
Multi-Agent Learning
for Security and Sustainability

Thesis submitted in accordance with the requirements of the University of Liverpool for
the degree of Doctor in Philosophy by

Richard Klima

October 2019

Multi-Agent Learning for Security and Sustainability Richard Klima

Abstract

This thesis studies the application of multi-agent learning in complex domains where safety
and sustainability are crucial. We target some of the main obstacles in the deployment
of multi-agent learning techniques in such domains. These obstacles consist of modelling
complex environments with multi-agent interaction, designing robust learning processes
and modelling adversarial agents. The main goal of using modern multi-agent learning
methods is to improve the effectiveness of behaviour in such domains, and hence increase
sustainability and security. This thesis investigates three complex real-world domains:
space debris removal, critical domains with risky states and spatial security domains such
as illegal rhino poaching.

We first tackle the challenge of modelling a complex multi-agent environment. The focus
is on the space debris removal problem, which poses a major threat to the sustainability of
earth orbit. We develop a high-fidelity space debris simulator that allows us to simulate
the future evolution of the space debris environment. Using the data from the simulator
we propose a surrogate model, which enables fast evaluation of different strategies chosen
by the space actors. We then analyse the dynamics of strategic decision making among
multiple space actors, comparing different models of agent interaction: static vs. dynamic
and centralised vs. decentralised. The outcome of our work can help future decision makers
to design debris removal strategies, and consequently mitigate the threat of space debris.

Next, we study how we can design a robust learning process in critical domains with risky
states, where destabilisation of local components can lead to severe impact on the whole
network. We propose a novel robust operator κ which can be combined with reinforcement
learning methods, leading to learning safe policies, mitigating the threat of external attack,
or failure in the system.

Finally, we investigate the challenge of learning an effective behaviour while facing
adversarial attackers in spatial security domains such as illegal rhino poaching. We assume
that such attackers can be occasionally observed. Our approach consists of combining
Bayesian inference with temporal difference learning, in order to build a model of the attacker
behaviour. Our method can effectively use the partial observability of the attacker’s location
and approximate the performance of a full observability case.

This thesis therefore presents novel methods and tackles several important obstacles
in deploying multi-agent learning algorithms in the real-world, which further narrows the
reality gap between theoretical models and real-world applications.

i

ii

Acknowledgements

This thesis is the outcome of four very fruitful years, during which I have grown both
professionally and personally. As any PhD student can probably confirm, one often faces
ups and downs on this journey. The downs were bearable due to many great people who
surrounded me during this episode of my life, the ups were shared and enjoyed also thanks
to those people. My professional contacts have often transitioned into friendships, leading
to a great work environment, which I really enjoyed to be part of.

Firstly, I am very grateful to you, Karl, you have been a great supervisor, incredible
inspiration and an amazing person to work with, steering me through this unforgettable
life experience. I have learned a lot from you and your valuable feedback has been great. I
would like to also express my gratitude to you, Rahul, my second supervisor, you were a
great support when needed and extremely pleasant to work with. And you, Frans, thank
you for introducing me to the world of POMDPs. I am also very thankful to you, Daan, I
learned a lot from you and had great collaboration with you throughout my PhD, I could
always bounce my research ideas off you. I am also grateful to the researchers from the
European Space Agency, Daniel, Dario, Alex and others who I worked with on the space
debris removal project. You provided great insights into the space debris removal problem
and helped me greatly to develop the simulator. I also need to mention my wonderful
visit at CWI in Amsterdam, working with you, Daan (again) and Michael. You were both
extremely easy and pleasant to work with. I learned a lot from you not only professionally.

During my studies I was fortunate enough to attend several conferences to present
my work and to meet some incredible people, many of whom I had known from reading
academic papers first, for which I am very grateful to the department for making it possible.

It was very important for me that I had plenty of opportunities to take my mind from
work time to time, be it sometimes going for a pint on Friday after work or trips around
the UK and Europe. To name some of you, Paul, Maryam, Elisa, Francesco, Sven, Fabio,
Rafael, Angelo and other colleagues from the department, the archaeologists and all the
others, thank you for all the fun we have had.

Above all my greatest gratitude needs to go to my family, foremostly to you, my parents
Jiřina and Petr, you have always supported me no matter what and keep believing in me.

This thesis is primarily my own work. The sources of other materials are identified.
However, we all stand on the shoulders of giants.

iii

iv

Contents

Abstract i

Acknowledgements iii

Contents v

1 Introduction 1
1.1 Multi-Agent Learning for Security and Sustainability 2
1.2 Problem Statement and Research Questions 5
1.3 Contributions and Thesis Outline . 11

2 Preliminaries 13
2.1 Game Theory . 15

2.1.1 Normal-Form Games . 15
2.1.2 Solution Concepts . 16
2.1.3 Evolutionary Game Theory . 18
2.1.4 Multi-Stage Games . 19

2.2 Reinforcement Learning . 22
2.2.1 Markov Decision Process . 24
2.2.2 Policy & Value Function . 25
2.2.3 Temporal Difference Learning . 26
2.2.4 Partially Observable Markov Decision Process 28

2.3 Multi-Agent Learning . 29
2.3.1 Stochastic Games . 30
2.3.2 Approaches to Multi-Agent Learning 31

3 Methodology & Application Areas 35
3.1 Security and Sustainability in Studied Domains 36

3.1.1 Sustainability of Earth’s Orbit . 36
3.1.2 Safety in Critical Systems with Risky States 37
3.1.3 Mitigating Threats in Spatial Security Domains 38

3.2 Methodology and Problems Classification 39
3.2.1 Threat Types . 40

v

Contents

3.2.2 Modelling Choices . 41
3.2.3 Input Data . 43

4 Modelling and Learning in the Space Debris Removal Problem 45
4.1 Space Debris Removal Problem . 46
4.2 Simulating Space Debris Environment . 50
4.3 Models of Agent Interaction . 51

4.3.1 Surrogate Model of the Space Debris Simulator 52
4.3.2 Deterministic Game Model of Space Debris Removal 54
4.3.3 Dynamic Decision Making in the Space Debris Problem 58

4.4 Evaluation of Different Models of Agent Interaction 61
4.5 Discussion . 76

5 Robust Learning in Critical Systems with Risky States 80
5.1 Need for Robustness in Systems with Risky States 81
5.2 The Robust Temporal Difference Operator κ 84

5.2.1 Formal Model . 84
5.2.2 Advanced Model . 86
5.2.3 Examples of TD(κ) Methods . 86

5.3 Theoretical Analysis of Convergence of Operator κ 89
5.3.1 Convergence to the Optimal Q? . 89
5.3.2 Convergence to the Robust Q?κ . 93
5.3.3 Convergence in the Multi-Agent Case 95

5.4 Experiments with Robust Learning . 96
5.4.1 Performance . 97
5.4.2 Different Levels of Attack . 99
5.4.3 Robustness Analysis . 101

5.5 Discussion . 102

6 Learning Against Adversarial Agents in Spatial Security Domains 104
6.1 Uncertainty in Spatial Security Domains . 105
6.2 Partially Observable Model of Spatial Security Games 109

6.2.1 Observability in Spatial Security Games 110
6.2.2 Statistical Approach to Uncertainty 112

6.3 Q-learning with Bayesian Inference: BayesRQ 116
6.4 Experiments with the BayesRQ Algorithm 118
6.5 Discussion . 122

7 Conclusion 124
7.1 Contributions and Answers to the Research Questions 124
7.2 Limitations and Perspectives for Future Research 128

vi

Contents

List of Figures 132

List of Tables 137

References 141

Publications 157

Appendix A Space Debris Simulator Model 158
A.1 Simulating Space Debris Environment . 158
A.2 Collision and Breakup Model . 159
A.3 Simple Launch Model . 160

A.3.1 Repeating Launch Sequence . 160
A.3.2 Validation . 163

A.4 Complex Launch Model . 164
A.4.1 Mass per Year . 165
A.4.2 Spacecraft Classes . 166
A.4.3 Orbits . 168
A.4.4 Launches . 170
A.4.5 Future Launch Scenarios . 170
A.4.6 Mega Constellations . 171

Appendix B The Space Debris Removal Problem: Preliminary Work 176
B.1 Defining the Space Debris Removal Game 176
B.2 Simulation Results and Projections . 178

B.2.1 Debris Evolution . 179
B.2.2 Risk Evolution . 179

B.3 Game Theoretic Analysis of Equilibria . 181
B.3.1 Two Player Game . 181
B.3.2 Strategic Substitutes and Existence of Pure Equilibrium 183
B.3.3 Evolutionary Dynamics . 186
B.3.4 Three Player Game . 188

B.4 Discussion . 190

Appendix C Surrogate Model of Space Debris Evolution 192
C.1 Validation of Surrogate Model . 192

vii

Contents

viii

1
Introduction

In recent years we have witnessed an astonishing speed of technological progress, which
has improved many aspects of our lives. While we get to enjoy many perks brought by
technological advances, we must not forget about new challenges which come hand in hand.
At the forefront of the progress has been artificial intelligence (AI), a fruitful domain of
computer science, which aims to mimic human intelligence. The ultimate goal of AI is to
tackle today’s problems and introduce higher effectiveness into various aspects of human
activities [Russell and Norvig, 2016]. An optimistic way to think about the future prospects
of AI is as an extension of humans, not a substitution, where AI coexists with us and not
threatens us, significantly enhancing our abilities. Before deploying AI techniques into
real world and making them part of our everyday lives one needs to make sure they are
used in a safe way and thus do not harm us or the environment. One of the frequently
discussed problems of modern technology is its negative impact on the environment, be
it Nature or the society. This issue is often described in terms of security and a closely
related term sustainability, which are some of the most important attributes to consider,
when making use of modern AI methods for real-world applications. This thesis studies
how to deploy modern intelligent techniques to obtain effective behaviour in order to

1

2 1.1. Multi-Agent Learning for Security and Sustainability

improve security and sustainability, presenting new ways to approach and mitigate threats
in complex environments. We investigate how to overcome modelling challenges when
deploying AI state-of-the-art techniques.

The main assumption of this thesis is that many real-world environments can be
described in terms of a multi-agent framework, where several entities interact with each
other. Furthermore these entities, which we will call agents, make decisions which might
depend on the other agents and a state of the environment. In this thesis we are particularly
interested in such a multi-agent interaction and its complex dynamics. Moreover, we study
how effective and safe behaviour can be attained in multi-agent systems, increasing the
applicability of modern AI methods to real-world domains. In general, such behaviour can
be obtained either by exact mathematical computation or by adaption by learning from
interaction, which we extensively analyse and compare.

This thesis focuses on several domains, where we investigate the applicability of modern
AI techniques with the emphasis on security and sustainability. We first study the domain
of the space debris removal problem where future sustainability is a prerequisite for
further technological progress, depending heavily on for example satellite communication
or navigation. Next, this thesis investigates how a robust behaviour can be attained in
critical domains with risky states, leading to increased security of such systems. Lastly, we
focus on spatial security domains where potentially intelligent adversaries aim to attack
some critical targets. We discuss the example of illegal rhino poaching problem, where
there is a risk of species extinction, therefore introducing effective behaviour might improve
sustainability of the species.

In this chapter we briefly introduce the main AI frameworks which we use to approach
the studied security and sustainability domains; game theory, reinforcement learning and
multi-agent learning. We then present the problem statement from which we derive 3 main
research questions which we aim to answer in this thesis.

1.1 Multi-Agent Learning for Security and Sustainability

Sustainability is the ability to be maintained at a certain level or rate, often the term relates
to avoidance of the depletion of natural resources. The relation between sustainability
and security is very close; sustainability can be defined in terms of security as the process
of securing environment against future degradation. On the other hand security can be
seen as the process of sustaining environment against potential threats. In this thesis we

Chapter 1. Introduction 3

investigate modelling challenges of the multi-agent learning paradigm in several real-world
application domains from the perspective of these two notions. The general goal can be
defined as effectively reacting to threats with the aim of finding an effective behaviour in
those domains.

Arguably, many real-world domains can be modelled as a multi-agent scenario, where
the effect of every decision made by an agent also depends on other people (agents), which
is especially true when we are concerned about safety and sustainability. The dynamics of
multiple agents’ behaviour can be very complex because they can influence each other, often
in myriad unobservable ways. Thus, formalising the complex interactions of multiple agents
in mathematical terms is a very difficult task. The fields of game theory, reinforcement
learning and multi-agent learning (MAL) are trying to tackle this challenge. Tuyls and
Stone [2018] describe multi-agent learning as a process where multiple agents learn to
behave so that they achieve their goals, while they interact with other (learning) agents,
who might have similar or different goals (e.g., cooperative or adversarial agents).

Depending on the application domain we might require different properties from the
solutions, for example safety, robustness, convergence guarantees or sampling efficiency.
We discuss several of such properties and their significance in order to achieve security
and sustainability in the studied domains. This thesis combines and compares several
modelling perspectives, which might be beneficial to overcome the difficulties when deploy-
ing multi-agent learning techniques [Albrecht and Stone, 2018]. Our multi-agent learning
approach builds on using ideas from game theory and reinforcement learning, which provide
powerful frameworks to model complex potentially multi-agent interactions. Moreover,
the multi-agent learning paradigm has been developed in recent years primarily as an
intersection of game theory and reinforcement learning [Tuyls and Weiss, 2012]. We
now give a brief introduction to these fields.

Game theory models an interaction between rational agents (players), who aim to
maximise their expected utility (reward). The field of game theory was extensively de-
veloped in 1940s and 1950s with the seminal works of Von Neumann and Morgenstern
[1944] and Nash [1951], who set the stepping stones of modern game theory. The need
for analysing agents’ interactions comes from many real-world domains, where it has been
successfully applied, examples include economics, politics, social science, biology, logic or
computer science. A game-theoretical model often assumes several strong properties which
do not always naturally appear in real-world agent interactions; such as pure rationality,

4 1.1. Multi-Agent Learning for Security and Sustainability

selfishness, or the concept of achieving behavioural equilibria among agents. Some of the
limitations have been addressed to some extent by related fields of evolutionary game theory
or multi-agent learning. This thesis draws ideas from these fields, proposing new methods
to tackle challenges posed by real-world applications. Game theory offers a static solution
concept in form of equilibria of strategies, which can be computed exactly by mathematical
methods in simple cases. However in larger or dynamic systems such an exact computation
might be unfeasible and we need to turn to adaptation by learning from interaction. This
alternative solution approach is studied in the field of reinforcement learning. In this thesis
we analyse and compare these two different approaches to obtaining effective behaviour.

Reinforcement learning (RL) is inspired by the way how humans learn from an
early age, using trial and error [Lake et al., 2017]. For example if a child touches a hot
object and gets hurt, receiving negative feedback (reward), it eventually learns not to
touch it again, however if a child tastes ice-cream, receiving positive feedback (reward), it
wants to do it again, because it brings pleasure. Similarly, in reinforcement learning we
sample different experiences and receive corresponding rewards, which we use to update
our knowledge about the environment, forming a value function. By interacting with the
environment we learn what is good and what is bad for us in order to improve our future
behaviour. Reinforcement learning is thus suitable when we seek optimal behaviour; for a
general introduction to RL see the book of Sutton and Barto [1998]. Optimal behaviour can
be defined in various ways depending on different metrics, in this thesis we are interested in
behaviour which is safe to the environment while being effective and robust. Such properties
are especially desirable for domains where we want to achieve sustainability. Reinforcement
learning has seen many great success stories in recent years, to name a few: DQN [Mnih
et al., 2013, 2015] combining RL with deep neural networks and achieving superhuman
performance in Atari games, AlphaGo and AlphaZero [Silver et al., 2016, 2017] beating the
best players of the game Go or successful application of RL to robotics [Abbeel et al., 2007;
Kober et al., 2012; Levine et al., 2016].

The classic reinforcement learning is designed for single-agent domains. However, in
many real-world applications we deal with multiple learning agents, thus single-agent
reinforcement learning needs to be extended to multi-agent reinforcement learning (MARL),
which introduces new complexities to the learning process. The main problem is non-
stationarity caused by agents learning the behaviour of other learning agents; this is
known as the moving target problem [Tuyls and Weiss, 2012]. This non-stationarity breaks

Chapter 1. Introduction 5

most convergence proofs we know from single-agent RL and makes obtaining theoretical
guarantees in MARL extremely difficult.

In this thesis we use ideas from both, single-agent RL and multi-agent RL. The domains
we focus on are naturally multi-agent systems but can be often abstracted and modelled
also as a single-agent scenario. Arguably, when applying MARL methods it might be
beneficial to start with an abstracted problem, investigating the use of single-agent RL
methods to get better insights into the dynamics of the environment. In this thesis the
main goal in the studied domains is to find an effective behaviour, often such behaviour
cannot be computed exactly due to high complexity of environment, which is the reason we
turn to learning the behaviour from interactions instead. Therefore in this work, where
possible, we consider and compare the single- and multi-agent approach. Moreover, we
investigate an exact computation of policies and learning of policies.

We can now introduce and define the problem statement and research questions which
this thesis aims to answer.

1.2 Problem Statement and Research Questions

In this thesis we study how multi-agent learning and modelling techniques can be developed
and applied to security and sustainability domains that require effective solutions, which
are difficult to engineer by hand. We focus on three complex domains; the space debris
removal problem, critical domains with risky states (e.g., smart power grids) and spatial
security domains with adversarial agents (e.g., the illegal rhino poaching problem). Rather
than taking a common bottom-up approach and starting from the algorithmic side, we take
a top-down approach and start from the application domains.

Although the problem of learning in multi-agent settings has received significant attention
in recent years, see for example surveys of Panait and Luke [2005]; Busoniu et al. [2008];
Bloembergen et al. [2015]; Hernandez-Leal et al. [2017]; Tuyls and Stone [2018]; Albrecht and
Stone [2018], applying multi-agent learning techniques in complex domains remains largely
an open problem with many challenges. Additionally multi-agent learning (MAL) inherits
the problems we know from single-agent reinforcement learning such as the problem of
delayed reward and credit assignment. In the multi-agent setting this is further compounded
by complexities brought by non-stationarity caused by multi-agent interactions, known as the
moving target problem [Tuyls and Weiss, 2012], which describes the situation where agents
need to learn dynamically changing behaviour of other agents influencing the environment

6 1.2. Problem Statement and Research Questions

states. Therefore, when applied in complex systems, effective multi-agent learning is an
extremely difficult task. We call these issues the fundamental problems of MAL, which
have been studied in isolation to some extent [Hernandez-Leal et al., 2017]. However, much
less emphasis has been given to combinations of these fundamental problems, typically
encountered when applying the methods into real world systems. The more common
approach to multi-agent learning research is to start from very simple models and build up
to more complex models aiming at tackling the fundamental problems, we choose a different
perspective in this thesis. We start from complex real-world domains, asking the high-level
question: how can we obtain optimal behaviour in such domains and what are the main
obstacles in doing so. Therefore, this thesis does not aim to tackle the fundamental issues
in isolation, but rather studies several complex problems, containing a combination of these
issues, with the aim to develop specifically targeted solution methods. We focus on areas
where security and sustainability is crucial, where we aim to additionally derive general
principles that work in other domains as well.

As such this thesis aims to address the modelling obstacles of the multi-agent learning
paradigm using game theory and reinforcement learning when applied to real-world complex
domains. We describe such modelling obstacles in terms of 4 components of multi-agent
learning as defined by Tuyls and Stone [2018]: (i) the environment, (ii) the interaction
mechanism, (iii) the learning mechanism and (iv) the agents. We investigate three
application domains where each domain predominantly contains one (two in the space
debris removal problem) especially challenging MAL component (i-iv) to design. While
highlighting the main challenging MAL component in each of the application domains,
still all these domains require modelling of the other MAL components as well. Effectively
addressing these modelling challenges will narrow the gap between theoretical models of
MAL and their use in real-world applications. Overview of the problem statement is shown
in Figure 1.1, where we state the modelling challenges of MAL, leading to a general approach
to modelling complex environments. We now further describe the modelling challenges in
turn together with the application domains.

When applying learning techniques to complex multi-agent domains we need to design
a good model of such a multi-agent setting, which needs to be realistic enough while
computationally viable.

“All models are wrong, but some are useful.”
—George Box

Chapter 1. Introduction 7

complex domain
security and sustainability

optimal behaviour
effective, robust,
safe, sustainable

multi-agent model
game theory

reinforcement learning
multi-agent learning

(2)
learning process

robust against
perturbations in control

Research Question 2

(1)
model of environment
& agent interaction
complex simulator,

one-shot vs. dynamic

Research Question 1

(3)
modelling agents

adversarial & partially
observable agents

Research Question 3

Effective modelling
of complex domains

Closing the gap between
MAL theory and practice

goal?

how?

modelling component

Figure 1.1: Problem statement structure.

8 1.2. Problem Statement and Research Questions

(1) model of environment and agent interaction We study the challenge of mod-
elling a complex environment in the domain of the space debris removal problem, where
we propose several ways to model the environment. We investigate different modelling
assumptions such as a one-shot interaction model compared to a dynamic multi-stage
interaction model. Moreover, in many real-world domains the level of cooperativeness of
agents might vary depending on many factors. It is thus important to analyse different
models of agent interaction mechanisms, from cooperative to non-cooperative. We aim
to propose a methodology comparing these different modelling approaches, evaluate their
effectiveness and describe how realistic they are in the application domain. We also discuss
how addressing these modelling issues can specifically contribute to tackling the space
debris removal problem.

(2) designing learning processes Many real-world complex domains require a solution
with certain features (e.g., robustness, fairness), which can be attained by designing the
learning process accordingly. We study this challenging problem in critical domains
with risky states, where we aim to design a learning mechanism, which is robust against
random or adversarial perturbations in action execution.

(3) modelling agents Lastly, it is important to discuss the challenge of modelling
complex agents, where we study adversarial intelligent agents who cannot be fully observed.
We address this obstacle of multi-agent learning deployment in spatial security domains
demonstrated in the illegal rhino poaching domain.

We summarise the problem statement of this thesis as follows:

Problem Statement: Learning optimal multi-agent policies and modelling of multi-
agent interactions in complex domains is hindered by critical obstacles that we identify as:
(1) how to model and design a complex environment and multi-agent interactions effectively,
(2) how to design robust learning processes and (3) how to model adversarial agents. Dealing
with these limitations will narrow the gap between multi-agent learning theory and practice
and thus help tackling real-world issues, for example the space debris removal problem.

In order to address this problem, following the identified obstacles (1-3), we now define
3 two-fold research questions, which are investigated in this thesis. We first present research

Chapter 1. Introduction 9

question 1 targeting the challenge of modelling a complex environment and designing a model
of agent interaction in the domain of the space debris removal problem. We then propose
research question 2 aiming at achieving robust learning process against perturbations in
critical systems with risky states. Finally, in research question 3 we focus on modelling
complex adversarial agents and finding safe behaviour in spatial security domains.

Thus, we define the first research question, which we address in Chapter 4.

Question 1.A: How can we model a complex environment such as the space debris re-
moval problem from a game-theoretic and learning perspective in order to understand how
agents can optimise their behaviour?

Depending on the assumptions we make during the design of the model of the com-
plex multi-agent interactions, such as one-shot versus repeated interactions or assuming
cooperative versus non-cooperative agents, the quality and the type of a solution might
differ in several aspects. It is thus necessary to propose a methodology to compare these
different modelling choices. There might exist several metrics describing the quality of the
solution such as social welfare, individual utility or fairness. It is interesting to compare
these metrics and evaluate how preferring one over the other impacts the environment. We
study this problem in the domain of the space debris removal problem, where we discuss
the meaning of the different modelling approaches and how important the different solution
attributes are in this specific domain. Therefore, this leads to the second part of the first
research question.

