.0 8,192± 0 1.00± 0.0
F3C 0.00± 0.0 0.00± 0.0 779± 0 0.00± 0.0 0.00± 0.0 8,192± 0 1.00± 0.0
F2O 0.09± 0.0 0.10± 0.0 747± 18 8.00± 7.1 3.75± 1.1 7,333± 382 0.95± 0.0
F3O 0.03± 0.0 0.03± 0.0 778± 4 0.20± 0.6 1.14± 0.9 8,149± 130 1.00± 0.0
FTF 0.00± 0.0 0.00± 0.0 779± 0 0.00± 0.0 0.00± 0.0 8,192± 0 1.00± 0.0
M1 3.55± 0.0 8.35± 0.0 700± 6 27.80± 6.4 163.84± 0.1 6,220± 30 0.88± 0.0

M2R 1.85± 0.1 4.92± 0.2 718± 12 20.60± 5.4 124.61± 0.6 6,602± 301 0.90± 0.0

130 additional results and plots

Model Mean square
error

MSE on
optimal
actions

Optimal
actions found

Value loss Boltzmann
value loss

Correctly ranked Kendall τ

M3R 1.09± 0.2 2.81± 0.2 739± 33 14.60± 13.8 88.58± 2.3 7,097± 703 0.93± 0.0
M2C 1.82± 0.0 4.90± 0.0 777± 0 0.00± 0.0 124.42± 0.1 7,826± 0 0.97± 0.0
M3C 0.85± 0.0 2.58± 0.0 778± 1 0.00± 0.0 88.09± 0.1 8,151± 4 1.00± 0.0
M2O 1.97± 0.1 5.08± 0.1 741± 13 11.70± 5.0 127.21± 1.9 5,628± 249 0.84± 0.0
M3O 1.73± 1.2 4.96± 3.3 738± 55 8.70± 14.0 97.67± 10.9 5,867± 682 0.85± 0.1
MTF 2.60± 0.0 6.14± 0.0 779± 0 0.00± 0.0 133.79± 0.1 8,177± 2 1.00± 0.0

Aloha n = 6 (64 joint actions, 2 optimal)

Joint 1.13± 0.0 0.00± 0.0 2± 0 0.00± 0.0 0.08± 0.0 51± 1 0.88± 0.0
F1 4.78± 0.0 50.93± 0.1 0± 0 6.00± 0.0 4.04± 0.0 27± 1 0.67± 0.0

F2R 4.05± 0.4 35.00± 7.0 0± 0 5.00± 1.3 3.69± 0.4 22± 4 0.70± 0.0
F3R 3.16± 0.5 20.64± 4.6 0± 0 4.20± 1.4 3.23± 0.9 26± 4 0.74± 0.0
F2C 0.91± 0.0 0.14± 0.0 2± 0 0.00± 0.0 −0.04± 0.0 42± 0 0.89± 0.0
F3C 0.07± 0.0 0.14± 0.0 2± 0 0.00± 0.0 0.22± 0.0 64± 0 1.00± 0.0
F2O 3.27± 0.3 20.63± 3.0 0± 0 4.40± 1.2 3.24± 0.5 23± 4 0.74± 0.0
F3O 1.46± 0.3 3.55± 1.3 1± 1 0.80± 1.3 1.19± 0.4 29± 5 0.83± 0.0
FTF 0.00± 0.0 0.00± 0.0 2± 0 0.00± 0.0 0.00± 0.0 64± 0 1.00± 0.0
M1 8.26± 0.0 50.84± 0.1 0± 0 6.00± 0.0 5.47± 0.0 27± 1 0.67± 0.0

M2R 6.52± 0.2 44.17± 1.5 0± 0 5.00± 1.3 4.57± 0.1 25± 4 0.70± 0.0
M3R 4.53± 0.5 31.35± 3.8 0± 0 4.00± 2.2 3.41± 0.6 28± 5 0.77± 0.1
M2C 6.51± 0.0 44.65± 0.1 0± 0 6.00± 0.0 4.59± 0.0 28± 0 0.76± 0.0
M3C 4.56± 0.0 33.45± 0.1 0± 0 6.00± 0.0 3.62± 0.0 36± 1 0.86± 0.0
M2O 6.63± 0.4 44.51± 1.1 0± 0 5.20± 1.0 4.62± 0.2 22± 5 0.66± 0.0
M3O 4.71± 0.3 33.36± 1.2 0± 0 5.20± 1.0 3.65± 0.2 25± 4 0.74± 0.0
MTF 3.20± 0.0 23.88± 0.1 0± 0 2.00± 0.0 2.78± 0.0 36± 1 0.88± 0.0

Dispersion Game n = 9 (512 joint actions, 252 optimal)

Joint 0.93± 0.5 1.74± 0.9 162± 30 0.00± 0.0 0.25± 0.1 307± 77 0.49± 0.2
F1 0.74± 0.0 0.53± 0.0 124± 1 1.10± 0.9 0.47± 0.0 191± 3 0.02± 0.0

F2R 0.66± 0.0 0.53± 0.0 143± 2 0.00± 0.0 0.40± 0.0 206± 3 0.19± 0.0
F3R 0.57± 0.0 0.51± 0.0 171± 2 0.40± 0.5 0.32± 0.0 279± 3 0.37± 0.0
F2C 0.06± 0.0 0.03± 0.0 252± 0 0.00± 0.0 0.09± 0.0 512± 0 1.00± 0.0
F3C 0.06± 0.0 0.03± 0.0 252± 0 0.00± 0.0 0.09± 0.0 512± 0 1.00± 0.0
F2O 0.57± 0.0 0.49± 0.0 159± 4 0.20± 0.4 0.32± 0.0 254± 9 0.35± 0.0
F3O 0.36± 0.0 0.33± 0.0 178± 4 0.10± 0.3 0.21± 0.0 305± 14 0.54± 0.0
M1 0.74± 0.0 0.53± 0.0 124± 1 0.90± 0.8 0.47± 0.0 192± 4 0.01± 0.0

M2R 0.70± 0.0 0.52± 0.0 142± 2 0.00± 0.0 0.45± 0.0 204± 5 0.19± 0.0
M3R 0.64± 0.0 0.48± 0.0 170± 1 0.30± 0.5 0.42± 0.0 276± 4 0.37± 0.0
M2C 0.70± 0.0 0.51± 0.0 252± 0 0.00± 0.0 0.45± 0.0 512± 0 1.00± 0.0
M3C 0.63± 0.0 0.46± 0.0 252± 0 0.00± 0.0 0.42± 0.0 512± 0 1.00± 0.0
M2O 0.70± 0.0 0.51± 0.0 159± 3 0.10± 0.3 0.45± 0.0 254± 10 0.35± 0.0
M3O 0.63± 0.0 0.47± 0.0 172± 4 0.10± 0.3 0.42± 0.0 289± 12 0.48± 0.0

Dispersion Game n = 12 (4096 joint actions, 924 optimal)

Joint 19.48± 0.7 31.72± 0.9 210± 8 2.30± 1.0 0.80± 0.0 1,108± 34 0.00± 0.0
F1 1.17± 0.0 1.82± 0.0 186± 39 2.40± 1.3 0.80± 0.0 1,137± 37 0.01± 0.0

F2R 1.08± 0.0 1.75± 0.0 303± 14 0.00± 0.0 0.70± 0.0 1,635± 17 0.18± 0.0
F3R 0.99± 0.0 1.67± 0.0 351± 7 0.90± 0.7 0.63± 0.0 1,364± 20 0.28± 0.0
F2C 0.17± 0.0 0.37± 0.0 924± 0 0.00± 0.0 0.27± 0.0 4,096± 0 1.00± 0.0
F3C 0.20± 0.0 0.43± 0.1 774± 194 0.00± 0.0 0.27± 0.0 3,711± 510 0.92± 0.1
F2O 0.99± 0.0 1.64± 0.0 297± 8 0.60± 0.5 0.64± 0.0 1,403± 56 0.28± 0.0
F3O 0.74± 0.0 1.31± 0.0 344± 13 0.70± 0.6 0.49± 0.0 1,673± 40 0.43± 0.0
M1 1.17± 0.0 1.83± 0.0 187± 30 2.20± 1.5 0.80± 0.0 1,134± 36 0.00± 0.0

M2R 1.14± 0.0 1.80± 0.0 303± 4 0.00± 0.0 0.78± 0.0 1,633± 6 0.18± 0.0
M3R 1.09± 0.0 1.75± 0.0 350± 9 1.00± 0.6 0.75± 0.0 1,363± 24 0.28± 0.0

b .1 factorizations complete results 131

Model Mean square
error

MSE on
optimal
actions

Optimal
actions found

Value loss Boltzmann
value loss

Correctly ranked Kendall τ

M2C 1.14± 0.0 1.80± 0.0 813± 69 0.00± 0.0 0.78± 0.0 3,831± 246 0.95± 0.0
M3C 1.08± 0.0 1.74± 0.0 920± 5 0.00± 0.0 0.75± 0.0 4,089± 10 1.00± 0.0
M2O 1.14± 0.0 1.80± 0.0 291± 8 0.40± 0.5 0.78± 0.0 1,348± 37 0.27± 0.0
M3O 1.08± 0.0 1.74± 0.0 329± 12 0.60± 0.5 0.75± 0.0 1,560± 57 0.39± 0.0

Generalized FF n = 9 (524.288 joint actions, 17.682 optimal)

Joint 69.98± 0.9 142.27± 1.3 2,556± 50 3,808.40± 60.8 2,339.16± 1.3 94,559± 522 0.02± 0.0
F1 0.25± 0.0 0.31± 0.0 14,887± 90 319.00± 103.2 64.62± 1.0 333,466± 1,069 0.86± 0.0