Question 1.B: How can we compare various solutions that emerge when following differ-
ent modelling choices of the agent interaction mechanism and evaluate their effectiveness in
complex domains?

Apart from obstacles discussed above when deploying multi-agent learning methods
into real-world applications, we might also need to design a learning process with specific
properties such as robustness. Domains with critical risky states such as smart power
grids are often sensitive to node destabilisation caused by perturbations such as an attack
or a failure, which can have a severe impact on the whole system. Hence, the process of
learning effective behaviour needs to be robust to such events to provide safety of the nodes
and sustainable use of the whole system. The actors in such critical domains aim to find

10 1.2. Problem Statement and Research Questions

effective behaviour profiles, and computing them exactly is not feasible due to the complex
and stochastic nature of such multi-agent scenarios. Thus, learning effective behaviour from
interaction might be the right approach. This leads to the research question 2, which is
answered in Chapter 5.

Question 2.A: How can we design a robust learning process against random or adver-
sarial perturbations in critical systems with risky states?

In pursuance of deploying such a robust learning process into real-world application
domains there is often a need for theoretical guarantees of proposed methods in order to war-
rant desired performance. Several convergence proofs of single-agent reinforcement learning
methods, mostly based on the theory of stochastic processes, have been proposed [Tsitsiklis,
1994; Jaakkola et al., 1994; Singh et al., 2000]. However, it is not always possible to extend
these proofs into other types of learning with for example requirements on robustness.
Especially in the field of multi-agent learning any theoretical guarantees are difficult to
obtain due to non-stationarity caused by multi-agent interactions. Thus, being able to
prove any theoretical properties of multi-agent learning methods is a very active domain of
research with little success so far. Therefore, this leads us to the second part of the second
research question.

Question 2.B: To what extent can we guarantee any convergence to an optimal solution
when learning policies, which are robust against perturbations in domains with risky states?

Apart from challenges of multi-agent learning deployment like modelling of complex
dynamic environments or designing robust learning processes, which were discussed above
and make up the research questions 1-2, we might also face the challenge of modelling of
complex adversarial agents. This is the case in spatial security domains, which are defined
between two (groups of) agents; the defender and the attacker who move on a graph. The
main threat in such problems are adversarial and potentially intelligent attackers who aim
to attack some critical targets. The main goal for the defender is to come up with effective
behaviour in order to apprehend the attacker and thus mitigate the security threats. Such
behaviour could be learned by interacting with the environment and the attacker. An
effective approach might consist of learning an opponent behaviour model, which has not
yet been studied sufficiently [Albrecht and Stone, 2018]. We therefore define the research

Chapter 1. Introduction 11

question 3 and address it in Chapter 6.

Question 3.A: How can we model complex adversarial agents in spatial security domains
in order to mitigate the threats they pose?

Furthermore, such adversarial attackers in complex domains are often not observable or
only partially observable. We focus on the spatial security domains, such as the problem of
illegal rhino poaching, where the defender gets to occasionally fully observe the location of
the adversarial opponent. It is therefore interesting to investigate how such an occasional
full observation of the attacker could help in the defender learning process and thus help to
mitigate the security threats. We define the second part of the final research question.

Question 3.B: To what extent can we make use of an occasional full observation of the
adversarial attacker in the spatial security domains?

1.3 Contributions and Thesis Outline

We now present the outline of this thesis, together with highlighting the main contributions.
Firstly, we introduce the main theoretical concepts from game theory, reinforcement learning
and multi-agent learning used in this thesis in Chapter 2. We start with game theory
introducing normal-form games, repeated games, and equilibrium solution concepts. We
continue with the reinforcement learning paradigm and introduce concepts such as value
functions, Bellman equations and temporal difference learning, describing the Markov
decision processes and the stochastic game framework. Finally, we introduce multi-agent
learning, which can be thought of as an intersection of the two fields of game theory and
reinforcement learning.

In Chapter 3 we describe the application domains together with the methodology we
use to study them, where we focus on the multi-agent learning perspective. We discuss three
security and sustainability problems, representing real-world domains which are analysed
in this thesis: (i) the space debris removal problem, (ii) learning robust policies in critical
systems with risky states and (iii) modelling adversarial agents in spatial security domains.

Chapter 4 addresses the challenges of modelling a complex environment such as the
space debris removal problem and designing models of agent interactions. Firstly, we present

12 1.3. Contributions and Thesis Outline

a high-fidelity space debris simulator and a surrogate model based on the simulator, allowing
us to evaluate different removal strategies and their future impact on the space debris
environment. We then propose several models of agent interaction from a one-shot model,
analysing its Nash equilibria, to a dynamic model, showing how to compute or learn an
effective behaviour. Moreover, we discuss several models with different levels of cooperation
between agents. Finally, we thoroughly compare various solution types emerging from
following different modelling assumptions in the space debris removal problem and evaluate
their fairness and their costs in terms of price of anarchy, providing a rich recommendation
tool for future decision makers.

In Chapter 5 we propose a novel approach to designing a robust learning process,
leading to learning safe and robust policies in critical domains with risky states such as
smart power grids. We present a novel temporal difference learning operator which can
implicitly deal with rare but significant events potentially corrupting some parts of the
system. The presented temporal difference operator can learn safe and robust policies even
before such significant events occur in both single- and multi-agent settings. Furthermore
we prove convergence properties of the proposed operator.

Chapter 6 discusses the problem of modelling adversarial agents in spatial security
domains, with the example problem of illegal rhino poaching. We discuss how partial
observability of adversarial opponents can be used to improve learning of an effective
behaviour. We present a multi-agent model, based on the framework of stochastic games,
which explicitly deals with partial observability of the opponents’ location. By combining
reinforcement learning with Bayesian inference we propose a novel approach to learning a
model of the opponent behaviour which we then use to derive effective strategies. Such
strategies are able to more efficiently mitigate the security threats posed by adversaries in
spatial security problems.

We conclude this thesis in Chapter 7 where we answer the research questions posed in
Section 1.2 together with the main contributions. Finally, we discuss limitations of this
thesis and suggest possible extensions and directions for future work.

2
Preliminaries

This thesis studies the multi-agent learning paradigm in the security and sustainability
domains. Before we dive into the main body of this thesis, we present the necessary
background. Hence, this chapter describes several theoretical concepts used in this thesis.
Topics that are prominent in this thesis are game theory and reinforcement learning. These
fields have a common theme: interaction of agent(s) with an environment and potentially
with each other. It is worth mentioning there are several types of notation used across the
fields of game theory, (multi-agent) reinforcement learning and the closely related problem
of multi-armed bandit. In this thesis we use the terms agent/player, reward/payoff/utility,
policy/strategy, game/environment interchangeably, depending on the context.

To outline this chapter, we start with describing the main concepts from game-theory.
We continue with reinforcement learning, describing Markov decision processes and value
functions, arriving to a crucial concept for this thesis - temporal difference learning. Finally,
we present multi-agent learning, building on the presented concepts from game theory
and reinforcement learning. We now provide a high-level overview of the discussed fields,
describing their similarities and differences with the goal of linking them.

13

14

normal-form game

repeated game

stochastic game

multi-armed bandit

MDP

repeating adding states

adding states adding agents

Figure 2.1: Relation between models of agent(s) interaction with an environment. In green
are multi-agent models with a single state (stage), in yellow are single-agent models and in
red is their generalisation: multi-agent model with multiple states.

Models of agent(s) interaction with an environment In this thesis we consider
several models of agent(s) interaction with an environment; single- and multi-agent models
and models considering either a single stage or multiple environmental states. In Figure 2.1
we show the relation among several such models in a simplified way to get a high-level
overview, omitting some details. A simple one-shot interaction among multiple agents can
be modelled as a normal-form game. Considering repeated interactions in the same stage
game we arrive at a model of a repeated game. These models (in Figure 2.1 shown in green)
assume a single stage (state), hence the action space is the same in any time step and
the reward function depends only on the action. Generalising from this to a multi-state
interaction, we can use the model of a stochastic game, where the reward function depends
now on an action and a state. Furthermore we need to define the state transition function
describing how the environment transitions between states by taking actions. On the right
side of Figure 2.1 shown in yellow we have a single-agent perspective, starting from the
model of a multi-armed bandit, which is a stateless single-agent problem with only actions
and rewards. Adding states we arrive at a Markov decision process (MDP), which is then
defined over states and actions with a reward function and a state transition function.
Considering multiple agents, we move from an MDP to the model of a stochastic game.
In this chapter we describe these frameworks in detail. We start with normal-form games,
then we formally present Markov decision processes and finally by linking them all together
we introduce stochastic games.

Chapter 2. Preliminaries 15

Player B
cooperate defect

Player A cooperate −1,−1 −3, 0
defect 0,−3 −2,−2

Table 2.1: Prisoner’s dilemma.

2.1 Game Theory

Game theory studies the interaction between rational agents and aims to find optimal
behaviour for such agents. The field of game theory was mainly developed in the 1940s and
1950s but its roots date back to the 19th century and the field of economics. Of several
prominent scientists who were at the birth of modern game theory we mention John von
Neumann and John Nash. In their seminal works [Von Neumann and Morgenstern, 1944;
Nash, 1951] they laid the foundations of two player zero-sum game and the concept of
(Nash) equilibria, respectively, providing very important theoretical groundwork. One of the
important building blocks of game-theory is the normal-form game, which we now describe.

2.1.1 Normal-Form Games

A crucial concept in game theory is a normal-form game, also known as a matrix or
strategic-form game, capturing an interaction between players [Leyton-Brown and Shoham,
2008]. In Table 2.1 we show a simple instance of a normal-form game which constitutes
one of the most famous examples of game theory - the prisoner’s dilemma. We can see
there are two players, player A (the row player) and player B (the column player). Each
player can decide between two actions, either to cooperate or to defect. Depending on the
combination of actions the players choose, each player receives a reward. For example, if
player A cooperates and player B defects, they receive the reward of -3 and 0, respectively.
We now formally define a normal-form game as:

Definition 2.1.1. Normal-form game
A finite normal-form game is defined by a tuple (n,A,R) where

• n is a finite set of players,

• A = A1 × · · · ×An, where Ai is a finite set of actions available to player i ∈ n, each
action ai ∈ Ai and each player has |Ai| actions available, a joint action a is a vector

16 2.1. Game Theory

of actions taken by all the players,1

• R = R1×· · ·×Rn, where Ri : A→ R is the reward function for player i ∈ n, assigning
a reward ri.2

Zero-sum games A common type of a two-player game is a zero-sum game, which is a
special case of a constant-sum game. In such games the sum of rewards of the two players
is equal to some constant c as r1(a1) + r2(a2) = c, ∀a1, a2 ∈ A1, A2; for a zero-sum game
c = 0, in other words the gain of one player is equal to the loss of the other player. Such
games can be seen as purely competitive, because maximisation of rewards of one player
means minimisation of rewards of the other player. In zero sum-games we often use the
term opponent to denote the other player.

General-sum games Generalizing from zero-sum games we arrive at a broader class of
games, where there is no restriction on the rewards. An example of a general-sum game is
the prisoner’s dilemma shown in Table 2.1, where both players receive bad rewards when
both defect.

2.1.2 Solution Concepts

Strategy types The main and often only goal of a player is to maximise his reward. The
acquired reward depends on action(s) chosen according to a strategy (policy). A player
forms a strategy π, which prescribes which actions to take from his action set. A strategy
π is then defined as a probability vector, assigning probability of choosing each action. In
game theory we differ between two types of strategies: a pure strategy and a mixed strategy.
A pure strategy is a deterministic strategy, prescribing to play one single action, thus
assigning probability of 1 to choosing that action from the action set. A mixed strategy is
defined by a vector of probabilities describing the probability of choosing each pure strategy
i.e., each individual action, thus a player chooses actions stochastically. We say a player is
randomising over a set of actions when playing a mixed strategy. All the actions played
with a non-zero probability form the support of a mixed strategy. A set of all players’

1In this thesis we use the common notation a−i to denote the joint action of all agents except agent i,
i.e., a−i = (a1, . . . , ai−1, ai+1, . . . , an).

2Note that we use a notation from reinforcement learning and not the common notation used in game
theory, e.g., ui for the reward (payoff, utility) function, in order to keep consistency throughout this thesis.

Chapter 2. Preliminaries 17

strategies form a strategy profile π = (π1, . . . , πn). We can then define the expected reward
for a strategy profile π and a player i as:

ri(π) =
∑
ai∈Ai

π(ai,a−i)ri(ai,a−i)

After defining the basic concepts of game theory, one wants to know what is the solution
of such games or how to play in order to maximise the reward. There might exist other
requirements for a solution, but the main one is optimality, where the players prefer gaining
maximal rewards. Traditionally, the assumption on seeking maximal rewards is based on
the concept of rationality; out of two possible actions each player always chooses the one
rendering a higher reward, which is a standard assumption in game theory (not the case in
evolutionary game theory, which is discussed below). However, the concept of optimality of
rewards is dependent on other players actions, therefore we need other requirements on the
solution. Another such a requirement for a game-theoretic solution is the situation where
no player can unilaterally change his strategy to increase his reward. We now present the
core concept of game theory - Nash equilibrium.

Nash Equilibrium

The concept of an equilibrium is based on the definition of the best response, which can be
defined as an action a?i where ri(a?i ,a−i) ≥ ri(ai,a−i) for any action ai ∈ Ai. We can define
the best response more generally for mixed strategies, where a policy π?i is the best response
if ri(π?i ,π−i) ≥ ri(πi,π−i) for any mixed strategy πi. We can now formally present the
Nash equilibrium (NE):

Definition 2.1.2. Nash equilibrium
A strategy profile π = (π1, . . . , πn) is a Nash equilibrium if every strategy πi is the best
response to π−i.

A Nash equilibrium can be explained as a situation where no player can gain by
unilaterally changing his strategy. The prisoner’s dilemma game shown in Table 2.1 has
only one Nash equilibrium which is defect, defect even though such strategy yields a worse
outcome in terms of sum of rewards (i.e., social welfare - explained below) than cooperate,
cooperate. Both players cooperating is an unstable strategy, where each player gains if
he unilaterally changes his strategy to defect. We now present a very important theorem,
which gives us a powerful way to reason about games.

18 2.1. Game Theory

Theorem 2.1.1. On existence of Nash equilibrium [Nash, 1950]
Every game with a finite number of players and finite action sets has at least one Nash
equilibrium in pure or mixed strategies.

In some games there can exist several NE, which can be pure or mixed. This can bring
difficulties in deciding which equilibrium to choose, known as the selection problem. There
are different properties of equilibria which can help us to decide which equilibrium to prefer,
for example the level of social welfare.

Social welfare In some cases instead of focusing on individual rewards, it is interesting
to look at social welfare ω, which is a sum of rewards of all the players. Maximising social
welfare can be one of the goals in finding optimal strategies, attaining the social optimum.
Especially in cooperative domains the level of social welfare is the main indicator of quality
of the actions chosen by the players. Measuring the quality of equilibria in terms of social
welfare can be then evaluated in terms of price of anarchy.

Price of anarchy The concept of price of anarchy (PoA), introduced by Koutsoupias
and Papadimitriou [1999], measures the level of efficiency lost due to selfish behaviour of
the players. It compares social welfares ω of two strategies; for example we can compare
the worst Nash equilibrium and a strategy π yielding the maximum social welfare out of all
possible strategies in a strategy space Π as:

PoA = maxπ∈Π ω(π)
minπ∈NE ω(π) ,

where PoA is always greater or equal to 1 and the closer to 1 the more efficient solution we
get, i.e., the price of anarchy is low.

Multiple NE can also differ in how stable they are against perturbations, which is
studied by evolutionary game theory; an (evolutionary) stable equilibrium is stable against
small perturbations or deviations in players’ strategies, which we discuss in the next section.

2.1.3 Evolutionary Game Theory

There are limitations in studying Nash equilibria only from a static perspective, mainly
caused by the assumption of strict rationality, which is often violated in real-world ap-
plications, where people’s decisions are not always fully rational [Tuyls and Nowé, 2005].

Chapter 2. Preliminaries 19

Evolutionary game theory (EGT), originally applied to biology by Smith and Price [1973],
tackles some of these limitations and provides more insights into evolution and stability
of equilibrium strategies. The analysis of evolutionary dynamics of competing strategies
is a powerful way to study the strategic properties of a game. Evolutionary game theory
represents a player’s strategy by a population of individuals, each of a certain type which
corresponds to one of the player’s possible actions [Weibull, 1997]. The players are no longer
assumed to be purely rational and might not be able to fully observe the game and derive
the best response. EGT assumes that players are repeatedly uniformly sampled from the
whole population, representing possible perturbations in decision making, showing the whole
process of attaining equilibrium while not always being strictly rational [Bloembergen et al.,
2015]. A population is defined by the vector x = (x1, x2, . . . , xm), where xi ∈< 0, 1 > ∀i,
and

∑
i xi = 1. The fraction of the population belonging to each of the m types indicates

the probability with which a player will play the corresponding pure action from the action
space of size m. The replicator dynamics defines how the fraction xi of each type i in
the population x changes over time (ẋ denotes derivation over time) due to evolutionary
pressure:

ẋi = xi[fi(x)− f̄(x)]

where fi(x) is the fitness (i.e., expected payoff/reward) to type (action) i in the population,
and f̄(x) =

∑m
j xjfj(x) is the weighted average fitness of the whole population. Under the

replicator dynamics, the number of types that do better than average will increase, whereas
types that do worse will decline. Such a process can generate evolutionary stable strategies.

Evolutionary stable strategy Evolutionary game theory studies a refinement of Nash
equilibrium, reflecting the dynamic evolution of the equilibrium, called evolutionary stable
strategy (ESS). ESS is robust against evolutionary pressure from any new mutant strategy
derived from the population, i.e., robust against small perturbations in players’ strategies.
It is important to note that ESS does not always exist, for example there is no ESS in the
game of rock-paper-scissors. Interestingly, every ESS is also a NE but not every NE is also
an ESS.

2.1.4 Multi-Stage Games

In this section we describe several types of multi-stage games relevant to this thesis, which
are generalisations of normal-form games. We start with a natural generalisation of normal-

20 2.1. Game Theory

form games called repeated games (RG), assuming repeated interactions of the same base
game, we then discuss extensive-form games (EFG) as a generalisation of the normal-form
game to multiple stages. Lastly we discuss Stackelberg games, representing a special case
of asymmetry in players’ knowledge about each other. All these games can be finite or
infinite, in this thesis we focus on the finite versions.

Repeated games A repeated game is a type of a game, where one same stage-game
is repeated over multiple rounds. When deciding on an action players need to take into
account the future impact of their decisions on other players behaviour. Therefore, the
players consider the history of other players’ past plays to form a strategy. For example
this is the case in a repeated version of the classic prisoner’s dilemma from Table 2.1 called
the iterated prisoner’s dilemma. In iterated prisoner’s dilemma, if the number of rounds is
unknown, the players might prefer to cooperate i.e., the socially optimal strategy, instead
of playing the Nash equilibrium - to defect.

Extensive-form games One can also assume games with dynamically changing stages,
which requires a more general framework of extensive-form games (EFG). A game in
extensive form is usually modelled using a game tree, which allows to capture the repeated
interaction between agents together with potentially incomplete or imperfect information
about some parts of the game. In an incomplete information game a player is uncertain
about the rewards or the type of the opponent. In the case of imperfect information game
a player cannot observe moves made by the other player and needs to reason about several
possible decision nodes forming an information set. The game of chess is an example of a
perfect information game, where all the moves of both players are fully observable. The
relation between EFG and normal-form games (NFG) is that every game in extensive form
has a unique normal-form representation, however a normal-form game has very often
multiple extensive-form representations [Leyton-Brown and Shoham, 2008]. The solution
concept for EFG also needs to be generalised, depending on every stage, which is for
example Markov perfect equilibrium, which is beyond the scope of this thesis, for further
reading see Maskin and Tirole [2001]. We discuss a more general but related concept of
stochastic games later in Section 2.3.

Stackelberg games Another direction of generalisation from standard normal-form
games is considering different abilities of players to observe each other. This thesis focuses

Chapter 2. Preliminaries 21

on security domains where there often exists an asymmetry in observation capabilities
between the players. Such asymmetry is interesting to study from a game-theoretic
perspective, thus we present the framework of Stackelberg games, based on the Stackelberg
leadership model, which was proposed in the field of economics for competing firms. In
standard normal-form games we assume that the players are taking actions simultaneously
and have no knowledge about the strategies of other players. In Stackelberg games we
assume that an opponent can observe the agent’s strategy before forming his own, by for
example observing and reasoning about the past actions of the agent.

A Stackelberg game is defined for two types of players; the leader and the follower.
The leader first commits to a strategy, then the follower observes it and acts upon it. This
assumption brings new dynamics into players’ decision making and alter the concept of Nash
equilibrium. Therefore, in Stackelberg games we seek a refinement of the Nash equilibrium
called the Stackelberg equilibrium [Stackelberg, 2010].

In recent years the theory of Stackelberg games has been applied to security domains,
defined as Stackelberg security games [Kiekintveld et al., 2009]. In many security domains
we often face such an information asymmetry, where a potential attacker (follower) might
have an access to extra information about the defender (leader) strategy. We call such an
attacker the Stackelberg attacker ; this model of an attacker can be often thought of as the
worst-case-scenario attacker. In Stackelberg security games it is often beneficial to find
a Strong Stackelberg equilibrium [Kiekintveld et al., 2009], which exists in all Stackelberg
games and is defined as a pair of strategies where

1. the leader plays a best-response, then

2. the follower plays a best-response, where

3. the follower breaks ties optimally for the leader.

The framework of Stackelberg games possesses several useful theoretical properties,
which have been made use of in designing safe policies for real-world security applications,
for example the uniqueness of Stackelberg equilibrium [Korzhyk et al., 2011], avoiding the
selection problem of Nash equilibria. Security game models have seen several successful
deployments tackling real-world security threats; for example the ARMOR system for
airport security [Pita et al., 2008], the IRIS tool for scheduling Federal Air Marshals [Tsai
et al., 2009] or the PROTECT system for scheduling Coast Guard [Shieh et al., 2012].

22 2.2. Reinforcement Learning

2.2 Reinforcement Learning

The field of reinforcement learning (RL) studies how agents can learn from trial and error
by interacting with an environment. Reinforcement learning is inspired by learning in
humans and animals who, based on an external signal (e.g., pain, pleasure), learn in
complex environments on a trial-error basis [Lake et al., 2017]. In RL this external signal
is represented by a reward [Sutton and Barto, 1998]. The main goal of reinforcement
learning is to find actions which maximise a cumulative, potentially discounted, reward.
RL thus studies the process of attaining optimal decision making. A very similar problem
has been studied across many fields with different names; in engineering: optimal control,
in applied mathematics: operational research, in neuroscience: dopamine-based learning,
in psychology: animal and human reward-based behaviour or in economics: utility theory
together with game theory and the quest for finding optimal decision making.

The reinforcement learning paradigm is often classified as a subfield of machine learning
together with supervised and unsupervised learning. In supervised learning we assume
having an access to labels of the input data, whereas in unsupervised learning we do not
have any such labels, thus the task is to discover hidden similarities among the input data.
RL can be thought of as being in between these two approaches, where the core difference
is the reward signal, which can be thought of as a relative target label, telling us how
good or bad the chosen action (input) is. Thus, the difference is that we do not have the
labels (target variables) explicitly but need to approximate them by interacting with an
environment.