F2R 0.68± 0.2 0.86± 0.3 11,986± 546 621.40± 64.6 325.70± 51.0 257,663± 12,168 0.78± 0.0
F3R 0.17± 0.0 0.20± 0.1 15,934± 479 157.80± 74.6 38.63± 12.7 393,625± 30,195 0.91± 0.0
F2C 0.00± 0.0 0.00± 0.0 17,682± 0 0.00± 0.0 0.00± 0.0 524,288± 0 1.00± 0.0
F3C 0.00± 0.0 0.00± 0.0 17,682± 0 0.00± 0.0 0.00± 0.0 524,288± 0 1.00± 0.0
F2O 0.18± 0.0 0.21± 0.0 15,761± 286 185.70± 40.5 40.58± 10.1 385,288± 20,999 0.90± 0.0
F3O 0.09± 0.0 0.10± 0.0 16,939± 415 51.40± 38.7 22.72± 8.6 464,893± 26,119 0.96± 0.0
FTF 0.00± 0.0 0.00± 0.0 17,682± 0 0.00± 0.0 0.00± 0.0 524,288± 0 1.00± 0.0
M1 6.55± 0.0 17.68± 0.0 14,848± 73 331.80± 62.7 2,030.74± 0.9 333,711± 767 0.86± 0.0

M2R 4.54± 0.2 13.09± 0.2 12,444± 531 596.60± 121.2 1,718.26± 11.8 265,765± 10,895 0.80± 0.0
M3R 2.77± 0.2 9.05± 0.2 15,596± 429 209.40± 59.9 1,425.89± 9.9 371,664± 25,374 0.89± 0.0
M2C 4.30± 0.0 12.83± 0.0 17,680± 0 0.00± 0.0 1,721.18± 0.9 465,019± 2 0.95± 0.0
M3C 2.71± 0.0 8.99± 0.0 17,680± 0 0.00± 0.0 1,422.88± 0.7 465,090± 2 0.95± 0.0
M2O 4.37± 0.1 12.87± 0.2 15,439± 433 231.40± 72.6 1,723.51± 16.1 267,534± 15,642 0.78± 0.0
M3O 2.96± 0.1 9.24± 0.1 16,783± 303 54.00± 23.9 1,431.61± 23.0 298,182± 26,364 0.82± 0.0
MTF 5.30± 0.0 14.34± 0.0 17,682± 0 0.00± 0.0 1,765.64± 1.0 512,022± 810 0.99± 0.0

Aloha n = 9 (512 joint actions, 1 optimal)

Joint 4.86± 1.6 47.77± 9.2 0± 0 4.40± 1.7 4.47± 0.6 215± 17 0.71± 0.0
F1 6.14± 0.0 130.68± 0.6 0± 0 10.00± 0.0 6.62± 0.0 127± 1 0.64± 0.0

F2R 6.97± 0.4 123.35± 26.5 0± 0 9.00± 1.8 6.73± 0.3 100± 11 0.58± 0.0
F3R 5.05± 0.5 87.35± 15.5 0± 0 8.00± 2.2 5.97± 0.6 133± 7 0.68± 0.0
F2C 2.25± 0.0 9.03± 0.2 1± 0 0.00± 0.0 2.06± 0.0 187± 1 0.82± 0.0
F3C 1.32± 0.0 18.60± 0.3 0± 0 2.00± 0.0 1.47± 0.0 365± 1 0.88± 0.0
F2O 4.98± 0.2 82.30± 7.7 0± 0 6.60± 1.8 5.71± 0.4 135± 9 0.69± 0.0
F3O 3.95± 0.4 49.17± 9.6 0± 0 7.00± 2.2 5.01± 0.7 138± 8 0.73± 0.0
FTF 0.00± 0.0 0.00± 0.0 1± 0 0.00± 0.0 0.00± 0.0 512± 0 1.00± 0.0
M1 11.93± 0.0 145.97± 0.1 0± 0 10.00± 0.0 9.68± 0.0 126± 1 0.64± 0.0

M2R 10.45± 0.2 140.15± 5.7 0± 0 9.00± 1.6 8.85± 0.1 105± 11 0.60± 0.0
M3R 8.71± 0.3 125.24± 6.2 0± 0 7.80± 0.6 7.85± 0.2 131± 7 0.69± 0.0
M2C 10.31± 0.0 138.52± 0.1 0± 0 10.00± 0.0 8.79± 0.0 140± 1 0.68± 0.0
M3C 8.68± 0.0 126.24± 0.2 0± 0 10.00± 0.0 7.86± 0.0 152± 1 0.72± 0.0
M2O 10.48± 0.2 138.60± 5.8 0± 0 9.60± 0.8 8.86± 0.1 114± 10 0.62± 0.0
M3O 8.86± 0.4 124.02± 12.3 0± 0 9.40± 1.8 7.87± 0.3 125± 12 0.63± 0.0
MTF 6.25± 0.0 85.95± 1.1 0± 0 2.00± 0.0 6.10± 0.0 191± 5 0.84± 0.0

Aloha n = 12 (4096 joint actions, 2 optimal)

Joint 23.98± 0.6 135.36± 2.5 0± 0 7.40± 3.1 12.12± 0.3 700± 13 0.42± 0.0
F1 7.30± 0.0 231.09± 0.3 0± 0 12.00± 0.0 7.96± 0.0 861± 4 0.64± 0.0

F2R 6.84± 0.2 199.45± 11.1 0± 0 10.40± 1.2 7.67± 0.2 851± 33 0.65± 0.0
F3R 6.56± 0.3 182.17± 15.5 0± 0 9.80± 2.1 7.59± 0.3 860± 47 0.66± 0.0
F2C 2.18± 0.0 10.36± 0.1 2± 0 0.00± 0.0 2.06± 0.0 1,380± 5 0.83± 0.0
F3C 0.81± 0.0 12.45± 0.2 1± 0 2.00± 0.0 1.10± 0.0 2,488± 10 0.91± 0.0
F2O 6.32± 0.3 169.46± 13.1 0± 0 10.20± 1.7 7.29± 0.3 864± 34 0.67± 0.0
F3O 4.71± 0.5 92.22± 18.6 0± 0 7.60± 2.3 5.94± 0.7 954± 67 0.73± 0.0
FTF 0.00± 0.0 0.00± 0.0 2± 0 0.00± 0.0 0.00± 0.0 4,096± 0 1.00± 0.0
M1 15.37± 0.0 230.65± 0.4 0± 0 12.00± 0.0 12.45± 0.0 845± 26 0.63± 0.0

M2R 13.85± 0.1 225.18± 2.3 0± 0 10.80± 1.3 11.61± 0.1 838± 22 0.65± 0.0

132 additional results and plots

Model Mean square
error

MSE on
optimal
actions

Optimal
actions found

Value loss Boltzmann
value loss

Correctly ranked Kendall τ

M3R 12.38± 0.2 217.04± 5.0 0± 0 10.00± 1.8 10.76± 0.1 853± 34 0.66± 0.0
M2C 13.83± 0.0 225.33± 0.2 0± 0 12.00± 0.0 11.60± 0.0 908± 7 0.67± 0.0
M3C 12.27± 0.0 214.92± 0.2 0± 0 12.00± 0.0 10.69± 0.0 969± 6 0.71± 0.0
M2O 13.94± 0.2 225.44± 1.5 0± 0 11.60± 0.8 11.61± 0.1 671± 58 0.56± 0.0
M3O 12.56± 0.3 214.01± 3.2 0± 0 11.40± 0.9 10.85± 0.2 752± 87 0.61± 0.0
MTF 9.64± 0.0 167.68± 0.6 0± 0 4.00± 0.0 8.82± 0.0 1,254± 14 0.83± 0.0

Table B.1: Accuracy results with respect to both action ranking and reconstruction error for
the different games. Best (green) and worst (red) performances for each game are
highlighted.

b .2 additional gridworld analysis plots 133

0

10

20

PE Mean & Variance

0

10

20

30

PE Min (//-ed) & Max

N = 3 N = 5 N = 8
0

200

400

600

Squared PE Mean & Variance

N = 3 N = 5 N = 8
0

250

500

750

1000

1250

Squared PE Min (//-ed) & Max

Dr.ReinforceR R (s, a) COMA Q (s, a)

(a) Multi-Rover

1.5

1.0

0.5

0.0

PE Mean & Variance

2

1

0

1
PE Min (//-ed) & Max

N = 3 N = 5 N = 8
0.0

0.5

1.0

1.5

2.0

Squared PE Mean & Variance

N = 3 N = 5 N = 8
0

1

2

3

4

Squared PE Min (//-ed) & Max

Dr.ReinforceR R (s, a) COMA Q (s, a)

(b) Predator-Prey

Figure B.1: Distribution statistics for Dr.ReinforceR reward network Rψ and COMA critic Qω

on the on-policy dataset, normalized by the value of rmax − rmin (respectively
qmax − qmin for COMA critic), for the two environments.

0

5

10

15

20

PE Mean & Variance

0

10

20

30

PE Min (//-ed) & Max

N = 3 N = 5 N = 8
0

100

200

300

400

500

Squared PE Mean & Variance

N = 3 N = 5 N = 8
0

200

400

600

800

1000

Squared PE Min (//-ed) & Max

Dr.ReinforceR R (s, a) COMA Q (s, a)

(a) Multi-Rover

0.8

0.6

0.4

0.2

0.0

0.2
PE Mean & Variance

1.0

0.5

0.0

0.5

1.0
PE Min (//-ed) & Max

N = 3 N = 5 N = 8

0.0

0.2

0.4

0.6
Squared PE Mean & Variance

N = 3 N = 5 N = 8
0.0

0.5

1.0

1.5
Squared PE Min (//-ed) & Max

Dr.ReinforceR R (s, a) COMA Q (s, a)

(b) Predator-Prey

Figure B.2: Distribution statistics for Dr.ReinforceR reward network Rψ and COMA critic Qω

on the off-policy dataset, normalized by the value of rmax − rmin (respectively
qmax − qmin for COMA critic), for the two environments.

b .2 additional gridworld analysis plots

Figures B.1 and B.2 show a comparison of Dr.ReinforceR centralized reward network
Rψ(s,a) and COMA Q-function critic Qω(s,a) in terms of prediction error on the
on-policy and off-policy dataset respectively. Both the mean error with variance
and the minimum and maximum errors are reported, together with the squared
values for both. Again, all the prediction errors have been normalized by the value
of rmax − rmin (respectively qmax − qmin for COMA critic) for each environment and
number of agents individually, so that the resulting values are comparable across the
two different methodologies and across different instances.