In reward-based systems we face several challenges like delayed reward and credit
assignment. The problem of delayed reward is the situation where the effect of an action
is expressed only many time steps after the action was taken. A related problem is the
problem of credit assignment, where due to a delayed reward we might not be sure which
reward was caused by which action and thus we might be unable to assign a correct credit
(value) to that action. RL is trying to effectively deal with these issues, e.g., it can discount
future rewards by using a discount factor γ. The credit is assigned by propagating the
reward through a Markov decision process, for example by using bootstrapping, which we
will discuss in detail below.

Reinforcement learning algorithms can be divided into two groups; model-free and
model-based algorithms. RL is in principle a model-free approach, where we do not know or
do not learn the model dynamics, expressed by the state transition function and the reward

Chapter 2. Preliminaries 23

function. A different perspective in RL is a model-based approach, where we either assume
we know some parts of the model of environment dynamics a priori or we can learn them
from interactions with an environment. A model-free approach makes very few assumptions
about the environment, mostly only about the reward structure and can be effective for
learning complex policies. A disadvantage of a model-free approach is that it requires a lot
of experience and is thus in principle slower than model-based approach. A model-based
approach gathers knowledge more easily due to partial self-supervision and makes it easier
to transfer the learnt knowledge over similar tasks. A disadvantage of a model-based
approach is that it potentially needs many assumptions provided by the operator and can
be sensitive to wrong assumptions, causing bad performance. In this thesis we consider
both of these RL approaches in several security and sustainability domains.

We now discuss a crucial problem of reinforcement learning and other related fields -
the exploration vs. exploitation dilemma, which is also studied in the multi-armed bandit
problem, which we briefly describe. In this section we then formally introduce the framework
of Markov decision processes, which is often used for reinforcement learning. The remainder
of this section focuses on core concepts of RL such as policy and value functions or temporal
difference learning, lastly we discuss a generalisation of an MDP into partially observable
domains called the partially observable Markov decision process (POMDP).

Exploration vs. Exploitation A crucial problem in reinforcement learning is the trade-
off between exploration and exploitation. We face a dilemma whether we should exploit
the best option observed so far or whether we should explore the state space further with
potentially discovering a better option. Imagine you are deciding to which restaurant to
go for dinner, you can either pick the best of those you have tried so far or you might try
a new restaurant, which might be potentially better than those you already tried, facing
the dilemma between exploitation of the best option so far and exploration of new yet
unobserved options. There are several proposed ways in reinforcement learning which aim
to tackle this dilemma effectively. One of the simplest is ε-greedy policy, which explores
with probability ε and exploits the best option so far with probability 1− ε. There exist
approaches which balance the trade-off between exploration and exploitation implicitly like
Bayesian reinforcement learning [Ghavamzadeh et al., 2015]. This problem is also the main
focus of the multi-armed bandit problem, which we discuss next.

24 2.2. Reinforcement Learning

Figure 2.2: Markov decision process: The agent interaction with an environment. Taken
from Sutton and Barto [1998].

Multi-armed bandit A closely related topic to RL is the multi-armed bandit (MAB)
problem, which can be seen as a special case of RL with only a single state. The multi-armed
bandit model studies a classic exploration-exploitation dilemma, where we assume K arms
(actions), each having an unknown distribution of rewards. The goal is to find the optimal
arm, which maximises the reward. There have been several learning algorithms proposed for
MAB, for example UCB, or its adversarial version EXP3 [Auer et al., 1995]. Multi-armed
bandit is mentioned here due to a close relation to RL and its importance for studying
exploration vs. exploitation dilemma. For further reading see Bubeck and Cesa-Bianchi
[2012], who discuss other variants of MAB like contextual MAB or adversarial MAB, which
has also been studied in security applications [Klima et al., 2015].

2.2.1 Markov Decision Process

In this section we describe a finite Markov decision process (MDP), which is a key concept
for describing the interaction of an agent with an environment [Puterman, 1994]. In
Figure 2.2 we show a standard scheme of such interaction; the agent chooses an action at at
time step t, which then gets executed by the environment, the agent receives a reward rt+1

and the environment transitions to the next state st+1. We now provide a formal definition
of an MDP:

Definition 2.2.1. Markov decision process (MDP)
A finite Markov decision process is defined by a tuple (S,A,R, T) where

• S is a finite set of system states

• A is a finite set of actions

Chapter 2. Preliminaries 25

• R(s, a) ∈ R is the reward function for state s ∈ S and action a ∈ A

• T (s, a)→ s′ is the transition function, defining the probability of ending in state s′

after taking action a in state s.

A system state s encodes all the available information about the current system setting.
The action set represents available actions (potentially as a function of a state), the reward
function defines a real-valued reward for a state and an action and transition function returns
the probability of the system transitioning to a next state s′ for a given state s and action
a. An important property of a system modelled as an MDP is the Markov property, which
describes the situation where the current state is fully descriptive (independent) of the past
history of states and actions, thus we can write the probability of the system transitioning to
a state st+1 is p(st+1|st, at) = p(st+1|st, at, st−1, at−1, . . . , s1, a1). The Markov property is
often a necessary condition for convergence and stability guarantees of learning algorithms.

2.2.2 Policy & Value Function

The main goal of RL is to learn an optimal policy. A policy π is defined as a mapping
from system states to probabilities of selecting actions, and thus prescribes a strategy to an
agent in each state, we write π(a|s) for the probability of choosing an action a in a state
s. Pivotal in finding optimal policies is the approximation of the value function, which
describes how good a particular state is or how good it is to select a particular action
in a given state. Thus, we talk either about a state value function denoted as V (s) or a
state-action value function denoted as Q(s, a) for a given state s and an action a. The value
or the goodness of a state or a state-action pair is based on the expected return, which
is a function of current and future rewards, for example a sum. The future rewards are
often discounted in order to put more emphasis on the more recent rewards and in case
of continuous (non-episodic) task to guarantee a finite sum of the rewards. We denote a
discount factor as γ ∈ (0, 1). We can now present formally the state value function, which
is defined for a given policy π as:

V π(s) = Eπ
[T∑
t=0

γtrt
∣∣ s], (2.1)

assuming a finite episode of length T . And the state-action value function is defined as:

26 2.2. Reinforcement Learning

Qπ(s, a) = Eπ
[T∑
t=0

γtrt
∣∣ s, a]. (2.2)

We can now define the optimal value function, using an optimal policy π? as:

V ?(s) = max
π

V π(s) or Q?(s, a) = max
π

Qπ(s, a). (2.3)

The process of approximating these functions is based on linking the values between a
state and its successor state by using the Bellman equation:

V π(s) =
∑
a

π(a|s)
∑
s′

T (s′|s, a)
(
R(s, a) + γV π(s′)

)
, (2.4)

similarly for the state-action value function:

Qπ(s, a) =
∑
s′

T (s′|s, a)
(
R(s, a) + γQπ(s′, a′)

)
. (2.5)

We can now use the Bellman equation to find the optimal value function by defining
the Bellman optimality equation for a state value function:

V ?(s) = max
a

∑
s′

T (s′|s, a)
(
R(s, a) + γV ?(s′)

)
, (2.6)

and for the state-action value function:

Q?(s, a) =
∑
s′

T (s′|s, a)
(
R(s, a) + γmax

a′
Q?(s′, a′)

)
, (2.7)

The policy according to which we select actions is called the behaviour policy, e.g.,
ε-greedy policy. The policy which we use for updating the value function is called the
target policy. This distinction is important for an on- and off-policy learning, which we will
discuss.

2.2.3 Temporal Difference Learning

One of the common types of reinforcement learning is temporal difference (TD) learning. TD
methods update the state (or state-action) values based on an estimate learnt in previous
rounds, which is called bootstrapping. Thus, unlike for example Monte Carlo methods the

Chapter 2. Preliminaries 27

TD methods do not need to wait for an episode to end to update the values. Temporal
difference, also called the TD error, is the difference between a new estimate of the value,
called the target and the current value. A standard TD method state-action value update
is then defined for a policy π as:

Qπ(s, a)← Qπ(s, a) + α
[TD error︷ ︸︸ ︷
r + γV π(s′)︸ ︷︷ ︸

target

−Qπ(s, a)
]
, (2.8)

where α is the learning rate parameter, defining the level of update of the new information
to the old one.

Based on the definition of the target, TD methods can be classified as either on-policy
or off-policy methods. In on-policy methods the behaviour policy is the same as the
target policy whereas in off-policy methods they differ. We now present several well-known
off-policy and on-policy TD learning algorithms, which will be very important for this
thesis.

Q-learning A standard temporal difference off-policy learning method is called Q-learning,
originally proposed by Watkins [1989], defined as:

Q(s, a) = Q(s, a) + α
(
r + γmax

a
Q(s′, a)−Q(s, a)

)
. (2.9)

This function directly approximates the optimal state-action value function which is inde-
pendent to the followed behaviour policy (e.g., ε-greedy).

SARSA A classic on-policy learning method is SARSA, named after the update sequence
tuple (s, a, r, s′, a′) and introduced by Rummery and Niranjan [1994], defined as:

Q(s, a) = Q(s, a) + α
(
r + γQ(s′, a′)−Q(s, a)

)
. (2.10)

The target policy is the same as the behaviour policy. One difference between SARSA and
other presented methods is that it needs to wait one more time step in order to update the
value function with the succeeding state s′ and the succeeding action a′.

Expected SARSA A modification of the on-policy SARSA method was analysed
in Van Seijen et al. [2009] called the Expected SARSA, where the Q-value update function

28 2.2. Reinforcement Learning

uses the expected value in the next state given the behaviour policy as:

Q(s, a) = Q(s, a) + α

(
r + γ

(∑
a′

π(s′, a′)Q(s′, a′)
)
−Q(s, a)

)
, (2.11)

thus V (s′) =
∑
a′ π(s′, a′)Q(s′, a′). Expected SARSA is an on-policy method. It can also

be seen as a generalisation of Q-learning, where for purely greedy policy π these algorithms
are identical because in both V (s) = maxaQ(s, a).

Tabular methods vs. function approximation In smaller size problems the value
function can be represented by a table, e.g., vector or matrix, where the state values or
state-action values are stored, respectively. However for larger environments with a high
number of states and/or actions, or continuous state or action spaces, this representation
is not efficient and computationally very demanding. Thus, it is often preferable to
represent the state (-action) value function by function approximation techniques. Such
function approximation can be linear (e.g., tile coding) or non-linear (e.g., deep neural
network). In this thesis we focus only on tabular methods and leave the use of value
function approximation for future work. Nevertheless, in recent years there has been a huge
progress in designing RL methods with non-linear function approximation techniques, for
single-agent deep reinforcement learning see the survey of Arulkumaran et al. [2017] and
for multi-agent deep reinforcement learning see Hernandez-Leal et al. [2018].

2.2.4 Partially Observable Markov Decision Process

A Markov decision process assumes that the agent is able to always fully observe the
underlying system state, which might not be often realistic, and thus it is useful to generalise
from MDPs to partially observable Markov decision processes (POMDP) [Kaelbling et al.,
1998]. The reasons of not being able to observe the underlying state might be for example
noise in sensory input, dynamically changing environment or unobservable parts of the
studied system. Formally a POMDP is defined by a tuple (S,A,R, T,Ω, O), where S,A,R, T
are defined in the same way as in a classic MDP, but further we define Ω to be a set of
observations and O to be the observation probability function. During the interaction the
agent receives observations o ∈ Ω, which he uses to form beliefs b(s) about states. The
probability of each observation depends on the next state s′ and action a, given by the
function O as p(o|s′, a). In a POMDP the agent cannot observe the underlying state and

Chapter 2. Preliminaries 29

needs to maintain a probability distribution over the states according to the observations
he made. In other words the belief b(s) about a state s is the probability of the system
being in that state. We define the belief update as:

b′(s′) = 1
p(o|b, a)O(o|s′, a)

∑
s

T (s′|s, a)b(s), (2.12)

where p(o|b, a) =
∑
s′ O(o|s′, a)

∑
s T (s′|s, a)b(s) is the normalising constant. This belief

update is performed after observing the succeeding state s′, taking an action a and receiving
an observation o ∈ Ω. The belief state is a sufficient statistic [Bertsekas, 1995] for choosing
optimal actions, because it is a sufficient summary of all relevant past information. Due to
this property a system with belief states is equivalent to a fully observable Markov decision
process with a continuous state space [Littman et al., 1995].

2.3 Multi-Agent Learning

In this section we formally present the multi-agent learning (MAL) paradigm, we build on
previously described fields of game theory and reinforcement learning, where multi-agent
learning can be seen as their intersection [Nowé et al., 2012]. Multi-agent learning can be
described as a process where multiple agents learn to behave so that they achieve their goals,
while they interact with other possibly learning agents, who might have similar or different
goals (e.g., cooperative or adversarial agents) [Tuyls and Stone, 2018]. In this thesis we
mainly focus on multi-agent reinforcement learning (MARL), which is an extension of classic
single-agent reinforcement learning to multi-agent scenario. However, apart from MARL
there are other approaches to multi-agent learning coming from different fields such as multi-
armed bandit, repeated games, extensive-form games or evolutionary game theory [Tuyls
and Nowé, 2005], for a survey of these other approaches see for example Hernandez-Leal
et al. [2017]. In recent years there has been an immense interest in multi-agent learning with
many surveys published, see Panait and Luke [2005]; Busoniu et al. [2008]; Bloembergen
et al. [2015]; Hernandez-Leal et al. [2017]; Tuyls and Stone [2018]; Albrecht and Stone
[2018]. In this section we will discuss several approaches to multi-agent learning described
in these surveys, which are relevant for this thesis. Firstly, we formally define stochastic
games, which is a crucial concept for multi-agent reinforcement learning and which we use
in this thesis to model the multi-agent interaction.

30 2.3. Multi-Agent Learning

2.3.1 Stochastic Games

The framework of stochastic games (SG) [Shapley, 1953], also known as Markov games, is
a natural extension of Markov decision processes to multiple agents [Bowling and Veloso,
2000], or a generalisation of repeated games to multiple states as shown in Figure 2.1. A
finite stochastic game can be defined as:

Definition 2.3.1. Stochastic game (SG)
A finite stochastic game is defined by a tuple (n, S,A1 . . . An, R1 . . . Rn, T) where

• n is the number of agents,

• S is a finite set of system states,

• A1 . . . An where Ai is a finite set of actions for agent i ∈ (1, . . . , n), with actions
ai ∈ Ai. We also define joint action a = (a1, . . . , an),

• R1 . . . Rn where Ri(s,a) ∈ R is the reward function for agent i, for state s ∈ S and
joint action a ∈ A1 ∪ · · · ∪An,

• T (s,a) → s′ is the transition function, defining the probability of reaching state s′

after taking joint action a in state s.

Similarly to Markov decision processes, stochastic games assume the Markov property;
the system state fully describes the current system setting and is independent of any
past history data preceding the current state. However, this property is often violated in
many domains when modelled as a stochastic game, because the agents can not always
fully observe the underlying state due to the inability to observe all the other agents
influencing the state. The Markov property is crucial for several convergence guarantees in
single-agent settings, we cannot thus often rely on those guarantees in multi-agent settings.
Especially in real world applications, the Markov property is often broken, which we need
to keep in mind when designing multi-agent systems for real-world use. The problem of
partial observability of the underlying state in multi-agent settings has been studied, for
example using the approach of profit sharing as a credit assignment technique based on
trial-and-error experience [Arai et al., 2000]. Another way to deal with this problem is
to use the framework of Partially observable stochastic games (POSG), which explicitly
models the uncertainty caused by partial observability of the other agents. POSG is a
generalisation of the partially observable Markov decision process (POMDP) to multiple

Chapter 2. Preliminaries 31

agents, similarly as a stochastic game is a generalisation of an MDP. In Chapter 6 we
investigate an interaction with partially observable adversarial agents, which we model by
using the POMDP framework, where we model the opponent behaviour as a part of the
transition function and focus mainly on dealing with the partial observability. However,
such an interaction could be also modelled with the POSG framework in case of assuming
more complex environments, which we leave for future work. For further reading on POSG,
see for example Hansen et al. [2004].

2.3.2 Approaches to Multi-Agent Learning

In many real world environments there are multiple agents interacting with each other
or influencing each other in some ways. Such interactions can be very complex and very
often not fully observable. For such cases single-agent reinforcement learning needs to be
extended to multi-agent reinforcement learning (MARL). MARL is a substantially more
challenging problem than single-agent RL because of the dependencies of agents on each
other. What makes learning in a multi-agent environment especially difficult is the moving
target problem [Tuyls and Weiss, 2012], which describes the situation where agents try to
learn dynamically changing strategies of other agents, i.e., learning a continually changing
target. This problem is the main source of the non-stationarity of the multi-agent learning.
There have been several ways proposed to deal with these complexities, ranging from
ignoring the non-stationarity to aiming to estimate the non-stationary behaviour of other
agents. We will discuss the most important methods of MAL with respect to the scope of
this thesis, where the main focus is on temporal difference learning. Temporal difference
learning has been shown to perform well in a single-agent setting, and there have been
many efforts to extend Bellman style reinforcement learning techniques to multi-agent
settings [Tuyls and Weiss, 2012]. Such approaches have been very successful in zero-sum
repeated games, or team repeated games, but less successful in general-sum stochastic
games [Shoham et al., 2007], one reason is the ambiguity of defining the goals of the MAL
process.

Learning goals in multi-agent learning When designing a multi-agent learning system
one needs to set learning goals which we aim to achieve. The main goal of learning is often
achieving optimality of behaviour; in many MARL algorithms the main goal is thus to
achieve an equilibrium in self-play, which is for example the case for Minimax-Q [Littman,

32 2.3. Multi-Agent Learning

1994] or under certain conditions Nash-Q [Hu and Wellman, 2004]. Achieving equilibrium
in multi-agent settings can be very difficult and often quite restrictive, because there
are several problems with NE like non-uniqueness, incompleteness, sub-optimality and
rationality, which can be problematic [Shoham et al., 2003, 2007]. Furthermore, Shoham
et al. [2003] mention that the link between convergence of NE w.r.t. a game stage and its
meaning and performance in dynamic stochastic games is unclear. For example in extensive-
form games the concept of NE needs to be extended to a Markov perfect equilibrium.
Furthermore, in stochastic games NE might depend on a state and might be very difficult
to attain due to the moving target problem and the selection problem, where more NE
might exist. Other goals apart from attaining NE have been proposed like stability, for
example defined as convergence of an algorithm to a stationary policy [Bowling and Veloso,
2001], Pareto-optimality, social welfare and general fairness [Busoniu et al., 2008], or some
other measures like safety or robustness. In this thesis we especially emphasize the need for
robustness and safety of any multi-agent learning approach for improving the deployability
of such techniques into real-world applications.

Independent learners and joint-action learners When discussing multi-agent rein-
forcement learning we first need to mention two very simple approaches proposed by Claus
and Boutilier [1998], which consider learning among cooperative agents: independent learn-
ers (IL) and joint-action learners (JAL). The authors study these two approaches in terms
of classic Q-learning as known in single-agent reinforcement learning, however the general
idea of IL and JAL can be applied to other reinforcement learning methods. These two
quite general but simple approaches to multi-agent learning are often the stepping stones
to build more complex methods in order to achieve desired requirements on the solution.
Independent learners are assumed to observe only local actions and ignore all the other
agents; learning independently by using standard Q-learning. This is a very simple approach
to multi-agent learning, where in many applications observing other agents is not possible.
Independent learning agents reduce the multi-agent problem to a single-agent one by not
considering the other agents and simply perceiving them as stochasticity of the environment.
One disadvantage of such approach is that the Markov property is broken and thus we lose
most of the guarantees proven for the single-agent case. Nevertheless this naive approach to
multi-agent learning can be sometimes quite effective [Busoniu et al., 2008]. On the other
hand joint-action learners are assumed to be able to fully observe the joint action, i.e.,
all the agents’ actions. While learning in a joint-action manner is more stable and faster

Chapter 2. Preliminaries 33

to converge than IL, it is often impossible to attain in real-world applications, where we
cannot assume full observability of other agents’ actions. One way to tackle this reality gap
is to model other agents’ strategies in order to estimate the joint action. JAL compared
to IL is more memory demanding because the value function uses the joint action as an
argument. Thus, the value function is defined on the space of joint actions and suffers from
combinatorial explosion in memory requirements depending on the number of agents and
the size of their action spaces.

JAL and IL are two extreme cases of multi-agent learning, either fully observing the other
agents or totally ignoring their presence, respectively. Hernandez-Leal et al. [2017] propose
a more refined classification of multi-agent learning, describing the level of reasoning about
other agents; (i) ignore, (ii) forget, (iii) respond to target opponents, (iv) learn opponent
models and (v) theory of mind. We now further discuss several joint-action learning methods
belonging to (i), (ii) and (iii), which are relevant for this thesis. For the classification of the
methods see Figure 5 in Hernandez-Leal et al. [2017].

Other types of joint-action learning Many multi-agent learning methods, in order
to approximate the value function, use the joint action, which can be difficult to obtain
due to partial observability of other agents’ actions. One way to deal with this problem
is to estimate the other agents’ behaviour and predict their actions. One of the simplest
ways to estimate other agents’ policies is fictitious play (FP) [Fudenberg and Levine, 1998].
FP assumes we can observe past actions of the other agents and form an estimate of their
strategies based on the empirical frequencies of their past actions. This approach is based
on the assumption that the other agents follow stationary policies (mixed or pure), which
ignores the potentially dynamic behaviour. FP is originally defined for single-stage repeated
games, however an extension to extensive-form games was proposed [Heinrich et al., 2015].

Another approach to MAL builds on the classic single-agent temporal difference learning
algorithm Q-learning. Littman [1994] proposed an extension called Minimax-Q to zero-sum
game scenarios, which can be seen as assuming the worst-case attacker, always minimising
the Q-value. Moving from zero-sum games to general-sum games, Hu and Wellman [2004]
presented Nash-Q, which uses Nash equilibria instead of the minimax operator. Nash-Q has
limited applicability caused by the selection problem of NE, where all players need to select
the same Nash equilibrium among potentially multiple NE for the algorithm to converge.
There have been other extensions of similar approach suggested; Friend-or-Foe [Littman,
2001], Win-or-Learn-Fast (WoLF) [Bowling and Veloso, 2001], Correlated-Q [Greenwald

34 2.3. Multi-Agent Learning

and Hall, 2003] or “Adapt When Everybody is Stationary, Otherwise Move to Equilibrium”
(AWESOME) [Conitzer and Sandholm, 2003].

In the domain of security games a different approach using the concept of the strong
Stackelberg equilibrium (SSG) was proposed, known from Stackelberg games and recently
widely used in Stackelberg security games [Kiekintveld et al., 2009]. Könönen [2004]
combines Q-learning and SSG, making use of the asymmetric learning model with a leader
and a follower as known in Stackelberg games. The solution concept of Stackelberg equilibria
overcomes the selection problem of Nash equilibria. However, in such a model both agents
need to accept their roles as the leader and the follower and keep a copy of the opponent’s
Q function, which is very restrictive and computationally demanding. Using a similar
assumption about the asymmetry between players the model of Bully and Godfather was
proposed by Littman and Stone [2001].