These figures clearly show how learning an accurate centralized representation

134 additional results and plots

10

5

0

5

Multi-Rover

SA1 SA2 SA3 SA4 SA5 SA6 SA7 SA8 SA9
SA10

SA11
SA12

SA13
SA14

SA15
SA16

10

5

0

5

Predator-Prey

Di
ffe

re
nc

e
Re

wa
rd

s

True
Normal (= 1)

Normal (= 10)
Uniform (b a = 1)

Uniform (b a = 10)
Biased Exponential (= 1)

0-Masked (p = 0.2)
0-Masked (p = 0.5)

Figure B.3: Mean and variance of difference rewards for a set of samples under different
noise profiles.

of the action-value function in a multi-agent system may be a challenging task
[53]: COMA squared mean error is high on both problems and datasets when the
number of agents increases. This is due to the exponential number of joint actions
that the critic needs to approximate, together with bootstrapping that exacerbates
these difficulties by making wrong estimates influence other estimates in turn. On
the other hand, the reward network seems to learn a good approximation that is
capable of generalizing also to possibly unseen state-action pairs, as shown by the
low errors on the off-policy dataset. Although it still depends on the exponentially
many joint actions (and thus faces an harder learning problem when the size of the
system increases), the simpler regression task seems to help in achieving an accurate
approximation.

Finally, Figure B.3 shows the effect of more types of noise on the difference
rewards computation.

0-masking seems to be extremely detrimental: if some of the reward values uses in
the computation are cancelled, the resulting difference rewards value may be entirely
different from the true one. However, other types of noise, like uniform or biased
noise, do not seem to alter the final value significantly, probably cancelling out the
relative errors of each reward term one with another. This means that, although the
introduced centralized reward network is only capable of learning an approximation
of the true reward function, such an approximation does not need to be perfect in
order to provide the agents with a perfect or nearly-perfect learning signal.

b .3 additional smac plots 135

b .3 additional smac plots

Chapter 5 showed the improved performances of Dr.ReinforceR over other policy
gradient methods on SMAC in terms of median return, together with the win rate for
some of the most successfully solved scenarios. In the following Figure B.4, the median
win rate and 25− 75% percentiles across 10 independent runs for the complete set of
available scenarios is reported. These plots highlight how Dr.ReinforceR, although
capable of generally improved performances on the simpler settings, is still in general
performing poorly (as generally policy gradient methods are known to do) on the
most challenging ones. Indeed, on some of these scenarios, like those presenting
unbalanced teams for the two factions, no significant win rate is achieved, meaning
that the learned team of agents is never capable of outperform the opposing AI.

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
T (mil)

0

20

40

60

80

100

M
ed

ia
n

Ba
ttl

e
W

on
 %

3m

Dr.ReinforceR
COMA
Colby
CentralQ
PG

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
T (mil)

0

20

40

60

80

100

M
ed

ia
n

Ba
ttl

e
W

on
 %

8m

Dr.ReinforceR
COMA
Colby
CentralQ
PG

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
T (mil)

0

20

40

60

80

100

M
ed

ia
n

Ba
ttl

e
W

on
 %

25m

Dr.ReinforceR
COMA
Colby
CentralQ
PG

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
T (mil)

0

20

40

60

80

M
ed

ia
n

Ba
ttl

e
W

on
 %

2s3z

Dr.ReinforceR
COMA
Colby
CentralQ
PG

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
T (mil)

0

10

20

30

40

M
ed

ia
n

Ba
ttl

e
W

on
 %

3s5z

Dr.ReinforceR
COMA
Colby
CentralQ
PG

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
T (mil)

0

20

40

60

80

100

M
ed

ia
n

Ba
ttl

e
W

on
 %

MMM

Dr.ReinforceR
COMA
Colby
CentralQ
PG

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
T (mil)

0.0

0.5

1.0

1.5

2.0

M
ed

ia
n

Ba
ttl

e
W

on
 %

5m_vs_6m

Dr.ReinforceR
COMA
Colby
CentralQ
PG

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
T (mil)

0.0

2.5

5.0

7.5

10.0

12.5

15.0

M
ed

ia
n

Ba
ttl

e
W

on
 %

8m_vs_9m

Dr.ReinforceR
COMA
Colby
CentralQ
PG

Figure B.4: Training curves on the entire set of SMAC scenarios, showing the median victory
rate and 25− 75% percentiles across seeds.

136 additional results and plots

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
T (mil)

0

5

10

15

20

25

30
M

ed
ia

n
Ba

ttl
e

W
on

 %

10m_vs_11m

Dr.ReinforceR
COMA
Colby
CentralQ
PG

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
T (mil)

0.04

0.02

0.00

0.02

0.04

M
ed

ia
n

Ba
ttl

e
W

on
 %

3s5z_vs_3s6z

Dr.ReinforceR
COMA
Colby
CentralQ
PG

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
T (mil)

0.0

2.5

5.0

7.5

10.0

12.5

15.0

M
ed

ia
n

Ba
ttl

e
W

on
 %

MMM2

Dr.ReinforceR
COMA
Colby
CentralQ
PG

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
T (mil)

0.04

0.02

0.00

0.02

0.04

M
ed

ia
n

Ba
ttl

e
W

on
 %

2m_vs_1z

Dr.ReinforceR
COMA
Colby
CentralQ
PG

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
T (mil)

0

20

40

60

80

100

M
ed

ia
n

Ba
ttl

e
W

on
 %

2s_vs_1sc

Dr.ReinforceR
COMA
Colby
CentralQ
PG

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
T (mil)

0.04

0.02

0.00

0.02

0.04
M

ed
ia

n
Ba

ttl
e

W
on

 %
3s_vs_3z

Dr.ReinforceR
COMA
Colby
CentralQ
PG

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
T (mil)

0.04

0.02

0.00

0.02

0.04

M
ed

ia
n

Ba
ttl

e
W

on
 %

3s_vs_4z

Dr.ReinforceR
COMA
Colby
CentralQ
PG

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
T (mil)

0.04

0.02

0.00

0.02

0.04

M
ed

ia
n

Ba
ttl

e
W

on
 %

3s_vs_5z

Dr.ReinforceR
COMA
Colby
CentralQ
PG

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
T (mil)

0.04

0.02

0.00

0.02

0.04

M
ed

ia
n

Ba
ttl

e
W

on
 %

6h_vs_8z

Dr.ReinforceR
COMA
Colby
CentralQ
PG

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
T (mil)

0.04

0.02

0.00

0.02

0.04

M
ed

ia
n

Ba
ttl

e
W

on
 %

corridor

Dr.ReinforceR
COMA
Colby
CentralQ
PG

Figure B.4: Training curves on the entire set of SMAC scenarios, showing the median victory
rate and 25− 75% percentiles across seeds.

b .3 additional smac plots 137

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
T (mil)

0

20

40

60

M
ed

ia
n

Ba
ttl

e
W

on
 %

bane_vs_bane

Dr.ReinforceR
COMA
Colby
CentralQ
PG

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
T (mil)

0

20

40

60

80

100

M
ed

ia
n

Ba
ttl

e
W

on
 %

so_many_baneling

Dr.ReinforceR
COMA
Colby
CentralQ
PG

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
T (mil)

0

10

20

30

M
ed

ia
n

Ba
ttl

e
W

on
 %

2c_vs_64zg

Dr.ReinforceR
COMA
Colby
CentralQ
PG

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
T (mil)

0

20

40

60

80

100

M
ed

ia
n

Ba
ttl

e
W

on
 %

1c3s5z

Dr.ReinforceR
COMA
Colby
CentralQ
PG

Figure B.4: Training curves on the entire set of SMAC scenarios, showing the median victory
rate and 25− 75% percentiles across seeds.

A C R O N Y M S

AI Artificial Intelligence.

AU Aristocrat Utility.

CG Coordination Graph.

COMA Counterfactual Multi-Agent Policy Gradients.

CTDE Centralized Training-Decentralized Execution.

DCG Deep Coordination Graph.

Dec-POMDP Decentralized Partially Observable Markov Decision Process.

DL Deep Learning.

DQN Deep Q-Network.

DR Difference Rewards.

DRL Deep Reinforcement Learning.

GPU Graphical Processing Unit.

GRU Gated Recurrent Unit.

GT Game Theory.

IGM Individual-Global Maximum.

IL Independent Learners.

IQL Independent Q-Learners.

LSTM Long Short-Term Memory.

MACA Multi-Agent Credit Assignment.

MADDPG Multi-Agent Deep Deterministic Policy Gradients.

MAPG Multi-Agent Policy Gradients.

MARL Multi-Agent Reinforcement Learning.

MAS Multi-Agent System.

139

140 acronyms

MDP Markov Decision Process.

MMDP Multi-Agent Markov Decision Process.

MSE Mean-Squared Error.

NE Nash Equilibrium.

NN Neural Network.

PE Prediction Error.

PG Policy Gradients.

POMDP Partially Observable Markov Decision Process.

POSG Partially Observable Stochastic Game.

RL Reinforcement Learning.

RNN Recurrent Neural Network.

SG Stochastic Game.

SGD Stochastic Gradient Descent.

SMAC StarCraft II Multi-Agent Challenge.

TD Temporal Difference.

TPU Tensor Processing Unit.

VDN Value-Decomposition Networks.

WLU Wonderful Life Utility.

B I B L I O G R A P H Y

[1] Adrian K. Agogino and Kagan Tumer. Analyzing and visualizing multiagent
rewards in dynamic and stochastic domains. Autonomous Agents and Multi-
Agent Systems, 17(2):320–338, 2008.

[2] Christopher Amato and Frans A. Oliehoek. Scalable planning and learning
for multiagent POMDPs. In Proceedings of the 29th AAAI Conference on Artificial
Intelligence, AAAI’15, pages 1995–2002. AAAI Press, 2015.

[3] Kai Arulkumaran, Marc Peter Deisenroth, Miles Brundage, and Anil Anthony
Bharath. Deep reinforcement learning: A brief survey. IEEE Signal Processing
Magazine, 34(6):26–38, 2017.

[4] Robert Axelrod and William D. Hamilton. The evolution of cooperation. Science,
211(4489):1390–1396, 1981.

[5] Andrea Baisero and Christopher Amato. Unbiased asymmetric actor-critic for
partially observable reinforcement learning. arXiv, abs/2105.11674:1–23, 2021.

[6] Marc G. Bellemare, Salvatore Candido, Pablo S. Castro, Jun Gong, Marlos C.
Machado, Subhodeep Moitra, Sameera S. Ponda, and Ziyu Wang. Autonomous
navigation of stratospheric balloons using reinforcement learning. Nature, 588
(7836):77–82, 2020.

[7] Richard Bellman. A Markovian decision process. Journal of Mathematics and
Mechanics, 6(5):679–684, 1957.

[8] Dimitri P. Bertsekas. Multiagent value iteration algorithms in dynamic pro-
gramming and reinforcement learning. arXiv, abs/2005.01627:1–18, 2020.

[9] Alexey Bochkovskiy, Chien-Yao Wang, and Hong-Yuan Mark Liao. YOLOv4:
Optimal speed and accuracy of object detection. arXiv, abs/2004.10934:1–17,
2020.

[10] Wendelin Böehmer, Vitaly Kurin, and Shimon Whiteson. Deep coordination
graphs. In Proceedings of the 37th International Conference on Machine Learning,
ICML’20, pages 980–991. PMLR, 2020.

[11] Léon Bottou. On-Line Learning and Stochastic Approximations, pages 9–42. Cam-
bridge University Press, 1999.

[12] Matthew Botvinick, Jane X. Wang, Will Dabney, Kevin J. Miller, and Zeb Kurth-
Nelson. Deep reinforcement learning and its neuroscientific implications.
Neuron, 107(4):603–616, 2020.

141

142 bibliography

[13] Craig Boutilier. Planning, learning and coordination in multiagent decision
processes. In Proceedings of the 6th Conference on Theoretical Aspects of Rationality
and Knowledge, TARK’96, pages 195–210. Morgan Kaufmann Publishers Inc.,
1996.

[14] Lucian Busoniu, Robert Babuska, and Bart De Schutter. A comprehensive
survey of multiagent reinforcement learning. IEEE Transactions on Systems, Man,
and Cybernetics, Part C (Applications and Reviews), 38(2):156–172, 2008.

[15] Yongcan Cao, Wenwu Yu, Wei Ren, and Guanrong Chen. An overview of recent
progress in the study of distributed multi-agent coordination. IEEE Transactions
on Industrial Informatics, 9(1):427–438, 2013.

[16] Jacopo Castellini, Frans A. Oliehoek, Rahul Savani, and Shimon Whiteson. The
representational capacity of action-value networks for multi-agent reinforce-
ment learning. In Proceedings of the 18th International Conference on Autonomous
Agents and MultiAgent Systems, AAMAS’19, pages 1862–1864. International
Foundation for Autonomous Agents and MultiAgent Systems, 2019.

[17] Jacopo Castellini, Frans A. Oliehoek, Rahul Savani, and Shimon Whiteson.
Analysing factorizations of action-value networks for cooperative multi-agent
reinforcement learning. Autonomous Agents and Multi-Agent Systems, 35(25):53
pages, 2021.

[18] Michael Castronovo, Francis Maes, Raphael Fonteneau, and Damien Ernst.
Learning exploration/exploitation strategies for single trajectory reinforcement
learning. In Proceedings of the 10th European Workshop on Reinforcement Learning,
EWRL’13, pages 1–10. PMLR, 2013.

[19] Georgios Chalkiadakis, Edith Elkind, and Michael Wooldridge. Computational
Aspects of Cooperative Game Theory. Morgan & Claypool Publishers, 1st edition,
2011.

[20] Yu-Han Chang, Tracey Ho, and Leslie P. Kaelbling. All learning is local: Multi-
agent learning in global reward games. In Advances in Neural Information
Processing Systems 17, NIPS’03, pages 807–814. MIT Press, 2003.

[21] Shu-Yu Chen, Wanchao Su, Lin Gao, Shihong Xia, and Hongbo Fu. Deepface-
drawing: Deep generation of face images from sketches. ACM Transactions on
Graphics, 39(4):16 pages, 2020.

[22] Junyoung Chung, Caglar Gulcehre, Kyung Hyun Cho, and Yoshua Bengio.
Empirical evaluation of gated recurrent neural networks on sequence modeling.
In NIPS’14 Workshop on Deep Learning and Representation Learning, NIPS’14,
page 9, 2014.

bibliography 143

[23] Daniel Claes, Philipp Robbel, Frans A. Oliehoek, Karl Tuyls, Daniel Hennes,
and Wiebe van der Hoek. Effective approximations for multi-robot coordi-
nation in spatially distributed tasks. In Proceedings of the 14th International
Conference on Autonomous Agents and MultiAgent Systems, AAMAS’15, pages
881–890. International Foundation for Autonomous Agents and MultiAgent
Systems, 2015.

[24] Caroline Claus and Craig Boutilier. The dynamics of reinforcement learning in
cooperative multiagent systems. In Proceedings of the 15th AAAI Conference on
Artificial Intelligence, AAAI’98, pages 746–752. AAAI Press, 1998.

[25] Mitchell K. Colby, William Curran, Carrie Rebhuhn, and Kagan Tumer. Ap-
proximating difference evaluations with local knowledge. In Proceedings of the
13th International Conference on Autonomous Agents and MultiAgent Systems, AA-
MAS’14, pages 1577–1578. International Foundation for Autonomous Agents
and MultiAgent Systems, 2014.

[26] Mitchell K. Colby, William Curran, and Kagan Tumer. Approximating difference
evaluations with local information. In Proceedings of the 14th International
Conference on Autonomous Agents and MultiAgent Systems, AAMAS’15, pages
1659–1660. International Foundation for Autonomous Agents and MultiAgent
Systems, 2015.

[27] George B. Dantzig. Linear programming. Operations Research, 50(1):42–47, 2002.

[28] Li Deng. A tutorial survey of architectures, algorithms, and applications for
deep learning. APSIPA Transactions on Signal and Information Processing, 3(1):29
pages, 2014.

[29] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT:
Pre-training of deep bidirectional transformers for language understanding.
arXiv, abs/1810.04805:1–16, 2018.

[30] Sam Devlin and Daniel Kudenko. Theoretical considerations of potential-based
reward shaping for multi-agent systems. In Proceedings of the 10th International
Conference on Autonomous Agents and Multiagent Systems, AAMAS’11, pages
225–232. International Foundation for Autonomous Agents and Multiagent
Systems, 2011.

[31] Sam Devlin and Daniel Kudenko. Dynamic potential-based reward shaping.
In Proceedings of the 11th International Conference on Autonomous Agents and
MultiAgent Systems, AAMAS’12, pages 433–440. International Foundation for
Autonomous Agents and MultiAgent Systems, 2012.

[32] Sam Devlin, Logan Yliniemi, Daniel Kudenko, and Kagan Tumer. Potential-
based difference rewards for multiagent reinforcement learning. In Proceedings

144 bibliography

of the 13th International Conference on Autonomous Agents and MultiAgent Systems,
AAMAS’14, pages 165–172. International Foundation for Autonomous Agents
and MultiAgent Systems, 2014.

[33] Ali Dorri, Salil S. Kanhere, and Raja Jurdak. Multi-agent systems: A survey.
IEEE Access, 6:28573–28593, 2018.

[34] Prashant Doshi and Piotr J. Gmytrasiewicz. Monte Carlo sampling methods
for approximating interactive POMDPs. Journal of Artificial Intelligence Research,
34(1):297–337, 2009.

[35] Gabriel Dulac-Arnold, Daniel J. Mankowitz, and Todd Hester. Challenges of
real-world reinforcement learning. arXiv, abs/1904.12901:1–13, 2019.

[36] Adam Eck, Leen-Kiat Soh, Sam Devlin, and Daniel Kudenko. Potential-based
reward shaping for finite horizon online POMDP planning. Autonomous Agents
and Multi-Agent Systems, 30(3):403–445, 2015.

[37] Nima Fazeli, Miquel Oller, Jiajun Wu, Z. Wu, Joshua B. Tenenbaum, and A. Ro-
driguez. See, feel, act: Hierarchical learning for complex manipulation skills
with multisensory fusion. Science Robotics, 4(26):21 pages, 2019.

[38] Jakob Foerster, Yannis M Assael, Nando de Freitas, and Shimon Whiteson.
Learning to communicate with deep multi-agent reinforcement learning. In
Advances in Neural Information Processing Systems 30, NIPS’16, pages 2137–2145.
Curran Associates, Inc., 2016.

[39] Jakob Foerster, Richard Y. Chen, Maruan Al-Shedivat, Shimon Whiteson, Pieter
Abbeel, and Igor Mordatch. Learning with opponent-learning awareness. In Pro-
ceedings of the 17th International Conference on Autonomous Agents and MultiAgent
Systems, AAMAS’18, pages 122–130. International Foundation for Autonomous
Agents and MultiAgent Systems, 2018.

[40] Jakob N. Foerster, Gregory Farquhar, Triantafyllos Afouras, Nantas Nardelli,
and Shimon Whiteson. Counterfactual multi-agent policy gradients. In Pro-
ceedings of the 32th AAAI Conference on Artificial Intelligence, AAAI’18, pages
2974–2982. AAAI Press, 2018.