3
Methodology & Application Areas

In this chapter we introduce the methodology used in this thesis for applying multi-agent
learning and modelling techniques to various security and sustainability domains. By
choosing diverse application areas we hope to introduce general and efficient methods and
demonstrate the usability of the multi-agent learning approach. Moreover, we explain how
to overcome some of the obstacles in deploying the techniques to real-world applications. In
this work we focus on three application areas which differ in several aspects but all contain
multi-agent interactions and the necessity for security and sustainability. The three areas
are:

1. Sustainability of Earth’s orbit: The space debris removal problem → Chapter 4

2. Safety in critical systems with risky states: Learning robust behaviour → Chapter 5

3. Mitigating threats in spatial security domains: Dealing with partially observable
attackers → Chapter 6

There is a range of assumptions one needs to make about each application area in order
to propose a computationally viable but still realistic enough model. In this work we make

35

36 3.1. Security and Sustainability in Studied Domains

use of the game-theoretic framework of normal-form games and stochastic games; where the
former is suitable for domains with single-stage interactions between agents and the latter
for the domains where the environment evolves with actions taken by agents (see Chapter 2).
In simple domains the solution can be often computed exactly by computing an equilibrium
strategy or by planning via solving the underlying MDP, however in more complex domains
this might not be possible due to computational complexity. Computing a Nash equilibrium
becomes quickly intractable [Daskalakis et al., 2009]. In such cases we turn to approximating
the solution instead, in our case by reinforcement learning. Learning a solution is often
achieved by adapting behaviour with respect to improving the estimate of a value function
by repeated interactions with the studied system (described in detail in Section 2.2). Apart
from the intractability, the game-theoretic approach also suffers from the selection problem,
where multiple Nash equilibria might exist. The learning approach faces another problem,
where convergence to a fixed point is often not guaranteed, furthermore the behaviour of
the learning process can be very complex and unpredictable [Omidshafiei et al., 2019]. We
investigate these issues of both approaches in the studied application domains. We now
further present the application domains and discuss the modelling assumptions we make,
we compare them and describe their limitations.

3.1 Security and Sustainability in Studied Domains

We now introduce the studied application areas, where all the domains are situated in the
security and sustainability context. We present the studied areas in turn as they appear in
the chapters later on.

3.1.1 Sustainability of Earth’s Orbit

In Chapter 4 we study the problem of space debris, which is the main threat to sustainability
of Earth’s orbit. Since the late 1950s there has been an increase in the number of public
and private agencies that have launched a multitude of objects into Earth’s orbits with
low or no incentive to remove them after their life span. As a consequence, there are now
many inactive objects orbiting Earth, which pose a considerable risk to active spacecraft.
The Earth’s orbits are becoming increasingly cluttered with so-called space debris, made
up by inactive or defunct satellites, rocket bodies, or other parts of spacecraft that have
been left behind. NORAD tracks and catalogues objects in orbit, currently listing around

Chapter 3. Methodology & Application Areas 37

15,000 objects of 10cm2 and larger1. It is believed that the true number of objects is several
orders of magnitude larger, with estimates of over 100,000 pieces of untracked debris of
sizes 1-10cm2 [Carrico et al., 2008]. By far, the highest spatial density of such objects is in
the low Earth orbit (LEO) environment, defined as the region of space around Earth within
an altitude of 160 km to 2,000 km, in which a large number of active satellites operate.
This causes a substantial operational risk, representing defection or even obliteration of
spacecraft due to collisions with pieces of debris, which at orbital speeds of approximately
7.5 km/s can cause considerable damage. The density of objects in LEO will most likely
increase due to new launches, in-orbit explosions, and the number of object collisions being
higher than the capability of the LEO environment to clean itself using the natural orbital
decay mechanism. In recent years we have already witnessed two especially severe incidents:
(i) a 2007 Chinese anti-satellite missile test producing more than 1,200 catalogued pieces
of debris, and an estimated 35,000 pieces of size 1cm and larger, resulting in the most
severe orbital debris cloud in history [NASA Orbital Debris Program Office, 2007]; (ii)
the collision of the Iridium-33 and Kosmos-2251 satellites in 2009, which was the first
accidental hyper-velocity collision of two intact spacecraft [NASA Orbital Debris Program
Office, 2009]. This accident produced more than 823 catalogued debris objects, forming
two debris clouds in LEO. These incidents introduced a high risk of potential collisions
to many active objects in LEO. For example, the International Space Station (ISS) had
to perform a manoeuvre in 2011 to avoid a piece of debris from the 2009 Iridium-Kosmos
collision [NASA Orbital Debris Program Office, 2011]. One of the earliest analyses of the
projected evolution of space debris was done by Donald J. Kessler in 1978 [Kessler and
Cour-Palais, 1978; Kessler et al., 2010]. This study led to the definition of the “Kessler
Syndrome”, a particular scenario where the density of objects in LEO becomes high enough
to cause a cascade of collisions, each producing new debris and eventually saturating the
environment, rendering future space missions virtually impossible. Active space debris
removal might be the answer to this sustainability threat.

3.1.2 Safety in Critical Systems with Risky States

In Chapter 5 we analyse vulnerabilities of critical systems with risky states, where a
destabilisation of individual nodes can have a potentially immense impact on the whole
system. We especially study the situation where there might be some random or adversarial

1See https://celestrak.com/NORAD/elements/.

https://celestrak.com/NORAD/elements/

38 3.1. Security and Sustainability in Studied Domains

perturbations in action execution in the form of a failure or external attack. Many critical
systems exhibit global system dynamics that are highly sensitive to the local performance
of individual components. This holds for example for (air) traffic and transport networks,
communication networks, security systems, and (smart) energy grids [Cristian et al., 1996;
Shooman, 2003; Knight, 2002; Liu et al., 2012]. In each case, the failure of or malicious attack
on a small set of nodes may lead to a severe destabilisation. Moreover, innovations in critical
systems may introduce additional vulnerabilities to such attacks: e.g., smart power grids
communication channels are needed for distributed intelligent energy management strategies,
while simultaneously forming a potential target that could compromise safety [Yan et al.,
2013]. Our work is motivated precisely by the need for safety in these critical systems,
which can be achieved by encoding robustness into the learning process of an effective
behaviour against rare but significant deviations, caused by one or more system components
failing or being compromised in an attack. An effective approach to preventing severe
destabilisation, providing overall security and robustness of the system, is a prerequisite for
wide-scale future use of systems with critical states such as smart power grids. Therefore,
we do not only require optimality from the sought solution but also robustness against such
threats leading to safe performance of our methods. The notion of robustness and safety in
reinforcement learning has been studied to some extent in the single-agent scenario [Singh
et al., 1994; Morimoto and Doya, 2005; Garcıa and Fernández, 2015]. While the inclusion
of these properties into multi-agent learning needs to be further investigated [Albrecht and
Stone, 2018].

3.1.3 Mitigating Threats in Spatial Security Domains

One of the most pressing sustainability issues caused by the technologically advanced society
is its negative impact on animal species, where many species go extinct every year [Thomas
et al., 2004]. One important cause of these problems is human activity of poaching, i.e,
killing animals to seek profit. This domain represents a classic multi-agent interaction
scenario, where we face adversarial agents (poachers). Chapter 6 analyses threats in spatial
security domains with two groups of interacting agents with opposite goals. The two groups
of players are; the defenders and the attackers. The former represents a group of cooperating
agents with the same goal of securing the system, allowing us to model them as a single
agent with a joint action space. Similarly the latter consists of a group of potentially
intelligent adversaries, with same or similar goal of attacking targets, also modelled as a

Chapter 3. Methodology & Application Areas 39

single agent, as common in Stackelberg security games (see Section 2.1.4). There are many
real-world success stories of modelling some of the security domains as a security game,
examples include; the ARMOR system for airport security [Pita et al., 2008], the IRIS
tool for scheduling federal air marshals [Tsai et al., 2009], and the PROTECT system for
scheduling coast guards [Shieh et al., 2012]. All these works focused on computing an exact
game-theoretic solution, which might not be computationally feasible for larger and more
complex domains. There has been also research in security domains using the approach of
learning; for example the domain of green security games modelling the problem of illegal
animal poaching or illegal fishing [Fang et al., 2015] or the border patrol problem [Klima
et al., 2014, 2015]. However, none of these works focused on the complex spatial and
temporal nature of the problem, which might be necessary to be modelled as a stochastic
game. In this thesis we are particularly interested in spatial security domains, where the
spatial component introduces another level of temporal complexity, where the system can
transition among many different states. Here, we assume the agents dynamically move on a
graph over varied time periods defined by episode lengths, for which we use the framework
of stochastic games. In such complex systems, computing the solution exactly is not feasible
due to the difficulty of the problem and thus we approach it by reinforcement learning. Our
work is mainly driven by the target application of the illegal rhino poaching problem which
is important to study from a sustainability perspective. The main threat here is potential
extinction of the whole species. Our goal is to introduce effective security measures to
mitigate the rhino killings. We describe our approach on this specific domain, nevertheless,
our work is applicable to a wide range of domains containing the spatial component and
two groups of agents with opposite goals, guarding or attacking some critical targets.

3.2 Methodology and Problems Classification

We now describe the methodology and modelling assumptions for the analysis of the three
application domains, together with discussing the main threats we face in each of the
domains. An overview of this thesis is shown in Table 3.1, where we lay out the similarities
and differences of the studied domains. In the remainder of the chapter we describe these
metrics in detail and provide further context.

40 3.2. Methodology and Problems Classification

chapter Chapter 4 Chapter 5 Chapter 6

domain space debris removal critical domains spatial security domainswith risky states
problem space debris removal smart power grids rhino poachinginstance
threat tragedy of the commons rare severe attack/failure adversarial attackers
main modelling complex designing robust modelling complex
challenge environment learning process agents
model type simulator, surrogate grid world grid world
learning model-free model-free, model-based model-based
stage/state single-, multi- multi- multi-
agent single-, multi- single-, multi- multi-
framework NFG, MDP, SG MDP, SG MDP, SG
solution exact(NE), learned(TD) learned(TD) learned(TD)
type of methodology, model, TD operator κ, approach, BayesRQcontribution PoA analysis Q(κ), Exp. SARSA(κ)

publications
Klima et al. [2016a] Klima et al. [2018a] Klima et al. [2016c]Klima et al. [2016b] Klima et al. [2018b] Klima et al. [2018d]Klima et al. [2018c] Klima et al. [2019]

Table 3.1: Thesis main chapters overview: Comparison of modelling choices and assumptions.

3.2.1 Threat Types

In all the studied domains we face various threats and thus there is a need for introducing
security measures to mitigate them. They pose risks to the environment or directly to the
agents, potentially harming them in some way. If untreated this might cause ineffective
behaviour or even damage to the agents or environment. Effective modelling of these threats
is thus a prerequisite to optimal behaviour and overall sustainability of the environment.
The main threat in the space debris environment comes from the high volume of space
debris posing collision risks to active spacecrafts. The threats to the space agencies are then
induced by the potential tragedy of the commons scenario, where inactivity of the agents
can lead to deterioration of the common environment. The space agencies face a dilemma
between not acting while waiting for other agents to act or acting by investing into space
debris removal. Another type of threat is present in the critical systems with risky states,
where we potentially face a rare but significant failure or attack, which can destabilise the
whole network and be harmful to all agents. This rare but significant event can be seen as
an external control over the system and can have a form of an intentional and adversarial

Chapter 3. Methodology & Application Areas 41

attack or a random failure. Moreover, the threats in such critical systems are magnified
by the sensitivity of individual nodes on the performance of the whole network. We show
how such threats in critical systems such as smart energy grid can be faced effectively by
learning robust policies. From assuming a rare attack or random failure we move to dealing
with a persistent attack in spatial security domains, where we face threats from adversarial
attackers, who are strategically attacking critical targets. One example of spatial security
domains is the illegal rhino poaching problem, which we model as a security game. The
threat in such a problem is represented by poachers killing rhinos, potentially leading to an
extinction of the species causing a major environmental impact. The attacks can happen in
different locations, representing the spatial component of the problem and bringing further
complexity to the model.

3.2.2 Modelling Choices

Based on Chapter 2, which formally introduced the theoretical background of this thesis, we
now describe and motivate the use of different modelling concepts to analyse the application
domains from security and sustainability perspective.

Single- and Multi-Agent Model Our domains naturally contain multiple interacting
agents, therefore the multi-agent learning paradigm is the main framework to consider.
However it might be sometimes useful to model these domains as a single-agent scenario
as a form of abstraction, which can bring initial insights into the problem. We can either
ignore the other agents and use a form of independent learning (see Section 2.3.2). Or in the
case of several agents having the same or similar goal, it is often possible to model them as
a single-agent with joint action space. We consider these approaches in each of our studied
domains. In some settings it is interesting to compare the single-agent solution with the
multi-agent one, which gives us deeper understanding of the behavioural dynamics. In the
space debris removal problem we analyse this in terms of price of anarchy (Section 2.1.2),
evaluating the cost of a decentralised (multi-agent) solution compared to a (single-agent)
centralised one. In the case of the critical domains we first consider a single-agent scenario
for which we propose a safe and robust behaviour. Then, building on that we introduce
multi-agent versions assuming full communication among the agents. The spatial security
domains contain two groups of agents, here we model each group of agents with the same
goal as a single agent, therefore obtaining a model of a two-agent interaction.

42 3.2. Methodology and Problems Classification

Single- and Multi-Stage Model The studied application domains are naturally multi-
stage models, where agents decide on actions over many time steps. However, often
the problems can be abstracted and modelled as a single-stage process, with a one-shot
interaction among agents. Such model simplifications can bring deeper understanding into
the complex interaction dynamics and can represent a higher level of strategic decision
making. In the space debris removal problem we first model the interaction among agents as
a one-shot single-stage game using the framework of normal-form games, we then consider
a dynamic scenario with multiple stages (states) and dynamic strategies modelled within
the framework of stochastic games. The multi-stage model is more expressive with more
flexibility in agents’ behaviour but much more computationally demanding due to potentially
large state and strategy spaces. We compare both modelling approaches and point out
advantages and disadvantages of each, together with their meaning in the application
domain. When studying the safety in critical domains we also consider a multi-stage
interaction, modelled as a stochastic game, where the environment can transition between
different states. Similarly, in the spatial security domains we use the model of a stochastic
game to capture the interactions between the two groups of players with different goals.
The framework of stochastic games is more suitable for the studied domains compared to
the model of repeated games because the stages dynamically change with respect to the
agents’ behaviour.

Solution Types By following different assumptions when modelling the studied appli-
cation domains, we might obtain various solution types, differing in level of effectivness,
robustness or how they are attained. The standard solution in game theory has the form of
an equilibrium, where the players are not incentivised to alter their strategies due to not
being able to unilaterally improve their payoff (see Section 2.1). In a multi-stage setting
the notion of equilibrium becomes somewhat more complex due to the dependence of such
equilibrium on each stage, e.g., Markov perfect equilibrium. In multi-stage games like
stochastic games, it is often only possible to approximate the solution by learning it, which
is often not only less computationally demanding but also more robust against wrong initial
assumptions or perturbations in action execution. In the space debris removal problem we
consider both approaches, in the single-stage game we compute an equilibrium solution and
in the multi-stage game we learn a solution by interaction with the environment, we then
extensively compare these two approaches and their respective solution types. From the
domain perspective it is important to compare different solutions emerging from following

Chapter 3. Methodology & Application Areas 43

different modelling assumptions. For example having different goals as expressed by the two
different paradigmatic settings: (i) online RL towards individual utility versus (ii) online
RL towards social welfare as described by Tuyls and Stone [2018]. We discuss these two
different goals in the space debris removal problem and their impact on the future evolution
of the environment. When investigating security in critical domains with risky states we
focus on the learning approach and provide convergence guarantees of the proposed learning
methods. Finally, in the spatial security domains we face high level of uncertainty caused by
partial observability of the attacker, which makes computing exact game-theoretic solutions
impossible, thus we also focus on the learning approach.

Model-based vs. Model-free Learning We consider two different types of learning:
model-free and model-based approach. Reinforcement learning is originally a model-free
approach but there has been a lot of work in extending this notion to a model-based
type of learning [Polydoros and Nalpantidis, 2017; Kaiser et al., 2019]. In the model-free
approach we learn the strategy by interacting with the environment without knowing
or learning the dynamics of the environment, represented by the reward and transition
functions. On the other hand in the model-based approach we assume we know partly or
fully the dynamics of the environment, which can be either learnt from interactions or we
might have some a priori information about it. We start in Chapter 4 by considering a
simple model-free reinforcement learning algorithm where we only learn value functions
of states and actions. Next in Chapter 5 we consider learning, which is model-free with
respect to the environment dynamics but model-based with respect to control transitions
in the system, defining potential attacks or failures. Finally in Chapter 6 we consider a
fully model-based approach, where we approximate the transition function by learning
the opponent behaviour, assuming partial observations of state transitions and a priori
information about the environment.

3.2.3 Input Data

In many real-world applications and especially those concerning safety obtaining real input
data is complicated and often impossible due to sensitivity of such data and the risk of
leaking those into the wrong hands. Therefore realistic modelling of these domains is limited
in that sense and often it is needed to artificially generate such input data. To fully explore
the applicability of multi-agent modelling and learning in various domains, we study both

44 3.2. Methodology and Problems Classification

cases in this thesis; domains with real-world input data and domains where we artificially
generate the input data. In Chapter 4 for the space debris removal model we make use
of two publicly available datasets: SATCAT and TLE which contain spatial information
of objects larger than 10 cm currently in the Earth’s orbits. In the two other chapters
(Chapter 5 and 6), which concern sensitive physical targets on Earth, we generate the input
data artificially with enough parametrisation to allow for wide range of input.

4
Modelling and Learning

in the Space Debris Removal Problem

This chapter is based on the following publications:

• Klima, R., Bloembergen, D., Savani, R., Tuyls, K., Hennes, D., and Izzo, D. (2016a).
Space debris removal: A game theoretic analysis. Games, 7(3):20

• Klima, R., Bloembergen, D., Savani, R., Tuyls, K., Hennes, D., Izzo, D., Tuyls, K., and
Summerer, L. (2016b). Game theoretic analysis of the space debris dilemma. Technical
report, ESA Ariadna Study 15/8401

• Klima, R., Bloembergen, D., Savani, R., Tuyls, K., Wittig, A., Sapera, A., and Izzo,
D. (2018c). Space debris removal: Learning to cooperate and the price of anarchy.
Frontiers in Robotics and AI, 5(54):22

45

46 4.1. Space Debris Removal Problem

4.1 Space Debris Removal Problem

In this chapter we study the application of the multi-agent modelling and learning paradigm
to a complex environment of the space debris removal problem. This chapter presents
a new approach to modelling complex environments from a game-theoretic and multi-
agent learning perspective. Moreover, we investigate how different models of multi-agent
interaction can be effectively designed and evaluated in such a complex domain.

We already introduced and motivated the domain of space debris removal in Section 3.1,
we now discuss several ways proposed to deal with the problem. In 2002 debris mitigation
guidelines including passive measures were introduced such as the end-of-life management
of satellites via de-orbiting or graveyard orbits, which are now implemented in newly
launched satellites to counter the space debris risk [Inter-Agency Space Debris Coordination
Committee, 2002; Klinkrad et al., 2004]. While effective [Anselmo et al., 2001], it is now
widely believed that mitigation alone is not enough to prevent a further build-up of the
debris population in low earth orbit (LEO) [Liou and Johnson, 2008; Lewis et al., 2012; Liou
et al., 2013]. Active space debris removal, though very costly, may offer a solution [Klinkrad
and Johnson, 2009; Izzo et al., 2015]. Recently an experimental active space debris removal
mission has been performed under the project RemoveDebris with a successful in-space
test of several debris removal technologies, deployed from ISS [Forshaw et al., 2017]. An
active debris removal mission, if successful, has a positive effect (or risk reduction) for all
satellites in the same orbital band. This may lead to a strategic dilemma: each stakeholder
has an incentive to delay its actions and wait for others to respond. This gives rise to a
social dilemma in which the benefits of individual investment are shared by all while the
costs are not. This encourages free-riders, who reap the benefits without paying the costs.
However, if all involved parties reason this way, the resulting inaction may prove to be far
worse for all involved. This is known in the game theory literature as the tragedy of the
commons [Hardin, 1968]. This dilemma is often studied as a one-shot interaction in which
players (the actors) choose their strategy simultaneously and without communication. Most
real scenarios however do not follow this abstract set-up, but are rather played out over
multiple rounds of interactions, in which previous outcomes may influence future strategy
choices.

We start by developing a high-fidelity simulator of the space debris environment in
order to project and evaluate the future evolution of the environment depending on different
possible actions. These actions represent different debris removal efforts. We briefly present

Chapter 4. Space Debris Removal 47

the simulator in Section 4.2 but leave the main description for Appendix A, where we
describe a collision model, a break-up model, an orbital propagator, and future launch
scenarios. The simulator while aiming to be realistic is also very computationally demanding.
Therefore, using data collected from the full scale simulator, we build and validate an
approximate surrogate model that can subsequently be used to efficiently test the effects
of various debris removal strategies without requiring the computational power needed
to run the full scale simulator. Using the surrogate model, described in Section 4.3.1, we
propose different models of agent interaction; we consider static (one-shot) and dynamic
(multi-stage) interaction models. Moreover we investigate single- and multi-agent models.
In Section 4.3 we therefore design a normal-form game, a Markov decision process and a
stochastic game based on the proposed surrogate model. We study how the aggregation of
the agents’ actions influences the future development of the space debris environment. The
objective of this reasoning is to model this strategic dilemma, understand its consequences
and compare various centralised and decentralised solution methods. This requires us to
provide a way to estimate the effect of certain actions in different time steps on the space
environment and assets held by the actors. In Section 4.4 we evaluate and compare solutions
obtained from following different assumptions about the agent interaction. We use several
evaluation metrics such as price of anarchy, which represents the cost of selfish behaviour
compared to cooperative behaviour in terms of social welfare. Furthermore, we analyse
fairness of different solution types. Finally in Section 4.5, we discuss the obtained results
and the implications for potential decision makers.

This chapter is self-contained, however for completeness, in Appendix B we attach
our preliminary work, based on a simplified version of the space debris simulator with a
simple launch model as described in Appendix A.3. Where we model the space debris
problem as a one-shot game, describing the dynamics of the strategic dilemma from a
game-theoretic point of view, showing the evolution of equilibria depending on parameters
of the model such as the cost of active debris removal. This preliminary study was an
important stepping stone to the complex analysis presented in this chapter, which is based
on data from improved space debris simulator with a complex launch model, which is fully
described in Appendix A.4.

Related Work This study can be placed in the context of several different areas of
related work. From a simulation modelling perspective various attempts have been made to
accurately predict the evolution of space debris and the resulting risk of collisions for active

48 4.1. Space Debris Removal Problem

spacecraft. Moreover, from a game-theoretic perspective, researchers have utilised similar
methods to study related problems of environmental pollution, and the shared exploitation
of scarce resources, e.g., greenhouse global warming [Tahvonen, 1994].

Several studies have been published in recent years that consider in detail the effect of
active removal strategies to mitigate the space debris problem [Liou and Johnson, 2009;
Liou et al., 2010; Liou, 2011]. For example, Liou and Johnson [2009] present a sensitivity
analysis on several fixed object removal strategies. They propose removing 5, 10, or 20
objects per year, and compare these mitigation strategies with baselines “business as usual”
or “no new launches” and show the effectiveness of object removals. The objects to be
removed are chosen according to their mass and collision probability. Our work is inspired
by Liou and Johnson’s approach but, in contrast, (i) we consider a multi-agent scenario in
which different space agencies independently choose their removal strategy and furthermore
(ii) consider a more adaptive scenario in which an optimal strategy for removal can be
learned based on estimated collision risks and removal costs.