[41] Vincent Francois-Lavet, Peter Henderson, Riashat Islam, Marc G. Bellemare,
and Joelle Pineau. An introduction to deep reinforcement learning. Foundations
and Trends in Machine Learning, 11(3-4):219–354, 2018.

[42] Scott Fujimoto, Herke van Hoof, and David Meger. Addressing function ap-
proximation error in actor-critic methods. In Proceedings of the 36th International
Conference on Machine Learning, ICML’18, pages 1587–1596. PMLR, 2018.

bibliography 145

[43] Malik Ghallab, Dana Nau, and Paolo Traverso. Automated Planning: Theory
and Practice. The Morgan Kaufmann Series in Artificial Intelligence. Morgan
Kaufmann Publishers Inc., 1st edition, 2004.

[44] Ben Goertzel and Cassio Pennachin. Artificial General Intelligence. Cognitive
Technologies. Springer, 1st edition, 2007.

[45] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. The MIT
Press, 1st edition, 2016.

[46] Alex Graves. Generating sequences with recurrent neural networks. arXiv,
abs/1308.0850:1–43, 2013.

[47] Evan Greensmith, Peter L. Bartlett, and Jonathan Baxter. Variance reduction
techniques for gradient estimates in reinforcement learning. Journal of Machine
Learning Research, 5:1471–1530, 2004.

[48] Klaus Greff, Rupesh Kumar Srivastava, Jan Koutník, Bas R. Steunebrink, and
Jürgen Schmidhuber. LSTM: A search space odyssey. IEEE Transactions of Neural
Network and Learning Systems, 28(10):2222–2232, 2017.

[49] Trond Grenager, Rob A. Powers, and Yoav Shoham. Dispersion games: General
definitions and some specific learning results. In Proceedings of the 18th AAAI
Conference on Artificial Intelligence, AAAI’02, pages 398–403. AAAI Press, 2002.

[50] Carlos Guestrin, Daphne Koller, and Ronald Parr. Multiagent planning with
factored MDPs. In Advances in Neural Information Processing Systems 15, NIPS’02,
pages 1523–1530. Morgan Kaufmann Publishers Inc., 2002.

[51] Carlos Guestrin, Michail G. Lagoudakis, and Ronald Parr. Coordinated rein-
forcement learning. In Proceedings of the 19th International Conference on Machine
Learning, ICML’02, pages 227–234. Morgan Kaufmann Publishers Inc., 2002.

[52] Carlos Guestrin, Shobha Venkataraman, and Daphne Koller. Context-specific
multiagent coordination and planning with factored MDPs. In Proceedings of the
18th AAAI Conference on Artificial Intelligence, AAAI’02, pages 253–259. AAAI
Press, 2002.

[53] Carlos Guestrin, Daphne Koller, Ronald Parr, and Shobha Venkataraman. Ef-
ficient solution algorithms for factored MDPs. Journal of Artificial Intelligence
Research, 19(1):399–468, 2003.

[54] Jayesh K. Gupta, Maxim Egorov, and Mykel J. Kochenderfer. Cooperative
multi-agent control using deep reinforcement learning. In AAMAS’17 Workshop
on Learning and Adaptation in Multi-Agent Systems, AAMAS’17, pages 66–83.
Springer, 2017.

146 bibliography

[55] David Ha, Andrew M. Dai, and Quoc V. Le. Hypernetworks. In Proceedings
of the 5th International Conference on Learning Representations, ICLR’17, page 4.
OpenReview.net, 2017.

[56] Eric A. Hansen, Daniel S. Bernstein, and Shlomo Zilberstein. Dynamic pro-
gramming for partially observable stochastic games. In Proceedings of the 19th
AAAI Conference on Artifical Intelligence, AAAI’04, pages 709–715. AAAI Press,
2004.

[57] Matthew Hausknecht and Peter Stone. Deep recurrent Q-learning for partially
observable MDPs. In AAAI’15 Fall Symposium on Sequential Decision Making for
Intelligent Agents, AAAI’15, 2015.

[58] Simon Haykin. Neural Networks: A Comprehensive Foundation. Prentice Hall
Press, 2nd edition, 1998.

[59] Pablo Hernandez-Leal, Bilal Kartal, and Matthew E. Taylor. A survey and
critique of multiagent deep reinforcement learning. Autonomous Agents and
Multi-Agent Systems, 33(6):750–797, 2019.

[60] Douglas R. Hofstadter. Metamagical Themas: Questing for the Essence of Mind and
Pattern. Basic Books, Inc., 1st edition, 1985.

[61] Wenlong Huang, Igor Mordatch, and Deepak Pathak. One policy to control
them all: Shared modular policies for agent-agnostic control. In Proceedings of
the 37th International Conference on Machine Learning, ICML’20, pages 4455–4464.
PMLR, 2020.

[62] Chris Huntingford, Elizabeth S Jeffers, Michael B Bonsall, Hannah M Chris-
tensen, Thomas Lees, and Hui Yang. Machine learning and artificial intelligence
to aid climate change research and preparedness. Environmental Research Letters,
14(12):124007, 2019.

[63] Shariq Iqbal and Fei Sha. Actor-attention-critic for multi-agent reinforcement
learning. In Proceedings of the 36th International Conference on Machine Learning,
ICML’19, pages 2961–2970. PMLR, 2019.

[64] Fei Jiang, Yong Jiang, Hui Zhi, Yi Dong, Hao Li, Sufeng Ma, Yilong Wang, Qiang
Dong, Haipeng Shen, and Yongjun Wang. Artificial intelligence in healthcare:
past, present and future. Stroke and Vascular Neurology, 2(4):230–243, 2017.

[65] Leslie Pack Kaelbling, Michael L. Littman, and Andrew W. Moore. Reinforce-
ment learning: A survey. Journal of Artificial Intelligence Research, 4(1):237–285,
1996.

[66] Maurice Kendall and Jean D. Gibbons. Rank Correlation Methods. Oxford
University Press, 5th edition, 1990.

bibliography 147

[67] Jelle R. Kok and Nikos Vlassis. Collaborative multiagent reinforcement learning
by payoff propagation. Journal of Machine Learning Research, 7:1789–1828, 2006.

[68] Jelle R. Kok and Nikos A. Vlassis. Sparse cooperative Q-learning. In Proceedings
of the 21th International Conference on Machine Learning, ICML’04, pages 481–488.
Association for Computing Machinery, 2004.

[69] Vijay R. Konda and John N. Tsitsiklis. On actor-critic algorithms. SIAM Journal
of Control and Optimization, 42(4):1143–1166, 2003.

[70] Landon Kraemer and Bikramjit Banerjee. Multi-agent reinforcement learning
as a rehearsal for decentralized planning. Neurocomputing, 190(C):82–94, 2016.

[71] Lior Kuyer, Shimon Whiteson, Bram Bakker, and Nikos Vlassis. Multiagent
reinforcement learning for urban traffic control using coordination graphs. In
Proceedings of the 6th Joint European Conference on Machine Learning and Knowledge
Discovery in Databases, ECML-PKDD’08, pages 656–671. Springer, 2008.

[72] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learning. Nature, 521
(7553):436–444, 2015.

[73] Joel Z. Leibo, Vinicius Zambaldi, Marc Lanctot, Janusz Marecki, and Thore
Graepel. Multi-agent reinforcement learning in sequential social dilemmas.
In Proceedings of the 16th International Conference on Autonomous Agents and
MultiAgent Systems, AAMAS’17, pages 464–473. International Foundation for
Autonomous Agents and MultiAgent Systems, 2017.

[74] Victor R. Lesser. Cooperative multiagent systems: A personal view of the state
of the art. IEEE Transactions on Knowledge and Data Engineering, 11(1):133––142,
1999.

[75] Sergey Levine, Chelsea Finn, Trevor Darrell, and Pieter Abbeel. End-to-end
training of deep visuomotor policies. Journal of Machine Learning Research, 17(1):
1334–1373, 2016.

[76] Sheng Li, Jayesh K. Gupta, Peter Morales, Ross Allen, and Mykel J. Kochender-
fer. Deep implicit coordination graphs for multi-agent reinforcement learning.
In Proceedings of the 20th International Conference on Autonomous Agents and
MultiAgent Systems, AAMAS’21, pages 764–772. International Foundation for
Autonomous Agents and MultiAgent Systems, 2021.

[77] Timothy P. Lillicrap, Jonathan J. Hunt, Alexander Pritzel, Nicolas Heess, Tom
Erez, Yuval Tassa, David Silver, and Daan Wierstra. Continuous control with
deep reinforcement learning. arXiv, abs/1509.02971:1–14, 2015.

148 bibliography

[78] Xiao Liu, Yuanwei Liu, and Yue Chen. Reinforcement learning in multiple-UAV
networks: Deployment and movement design. IEEE Transactions on Vehicular
Technology, 68(8):8036–8049, 2019.

[79] Ryan Lowe, Yi Wu, Aviv Tamar, Jean Harb, Pieter Abbeel, and Igor Mordatch.
Multi-agent actor-critic for mixed cooperative-competitive environments. In
Advances in Neural Information Processing Systems 31, NIPS’17, pages 6379–6390.
Curran Associates, Inc., 2017.

[80] Xueguang Lyu, Yuchen Xiao, Brett Daley, and Christopher Amato. Contrasting
centralized and decentralized critics in multi-agent reinforcement learning.
In Proceedings of the 20th International Conference on Autonomous Agents and
MultiAgent Systems, AAMAS’21, pages 844–852. International Foundation for
Autonomous Agents and MultiAgent Systems, 2021.

[81] Xueguang Lyu, Andrea Baisero, Yuchen Xiao, and Christopher Amato. A deeper
understanding of state-based critics in multi-agent reinforcement learning.
arXiv, abs/2201.01221:1–20, 2022.