Analysis of complex strategic interactions using game theoretic tools is often hindered
by the large action-spaces available to the agents in such scenarios. For example, in the
space debris removal dilemma, each possible piece of debris to remove is potentially an
action. Additionally, it is often impossible to define payoffs to all (combinations of) actions
in advance. This has led recently to the advent of empirical game theory [Walsh et al.,
2002; Wellman, 2006]. The main idea is to limit the strategy space of each agent by
introducing high level generic profiles, or meta-strategies, that capture the main aspects of
the interaction. Then, the payoff table for this reduced strategy space can be estimated
empirically, either by analysing data from a real system, or by simulating a model of the
system. Standard methods and techniques from (evolutionary) game theory can then be
applied to the estimated payoff table, e.g., to find approximate equilibria [Jordan et al., 2008].
Such empirical game theoretic analysis has proven valuable in getting insights into various
complex real-world domains, such as automated trading [Wellman et al., 2006], auction
mechanism design [Phelps et al., 2004], the game of Poker [Ponsen et al., 2009] or Go [Tuyls
et al., 2018], collision avoidance in multi-robot systems [Hennes et al., 2013], adaptive
cyber-defence strategies [Wellman and Prakash, 2014], and large-scale bargaining [Hennes
et al., 2015]. In this work we follow a similar approach but focus on the domain of space
debris removal.

The space debris removal dilemma is in many ways similar to other environmental clean-
up efforts that have been studied using game-theoretic tools in the past [Bousquet et al.,

Chapter 4. Space Debris Removal 49

1999]. For example, Tahvonen [1994] models carbon dioxide abatement as a differential
game, taking into account both abatement costs and environmental damage. More complex
models have been studied as well, including for example the ability to negotiate emission
contracts [Harstad, 2012]. Another related model is the Great Fish War of Levhari and
Mirman [1980]. Although not the same as environmental clean-up, this scenario deals with
shared use of a scarce common resource, which potentially leads to the same dilemma in
game-theoretic terms, known as the tragedy of the commons [Hardin, 1968]. While the
problem of space debris can be seen as a tragedy of the commons in this sense, its potential
solution by joint effort of different space actors can be modelled as a public goods game,
in which players jointly need to reach a threshold contribution level in order to produce a
public good (clean space, in our setting). A special case of the public goods game, in which
contribution of a single player is sufficient, is given by the volunteer’s dilemma [Diekmann,
1985]. Here, theory dictates that an increase in the number of players decreases the chance
of any one player contributing due to the temptation of free-riding, known in psychology
literature as the diffusion of responsibility [Darley and Latané, 1968]. The space debris
removal dilemma presented here is more complex than both game-theoretic models, as we
allow for different contribution levels as well as different stakes between the players. Many
of the aforementioned studies has focused solely on a (simplified) mathematical model of
the underlying system. In contrast, we use a complex simulator to obtain an approximate
model which can then be used to study the outcome of various fixed strategies, as well as
learn new dynamic strategies that may outperform the fixed ones. In addition, while most
previous work treats the dilemma only as a one-shot (or repeated) game, we here propose
both, a one-shot game and a more realistic scenario in which different strategy choices can
be made at different points in time, which we model within the framework of stochastic
games. Furthermore, we discuss the application of reinforcement learning methods to learn
efficient strategies in such games.

Recently, there has been work using the learning approach in tragedy of the commons
problems, analysing the dynamics of cooperative solutions [Leibo et al., 2017; Perolat
et al., 2017]. These works assumed partially observable domains with potentially unknown
underlying model whereas in this work we assume fully observable surrogate model known
to all the players. Another related work studying cooperation in public goods games uses a
version of reinforcement learning called directional learning to (mis)learn and achieve more
cooperative outcomes deviating from Nash equilibria [Nax and Perc, 2015]. This method
is studied in an evolutionary setting based on one-shot interactions, whereas we study a

50 4.2. Simulating Space Debris Environment

more complex stochastic game in which dynamics depend on sequences of actions taken
by the players. We also mention the related (interdisciplinary) body of work focusing on
the evolution of cooperation in populations of self-interested agents, often modelled using
methods from evolutionary biology or statistical physics [Perc et al., 2017]. While those
approaches help to better understand why cooperation happens in (human) society on a
macro scale, here we focus on the adaptive learning process on the micro-level of individual
players. Although parallels can be drawn (see, e.g., Bloembergen et al. [2015]), this type of
analysis falls outside the scope of our current study.

Finally, we study the inefficiency of decentralised solutions in the active debris removal
problem. The main tool for such analysis is the price of anarchy (PoA), first introduced
by Koutsoupias and Papadimitriou [1999], however the study of inefficiency of Nash equilibria
is older [Dubey, 1986]. For a general introduction to inefficiency in non-cooperative games
we refer the reader to work of Roughgarden and Tardos [2007]. PoA analysis has been
used in many domains, to name a few we state selfish traffic routing in a congested
network [Roughgarden, 2005] or auctions [Roughgarden et al., 2017]. In our work we focus
on a more restricted scenario with PoA evaluation, similar works measure PoA [Knight
et al., 2017] or analyse division fairness [Aleksandrov et al., 2015].

4.2 Simulating Space Debris Environment

In this section, we briefly introduce a full scale simulator, which we developed to predict
the impact of active removal of space debris objects on the future space environment and
in particular on the assets of each agent. In order to successfully model the complex
interactions and dynamics in the space debris removal problem, we develop a high-fidelity
simulator of the space debris environment, which enables us to model and analyse the future
evolution of the space debris problem considering potential active debris removal. Apart
from the recent in-space testing of active debris removal [Forshaw et al., 2017], no active
removal strategies of actual debris have been attempted yet, thus there is only very limited
existing data on their cost and effect. Any impact of such action can be thus only simulated.
Furthermore, the space environment, similarly to the climate on Earth, only changes over
relatively large time scales of many decades. To measure any effect of current actions, it
is necessary to simulate at least one century into the future. This of course introduces
large uncertainties to the outcome as it requires modelling of human behaviour, i.e., future
launch activity, over the next century. Therefore, we consider different launching scenarios.

Chapter 4. Space Debris Removal 51

Predicting the future of space debris is in general a very difficult task and necessarily
uncertain, thus we focus on the analysis framework for a wide range of potential future
trajectories of space debris development, providing enough generality.

We propose a simulator with two different models of future spacecraft launching. (1)
a simple launch model by repeating a past launch sequence, which aims to replicate the
simulators in related work (e.g. Liou and Johnson [2009]). And (2) a complex launch model
with several different spacecraft classes with non-linear evolution in time, following the
mitigation guidelines [Inter-Agency Space Debris Coordination Committee, 2007] such as
the end-of-life management of satellites via de-orbiting. We fully describe these two launch
models in Appendix A.3 and A.4, respectively. The simple launch model was used for our
preliminary work in Appendix B. The complex launch model is used for the main analysis
in this chapter.

The simulator is built on top of the Python scientific library PyKEP [Izzo, 2012].
PyKEP provides basic tools for astrodynamics research, including utilities to interface with
online databases such as the SATCAT1 and TLE (two-line element set)2 databases, which
provide orbital information on all active (not decayed) objects in the low Earth orbit (LEO)
regime we are studying, including the orbital elements that uniquely identify an object’s
orbit, and which are used for orbit propagation. These databases provide the input to our
simulator. PyKEP also provides an implementation of the SGP4 satellite orbit propagator
(via libsgp43), which we use extensively in this work. We fully describe the space debris
simulator in Appendix A together with all the modules and the two different launch models.

4.3 Models of Agent Interaction

In this section we present several models of agent interaction for the space debris removal
problem. Firstly we introduce a surrogate model based on the simulator with the complex
launch model, described in Appendix A.4, which allows to model wide range of future
evolution of the space debris environment. We present the analysis with the proposed
conservative launch scenario, however our model is general and can be used with any launch
scenario as proposed in Appendix A.4. Using the surrogate model we define a normal-form
game, a Markov decision process, which we then extend to form a stochastic game. We

1https://celestrak.com
2https://www.space-track.org/
3https://github.com/dnwrnr/sgp4

https://celestrak.com
https://www.space-track.org/
https://github.com/dnwrnr/sgp4

52 4.3. Models of Agent Interaction

present several solution concepts; comparing single-agent, multi-agent, static (one-shot)
and dynamic strategies and thoroughly analyse their effectiveness and outcomes on decision
making by using concepts of fairness and price of anarchy (PoA) (formally presented in
Section 2.1.2).

4.3.1 Surrogate Model of the Space Debris Simulator

The full scale simulator introduced in Section 4.2 and fully described in Appendix A
accurately models the space environment evolution given the complex launch model, but it
is unfortunately computationally demanding. In order to facilitate efficient experimentation
with different debris removal strategies we design an approximate surrogate model that
effectively captures the dynamics of the system but is computationally fast. In this section
we describe the intuition and implementation of this surrogate model. We also validate
the approximation by comparing its projected dynamics with those given by the full scale
simulator in Appendix C.

Implementation

Firstly we introduce the threshold for removal of risky objects, which represents active
debris removal. This is a different approach to previously considered removal efforts, which
we investigated in our preliminary work (see Appendix B), where we now better quantify
the impact of removal actions. The measure is the expected number of new debris should
a collision occur. This new strategy concept can better prioritise the removal of objects
causing massive collisions. The first step to building the surrogate model is to run Monte
Carlo simulations for different settings of the threshold for removal of risky objects. We
prevent all collisions that produce an expected number of debris larger than the given
threshold for removal from happening by removing the risky objects causing these collisions.
Figure 4.1 shows the evolution of the total number of objects in orbit for different thresholds
for removal and the cumulative number of lost active assets (spacecraft) for the same
scenarios. The outcome for every threshold setting in every time step can be evaluated by
the gradient of the curve in that time step, which is based on the (expected) number of
collisions (defining the number of objects injected into the environment, see Figure 4.1b)
and the (expected) number of lost active assets in every time step of the Monte Carlo
simulations. We can use these two metrics to define the set of actions and the reward
function.

Chapter 4. Space Debris Removal 53

2020 2040 2060 2080 2100 2120

year

0

50000

100000

150000

200000

250000

300000

350000
to

ta
l
n
u
m

b
e
r

o
f

o
b
je

ct
s

Objects number evolution
above 1000
above 2000
above 3000
above 4000
above 5000
above 6000
above 7000
above 8000
no removal

(a) total number of objects

2020 2040 2060 2080 2100 2120

year

0

5

10

15

20

25

30

35

n
u
m

b
e
r

o
f

lo
st

 a
ss

e
ts

Cumulative lost important assets - all players
above 1000
above 2000
above 3000
above 4000
above 5000
above 6000
above 7000
above 8000
no removal

(b) cumulative lost assets

Figure 4.1: Projected evolution of the (a) total number of objects and (b) cumulative lost
assets, assuming the complex launch model, in the next 100 years for different removal
strategies, e.g. above 8000 - removing all the objects causing in expectation a collision
producing more than 8000 debris pieces.

We can view every point on every curve (system evolution for given threshold) as a
potential system state. We restrict states to discrete time steps (decision points for policy
change, e.g., 2 years) and assume that the system can transfer between the states by taking
removal actions (joint action in the case of multiple actors) defined by given threshold for
removal. Due to computational intractability we cannot run simulations for all combinations
of (joint) actions and state transitions and hence we propose an approximate surrogate
model for evaluating the effect of the removal action on the environment.

This model is based on transitions between the different curves (shown in Figure 4.1)
depending on the actions taken. Note that the gradient of each curve is dependent on the
total number of objects in the system and the year (which determines the number of active
assets). Therefore, we propose shifting between curves either (i) horizontally – keeping
the same level of total number of objects or (ii) vertically – keeping the same year and
therefore the same number of active assets (remember that the number of active assets and
their size distribution is only dependent on the launch scenario). This shifting between
the curves represents transitions between different states of the system. Note that the
steeper the curve gets (larger gradient), the higher the risk for collisions will be. If players
increase their effort, this means shifting to a lower curve, they move either down or right.
A decrease in effort means moving up or left. Intuitively, increasing (decreasing) the effort

54 4.3. Models of Agent Interaction

should decrease (increase) the gradient. Shifting down when increasing effort (or left when
decreasing) gives us a lower bound on the gradient of the curve, as we get an optimistic
estimate of the further development of the system by underestimating the total number
of objects (or the number of active assets when moving left) in the system. Following the
same logic we get an upper bound on the gradient when moving right when increasing
effort (or up when decreasing), which can be thought of as a pessimistic estimate where we
overestimate the number of active assets (or the number of total objects).

We run 100 Monte Carlo simulations for each scenario to base our surrogate model on.
The MC simulations give us for each time step and each threshold for removal the expected
number of collisions (and their size in terms of the expected debris resulting from that
collision). Basically, the players’ actions consist of removing (or deciding not to remove)
the difference in expected number of collisions between two curves, and thus moving from
the one to the other curve. As discussed, the way in which the system moves between
curves can be defined to be either optimistic or pessimistic, to give a lower or upper bound
on the expected number of collisions. In the end, this results in a piece-wise combination
of the different curves based on the removal actions taken. In Figure 4.1 never removing
simply means sticking to the uppermost curve; always removing everything that would
produce more than 1,000 debris pieces means sticking to the lowest curve; and any other
combination leads to a mixture in between those two extremes.

We validated our surrogate model to well approximate the simulator in Appendix C.

4.3.2 Deterministic Game Model of Space Debris Removal

We base the game model on our surrogate model as described above. We assume the model
to be deterministic and think of it as a special case of a stochastic game with deterministic
transitions. In this chapter we use the term stochastic game due to the common usage in
the literature, but deterministic game would be more accurate. The game models situations
in which multiple players interact. Each player selects an available action given the current
state, and the game transitions to a next state based on the combination of actions taken.
This makes stochastic games an intuitive framework within which to study strategic decision
making between multiple parties, or multiple learning agents. We start by modelling the
environment as a deterministic Markov decision process (MDP) (defined in Section 2.2.1),
then move to a normal-form game formulation (defined in Section 2.1), and finally we define
a stochastic game model (Section 2.3.1). The MDP model assumes a single player scenario.

Chapter 4. Space Debris Removal 55

Building on that, assuming multiple players, we arrive at the stochastic game model.

Markov decision process based on surrogate model

In our model, the underlying environment dynamics are independent of the different players,
and governed fully by the sum of actions taken (the chosen threshold for removal). As
such, the stochastic game reduces to the special case of a Markov decision process (MDP).
In order to transform the validated surrogate model into an MDP, we need to define the
state space, the players, their action spaces, the (immediate) reward function, and the state
transition function. Each of these will be described in detail below. The general intuition
behind the MDP model is the following. At each time step (e.g., per year) players decide
how much effort to invest next. This decision can be based on e.g., past actions, the current
state of the environment, and budget limitations. The joint effort of all players determines
the state evolution of the environment, i.e., the growth rate of the debris population for
the coming time step (see model description above). An important question from a design
perspective is whether effort will be treated as a discrete or continuous variable. The
underlying model (as described above) is inherently discrete, based on a set of thresholds.
The reward function can (naturally) be based on the expected number of lost assets between
two time steps (states), plus the removal effort. If effort is expressed as an expected number
of removals, this means we can get a monetary value by multiplying effort with the cost of
removal.

State space In principle the state space is infinite (continuous) along the dimensions of
time and current number of objects in the environment (see Figure 4.1). We discretise the
state space along both dimensions: 1) by fixing the time steps to for example once every
two years, and 2) by fixing the number of allowable states at each time step, uniformly
between the top and bottom curves in Figure 4.1. This will fix the total number of states
of the MDP.

Action space As our surrogate model is based on a notion of threshold, i.e., not deciding
how many objects to remove exactly but based only on the impact of the potential collision,
it seems natural to base the action space on these thresholds as well. Thus, the action space
is defined by the discrete thresholds, where for each such a threshold in any given time
step we have the expected number of removed objects E(nrem) and the expected number

56 4.3. Models of Agent Interaction

of lost assets E(nlost) during the next time step. This data comes from the Monte Carlo
simulations. The definition of the action space partially defines how the cost associated
with each action will be defined. In this case, the cost in terms of future losses is directly
given by the effort (threshold) curves in Figure 4.1; however the cost of removals will vary
(“everything above a threshold” can be any number of removals, and this will vary over
time).

Reward function The (joint) reward function is naturally given by the cost of lost assets
plus the cost of removal efforts. Minimising these costs means maximising reward. A reward
in the underlying MDP can be also thought of as the environment welfare, which we use
in our experimental analysis. We define the reward function R(s, a) for a state s and an
action a as a sum of the cost of losing assets and the cost of object removal efforts in the
next time interval:

R(s, a) = E(nlost) + λE(nrem) (4.1)

where λ = CR
CL

is a ratio between cost of removal CR and cost of losing an asset CL. In this
section we do the analysis for different levels of λ, because, similarly as in our preliminary
work (Appendix B), we are only interested in the relation between cost of removal and
cost of losing an asset and not in their actual values, which can be difficult to determine.
E(nlost) is the expected number of lost assets in the next time interval and E(nrem) is the
expected number of removed objects in the next time interval defined by the action a in
environment state s (given by the threshold curves in the surrogate model).

Transition function The transition function of our MDP is defined by the underlying
surrogate model. Given the action a and the current environment state s, the transition
function T (s, a) deterministically returns the successor state s′. The function follows the
curve shifting method explained above in Section 4.3.1.

Stochastic game based on surrogate model

We are now ready to define a game-theoretic model based on stochastic games. We will
define the components of stochastic games based on the underlying MDP as described
above.

Chapter 4. Space Debris Removal 57

Players We do not consider actual space agencies as we did in our preliminary work,
shown in Appendix B, but instead generalise the definition of a player. Players are defined
solely by their size, expressed in terms of their number (share) of active assets. This number
in turn determines their risk given the current state of the environment. Since we do not
discriminate between objects of different players in our model, we assume that the risk
scales linearly with the number of assets owned by the players. Each player i has a share
ξi of assets representing the size of the player. The value of ξi is in the range (0, 1) and
represents the proportion of player assets to all assets in the environment, thus

∑
n ξi = 1.

State space The state space is identical to that of the MDP model. Note that due
to multiple players the Markov property is broken. Nevertheless we still apply learning
methods to derive players strategies. We assume the players can fully observe the underlying
state, i.e., the time period and the total number of objects in the system.

Action space Defining the joint effect of several individual actions in the multi-player
game is not straightforward. We define a joint action a as a sum of removal efforts of
the players, which is a sum of the expected number of removals for each player’s chosen
threshold. Then we map this sum to a joint threshold. For this joint threshold we obtain a
total expected number of removed objects and total expected number of lost assets from the
underlying MDP. We then proportionally divide the expected number of removed objects
to each player according to their expressed effort. This method will enable us to define
individual rewards.

Reward function We define the reward function based on the MDP reward function
definition but now considering the joint action. Thus, the reward function R(s,a) for state
s and joint action a is defined as a sum of the cost of losing assets and the cost of object
removal efforts in the next time interval, which is equal to sum of all players’ rewards:

R(s,a) = E(nlost) + λE(nrem) =
∑
i∈n

R(s, ai) =
∑
i∈n

(
E(nilost) + λE(nirem)

)
(4.2)

E(nilost) is the expected number of lost assets in the next time interval for player i and
E(nirem) is the expected number of removed objects in the next time interval for player i.

58 4.3. Models of Agent Interaction

Individual reward for player i is defined as R(s, ai) = ξiE(nlost) + λE(nirem), where ξi is the
share of important assets of player i.

Transition function The transition function is defined according to the underlying
deterministic MDP based on the surrogate model. Given the joint action a and the current
environment state s, the transition function T (s,a) deterministically returns the successor
state s′. The function follows the curve shifting method explained above in Section 4.3.1.

4.3.3 Dynamic Decision Making in the Space Debris Problem

We look at two types of decision making, differing in complexity. Firstly, we focus on the
one-shot scenario with static strategies, similar to the method we used in our preliminary
work in Appendix B, where the players fix their strategies at the beginning of the simulation
and stick with those until the end. Secondly, we analyse dynamic strategies, where the
players can dynamically decide on their action in every time step based on other players’
past actions and the development of the environment. Furthermore we analyse and compare
a single-agent and multi-agent model. Thus, we can divide the analysis into four types of
decision making: (i) single-agent static, (ii) multi-agent static, (iii) single-agent dynamic
and (iv) multi-agent dynamic. We discuss these variants in turns.

Single agent

Firstly, we assume only one agent (player) in the system. An entity of n cooperating players
can be thought of as a single agent, where every action of the agent is a joint action of the
players defined as a = f(a1, . . . , an), where f is a function aggregating several actions into
one joint action. Having only one agent in the system we can directly solve the underlying
MDP to find an optimal strategy for the agent. The optimal strategy is given in the form
of a sequence of optimal actions across the time horizon T as π? = (a?1, . . . , a?T). Since the
state transition function T is assumed to be deterministic in our surrogate model, applying
strategy π∗ to the MDP will give us a fixed sequence of states and fixed sum of (discounted)
rewards.

We differentiate two levels of complexity for the optimal strategy. Firstly, we consider a
static strategy, where one fixed action is repeated for the complete duration of the time
horizon, as in our preliminary work, shown in Appendix B. Secondly, we consider a dynamic
strategy, which can consist of different actions taken at different time points. In this case

Chapter 4. Space Debris Removal 59

the agent can dynamically change action during the course of the MDP until reaching
the final (goal) state. The optimal strategy for the static case can be found by simply
maximising the sum of rewards over the strategy space, which has the size of the discrete
action space |A|. Moving from the static to the dynamic case, the problem of finding the
optimal strategy becomes more complex. Now, the strategy space consists of all possible
sequences over all discrete actions, which is of size |A|T for time horizon T . To find the
optimal strategy we have to solve the underlying MDP, which can be done by dynamic
programming for a small strategy space, or by reinforcement learning for a large strategy
space.

Multiple agents

From a single agent scenario we move to a multi-agent scenario. We consider n agents
(players), and analyse the interaction among the players over the underlying MDP by using
the game model. We assume the players do not cooperate and are self-interested – in the
case of cooperation we can model the problem as a single agent scenario as described above.
Again, we are interested in finding optimal strategies for the players; however optimality
in a multi-agent scenario can be defined in various ways. One way to define optimality is
by finding equilibria solutions, another way is by maximising the global welfare. In this
section we consider and compare both approaches.

As in the previous section we differentiate between two levels of complexity in the
decision making process. Firstly, we look at static strategies, defined as sequences of a
repeated fixed actions. In the multi-agent scenario this can be described by a normal-form
game and solved by finding Nash equilibria of such game. We are interested mainly in
pure equilibria, because mixed strategies are typically difficult to obey and maintain in
real-world settings. Especially in the space debris removal, where the removal actions are
very costly and the players plan these over several years, it is unlikely to decide on them
at random, i.e., choosing mixed strategies, as we also discussed in the preliminary work,
shown in Appendix B.3.

Secondly, we analyse the case of dynamic strategies, where the players can take different
actions in every time step. The solution is a sequence of actions for each of the players.
The definition of optimal strategies in multi-agent dynamic systems might be ambiguous as
discussed in Section 2.3.2. Furthermore, the strategy space for n players is large even for a
small action space and short time horizon, and grows exponentially in number of actions.