[82] Anuj Mahajan, Tabish Rashid, Mikayel Samvelyan, and Shimon Whiteson.
MAVEN: Multi-agent variational exploration. In Advances in Neural Information
Processing Systems 33, NeurIPS’19. Curran Associates, Inc., 2019.

[83] Laetitia Matignon, Guillaume J. Laurent, and Nadine Le Fort-Piat. Indepen-
dent reinforcement learners in cooperative Markov games: a survey regarding
coordination problems. Knowledge Engineering Review, 27(1):1–31, 2012.

[84] Francisco S. Melo and Manuela M. Veloso. Learning of coordination: exploiting
sparse interactions in multiagent systems. In Proceedings of the 8th International
Conference on Autonomous Agents and MultiAgent Systems, AAMAS’09, pages
773–780. International Foundation for Autonomous Agents and MultiAgent
Systems, 2009.

[85] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis
Antonoglou, Daan Wierstra, and Martin Riedmiller. Playing Atari with deep
reinforcement learning. In NIPS’13 Workshop on Deep Learning, NIPS’13, page 9,
2013.

[86] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A. Rusu, Joel
Veness, Marc G. Bellemare, Alex Graves, Martin A. Riedmiller, Andreas Fid-
jeland, Georg Ostrovski, Stig Petersen, Charles Beattie, Amir Sadik, Ioannis
Antonoglou, Helen King, Dharshan Kumaran, Daan Wierstra, Shane Legg, and
Demis Hassabis. Human-level control through deep reinforcement learning.
Nature, 518(7540):529–533, 2015.

bibliography 149

[87] Volodymyr Mnih, Adrià P. Badia, Mehdi Mirza, Alex Graves, Timothy Lillicrap,
Tim Harley, David Silver, and Koray Kavukcuoglu. Asynchronous methods
for deep reinforcement learning. In Proceedings 33rd International Conference on
Machine Learning, ICML’16, pages 1928–1937. PMLR, 2016.

[88] Guillem Muñoz, Cristina Barrado, Ender Çetin, and Esther Salami. Deep
reinforcement learning for drone delivery. Drones, 3(3):72 pages, 2019.

[89] Navid Naderializadeh, Fan H Hung, Sean Soleyman, and Deepak Khosla.
Graph convolutional value decomposition in multi-agent reinforcement learn-
ing. arXiv, abs/2010.04740:1–19, 2020.

[90] Vinod Nair and Geoffrey E. Hinton. Rectified linear units improve restricted
boltzmann machines. In Proceedings of the 27th International Conference on Machine
Learning, ICML’10, pages 807–814. Omnipress, 2010.

[91] John F. Nash. Equilibrium points in n-person games. Proceedings of the National
Academy of Sciences, 36(1):48–49, 1950.

[92] Behnam Neyshabur, Srinadh Bhojanapalli, David Mcallester, and Nati Srebro.
Exploring generalization in deep learning. In Advances in Neural Information
Processing Systems 31, NIPS’17, pages 5947–5956. Curran Associates, Inc., 2017.

[93] Andrew Y. Ng, Daishi Harada, and Stuart Russell. Policy invariance under
reward transformations: Theory and application to reward shaping. In Pro-
ceedings of the 16th International Conference on Machine Learning, ICML’99, pages
278–287. Morgan Kaufmann Publishers Inc., 1999.

[94] Duc T. Nguyen, Akshat Kumar, and Hoong C. Lau. Credit assignment for
collective multiagent RL with global rewards. In Advances in Neural Information
Processing Systems 32, NeurIPS’18, pages 8113–8124. Curran Associates, Inc.,
2018.

[95] Raz Nissim and Ronen I. Brafman. Multi-agent Af* for parallel and distributed
systems. In Proceedings of the 11th International Conference on Autonomous Agents
and MultiAgent Systems, AAMAS’12, pages 1265–1266. International Foundation
for Autonomous Agents and MultiAgent Systems, 2012.

[96] Ann Nowé, Katja Verbeeck, and Maarten Peeters. Learning automata as a basis
for multi agent reinforcement learning. In Proceedings of the 1st International
Conference on Learning and Adaption in Multi-Agent Systems, LAMAS’05, pages
71–85. Springer Berlin Heidelberg, 2006.

[97] Frans A. Oliehoek. Value-Based Planning for Teams of Agents in Stochastic Par-
tially Observable Environments. PhD thesis, Informatics Institute, University of
Amsterdam, 2010.

150 bibliography

[98] Frans A. Oliehoek and Christoper Amato. A Concise Introduction to Decentralized
POMDPs. SpringerBriefs in Intelligent Systems. Springer, 1st edition, 2016.

[99] Frans A. Oliehoek, Matthijs T. J. Spaan, Shimon Whiteson, and Nikos A. Vlassis.
Exploiting locality of interaction in factored Dec-POMDPs. In Proceedings of
the 7th International Conference on Autonomous Agents and MultiAgent Systems,
AAMAS’08, pages 517–524. International Foundation for Autonomous Agents
and MultiAgent Systems, 2008.

[100] Frans A. Oliehoek, Shimon Whiteson, and Matthijs T. J. Spaan. Exploiting
agent and type independence in collaborative graphical Bayesian games. arXiv,
abs/1108.0404:1–46, 2011.

[101] Frans A. Oliehoek, Shimon Whiteson, and Matthijs T. J. Spaan. Exploiting
structure in cooperative Bayesian games. In Proceedings of the 28th Conference on
Uncertainty in Artificial Intelligence, UAI’12, pages 654–665. AUAI Press, 2012.

[102] Frans A. Oliehoek, Stefan J. Witwicki, and Leslie P. Kaelbling. Influence-based
abstraction for multiagent systems. In Proceedings of the 26th AAAI Conference
on Artificial Intelligence, AAAI’12, pages 1422–1428. AAAI Press, 2012.

[103] Frans A. Oliehoek, Shimon Whiteson, and Matthijs T. J. Spaan. Approximate
solutions for factored Dec-POMDPs with many agents. In Proceedings of the
12th International Conference on Autonomous Agents and MultiAgent Systems, AA-
MAS’13, pages 563–570. International Foundation for Autonomous Agents and
MultiAgent Systems, 2013.

[104] Frans A. Oliehoek, Matthijs T. J. Spaan, and Stefan J. Witwicki. Factored upper
bounds for multiagent planning problems under uncertainty with non-factored
value functions. In Proceedings of the 24th International Joint Conference on Artificial
Intelligence, IJCAI’15, pages 1645–1651. AAAI Press, 2015.

[105] Martin J. Osborne and Ariel Rubinstein. A Course in Game Theory. The MIT
Press, 1st edition, 1994.

[106] Gregory Palmer, Karl Tuyls, Daan Bloembergen, and Rahul Savani. Lenient
multi-agent deep reinforcement learning. In Proceedings of the 17th International
Conference on Autonomous Agents and MultiAgent Systems, AAMAS’18, pages
443–451. International Foundation for Autonomous Agents and MultiAgent
Systems, 2018.

[107] Liviu Panait and Sean Luke. Cooperative multi-agent learning: The state of the
art. Autonomous Agents and Multi-Agent Systems, 11(3):387–434, 2005.

[108] Georgios Papoudakis, Filippos Christianos, Arrasy Rahman, and Stefano V.
Albrecht. Dealing with non-stationarity in multi-agent deep reinforcement
learning. arXiv, abs/1906.04737:1–8, 2019.

bibliography 151

[109] James Parker, Ernesto Nunes, Julio Godoy, and Maria Gini. Exploiting spatial
locality and heterogeneity of agents for search and rescue teamwork. Journal of
Field Robotics, 33(7):877–900, 2016.

[110] Maarten Peeters, Ville Könönen, Katja Verbeeck, and Ann Nowé. A learning
automata approach to multi-agent policy gradient learning. In Proceedings of
the 12th International Conference on Knowledge-Based Intelligent Information and
Engineering Systems, Part II, KES’08, pages 379–390. Springer-Verlag, 2008.

[111] Bei Peng, Tabish Rashid, Christian Schröder de Witt, Pierre-Alexandre Kami-
enny, Philip H. S. Torr, Wendelin Böhmer, and Shimon Whiteson. FACMAC:
Factored multi-agent centralised policy gradients. arXiv, abs/2003.06709:1–22,
2020.

[112] Leonid Peshkin, Kee-Eung Kim, Nicolas Meuleau, and Leslie Pack Kaelbling.
Learning to cooperate via policy search. In Proceedings of the 16th Conference on
Uncertainty in Artificial Intelligence, UAI’00, pages 489–496. Morgan Kaufmann
Publishers Inc., 2000.

[113] Samira Pouyanfar, Saad Sadiq, Yilin Yan, Haiman Tian, Yudong Tao, Maria Presa
Reyes, Mei-Ling Shyu, Shu-Ching Chen, and S. S. Iyengar. A survey on deep
learning: Algorithms, techniques, and applications. ACM Computing Surveys,
51(5):1–36, 2018.

[114] Scott Proper and Kagan Tumer. Modeling difference rewards for multiagent
learning. In Proceedings of the 11th International Conference on Autonomous Agents
and MultiAgent Systems, AAMAS’12, pages 1397–1398. International Foundation
for Autonomous Agents and MultiAgent Systems, 2012.

[115] Tabish Rashid, Mikayel Samvelyan, Christian Schröder de Witt, Gregory Far-
quhar, Jakob N. Foerster, and Shimon Whiteson. QMIX: Monotonic value
function factorisation for deep multi-agent reinforcement learning. In Proceed-
ings of the 35th International Conference on Machine Learning, ICML’18, pages
4292–4301. PMLR, 2018.

[116] D. Sai Koti Reddy, Amrita Saha, Srikanth G. Tamilselvam, Priyanka Agrawal,
and Pankaj Dayama. Risk averse reinforcement learning for mixed multi-agent
environments. In Proceedings of the 18th International Conference on Autonomous
Agents and MultiAgent Systems, AAMAS’19, pages 2171–2173. International
Foundation for Autonomous Agents and MultiAgent Systems, 2019.