60 4.3. Models of Agent Interaction

As a result, solving the resulting stochastic game explicitly by for example planning might
be impossible or intractable. Thus, the only feasible way to find optimal or near-optimal
solutions is to approximate them using e.g., reinforcement learning.

Learning an optimal strategy

In the space debris removal decision making process we face the problem of delayed reward,
where the effect of immediate actions (object removal or passivity) will fully come into effect
only after many years, making reward-based decision-making difficult. Temporal difference
methods tackle the delayed reward problem by bootstrapping, i.e., building iteratively more
accurate models by incorporating expected future returns into the learnt reward function
(see Section 2.2.3 for further explanation of temporal difference learning).

Evaluation metrics

In this section we want to analyse and compare different decision making models. The
decision making is based on the underlying MDP built on the surrogate model. Therefore,
the main evaluation metrics are based on the concept of reward. The decision making process
is prescribed by a given strategy, which can be evaluated in terms of (discounted) rewards
both from an individual perspective as well as from a global (environment) perspective.
Thus, in the analysis we use the concept of social welfare ω, which is described as the sum
of all players’ rewards and can be thought of as a global environment outcome.

We use the metric of social welfare to compare the above stated approaches using the
concept of price of anarchy (PoA) (see Section 2.1.2), which measures efficiency between two
sets of strategies, Π1 and Π2, where the latter is assumed to be worse than the former. PoA
compares welfares (sum of rewards) obtained from the different strategies and evaluates
the cost of choosing one over the other. PoA can be defined as:

PoA = maxπ∈Π1 ω(π)
minπ∈Π2 ω(π) (4.3)

In our experiments the welfare ω is always negative, thus we redefine the PoA so that the
obtained values are consistent with standard PoA values, i.e., PoA ≥ 1, thus defined as:

PoA = minπ∈Π2 ω(π)
maxπ∈Π1 ω(π) (4.4)

Chapter 4. Space Debris Removal 61

For strategies from strategy spaces Π1 and Π2, ω is the environmental welfare, which can
be also seen as the underlying MDP reward for joint strategy of the players. We extend the
classic notion of price of anarchy concept to compare solutions from different models such
as varying number of agents forming the strategies or different flexibility assumptions of
such strategies. Therefore, the strategy spaces Π1 and Π2 are defined based on the given
models. We use this metric to compare outcomes from different model designs. In our
experimental analysis we use two variants of price of anarchy to measure efficiency, (i) PoA
between single-agent and multi-agent as a price for selfish behaviour of the agents and (ii)
PoA between static and dynamic strategy as a price for not being able to flexibly react to
changes in the environment. We notate the first as PoAm (single-agent vs. multi-agent) and
the second as PoAd (static vs dynamic). Therefore PoAm describes the cost for a selfish
decentralised (multi-agent) strategy compared to a cooperative centralised (single-agent)
strategy. PoAd then describes the cost of a static inflexible strategy compared to a dynamic
flexible strategy, which can potentially better react to changes in the environment.

We define the concept of fairness in the space debris removal game based on player’s
i share ξi as described in Section 4.3.2. Fairness is based on the assumption that a level
of the removal effort should be proportional to the size of the player. We define fairness
as φi = ω∗ξi

ri
, where ri is a reward for player i. If φi = 1 we say that player i behaves

fairly, if φi > 1 we say that player i behaves positively unfair, meaning he gets a higher
reward than he deserves (removing less than what would be fair for his share of assets)
and if φi < 1 we say he behaves negatively unfair, meaning he gets a lower reward than he
deserves (removing more than what would be fair for his share of assets). We also define
total fairness as a sum of differences from a fair case for each player i as φ =

∑
i |1− φi|.

The total fairness describes the quality of a solution. If φ = 0 we have a fair solution,
the greater the value of φ is the less fair solution we have. In Table 4.1 we state a list of
notations to help the reader to better orientate in the following sections. In the next section
we experimentally compare different scenarios using these evaluation metrics. We perform
a thorough analysis for different levels of the ratio λ and shares of assets ξi.

4.4 Evaluation of Different Models of Agent Interaction

We base all our experiments on the surrogate model, which is built on the data from
Monte Carlo runs of the space debris simulator. Thus, we have the expected number of
lost assets E(nlost) and expected number of removed objects E(nrem) for every time step

62 4.4. Evaluation of Different Models of Agent Interaction

PoAm price of anarchy comparing single-agent and multi-agent scenario
PoAd price of anarchy comparing static and dynamic scenario

λ ratio between cost of removal CR and cost of losing an asset CL
ξi share of important assets of player i, i.e., size of player i
ω welfare, i.e., sum of all players’ rewards
φi fairness for player i
φ total fairness

Table 4.1: List of notations used in the stochastic game model of the space debris removal.

and every threshold for removal (see Figure 4.1). The threshold for removal is defining the
discrete action space over a set {1000, 2000, 3000, 4000, 5000, 6000, 8000, 9000, 10000, NR},
where NR is “no debris removal” as defined in Section 4.3.2. The previously described
surrogate model can be used to efficiently compare various (predefined) debris removal
strategies, investigate the effect of various parameter choices, and to learn an optimal
strategy. Our surrogate model is based on curve shifting as described in Section 4.3.1,
in order to approximate well we restrict the players from abruptly changing the removal
thresholds, meaning they can only shift one up, one down or stay at the same threshold
level in every time step. The initial choice of action (threshold) is arbitrary. In this section
we describe several experiments that highlight each of these possibilities in turn. In all
our experiments we assume a 100 year time horizon and decision time step 10 years, so we
have 10 decision making points. The time horizon is based on the ISO standard on space
debris mitigation [International Organization for Standardization, 2011] agreed to by all
space agencies. It sets the time frame for graveyard orbit stability simulations to 100 years.
Given the generally quite long lead time for space missions, averaging about 7.5 years for
governmental satellite operations [Davis and Filip, 2015], the 10 year decision time step
seems a reasonable time for space actors to decide on strategy. Note that decreasing the
decision time step to for example 2 years, would accordingly increase the state space with
50 removal decision points in the 100 year time horizon. We also point out that in our
model the violation of Markov property is limited for any choice of decision time steps,
since we assume that all the agents have access to the simulator and the surrogate model.
They can therefore derive the underlying state from the observed year, total number of
objects and the surrogate model, prescribing the gradients of expected number of lost assets
and expected number of collisions for different removal actions.

As described in a previous section we analyse several scenarios. Our goal is to compare

Chapter 4. Space Debris Removal 63

solution quality of static vs. dynamic scenario and single-agent vs. multi-agent scenario
and combinations of these. We first need to describe how we can evaluate these scenarios.
We will see that some can be computed and some need to be learned due to the high
complexity. We first demonstrate and describe the different scenarios on fixed settings of
λ = 0.1, which is the ratio between cost of removal CR and cost of losing an asset CL and,
in the multi-agent case, the share of important assets ξA = 0.6 of player A4. Then, we
perform a thorough analysis of the scenarios for different settings of parameters λ and ξ
and describe the influence of these parameters on the quality of the solution.

Following is the list of the scenarios and corresponding methods on how to find an
optimal strategy:

• Single-agent, static → iterate over solutions and find the one with maximal reward,

• Single-agent, dynamic → solve MDP directly by dynamic programming,

• Multi-agent, static → find optimum by computing Nash equilibrium,

• Multi-agent, dynamic→ learn optimum by using reinforcement learning, e.g., temporal
difference algorithm.

Static strategies

We start with a static strategy, which consists of one fixed action for the entire time horizon,
i.e., 100 years. A static strategy can be written down in the form of a dynamic strategy in
the MDP, where at every time step the player chooses the same action.

Single-agent static Firstly, we look on a system with a single agent. Getting an optimal
strategy for a single-agent static scenario is straightforward due to the discrete and small
action space. We have |A| possible strategies for which we compute the rewards and choose
the one with the highest reward. In Table 4.2 we show the optimal strategies for different
levels of λ. They are optimal in sense of maximising the total reward (payoff) defined as

r = −
(
E(nlost) + λE(nrem)

)
.

4In case of having only two players, we obtain the share of important assets of the other player as
ξB = 1 − ξA.

64 4.4. Evaluation of Different Models of Agent Interaction

λ 0.1 0.2 0.3 0.4 0.5
strategy 3,000 5,000 5,000 9,000 9,000

total reward r -23.3867 -27.9443 -30.0443 -31.9917 -32.74

Table 4.2: Optimal single-agent static strategies for different parameter λ, where the
strategy is fixed for the entire time horizon. For increasing λ (i.e. object removal gets more
costly) the optimal strategy is to remove fewer objects (i.e. greater threshold for removal).

Multi-agent static We now move to a multi-agent scenario with static strategies. This
scenario can be written down as a normal-form game, the pure strategies are defined by the
threshold for removals. For a normal-form game the solution concept is Nash equilibrium.
In our analysis we assume two-players A and B. The players differ only in size defined by the
share of important assets. We assume that agent i has a share ξi of total important assets
from all important assets in the environment. The reward (payoff) for player A is defined
as rA = ξAE(nlost) + λE(nArem) and for player B as rB =

(
1− ξA

)
E(nlost) + λE(nBrem). Note

that ξA = 1 − ξB. The pure strategies are the thresholds for removal which give us the
values of E(nlost) and E(nrem). We are now able to construct the payoff matrix for given
parameters λ and ξA.

We demonstrate forming the payoff matrix for λ = 0.1 and ξA = 0.6. We show
the payoff matrix for player A choosing pure strategy “threshold for removal = 2,000”
as expected number of removed objects E(nArem) and player B choosing pure strategy
“threshold for removal = 6,000” as E(nBrem). We obtain the values of E(n2000

rem) and E(n6000
rem)

from the simulation data and compute the value of E(nlost) by finding a threshold curve
for given joint action which is a sum of removal efforts as described in Section 4.3.2.
Then, we compute the payoff matrix entries rA and rB for the chosen pure strategies
as rA = 0.6E(nlost) + 0.1E(nArem) and rB = 0.4E(nlost) + 0.1E(nBrem). We state the full
payoff matrix in Table 4.3, we can see how easy/difficult is to reach the respective pure
Nash equilibria which we state in bold. In Table 4.4 we can see the corresponding Nash
equilibria (NE), the strategy is written in format [< player >:< action >,< probability >].
We show all the pure equilibria (1, 2, 3) and one mixed equilibrium (4), note there exist
more mixed equilibria, however we show only one. In general we are interested only in pure
strategies, because in space debris removal problem it is unfeasible to play mixed strategies.
For each Nash equilibrium we show the player A reward rA, the player B reward rB, the
welfare ω (the sum of rewards) and the fairness φ.

Chapter 4. Space Debris Removal 65

3000 4000 5000 6000 8000 9000 10000 NR

3000 -16.36 -16.36 -16.36 -16.36 -16.36 -16.36 -16.36 -16.36
-12.85 -10.24 -9.12 -8.58 -8.01 -7.77 -7.62 -7.02

4000 -13.76 -13.76 -16.19 -16.19 -16.19 -16.19 -16.19 -16.19
-12.85 -10.24 -10.74 -10.20 -9.64 -9.39 -9.24 -8.64

5000 -12.64 -15.07 -15.07 -15.07 -16.35 -16.35 -16.35 -16.35
-12.85 -11.86 -10.74 -10.20 -10.49 -10.25 -10.09 -9.50

6000 -12.09 -14.52 -14.52 -15.80 -15.80 -15.80 -15.80 -17.34
-12.85 -11.86 -10.74 -11.05 -10.49 -10.25 -10.09 -10.52

8000 -11.53 -13.96 -15.24 -15.24 -16.77 -16.77 -16.77 -18.61
-12.85 -11.86 -11.60 -11.05 -11.51 -11.27 -11.12 -11.75

9000 -11.28 -13.71 -14.99 -14.99 -16.53 -18.37 -18.37 -18.15
-12.85 -11.86 -11.60 -11.05 -11.51 -12.50 -12.34 -11.60

10000 -11.13 -13.56 -14.84 -14.84 -16.38 -18.22 -18.22 -18.63
-12.85 -11.86 -11.60 -11.05 -11.51 -12.50 -12.34 -12.03

NR -10.54 -12.97 -14.25 -15.78 -17.62 -17.40 -18.04 -20.14
-12.85 -11.86 -11.60 -12.08 -12.74 -12.35 -12.62 -13.42

Table 4.3: Payoff matrix for parameter λ = 0.1 and share parameter ξA = 0.6 (i.e. row
player owns 60% of all assets). In normal font are the row player’s payoffs, in italic are the
column player’s payoffs. In bold are pure Nash equilibria.

NE 1 2 3 4

strat A: 4k,1 A: NR,1 A: 6k,1 A: 4k,0.36; NR,0.64
B: NR,1 B: 5k,1 B: 10k,1 B: 4k,0.61; 9k,0.39

rA -16.19 -14.25 -15.80 -14.13
rB -8.64 -11.60 -10.09 -10.89
ω -24.83 -25.84 -25.90 -25.02
φA 0.920 1.088 0.984 1.062
φB 1.150 0.891 1.027 0.919
φ 0.230 0.197 0.043 0.143

Table 4.4: Optimal multi-agent static strategies, where the solution concept is Nash
equilibria. We show player A’s and B’s rewards, welfare and fairness for parameter λ = 0.1
and share parameter ξA = 0.6 (i.e. player A owns 60% of all assets). There are three pure
Nash equilibria and several mixed ones (we show only one mixed NE in the last column).

66 4.4. Evaluation of Different Models of Agent Interaction

λ strategy total reward (welfare)
0.1 3k,3k,3k,3k,3k,3k,3k,3k,3k,3k -23.39
0.2 5k,5k,5k,5k,4k,4k,4k,4k,5k,4k -27.49
0.3 9k,8k,6k,5k,5k,5k,6k,5k,5k,5k -29.69
0.4 9k,9k,10k,NR,10k,9k,9k,9k,10k,9k -31.47
0.5 10k,NR,NR,NR,10k,10k,9k,9k,10k,9k -32.05

Table 4.5: Optimal single-agent dynamic strategies for different parameter λ. For increasing
λ (i.e., object removal gets more costly) the optimal strategy is to remove fewer objects
(i.e., greater thresholds for removal) and the welfare decreases.

Dynamic strategies

We can now move to dynamic strategies as described in Section 4.3.3. The players can
decide on an action every time step. Thus, the strategy is defined as a sequence of actions
over the time steps. Allowing the agents to dynamically shape their strategy is more
realistic than fixing the strategy through the course of the time horizon. However, dynamic
strategies are severely more complex, making the whole interaction with the system and
potentially with other players much more complicated. As stated before we assume time
horizon 100 years with decision time steps 10 years, thus having 10 decision points, where
the agent(s) have to choose an action. We describe and experiment with the single-agent
and multi-agent cases in turn.

Single-agent dynamic In the single-agent case the optimal strategy is obtained by
solving the underlying MDP. This is a useful property of the proposed surrogate model,
where we can effectively plan the optimal strategy. For small state spaces we can iterate
over the whole space and find the optimal strategy, for larger state spaces we can use
dynamic programming and for even larger state spaces we can use reinforcement learning
methods. We show in Table 4.5 the optimal strategies for different levels of parameter λ.
The strategies are shown as a sequence of actions, e.g., the optimal strategy for λ = 0.1
is choosing the action “threshold for removal 3,000” in every time step. For increasing λ
(i.e., object removal gets more costly) the optimal strategy is to remove fewer objects (i.e.,
greater thresholds for removal), resulting in a decrease in welfare. We compare Table 4.5
with Table 4.2 and can see that the dynamic strategies are better than (or at least as good
as) the static strategies in terms of total reward (welfare), this result is intuitive because
the player has more flexibility in the dynamic case.

Chapter 4. Space Debris Removal 67

λ strategy total reward (welfare) ∆
0.1 3k,3k,3k,3k,3k,3k,3k,3k,3k,3k -23.39 0 %
0.2 4k,4k,5k,5k,4k,4k,4k,4k,5k,4k -27.64 0.5 %
0.3 6k,8k,6k,5k,5k,5k,6k,5k,5k,5k -29.69 0 %
0.4 10k,NR,NR,NR,10k,10k,9k,9k,10k,9k -31.52 0.2 %
0.5 10k,NR,NR,NR,10k,10k,9k,9k,10k,9k -32.05 0 %

Table 4.6: Learned single-agent dynamic strategies for different λ. Differences to the optimal
strategies from Table 4.5 are shown in bold and differences in rewards are stated in the last
column. We can successfully validate the learning process due to high similarity (very low
differences) to the optimal strategies.

In the multi-agent scenario, or in the case of larger state space it might be unfeasible or
computationally demanding to explicitly solve the MDP and compute the optimal strategy.
Thus, we also discuss learning the optimal strategy. We use a standard reinforcement
learning method Q-learning as described in Section 2.2.3. In Table 4.6 we show the single-
agent dynamic strategies which we learned using Q-learning and compare them with the
optimal ones from Table 4.5 to validate the learning method. In bold we can see the
differences to the optimal strategies and in the last column we state the difference in total
reward between the learned and the optimal strategies. We can see that especially at the
beginning the learned strategies might differ; this is caused by rather similar threshold
curves behaviour at the beginning of the time horizon (see Figure 4.1). We can conclude that
the learning method is successful and we will use it for further analysis in the multi-agent
scenario.

Multi-agent dynamic In the space debris removal problem we can consider several
space actors interacting with each other and deciding on a removal strategy. Therefore,
from a single-agent, we move to a multi-agent dynamic scenario. We now face a very
difficult problem of finding the optimal strategies due to the moving target problem [Tuyls
and Weiss, 2012] and potentially very large state space. Thus, we focus on learning the
optimal strategies. We first show learning a strategy against a fixed opponent (opponent
playing a static strategy) and then learning a strategy against a learning strategy. In our
analysis we assume two players, which we denote player A (primarily the learning agent)
and player B (opponent). The players differ only by their share of important assets ξ, which
represents the space actor size. We make here a model design assumption of identical space

68 4.4. Evaluation of Different Models of Agent Interaction

program of different space actors differing only in size, i.e., homogeneous spacecraft types,
spacecraft sizes, used orbits, etc.

Multi-agent dynamic: Against fixed opponent We assume the opponent (player
B) has a fixed strategy, which is one of the possible thresholds; this is a static strategy
as described above. We show in the Table 4.7 learned strategies against different fixed
strategies. In the first column we state the opponent (player B) fixed strategy, e.g., 3k
means the player B will choose in every time step the threshold 3,000. We compare two
types of learned strategies for the player A: (i) altruistic strategy, which maximise the
environment welfare and (ii) selfish strategy, which maximises the player A’s reward. In the
Table 4.7 we also state the players’ rewards ri, welfare ω, price of anarchy PoA between
altruistic and selfish behaviour of player A and fairness φ. We can see that the price of
anarchy is similar for most of the fixed strategies. This means that once the opponent
fixes his strategy the environment welfare can be improved by approximately 5% − 6%
whether we play selfishly or altruistically. Finally, we show the fairness φ as described in
Section 4.3.3. We can observe that the selfish behaviour is fairer compared to the altruistic
one, which is expected. We can also see that some of the fixed strategies give very bad
environment welfare, e.g., “fixed 1k” gives more than double the loss.

Multi-agent dynamic: Learning against learning strategy We discussed before
that the multi-agent scenario is too complex to compute an optimal strategy. Therefore,
we now investigate the dynamics of two players learning each other’s strategy. We assume
both players learning the strategy by using the standard Q-learning algorithm. We assume
discount factor γ = 1, i.e., no discount, the learning rate α = 0.01, and the exploration
parameter ε = 0.1. We discretise the state space as described in Section 4.3.2 to debris
levels with step size 1,000 and a time step of 10 years. We learned all the strategies over 1
million episodes. Both players can fully observe the state, and the Q-values are independent
on the other player action, thus this learning can be seen as independent Q-learning, which
is a common method in multi-agent reinforcement learning [Bloembergen et al., 2015].

In Table 4.8 we show several learned strategies for a single setting of the parameters
λ = 0.1 and ξA = 0.6. We show four different outcomes of the same setting. We can see the
strategies for player A and B, their rewards ri, the welfare ω and the individual and overall
fairness φ. We can see that we can attain highly effective solutions using Q-learning for
both players. One can note that these strategies have lower welfare ω than the worst pure

Chapter 4. Space Debris Removal 69

fixed B type strategy rA rB ω PoA φ

1k altr 10k,NR,NR,NR,NR,NR,NR,NR,NR,NR -3.70 -43.27 -46.97 - 7.19
1k self 10k,NR,NR,NR,NR,NR,NR,NR,NR,NR -3.70 -43.27 -46.97 1 7.19
3k altr 10k,NR,NR,NR,NR,NR,NR,NR,NR,NR -10.54 -12.85 -23.39 - 0.60
3k self 10k,NR,NR,NR,NR,NR,NR,NR,NR,NR -10.54 - 12.85 -23.39 1 0.60
5k altr 3k,3k,4k,4k,3k,4k,3k,3k,3k,3k -14.64 -8.75 -23.39 - 0.111
5k self 10k,NR,10k,9k,8k,8k,8k,6k,6k,6k -14.07 -10.58 -24.65 1.054 0.115
6k altr 3k,3k,3k,3k,3k,3k,3k,3k,3k,3k -15.14 -8.25 -23.39 - 0.207
6k self 5k,5k,5k,6k,5k,6k,6k,5k,6k,6k -14.65 -10.11 -24.76 1.059 0.034
8k altr 3k,3k,3k,3k,3k,3k,3k,3k,3k,3k -15.52 -7.87 -23.39 - 0.285
8k self 5k,5k,6k,6k,5k,5k,5k,4k,5k,4k -15.07 -9.61 -24.68 1.055 0.045
10k altr 3k,3k,3k,3k,3k,3k,3k,3k,3k,3k -15.83 -7.56 -23.39 - 0.351
10k self 5k,5k,6k,5k,4k,4k,4k,4k,5k,4k -15.44 -9.24 -24.68 1.055 0.109
NR altr 3k,3k,3k,3k,3k,3k,3k,3k,3k,3k -16.36 -7.02 -23.39 - 0.475
NR self 5k,5k,5k,5k,4k,4k,4k,4k,5k,4k -15.93 -8.75 -24.68 1.055 0.199

Table 4.7: Optimal multi-agent dynamic strategies against fixed opponent for parameter
λ = 0.1 and share parameter ξA = 0.6. We show optimal altruistic (altr) and selfish (self)
strategies. In the first column we show the opponent (player B) fixed strategy. We state
the rewards, welfare, fairness and price of anarchy between different solutions. We can see
that fixed strategies can lead to very sub-optimal solutions.

70 4.4. Evaluation of Different Models of Agent Interaction

player strategy ri ω φi φ

A 6k,6k,5k,6k,5k,4k,4k,4k,5k,4k -15.51 -24.75 0.957 0.113B 9k,8k,6k,8k,8k,9k,10k,NR,NR,NR -9.25 1.070
A 6k,5k,4k,4k,4k,4k,4k,4k,4k,4k -16.00 -24.76 0.929 0.202B 9k,10k,9k,10k,NR,NR,NR,NR,NR,NR -8.76 1.131
A 6k,8k,6k,5k,4k,4k,4k,4k,5k,4k -15.84 -24.83 0.941 0.164B 10k,9k,9k,10k,NR,NR,NR,NR,NR,10k -8.99 1.105
A 6k,8k,8k,6k,5k,4k,4k,4k,5k,4k -15.62 -24.91 0.957 0.116B 9k,10k,9k,9k,8k,9k,10k,NR,NR,NR -9.29 1.073

Table 4.8: Learned multi-agent dynamic strategies using Q-learning against Q-learning
opponent with parameter λ = 0.1 and share parameter ξA = 0.6. We show four different
outcomes of the same setting. We can attain highly effective solutions using Q-learning for
both players.

Nash equilibrium welfare in static scenario (Table 4.4). We can compare these strategies in
terms of fairness φ or welfare ω, where these two metrics are not necessarily dependent on
each other. A better welfare does not mean fairer division of removal efforts.

So far we have shown the learning process for a fixed size of the players represented
by the parameter of assets share ξ. We now investigate how different levels of ξ influence
the solution and its quality. We show such an analysis in Table 4.9. We experiment with 9
different divisions of shares of important assets between the two players, in the first column
we show the shares ξ for each of the players. We can see that the less a player owns the less
he wants to remove and vice versa, which is expected. One can see that for the cases when
a player owns only a small proportion of the assets he prefers not to remove anything, e.g.,
ξi = 0.1. A very important outcome from this table is the evolution of the environment
welfare, one can observe that for disproportional players we get higher welfare than for
proportional players (compare welfare of ξA = 0.1 to welfare of ξA = ξB = 0.5, -23.39 and
-25.07 respectively). Another important outcome is how the size of the players influence
the fairness. Looking at the Table 4.9 we can note that the more similarly sized the players
are the fairer strategy they can learn. In the case of very disproportional players, they
learn very unfair strategy, e.g., ξi = 0.1 or ξi = 0.2. For equally sized players, the learned
strategy is the most fair. Thus, high disproportion in the players’ size attains high welfare
but trades off for fairness, where the small sized player removes barely anything.

Chapter 4. Space Debris Removal 71

ξi player strategy ri ω φi φ

0.1 A 10k,10k,NR,NR,NR,NR,NR,NR,NR,NR -1.76 -23.39 1.329 0.3560.9 B 3k,3k,3k,3k,3k,3k,3k,3k,3k,3k -21.63 0.973
0.2 A 10k,10k,NR,NR,NR,NR,NR,NR,NR,NR -3.57 -23.41 1.311 0.3680.8 B 3k,3k,3k,4k,3k,3k,3k,3k,3k,3k -19.85 0.943
0.3 A 10k,NR,NR,NR,NR,NR,NR,NR,NR,NR -6.42 -24.47 1.143 0.1940.7 B 5k,5k,4k,5k,4k,4k,4k,4k,4k,4k -18.05 0.949
0.4 A NR,NR,10k,NR,NR,NR,NR,NR,NR,NR -8.78 -24.68 1.124 0.1930.6 B 5k,6k,5k,5k,4k,4k,4k,4k,5k,4k -15.90 0.931
0.5 A 6k,8k,8k,6k,6k,5k,6k,6k,8k,6k -12.46 -25.07 1.006 0.0120.5 B 8k,8k,8k,6k,5k,6k,6k,5k,6k,5k -12.61 0.994
0.6 A 6k,8k,8k,6k,5k,4k,4k,4k,5k,4k -15.62 -24.91 0.957 0.1160.4 B 9k,10k,9k,9k,8k,9k,10k,NR,NR,NR -9.29 1.073
0.7 A 5k,4k,4k,5k,4k,4k,4k,4k,4k,4k -18.12 -24.55 0.948 0.1970.3 B NR,10k,NR,NR,NR,NR,NR,NR,NR,NR -6.43 1.145
0.8 A 3k,2k,3k,3k,3k,3k,3k,3k,3k,3k -20.08 -23.58 0.939 0.4050.2 B NR,10k,NR,NR,NR,NR,NR,NR,NR,NR -3.51 1.344
0.9 A 3k,3k,3k,3k,3k,3k,3k,3k,3k,3k -21.63 -23.39 0.973 0.3560.1 B NR,NR,NR,NR,NR,NR,NR,NR,NR,NR -1.76 1.329

Table 4.9: Learned multi-agent dynamic strategies using Q-learning against Q-learning
opponent with parameter λ = 0.1 and different levels of assets share ξi. Starting from
highly disproportional players in the top row to equally sized players in the middle row.
High disproportion in the players’ size attains high welfare but trades off for fairness, where
the small sized player removes barely anything.

72 4.4. Evaluation of Different Models of Agent Interaction

code agents type obtained ωmax ωmin φmin φmax
SO1 1 static optimal -23.39 -23.39 - -
DO1 1 dynamic optimal -23.39 -23.39 - -
DL1 1 dynamic learned -23.39 -23.39 - -
SO2 2 static optimal (NE) -24.83 -25.90 0.043 0.230
FO2 2 dyn/fixed optimal -23.39 -46.97 0.034 7.19
DL2 2 dynamic learned -24.75 -24.91 0.113 0.202

Table 4.10: Comparison of different scenarios in terms of welfare ω and fairness φ for λ = 0.1
and share parameter ξA = 0.6. We show combinations of single-agent, multi-agent, static
and dynamic approaches which were obtained either by learning or by exact computation.
In case there were multiple solutions for given scenario we present maximal and minimal
values.

Analysis and comparison of different strategy concepts

We have presented several scenarios using the surrogate model and have described methods
how to find efficient strategies for them. We now compare the different solutions of those
scenarios in terms of quality and efficiency. In Table 4.10 we show the different scenarios
and their values of welfare ω and fairness φ. We state single-agent, multi-agent, static
and dynamic scenarios and the methods to find respective effective strategies. For every
scenario we state a code, which we use in further analysis. Note that the optimal strategies
were obtained by exhaustive search (brute force) and the learned strategies by Q-learning.
All the shown combinations of scenarios were discussed in turn in the previous sections. We
compare here only the scenarios for parameters setting of λ = 0.1, ξA = 0.6 and time step 10
years in a 100 year horizon. For some of the scenarios we obtained several solutions, thus we
state maximal and minimal values of welfare and fairness. We can see that playing against
a fixed opponent can cause a high unfairness, which is expected due to the non-optimal
fixation of removal effort.

We now focus on comparing these different scenarios and on how efficient they are. For
such comparison we use the concept of price of anarchy PoA as described in Section 4.3.3.
We assume two types of PoA, the first type PoAm compares the single-agent scenario with
the multi-agent one, i.e., the cost for having self interested (competing) players instead of
centralised (single-agent) strategy and PoAd which compares the static scenario with the
dynamic one. PoAd can be thought of as the advantage we get by playing dynamically,
i.e., being able to change the strategy in every time step. In Table 4.11 we compare all

Chapter 4. Space Debris Removal 73

code SO1 DO1 DL1 SO2 FO2 DL2
SO1 1 1 1 1.107 2.008 1.058
DO1 1 1 1 1.107 2.008 1.058
DL1 1 1 1 1.107 2.008 1.058
SO2 1.107 1.107 1.107 1 1.814 1.047
FO2 2.008 2.008 2.008 1.814 1 1.898
DL2 1.058 1.058 1.058 1.047 1.898 1

Table 4.11: Comparison of different scenarios in terms of price of anarchy PoA for λ = 0.1
and share parameter ξA = 0.6. The codes of the scenarios are stated in Table 4.10. In
bold we show PoAd (static vs. dynamic) and in italic we show PoAm (single-agent vs.
multi-agent). Note that for example PoA = 1.107 means 10.7% inefficiency.

the scenarios (code names from Table 4.10) in terms of price of anarchy for fixed λ = 0.1
and ξA = 0.6. Of interest are the values in bold and in italic, which show price of anarchy
PoAd between the static and dynamic scenario and price of anarchy PoAm between the
single- and multi-agent scenario, respectively. One can note that the cost of using a static
strategy over a dynamic one (SO2 vs. DL2) is 4.7% for the multi-agent case and 0% for the
single-agent case (SO1 vs. DO1). The cost of multi-agent scenario to single-agent scenario
is 5.8% for the dynamic case (DO1 vs. DO2) and 10.7% for the static case (SO1 vs. SO2),
which is caused by the selfish behaviour of the players. Also note the high values of PoA of
the multi-agent fixed scenarios (FO2), meaning that a fixed strategy can cause a highly
inefficient outcome in the terms of the environmental welfare.

We have shown the methodology of comparison of different scenarios for fixed parameters
of λ and ξ. In the next section we investigate the quality of the scenarios for varying levels
of those parameters.

Varying levels of ξ and λ

We investigate the different scenarios and corresponding optimal solutions for different
settings of the two main studied parameters: (i) ratio λ between the cost of removal CR
and the cost of losing an important asset CL and (ii) share of important assets ξ. We do
the analysis for λ ∈ [0.1, 0.2, 0.3, 0.4, 0.5] and ξ ∈ [0.1, 0.2, 0.3, 0.4, 0.5]. As stated before the
players differ only in the size expressed by the parameter ξ, thus the results for ξA = 0.4 and
ξB = 0.6 in the two player case are the same as ξA = 0.6 and ξB = 0.4. Obviously, this holds
for any setting of ξ. We run the experiments for the 4 main scenarios; single-agent static,

74 4.4. Evaluation of Different Models of Agent Interaction

λ 0.1 0.2 0.3 0.4 0.5
static -23.39 -27.94 -30.04 -31.99 -32.74

dynamic -23.39 -27.49 -29.69 -31.47 -32.05
PoAd 1 1.016 1.012 1.017 1.022

Table 4.12: Comparing static and dynamic single-agent scenarios in terms of welfare ω and
price of anarchy PoAd for varying parameter λ. Note that for increasing λ (i.e., cost of
removal becomes more expensive) the welfare decreases and the difference between a static
and a dynamic scenario increases.

single-agent dynamic, multi-agent static and multi-agent dynamic. The methods to obtain
optimal strategies for these scenarios are discussed in the previous sections. The comparison
metric is the price of anarchy PoA. We distinguish between comparing single-agent with
multi-agent scenarios using PoAm and static with dynamic scenario using PoAd.

Firstly, we compare single-agent scenarios, in Table 4.12 we show the welfare ω and
PoAd for static and dynamic scenarios for different levels of λ. We can observe that by
using the dynamic strategy we can improve the environment welfare by up to 2.2% (in
the case of λ = 0.5). Thus, for increasing λ (i.e., cost of removal becomes more expensive)
the welfare decreases and the difference between a static and a dynamic scenario increases.
Moving to the multi-agent case in Table 4.13 we first show the optimal solutions to static
scenario obtained by computing the Nash equilibria. We mentioned before that we are
only interested in the pure Nash equilibria, thus in the case of multiple pure equilibria
for given parameters ξA and λ we show only the minimal and maximal values of those
in the Table 4.13. One can see that some of the values are repetitive, this is caused by
limited flexibility of the static solutions and potentially by the available actions. For
instance, the high values of parameter λ mean that it is very expensive to remove objects
compared to losing assets, meaning that the players prefer to remove as few as possible,
e.g., no-removal strategy, hence some of the constant welfares in the table. One can see
that the values of welfare ω decrease with increasing values of λ and with more equally
sized players expressed by the share parameter ξ. Although, this conclusion is achieved
only experimentally, it does strongly suggest such a trend. The similarly sized players cause
inefficiency of the environment welfare due to being selfish. As discussed before, obtaining
the optimal strategies for the single-agent scenario is not computationally as demanding as
for the multi-agent scenario, where we might not be able to compute the optimal strategy
but need to learn it. In Table 4.13 we state the resulting welfares ω for multi-agent dynamic

Chapter 4. Space Debris Removal 75

ξA

λ 0.1 0.2 0.3 0.4 0.5

N
as
h
Eq

.
st
at
ic

0.1 -23.39 -27.94 -30.04 -31.99 -32.74
0.2 -23.39 -27.94 -30.04 -31.99 -33.56
0.3 -23.39/-25.90 -27.94 -31.24 -31.99 -33.56
0.4 -24.83/-25.90 -27.94 -31.24 -33.56 -33.56
0.5 -25.84/-25.90 -28.05/-30.50 -31.24 -33.56 -33.56

Q
-le

ar
ne

d
dy

na
m
ic

0.1 -23.39 -27.65 -29.72 -31.53 -32.07
0.2 -23.41 -27.71 -29.74 -31.54 -32.06
0.3 -24.91 -27.86 -30.99 -31.53 -32.86
0.4 -24.77 -27.86 -30.99 -31.65 -32.34
0.5 -25.47 -28.22 -31.17 -32.02 -32.86

Table 4.13: Comparison of static and dynamic multi-agent scenarios in terms of welfare ω
for different levels of λ and share parameter ξ. The static scenario is obtained by computing
Nash equilibria and the dynamic scenario is learned using Q-learning. In case of multiple
solutions we state maximal and minimal values (multiple NE). Note that with increasing
parameter λ (object removal becomes more expensive) and increasing ξ (the players become
more equally sized) the welfare decreases. One can see the improvement in welfare of
dynamic strategies compared to the static ones.

scenario and varying levels of the studied parameters. We can again see the same trend;
with increasing λ and ξ the welfare worsens.

We now have the welfare ω values for all the scenarios and all the settings of the studied
parameters. We are interested in comparing them in terms of price of anarchy PoA, which
expresses the inefficiency between different scenarios. We start with PoAm comparing
single-agent static (Table 4.12) with multi-agent static (Table 4.13) scenarios in Table 4.14.
We can see that the inefficiency induced by having multiple players is ranging from 0%
to 10.7%. One can observe that the inefficiency grows with more equally sized players,
which is to be expected. From static scenarios we move to comparing dynamic scenarios, in
Table 4.14 we show the analysis of PoAm, comparing single-agent dynamic with multi-agent
dynamic scenario. We obtain inefficiencies ranging from 0% to 8.9%. One can again see
that PoAm grows with more equally sized players, where we get the highest values for
the same sized players, i.e., ξi = 0.5. This is the cost to pay for competing selfish agents
compared to having a centralised solution, i.e., a single entity deciding on removal effort.

Finally, we look at PoAd between multi-agent static (NE) and multi-agent dynamic
(Q-learned) in Table 4.15. As expected the dynamic solutions are better than the static ones,

76 4.5. Discussion

ξA

λ 0.1 0.2 0.3 0.4 0.5

0.1 1.000 1.000 1.000 1.000 1.000
0.2 1.000 1.000 1.000 1.000 1.025
0.3 1.107 1.000 1.040 1.000 1.025
0.4 1.107 1.000 1.040 1.049 1.025
0.5 1.107 1.092 1.040 1.049 1.025

Table 4.14: Comparison of single-agent and multi-agent static scenarios in terms of price of
anarchy PoAm for varying levels of share parameter ξ and parameter λ. We can observe
the increasing inefficiency of solutions for increasing ξ (the players become more equally
sized).

except for the setting λ = 0.1 and ξA = 0.2, which is caused by learning only a sub-optimal
strategy. We can expect that with a higher number of episodes we would obtain better
dynamic strategies than in the static case even for this setting of the parameters. We can
observe that the solutions of static vs. dynamic scenarios differ from 0% to 8.1%. Thus,
the inefficiency in the multi-agent scenario induced by being limited to a static strategy
compared to a dynamic strategy can be up to 8.1%.

4.5 Discussion

In this chapter we have presented a new approach to multi-agent modelling and learning of
a complex environment of the space debris removal problem. We have introduced several
models of agent interaction, where space agencies decide on removal strategies, determining
the future evolution of the space debris environment.

Firstly, we implemented a realistic high-fidelity simulation model of earth orbit environ-
ment based on the PyKEP scientific library. We developed a collision model, a breakup
model and two different launch models; (i) a simple launch model, which is consistent with
related work and assume a simple repeating of past launch sequences and (ii) a complex
launch model, which considers different spacecraft classes, follows the proposed mitigation
guidelines [Inter-Agency Space Debris Coordination Committee, 2007] and enables to model
various future scenarios of technological development. We fully describe this simulator
in Appendix A. Our experiments with the simulator confirmed the commonly predicted
exponential growth of space debris in near earth orbits. This is an important motivation to
come up with mitigation strategies such as active object removal.

Chapter 4. Space Debris Removal 77

ξA

λ 0.1 0.2 0.3 0.4 0.5

P
oA

m

single-agent dynamic vs. multi-agent dynamic
0.1 1.000 1.006 1.001 1.002 1.001
0.2 1.001 1.008 1.002 1.002 1.000
0.3 1.065 1.013 1.044 1.002 1.025
0.4 1.059 1.013 1.044 1.006 1.009
0.5 1.089 1.027 1.050 1.018 1.025

P
oA

d
multi-agent static vs. multi-agent dynamic
0.1 1.000 1.010 1.011 1.015 1.021
0.2 0.999 1.008 1.010 1.014 1.047
0.3 1.040 1.003 1.008 1.015 1.021
0.4 1.046 1.003 1.008 1.060 1.038
0.5 1.017 1.081 1.002 1.048 1.021

Table 4.15: Comparison of single-agent dynamic vs. multi-agent dynamic and multi-agent
static vs. multi-agent dynamic scenarios in terms of price of anarchy (PoAm and PoAd) for
varying levels of share parameter ξ and parameter λ. Note that in the comparison of the
single-agent dynamic vs. multi-agent dynamic scenarios for increasing parameter ξ (more
equally sized players) the inefficiency increases.

Using statistics from extensive Monte Carlo roll-outs from the developed full simulator
with complex launch model we proposed a computationally efficient surrogate model that
accurately captures the dynamics of the space debris environment for various debris removal
strategies. Unlike other surrogate models in the literature [Lewis et al., 2009], we derived
our surrogate model by curve-fitting the full simulation results including various launch
scenarios and accurately simulated orbital motion. This ensures that our surrogate model
faithfully represents our full simulation, without the potential bias introduced by a specific
choice of surrogate model parameters, such as a fixed insertion rate of debris. We have
shown various ways in which this surrogate model can be used to study the effect of
different strategies. Apart from considering a static one-shot interaction in the form of
a normal-form game, we also investigated dynamic strategies, and studied the resulting
high dimensional complex strategic interaction. This is a novel contribution in the area
of debris removal, where previous studies on the cost of removal considered either the
effect of cooperatively removing individual objects or using simple, fixed strategies for each
actor [Liou and Johnson, 2009; Liou et al., 2010, 2013]. In addition, we have formulated a
stochastic game based on the surrogate model, which we used to study multi-party decision

78 4.5. Discussion

making. As an example, we have shown how machine learning techniques (here, Q-learning)
can be used to learn an optimal debris removal strategy that outperforms fixed strategies.
We have compared and evaluated both a single-agent and a multi-agent approach to the
problem of space debris removal. By computing the price of anarchy we analysed the cost of
decentralised (individually rational) decision making as compared to a centrally optimised
strategy. Our results showed that such cost can be up to 10.7% in the static case and up to
8.9% in the dynamic case depending on the parameters of ratio λ between cost of removal
and cost of losing an important asset and share ξ of important assets defining the size of the
players. We can see that the cost of decentralised solution is quite significant, considering
the enormous level of resources needed for the space debris removal. Thus, the space actors
should aim to minimise the number of competing agents in the environment by for example
forming coalitions.

Furthermore, we investigated the difference between static strategies and dynamic
strategies. Static strategies have the advantage of simplicity of the decision making, but
are less effective than their dynamic counterparts. We compared both in terms of price
of anarchy. In the single-agent case, the cost of using a static strategy is up to 2.2%, and
for the multi-agent case the cost is up to 8.1% depending on the setting of parameter
λ. Comparing single-agent vs. multi-agent scenarios and static vs. dynamic scenarios
we showed that the parameter ξ – the share of important assets, representing the size of
the players – has a big impact on quality of the solution. The more similarly sized the
players are the less efficient solutions we obtain, i.e., equally sized players produce the
worst solutions. On the other hand, highly disproportional players arrive at more efficient
solutions and the values of price of anarchy PoA for single-agent vs. multi-agent and static
vs. dynamic scenarios are equal or very close to 1, meaning there is no or low inefficiency.
We were also interested in fairness of the players’ strategies depending on their size. The
idea of fairness was driven by the assumption that the level of the removal effort should be
proportional to the size of the player. In our analysis we defined the concept of fairness and
described how the size of the players (given by their number of assets) influences the final
outcome in terms of global welfare and fairness. We found out that the more equally sized
the players are the fairer strategy can be learned at the cost of reduced global welfare. On
the other hand, the more disproportional the players are the better global welfare they can
attain, at the cost of a more unfair distribution of effort. This realisation is in line with the
increasing price of anarchy for more selfishly acting players.

This result in particular might serve to inform policy and decision making processes.

Chapter 4. Space Debris Removal 79

A coordinated, global approach towards space debris removal, effectively reducing to one
single actor, may be more effective in maximising the effect on the space environment than
the current, distributed approach of various actors acting independently. Such a global
entity for space debris removal could be set up through international agreements with
proportional contributions by different actors, thus maintaining fairness while achieving a
maximum of impact.

With respect to the problem statement of this thesis presented in Section 1.2, we have
proposed a new methodology to model complex environments. While such methodology
is often highly domain specific, general guidelines can be derived. Modelling of complex
environments such as the space debris removal problem requires a wide scale of assumptions
and modelling choices to make. We have proposed one potentially effective approach to
multi-agent modelling and learning, starting from simple models (one-shot interaction),
building on it to more complex models (dynamic multi-stage interaction). We investigated
important metrics to evaluate like social welfare or fairness for different types of solutions.

5
Robust Learning in Critical Systems

with Risky States

This chapter is based on the following publications:

• Klima, R., Bloembergen, D., Kaisers, M., and Tuyls, K. (2018a). Learning robust
policies when losing control. Adaptive and Learning Agents workshop at AAMAS

• Klima, R., Bloembergen, D., Kaisers, M., and Tuyls, K. (2018b). Towards learning
to best respond when losing control. European Workshop on Reinforcement Learning
(EWRL), pages 1–11

• Klima, R., Bloembergen, D., Kaisers, M., and Tuyls, K. (2019). Robust temporal
difference learning for critical domains. In International Conference on Autonomous
Agents and Multiagent Systems (AAMAS), pages 350–358

80

Chapter 5. Robust Learning 81

5.1 Need for Robustness in Systems with Risky States

In this chapter we discuss how a robust learning process can be designed in a complex
multi-agent environment. We focus on critical domains with risky states. We consider
a distributed control problem, for which each controller executes an individual policy
on separate hardware. Any of such controllers may be attacked, potentially affecting or
changing the local policy. These attacks or failures can be rare but can have a profound
impact on the whole system if the system is not prepared for them. The main question
is then, how to obtain effective and robust policies in such systems. The reasons for a
controller executing a different policy than desired include: an attack by an adversary (e.g.,
hacker), a natural disaster (e.g., earthquake) or a mechanical defect (e.g., node malfunction).

We present a new approach for learning policies in such systems that are safe and robust
against a chosen scenario of potential attacks or failures. We accomplish this by introducing
a new Q-function operator, which we call the κ operator, that encodes robustness into the
bootstrapping update of traditional temporal difference (TD) learning methods presented
in Section 2.2.3. In particular, we design the operator to encode the possibility of significant
rare events (SREs) without requiring the learning agent to observe such events in training.
Although the κ operator is model-based with respect to these SREs, it can be combined with
any TD method and can thus still be model-free with respect to the environment dynamics.
We prove convergence of our methods to the optimal robust Q-function with respect to
the model using the theory of Generalised Markov Decision Processes [Szepesvari and
Littman, 1997]. In addition we prove convergence to the optimal Q-function of the original
MDP given that the probability of SREs vanishes. Our empirical evaluations demonstrate
superior performance of κ-based TD methods both in the early learning phase as well as in
the final converged stage. In addition we show robustness of the proposed method to small
model errors, as well as its applicability to multi-agent joint-action learning.

Therefore, we present a novel model-free approach to learn safe and robust policies in
systems that are prone to be attacked, or in which some parts of the system may fail. The
proposed family of algorithms opens new ways to effective behaviour in such systems, and
can help mitigate some of the security threats using a priori information about the potential
nature of the attack or failure. The presented learning process can thus adapt to a dynamic
opponent and can use the information it gathers during interaction with the environment.
In complex systems such learning can be combined with powerful function approximation
techniques such as deep neural networks; we leave this extension for future work. This

82 5.1. Need for Robustness in Systems with Risky States

chapter is structured as follows: The next part situates our approach with respect to the
related work, followed by Section 5.2 which introduces the new TD operator κ, for which we
subsequently prove convergence in single- and multi-agent case in Section 5.3. Section 5.4
provides empirical results further demonstrating the quality of our methods. This chapter
uses several concepts from reinforcement learning and multi-agent learning; for introduction
of those concepts see Section 2.2 and Section 2.3, respectively.

Related Work The aim to find robust policies is relevant to multiple research areas,
including security games, robust control/learning, safe reinforcement learning and multi-
agent reinforcement learning.

The domain of security games has expanded in recent years with many real-world
applications in critical domains, examples include the ARMOR system for airport secu-
rity [Pita et al., 2008] or the PROTECT system for scheduling Coast Guard [Shieh et al.,
2012], where the main approach has been computing exact solutions and deriving strong
theoretical guarantees, mostly using equilibria concepts such as Nash and Stackelberg equi-
libria [Korzhyk et al., 2011], with an extension to the Stackelberg multi-agent setting [Lou
et al., 2017]. This has been very important to theoretically underpin the field, however it
often seems difficult to deploy exact theoretical solution methods in real world settings due
to strict model assumptions or severe simplifications [Tambe and An, 2012]. On the one
hand, our work adopts the information asymmetry assumption often used in Stackelberg
security games [Korzhyk et al., 2011], providing the model of attack types for the leader,
and allowing leader-strategy-informed best response strategies by attackers. On the other,
we base our approach on reinforcement learning from interactions with the environment,
thus we do not need to know the system model. There has been substantially less work
on reinforcement learning for security games than on game-theoretic approaches, with few
exceptions, for example Ruan et al. [2005] who use reinforcement learning in the context of
patrolling problems. Security games often assume frequent adversarial attack, whereas our
work focuses on occasional loss of control over the system, which can represent e.g., failures
or adversarial attacks.

Similarly to security games, control theory starts with a model of the system to be
controlled (the plant), and for the purpose of robust control assumes a set of possible
plants as an explicit model of uncertainty, seeking to design a policy that stabilises all
these plants [Zhou and Doyle, 1998]. A slightly weaker assumption is made in related work
that assumes control over the number of observations for significant rare events (SREs),

Chapter 5. Robust Learning 83

performing updates by sampling [Ciosek and Whiteson, 2017]. It introduces a policy
gradient variant to improve learning in presence of SREs, using a proposal distribution that
controls data from which it learns and importance sampling to adjust updates. While our
assumption of multiple controllers could be linked to distinct plant models, we here seek
to maximize in expectation by assuming probabilities of alternate controllers taking over,
reducing the model back to one system. In contrast, our work assumes that the model of
the system is not known a priori, and a policy needs to be learned by interacting with it,
as in robust learning.

While early work on robust reinforcement learning focused on learning within
parameterised acceptable policies [Singh et al., 1994], later work transferred the objective of
maximising tolerable disturbances from control theory to reinforcement learning [Morimoto
and Doya, 2005]. Our work is similar to the therein defined Actor-disturber-critic, but
we replace its model of minimax simultaneous actions with stochastic transitions between
multiple controllers (one being in control at any time) with arbitrary objectives for each
controller. We thus cover not only minimising adversaries but also random failures or any
other policy encoding other adversaries’ agendas.

In relation to the taxonomy of safe reinforcement learning of Garcıa and Fernández
[2015] our method falls in between Worst-Case Criterion under Parameter Uncertainty and
Risk-Sensitive Reinforcement Learning Based on the Weighted Sum of Return and Risk,
depending on the chosen alternate controller objectives. Our Q(κ) method is comparable to
the β-pessimistic Q-learning method of Gaskett [2003], however, we propose a more general
κ operator of which Q(κ) is only an example. Finally, our approach has commonalities
with the multi-agent reinforcement learning algorithm Minimax-Q [Littman, 1994]
for zero-sum games, which assumes minimisation over the opponent action space. However,
in contrast, we define an attack to minimise over our own action space, and thus learn (but
not enact) simultaneously our optimal policy and the (rare) attacks it is susceptible to.
We further cover not only minimising adversaries but also random failures or any other
policy encoding other adversaries’ agendas (see Section 5.2.1). While on-policy learning
algorithms have been shown to perform better than classical Q-learning in a perturbed
environment [Singh et al., 2000], and can thus in some sense be considered safer (against
mistakes or exploration), our method combines with both on- and off-policy learning, and
provides robustness against a chosen target.

84 5.2. The Robust Temporal Difference Operator κ

5.2 The Robust Temporal Difference Operator κ

In this section we use the framework of temporal difference learning, described in Sec-
tion 2.2.3, Markov decision processes, described in Section 2.2.1 and stochastic games,
described in Section 2.3.1.

We now present our robust TD operator κ. Before we formally define the operator, we
give an intuitive example. Suppose a Q-learning agent needs to learn a safe policy against
a potential malicious adversary who could, with some probability κ, take over control in
the next state.1 The value of the next state st+1, thus, depends on who is in control2: if
the agent is in control, he can choose an optimal action that maximises expected return; or
if the adversary is in control he might, in the worst case, aim to minimise the expected
return. This can be captured by the following modified TD error

δt = rt+1 + γ
(
(1− κ) max

a
Q(st+1, a) + κ min

a
Q(st+1, a)

)
−Q(st, at),

where we assume that the agent has knowledge of (or can estimate) the probability κ.
In the following we first present a formal, general model of the operator κ, by modifying

the target in the classical Bellman style value function. We then present practical implemen-
tations of TD(κ) methods that use this operator for both single- and multi-agent settings,
based on the classical on- and off-policy TD learning algorithms (Expected) SARSA and
Q-learning.

5.2.1 Formal Model

We consider a set of m possible control policies C = {σ1, . . . , σm}. A control policy
prescribes which action is executed in a given time step and a given state, for example,
action which minimises the Q-value function (adversarial control policy). At each time
step, one of these policies is in control (and thus decides on the next action) with some
probability p(σi|s) that may depend on the state s. The set C and probability function
p(·) are assumed to be (approximately) known by the agent. In our new TD methods,

1We use the symbol κ to denote the proposed TD operator and the symbol κ for the parameter of
probability of attack, both are different versions of the letter “kappa”.

2Note that while a token of control could be included in the state (doubling its size), our approach rather
directly applies model-based bootstrap updates. This makes it explicit that the robustness target is a chosen
parameter of the operator, and makes it possible to learn robust strategies before observing SREs, or when
learning does not occur during SREs due to compromisation.

Chapter 5. Robust Learning 85

the value of the next state s′ then becomes a function of both, the state and the function
p(·), which we capture in our proposed operator κ, as V κ(s′). Note that the set C includes
the focal policy π that we seek to optimise in face of (possibly adversarial) alternative
controllers. Such external control policies can represent for example a malicious attacker,
aiming to minimise the expected return, or any arbitrary dynamics, such as random failures,
represented by, e.g., a uniformly random policy. Based on a prior assumption about the
nature of σ we want to optimise the focal policy π without necessarily observing actual
attacks or failures. This means learning our robust policy π right from the start.

We define σ in terms of our own Q-value function, for example an attacker that is
minimising our expected return. Thus we need to learn only one Q-value function Qπ. This
is similar to the standard assumption in Stackelberg games that the attacker is able to fully
observe our past actions and thus can enact the informed best response. We define the
Q-value function update for our policy π based on standard Bellman equation and given
the operator κ as

Qπ(s, a)← Qπ(s, a) + α
[
r + γV κ(s′)︸ ︷︷ ︸

target

−Qπ(s, a)
]
. (5.1)

Note that where in the standard Bellman equation we would have V π(s) =
∑
a π(s, a)Qπ(s, a),

in our case we have
V κ(s) =

∑
σ∈C

p(σ|s)
∑
a

σ(s, a)Qπ(s, a), (5.2)

computed as a weighted sum over all possible control policies σ ∈ C. Note that we can
learn Qπ without actually experiencing any attack or malfunction, based only on prior
assumptions about the possible control policies as captured by the operator κ. We refer
to this target modification as the operator κ because it closely resembles the Bellman
optimality operator T ?, which is defined as T ?V (s) = maxa

[
R(s, a) +

∑
s′ T (s′|s, a)γV (s′)

]
.

Thus, we can then formally define the κ optimality operator T ?κ by substituting the value
function V (·) with V κ(·).

In Section 5.2.3 we present several κ-versions of classical TD methods. For simplicity
we assume a scenario in which we have only a single adversarial external policy σ that aims
to minimise our value, and thus C = {π, σ}. Note however that our model is general, and
would work for any C and p(·). We now present a more general model assuming several
Q-value functions, allowing for more complex control.

86 5.2. The Robust Temporal Difference Operator κ

5.2.2 Advanced Model

We follow up on the model presented. We describe a more advanced model with two
entities potentially having control but now the not-in-control policy cannot be defined in
terms of our Q-value function Qπ and instead is based on a different Q-value function
Qσ. We approach this by learning separate Q-functions for both our target policy π and
the not-in-control (e.g., attacker) policy σ, and using a mix of both Q-functions based on
the control transition model (e.g., probability of attack) to evaluate the next state. The
Q-update for our safe policy π is the same but the value function is now

V κ(s) =
∑
σ∈C

p(σ|s)
∑
a

σ(s, a)Qσ(s, a), (5.3)

where the target is a weighted sum3 of several value functions learned using all different
possible policies σ. Technically, we want to find our robust policy π by learning the
Q-function Qπ while assuming that in the next state s′ any control domain σi ∈ C can
be active with some probability p(σi|s′), where

∑
σ p(σi|s′) = 1. Thus, at the same time

of learning Qπ we want to learn Q-functions for all policies σ we consider. The value
function of the not-in-control policy σ can be learned from the same experience stream
< s, a, r, s′ > generated by policy π by using importance sampling4 denoted by cs = σ(a|s)

π(a|s) as
Qσ(s, a)← Qσ(s, a) + αcs [r(s, a) + γV κ(s′)−Qσ(s, a)]. This gives us our own estimation
of the Q-functions for all policies σ. In the remainder of this chapter we focus on the case
with a single Q-value function as described in Section 5.2.1 and leave further analysis with
the advanced model for future work.

5.2.3 Examples of TD(κ) Methods

We first present single-agent κ-based learning methods by building on the standard TD
methods Q-learning and Expected SARSA. Then we present two-agent joint-action learning
approaches. Although a generalisation to n agents is relatively straightforward, we choose
to focus solely on the single- and two-agent case in this chapter for clarity of exposition.
In each case, we consider the setting in which either the focal agent, with policy π, is in
control, or the external adversary with policy σ aiming to minimise return. We further

3In general this can be any operator, not just sum (i.e., linear combination), which would allow for more
complex scenarios.

4Or other methods similar to importance sampling like in Retrace(λ) algorithm [Munos et al., 2016].

Chapter 5. Robust Learning 87

simplify the model by making the control policy probability function p(·) state-independent,
reducing it to a probability vector.

Single-Agent Methods

Before we present the algorithms, it is important to note that we need to distinguish the
target and behaviour policies. The κ-operator is defined on the target (see Eq. (5.4)), while
the behaviour policy is used only for selecting actions. We assume an ε-greedy behaviour
policy throughout.

In off-policy Q(κ), the target policy is the greedy policy π(s) = arg maxaQ(s, a) that
maximises expected return. The adversarial policy on the other hand aims to minimise the
return, i.e., σ(s) = arg minaQ(s, a). Assuming a probability of attack of κ as before, we
have p(π) = (1− κ) and p(σ) = κ. Thus, Eq. (5.2) becomes

V κ(s) = (1− κ) max
a

Q(s, a) + κ min
a
Q(s, a).

For on-policy Expected SARSA(κ) the target is the (expectation over the) focal
policy π, while the adversarial policy σ remains the same as before. Thus, we have

V κ(s) = (1− κ)Ea∼π
[
Q(s, a)

]
+ κ min

a
Q(s, a)

= (1− κ)
∑
a

π(a|s)Q(s, a) + κ min
a
Q(s, a).

Multi-Agent Methods

We move from a single-agent setting to a scenario in which multiple agents interact. For
sake of exposition we only present a two-agent case (not counting the potential external
control), which we further examine in the remainder of this chapter.

We assume two agents with different action spaces, A1 and A2, but an identical reward
function and thus a shared joint action Q-value function Q : S ×A1 ×A2 → R. Moreover,
we assume full communication during the learning phase, allowing the agents to take each
other’s policies into account when selecting the next action.5 Our algorithms are therefore
based on the joint-action learning (JAL) paradigm [Claus and Boutilier, 1998]. The Q-value

5A common practice in cooperative multi-agent learning settings, see e.g., [Foerster et al., 2018; Sunehag
et al., 2018].

88 5.2. The Robust Temporal Difference Operator κ

function update is thus defined as

Qπ(s, 〈a1, a2〉)← Qπ(s, 〈a1, a2〉) + α
[
r + γV κ(s′)−Qπ(s, 〈a1, a2〉)

]
. (5.4)

We further assume that only one agent can be attacked at each time step.6 Formulti-agent
Q(κ) we can write Eq. (5.2) for each individual agent as

V κ(s) = (1− κ) max
A1

max
A2

Q(s, 〈a1, a2〉)

+ κ
2 min

A1
max
A2

Q(s, 〈a1, a2〉)

+ κ
2 min

A2
max
A1

Q(s, 〈a1, a2〉)

with a1 ∈ A1 and a2 ∈ A2, representing the scenario in which no attack happens with prob-
ability (1− κ), and each agent is attacked individually with probability κ/2.7 Analogously,
we can define Eq. (5.2) for multi-agent Expected SARSA(κ) as

V κ(s) = (1− κ) Ea1∼π1,a2∼π2

[
Q(s, 〈a1, a2〉)

]
+ κ

2 min
A1

Ea2∼π2

[
Q(s, 〈a1, a2〉)

]
+ κ

2 min
A2

Ea1∼π1

[
Q(s, 〈a1, a2〉)

]
,

where we now compute an expectation over the actual policy of the agents that are not
attacked, while the attacker is still minimising.

Another direction of multi-agent learning would be assuming no communication between
the agents. Such assumption would further complicate the learning process due to inability
of the agents to agree on a joint action. Each agent would need to learn an individual
Q-value function and only best-respond to an estimated policy of the other agent(s). One
could assume a simple policy estimation such as fictitious play as described in Section 2.3.
This is an interesting extension of the proposed robust temporal difference learning operator
to more general settings, nevertheless we leave this direction for future work.

6Although relaxing this assumption is straightforward, we opt to keep it for clarity.
7Note the order of the min max, which follows the Stackelberg assumption of an all-knowing attacker

who moves last.

Chapter 5. Robust Learning 89

5.3 Theoretical Analysis of Convergence of Operator κ

In this section we analyse theoretical properties of the proposed κ-methods. We start by
relating the different algorithms to each other in the limit of their respective parameters.
Then we proceed to show convergence of both Q(κ) and Expected SARSA(κ) to two different
fixed points: (i) to the optimal value function Q? of the original MDP in the limit where
κ → 0; and (ii) to the optimal robust value function Q?κ of the MDP that is generalised
w.r.t. κ for constant parameter κ. Note that optimality in this sense is purely induced
by the relevant operator. In (i) this is the standard Bellman optimality which maximises
the expected discounted return of the MDP. However, in (ii) we derive optimality in the
context of Generalised MDPs [Szepesvari and Littman, 1997], where optimal simply means
the fixed point of a given operator, which can take many forms.

Before proceeding with the convergence proofs, Figure 5.1 summarises some relationships
between the algorithms in terms of their targets, in the limit of their respective parameters:
As is known, Expected SARSA, SARSA, and Q-learning become identical in the limit
of a greedy policy [Sutton and Barto, 1998; Van Seijen et al., 2009]. Furthermore, the
update targets of our κ-methods approach the update targets of the standard TD methods
on which they are based as κ → 0. Finally, Expected SARSA(κ) and Q(κ) share the
same relationship as their original versions, and thus Expected SARSA(κ) approaches
Q(κ) as ε → 0. Note that the algorithms’ equivalence in the limit does not hold in the
transient phase of the learning process, and hence in practice they may converge on different
paths and to different policies that share the same value function. For a comprehensive
understanding of the algorithms introduced in Section 5.2.3, the following sections provide
proofs for both convergence of κ methods for κ → 0, as well as their convergence when κ
stays constant.8

5.3.1 Convergence to the Optimal Q?

There exist several proofs of convergence for the temporal difference algorithms Q-learning
[Jaakkola et al., 1994; Tsitsiklis, 1994], SARSA [Singh et al., 2000], and Expected SARSA
[Van Seijen et al., 2009]. Each of these proofs hinges on linking the studied algorithm to a
stochastic process, and then using convergence results from stochastic approximation theory

8While we focus on the adversarial targets considered in Section 5.2.3, a previous proof of convergence
under persistent exploration [Szepesvari and Littman, 1997] can be interpreted as a model of random failures
with fixed kappa.

90 5.3. Theoretical Analysis of Convergence of Operator κ

Q(κ)Expected SARSA(κ) ε→ 0

Expected SARSA

κ → 0

Q-learning

κ → 0

ε→ 0

SARSA
ε→ 0 ε→ 0

Figure 5.1: The relationship between the learning targets of different algorithms in the
limits of their parameters. On-policy methods are in green, off-policy methods in orange.

[Dvoretzky, 1956; Robbins and Monro, 1951]. These proofs are based on the following
lemma, presented as Theorem 1 in Jaakkola et al. [1994] and as Lemma 1 in Singh et al.
[2000]. These differ in the third condition, which describes the contraction mapping of the
operator. The contraction property used for the Q-learning proof [Jaakkola et al., 1994] has
the form ||E{Ft(·)|Pt}|| ≤ γ||∆t||, where γ ∈ [0, 1). We show the lemma as it was used for
the SARSA proof provided by Singh et al. [2000], who show that the contraction property
does not need to be strict; strict contraction is required to hold only asymptotically.9

Lemma 5.3.1. Consider a stochastic process (αt,∆t, Ft), t ≥ 0, where αt,∆t, Ft : X → R
satisfy the equations

∆t+1(x) =
(
1− αt(x)

)
∆t(x) + αt(x)Ft(x), x ∈ X, t = 0, 1, 2, . . .

Let Pt be a sequence of increasing σ-fields such that α0 and ∆0 are P0-measurable and
αt,∆t and Ft−1 are Pt-measurable, t = 1, 2, Then, ∆t converges to zero with probability
one (w.p.1) under the following assumptions:

1. the set X is finite,

2. 0 ≤ αt(xt) ≤ 1,
∑
t αt(xt) =∞,

∑
t α

2
t (xt) <∞ w.p.1,

3. ||E{Ft(·)|Pt}|| ≤ γ||∆t||+ ct, where γ ∈ [0, 1) and ct converges to zero w.p.1,

4. V ar{Ft(xt)|Pt} ≤ K(1 + ||∆t||)2, where K is some constant,

where || · || denotes a maximum norm.
9For proof based on Proposition 4.5 of Bertsekas [1995] see Appendix A of Singh et al. [2000].

Chapter 5. Robust Learning 91

The proof continues by relating Lemma 5.3.1 to the temporal difference algorithm,
following the same reasoning as Van Seijen et al. [2009] in their convergence proof for
Expected SARSA. We define X = S × A, Pt = {Q0, s0, a0, r0, α0, s1, a1, . . . , st, at}, xt =
(st, at), which represents the past at step t and αt(xt) = αt(st, at) is a learning rate for
state st and action at. To show the convergence of Q to the optimal fixed point Q? we set
∆t(xt) = Qt(st, at) − Q?(st, at), therefore when ∆t converges to zero, then the Q values
converge to Q?. The maximum norm || · || can be expressed as maximising over states and
actions as ||∆t|| = maxs maxa |Qt(s, a)−Q?(s, a)|.

We follow the reasoning of Theorem 1 from Van Seijen et al. [2009], where we repeat
the conditions (1), (2) and (4) and modify the condition (3) for the κ methods as:

Theorem 5.3.2. Q(κ) and Expected SARSA(κ) as defined in Section 5.2.3 using the
respective value function V κ, defined by

Qt+1(st, at) = (1− αt(st, at))Qt(st, at) + αt(st, at)[rt + γV κ
t (st+1)]

converge to the optimal Q function Q?(s, a) if:

1. the state space S and action space A are finite,

2. αt(st, at) ∈ (0, 1),
∑
t αt(st, at) =∞ and

∑
t α

2
t (st, at) <∞ w.p.1,

(3) κ converges to zero w.p.1,

(3a) for Expected SARSA(κ) the policy is greedy in the limit with infinite exploration
(GLIE assumption),

4. the reward function is bounded.

Proof. Convergence of Q(κ): To prove convergence of Q(κ) we have to show that the
conditions from Lemma 5.3.1 hold. Conditions (1), (2) and (4) of Theorem 5.3.2 correspond
to conditions (1), (2) and (4) of Lemma 5.3.1 [Van Seijen et al., 2009]. We now need to show
that the contraction property holds as well, using condition (3) of Theorem 5.3.2. Adapting
the proof of Van Seijen et al. [2009], we set Ft(x) = Ft(s, a) = rt(s, a) + γV κ

t (s′)−Q?(s, a)
to show that Ft(s, a) is a contraction mapping, i.e., condition (3) in Lemma 5.3.1. For Q(κ)
we write:

Ft = rt + γ
(
(1− κ) max

a
Qt(st+1, a) + κ min

a
Qt(st+1, a)

)
−Q?(st, at).

92 5.3. Theoretical Analysis of Convergence of Operator κ

We want to show that ||E{Ft}|| ≤ γ||∆t|| + ct to prove the convergence of Q(κ) to the
optimal value Q?.

||E{Ft}|| = ||E{rt + γ
(
(1− κ) max

a
Qt(st+1, a) + κ min

a
Qt(st+1, a)

)
−Q?(st, at)}||

≤ ||E{rt + γmax
a

Qt(st+1, a)−Q?(st, at)}||+

γ||E{κ min
a
Qt(st+1, a)− κ max

a
Qt(st+1, a)}||

≤ γmax
s
|max

a
Qt(s, a)−max

a
Q?(s, a)|+

γmax
s
|κ min

a
Qt(s, a)− κ max

a
Qt(s, a)|

≤ γ||∆t||+

γκ max
s
|min

a
Qt(s, a)−max

a
Qt(s, a)|,

where the first inequality follows from standard algebra and the fact that splitting the
maximum norm yields at least as large a number, the second inequality follows from the
definition of Q?10 and the maximal difference in values over all states being at least as
large as a difference between values given in state st+1, and the third inequality follows
from the definition of ||