[117] Herbert Robbins and Sutton Monro. A stochastic approximation method. The
Annals of Mathematical Statistics, 22(3):400–407, 1951.

152 bibliography

[118] Alex Rogers, Alessandro Farinelli, Ruben Stranders, and Nick R. Jennings.
Bounded approximate decentralised coordination via the max-sum algorithm.
Artificial Intelligence, 175(2):730–759, 2011.

[119] David E. Rumelhart, Geoffrey E. Hinton, and Ronald J. Williams. Learning
representations by back-propagating errors. Nature, 323(6088):533–536, 1986.

[120] David E. Rumelhart, Geoffrey E. Hinton, and Ronald J. Williams. Learning
internal representations by error propagation. In Parallel Distributed Processing:
Explorations in the Microstructure of Cognition, Volume 1: Foundations, pages 318–
362. MIT Press, 1986.

[121] Gavin A. Rummery and Mahesan Niranjan. On-line Q-learning using connec-
tionist systems. Technical Report TR 166, Cambridge University Engineering
Department, 1994.

[122] Stuart Russell and Peter Norvig. Artificial Intelligence: A Modern Approach.
Prentice Hall Press, 3rd edition, 2009.

[123] Mikayel Samvelyan, Tabish Rashid, Christian Schröeder de Witt, Gregory Far-
quhar, Nantas Nardelli, Tim G. J. Rudner, Chia-Man Hung, Philiph H. S. Torr,
Jakob Foerster, and Shimon Whiteson. The StarCraft multi-agent challenge.
arXiv, abs/1902.04043:1–14, 2019.

[124] Tom Schaul, John Quan, Ioannis Antonoglou, and David Silver. Prioritized
experience replay. arXiv, abs/1511.05952:1–21, 2015.

[125] Jeff Schneider, Weng-Keen Wong, Andrew Moore, and Martin Riedmiller. Dis-
tributed value functions. In Proceedings of the 16th International Conference on
Machine Learning, ICML’99, pages 371–378. Morgan Kaufmann Publishers Inc.,
1999.

[126] Christian Schröder de Witt, Tarun Gupta, Denys Makoviichuk, Viktor Makoviy-
chuk, Philip H. S. Torr, Mingfei Sun, and Shimon Whiteson. Is indepen-
dent learning all you need in the StarCraft multi-agent challenge? arXiv,
abs/2011.09533:1–11, 2020.

[127] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov.
Proximal policy optimization algorithms. arXiv, abs/1707.06347:1–12, 2017.

[128] Roberto Serrano. Cooperative games: Core and Shapley value. Technical report,
CEMFI, 2007.

[129] Shahin Shahrampour, Alexander Rakhlin, and Ali Jadbabaie. Multi-armed ban-
dits in multi-agent networks. In Proceedings of the IEEE International Conference
on Acoustics, Speech and Signal Processing, ICASSP’17, pages 2786–2790. Curran
Associates, Inc., 2017.

bibliography 153

[130] Jianzhun Shao, Hongchang Zhang, Yuhang Jiang, Shuncheng He, and Xi-
angyang Ji. Credit assignment with meta-policy gradient for multi-agent
reinforcement learning. arXiv, abs/2102.12957:1–14, 2021.

[131] Lloyd S. Shapley. Stochastic games. Proceedings of the National Academy of
Sciences, 39(10):1095–1100, 1953.

[132] David Silver, Guy Lever, Nicolas Heess, Thomas Degris, Daan Wierstra, and
Martin A. Riedmiller. Deterministic policy gradient algorithms. In Proceedings
31st International Conference on Machine Learning, ICML’14, pages 387–395. PMLR,
2014.

[133] David Silver, Aja Huang, Chris J. Maddison, Arthur Guez, Laurent Sifre,
George van den Driessche, Julian Schrittwieser, Ioannis Antonoglou, Veda
Panneershelvam, Marc Lanctot, Sander Dieleman, Dominik Grewe, John Nham,
Nal Kalchbrenner, Ilya Sutskever, Timothy Lillicrap, Madeleine Leach, Koray
Kavukcuoglu, Thore Graepel, and Demis Hassabis. Mastering the game of Go
with deep neural networks and tree search. Nature, 529(7587):484–489, 2016.

[134] David Silver, Julian Schrittwieser, Karen Simonyan, Ioannis Antonoglou, Aja
Huang, Arthur Guez, Thomas Hubert, Lucas Baker, Matthew Lai, Adrian Bolton,
Yutian Chen, Timothy Lillicrap, Fan Hui, Laurent Sifre, George van den Driess-
che, Thore Graepel, and Demis Hassabis. Mastering the game of Go without
human knowledge. Nature, 550(7676):354–359, 2017.

[135] Kyunghwan Son, Daewoo Kim, Wan J. Kang, David Hostallero, and Yung Yi.
QTRAN: Learning to factorize with transformation for cooperative multi-agent
reinforcement learning. In Proceedings of the 36th International Conference on
Machine Learning, ICML’19, pages 5887–5896. PMLR, 2019.

[136] Peter Stone and Manuela Veloso. Multiagent systems: A survey from a machine
learning perspective. Autonomous Robots, 8(3):345–383, 2000.

[137] Jianyu Su, Stephen C. Adams, and Peter A. Beling. Value-decomposition
multi-agent actor-critics. arXiv, abs/2007.12306:1–13, 2020.

[138] Sainbayar Sukhbaatar, Arthur Szlam, and Rob Fergus. Learning multiagent com-
munication with backpropagation. In Advances in Neural Information Processing
Systems 30, NIPS’16, pages 2252–2260. Curran Associates, Inc., 2016.

[139] Peter Sunehag, Guy Lever, Audrunas Gruslys, Wojciech Marian Czarnecki,
Vinicius Zambaldi, Max Jaderberg, Marc Lanctot, Nicolas Sonnerat, Joel Z.
Leibo, Karl Tuyls, and Thore Graepel. Value-decomposition networks for
cooperative multi-agent learning based on team reward. In Proceedings of
the 17th International Conference on Autonomous Agents and MultiAgent Systems,

154 bibliography

AAMAS’18, pages 2085–2087. International Foundation for Autonomous Agents
and MultiAgent Systems, 2018.

[140] Richard S. Sutton. Learning to predict by the methods of temporal differences.
Machine Learning, 3(1):9–44, 1988.

[141] Richard S. Sutton and Andrew G. Barto. Reinforcement Learning: An Introduction.
The MIT Press, 2nd edition, 2018.

[142] Richard S. Sutton, David A. McAllester, Satinder P. Singh, and Yishay Mansour.
Policy gradient methods for reinforcement learning with function approxima-
tion. In Advances in Neural Information Processing Systems 14, NIPS’00, pages
1057–1063. MIT Press, 2000.

[143] Pieter J. ’t Hoen and Johannes A. La Poutré. A decommitment strategy in a
competitive multi-agent transportation setting. In Proceedings of the 2nd Inter-
national Conference on Autonomous Agents and MultiAgent Systems, AAMAS’03,
pages 1010–1011. Association for Computing Machinery, 2003.

[144] Pieter J. ’t Hoen, Karl Tuyls, Liviu Panait, Sean Luke, and Johannes A. La Poutré.
An overview of cooperative and competitive multiagent learning. In AAMAS’05
Workshop on Learning and Adaptation in Multi-Agent Systems, AAMAS’05, page 46,
2005.

[145] Ardi Tampuu, Tambet Matiisen, Dorian Kodelja, Ilya Kuzovkin, Kristjan Korjus,
Juhan Aru, Jaan Aru, and Raul Vicente. Multiagent cooperation and competition
with deep reinforcement learning. PLoS ONE, 12(4):1–15, 2017.

[146] Ming Tan. Multi-agent reinforcement learning: Independent vs. cooperative
agents. In Proceedings of the 10th International Conference on Machine Learning,
ICML’93, pages 330–337. Morgan Kaufmann Publishers Inc., 1993.

[147] Sebastian Thrun, Mike Montemerlo, Hendrik Dahlkamp, David Stavens, An-
drei Aron, James Diebel, Philip Fong, John Gale, Morgan Halpenny, Gabriel
Hoffmann, Kenny Lau, Celia Oakley, Mark Palatucci, Vaughan Pratt, Pascal
Stang, Sven Strohband, Cedric Dupont, Lars-Erik Jendrossek, Christian Koelen,
Charles Markey, Carlo Rummel, Joe van Niekerk, Eric Jensen, Philippe Alessan-
drini, Gary Bradski, Bob Davies, Scott Ettinger, Adrian Kaehler, Ara Nefian,
and Pamela Mahoney. Stanley: The robot that won the DARPA grand challenge.
Journal of Field Robotics, 23(9):661–692, 2006.

[148] Michael Tomasello, Alicia P. Melis, Claudio Tennie, Emily Wyman, and Es-
ther Herrmann. Two key steps in the evolution of human cooperation: The
interdependence hypothesis. Current Anthropology, 53(6):673–692, 2012.

bibliography 155

[149] John Tsitsiklis and Benjamin Van Roy. An analysis of temporal-difference
learning with function approximation. IEEE Transactions on Automatic Control,
42(5):674–690, 1997.

[150] Kagan Tumer and Adrian Agogino. Distributed agent-based air traffic flow
management. In Proceedings of the 6th International Conference on Autonomous
Agents and MultiAgent Systems, AAMAS’07, pages 1–8. Association for Comput-
ing Machinery, 2007.

[151] Elise Van der Pol and Frans A. Oliehoek. Coordinated deep reinforcement
learners for traffic light control. In NIPS’16 Workshop on Learning, Inference and
Control of Multi-Agent Systems, NIPS’16, 2016.

[152] Hado van Hasselt, Arthur Guez, and David Silver. Deep reinforcement learning
with double Q-learning. arXiv, abs/1509.06461:1–13, 2015.

[153] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin. Attention is all you
need. In Advances in Neural Information Processing Systems 31, NIPS’17, pages
5998–6008. Curran Associates, Inc., 2017.

[154] Matej Vecerík, Todd Hester, Jonathan Scholz, Fumin Wang, Olivier Pietquin,
Bilal Piot, Nicolas Heess, Thomas Rothörl, Thomas Lampe, and Martin A.
Riedmiller. Leveraging demonstrations for deep reinforcement learning on
robotics problems with sparse rewards. arXiv, abs/1707.08817:1–10, 2017.

[155] Oriol Vinyals, Timo Ewalds, Sergey Bartunov, Petko Georgiev, Alexander (Sasha)
Vezhnevets, Michelle Yeo, Alireza Makhzani, Heinrich Küttler, John P. Aga-
piou, Julian Schrittwieser, John Quan, Stephen Gaffney, Stig Petersen, Karen
Simonyan, Tom Schaul, Hado van Hasselt, David Silver, Timothy P. Lillicrap,
Kevin Calderone, Paul Keet, Anthony Brunasso, David Lawrence, Anders Ek-
ermo, Jacob Repp, and Rodney Tsing. StarCraft II: A new challenge for rein-
forcement learning. arXiv, abs/1708.04782:1–20, 2017.

[156] Oriol Vinyals, Igor Babuschkin, Wojciech Czarnecki, Michaël Mathieu, Andrew
Dudzik, Junyoung Chung, David Choi, Richard Powell, Timo Ewalds, Petko
Georgiev, Junhyuk Oh, Dan Horgan, Manuel Kroiss, Ivo Danihelka, Aja Huang,
Laurent Sifre, Trevor Cai, John Agapiou, Max Jaderberg, and David Silver.
Grandmaster level in StarCraft II using multi-agent reinforcement learning.
Nature, 575(7782):350–354, 2019.

[157] Jianhao Wang, Zhizhou Ren, Beining Han, and Chongjie Zhang. Towards un-
derstanding linear value decomposition in cooperative multi-agent Q-learning.
arXiv, abs/2006.00587:1–39, 2020.

156 bibliography

[158] Jianhao Wang, Zhizhou Ren, Terry Liu, Yang Yu, and Chongjie Zhang. QPLEX:
Duplex dueling multi-agent Q-learning. arXiv, abs/2008.01062:1–27, 2020.

[159] Jianhong Wang, Yuan Zhang, Tae-Kyun Kim, and Yunjie Gu. Shapley Q-value:
A local reward approach to solve global reward games. In Proceedings of the
34th AAAI Conference on Artificial Intelligence, AAAI’20, pages 7285–7292. AAAI
Press, 2020.

[160] Yihan Wang, Beining Han, Tonghan Wang, Heng Dong, and Chongjie Zhang.
Off-policy multi-agent decomposed policy gradients. arXiv, abs/2007.12322:
1–20, 2020.

[161] Ziyu Wang, Tom Schaul, Matteo Hessel, Hado van Hasselt, Marc Lanctot,
and Nando de Freitas. Dueling network architectures for deep reinforcement
learning. arXiv, abs/1511.06581:1–15, 2015.

[162] Christopher J. C. H. Watkins and Peter Dayan. Q-learning. Machine Learning, 8
(3):279–292, 1992.

[163] Ermo Wei and Sean Luke. Lenient learning in independent-learner stochastic
cooperative games. Journal of Machine Learning Research, 17(84):1–42, 2016.

[164] Paul J Werbos. Backpropagation through time: what it does and how to do it.
Proceedings of the IEEE, 78(10):1550–1560, 1990.

[165] Shimon Whiteson, Matthew E. Taylor, and Peter Stone. Adaptive tile coding
for value function approximation. Technical Report AI-TR-07-339, University
of Texas at Austin, 2007.

[166] Daan Wierstra, E. Foerster, Jan Peters, and Juergen Schmidhuber. Solving deep
memory POMDPs with recurrent policy gradients. In Proceedings of the 16th
International Conference on Artificial Neural Networks, ICANN’07, pages 697–706.
Springer, 2007.

[167] Ronald J. Williams. Simple statistical gradient-following algorithms for connec-
tionist reinforcement learning. Machine Learning, 8(3):229–256, 1992.

[168] David H. Wolpert and Kagan Tumer. An introduction to collective intelligence.
Technical report, NASA-ARC-IC-99-63, Nasa Ames Research Center, 1999.

[169] David H. Wolpert and Kagan Tumer. Optimal payoff functions for members of
collectives. Advances in Complex Systems, 4(2-3):265–279, 2001.

[170] Zifan Wu, Chao Yu, Deheng Ye, Junge Zhang, Haiyin Piao, and Hankz Hankui
Zhuo. Coordinated proximal policy optimization. arXiv, abs/2111.04051:1–20,
2021.

bibliography 157

[171] Michael Wunder, Michael L. Littman, and Monica Babes. Classes of multiagent
Q-learning dynamics with epsilon-greedy exploration. In Proceedings of the
27th International Conference on Machine Learning, ICML’10, pages 1167–1174.
Omnipress, 2010.

[172] Bing Xu, Naiyan Wang, Tianqi Chen, and Mu Li. Empirical evaluation of
rectified activations in convolutional network. arXiv, abs/1505.00853:1–5, 2015.

[173] Chuanyu Yang, Kai Yuan, Qiuguo Zhu, Wanming Yu, and Zhibin Li. Multi-
expert learning of adaptive legged locomotion. Science Robotics, 5(49):14 pages,
2020.

[174] Yaodong Yang, Jianye Hao, Guangyong Chen, Hongyao Tang, Yingfeng Chen,
Yujing Hu, Changjie Fan, and Zhongyu Wei. Q-value path decomposition for
deep multiagent reinforcement learning. In Proceedings of the 37th International
Conference on Machine Learning, ICML’20, pages 10706–10715. PMLR, 2020.

[175] Yaodong Yang, Jianye Hao, Ben Liao, Kun Shao, Guangyong Chen, Wulong Liu,
and Hongyao Tang. Qatten: A general framework for cooperative multiagent
reinforcement learning. arXiv, abs/2002.03939:1–14, 2020.

[176] Yuxiang Yang, Ken Caluwaerts, Atil Iscen, Tingnan Zhang, Jie Tan, and Vikas
Sindhwani. Data efficient reinforcement learning for legged robots. In Proceed-
ings of the 3rd Annual Conference on Robot Learning, CoRL’19, pages 1–10. PMLR,
2019.

[177] Dayon Ye, Minji Zhang, and Yu Yang. A multi-agent framework for packet
routing in wireless sensor networks. Sensors, 15(5):10026–10047, 2015.

[178] Logan Yliniemi and Kagan Tumer. Multi-objective multiagent credit assignment
through difference rewards in reinforcement learning. In Proceedings of the Asia-
Pacific Conference on Simulated Evolution and Learning, SEAL’14, pages 407–418.
Springer, 2014.

[179] Chao Yu, Xin Wang, Jianye Hao, and Zhanbo Feng. Reinforcement learning
for cooperative overtaking. In Proceedings of the 18th International Conference on
Autonomous Agents and MultiAgent Systems, AAMAS’19, pages 341–349. Interna-
tional Foundation for Autonomous Agents and MultiAgent Systems, 2019.

[180] Chao Yu, Akash Velu, Eugene Vinitsky, Yu Wang, Alexandre M. Bayen, and
Yi Wu. The surprising effectiveness of MAPPO in cooperative, multi-agent
games. arXiv, abs/2103.01955:1–29, 2021.

[181] Yan Zhang and Michael M. Zavlanos. Distributed off-policy actor-critic rein-
forcement learning with policy consensus. arXiv, abs/1903.09255:1–8, 2019.

158 bibliography

[182] Meng Zhou, Ziyu Liu, Pengwei Sui, Yixuan Li, and Yuk Ying Chung. Learning
implicit credit assignment for cooperative multi-agent reinforcement learning.
In Advances in Neural Information Processing Systems 34, NeurIPS’20, pages 11853–
11864. Curran Associates, Inc., 2020.

	Introduction
	Motivation
	Learning in Multi-Agent Systems
	Problem Statement
	Contributions & Research Questions
	Published Works

	Background
	Reinforcement Learning
	The RL Problem
	Partial Observability
	Deep Learning
	Q-Learning & SARSA
	Deep Q-Network
	Policy Gradients

	Game Theory
	(Cooperative) One-Shot Games
	Nash Equilibria & Optimal Solutions
	Graphical Games & Coordination Graphs
	Bayesian Games
	(Partially Observable) Stochastic Games, MMDPs and Dec-POMDPs

	Cooperative Multi-Agent Reinforcement Learning
	Centralized Controller vs. Independent Learners
	IL Pathologies
	Centralized Training-Decentralized Execution
	Factorizations
	Multi-Agent Credit Assignment & Difference Rewards
	Multi-Agent Policy Gradients
	Deep Multi-Agent Reinforcement Learning

	Analysing Factorizations of Action-Value Networks for Multi-Agent Reinforcement Learning
	Investigated Action-Value Factorizations
	Learning Algorithms
	Coordination Graphs
	Investigated Games

	Experiments
	Experimental Setup
	Comparison to Baselines
	Impact of Factors Size
	Scalability
	Sample Complexity
	Exploratory Policy
	Summary of Results

	Discussion

	Difference Rewards Policy Gradients
	Methods
	Dr.Reinforce
	Online Reward Estimation

	Theoretical Results
	Gridworld Experiments
	Comparison to Baselines
	Analysis

	Extending Dr.Reinforce to Partially Observable Settings
	Methods
	Theoretical Results
	StarCraft II Experiments
	Discussion

	Conclusions
	Answering the Research Questions
	Summary of Contributions
	Limitations and Future Work

	Additional Policy Gradients Training Details
	Hyperparameters and Training Procedure

	Additional Results and Plots
	Factorizations Complete Results
	Additional Gridworld Analysis Plots
	Additional SMAC Plots

	Acronyms
	Bibliography

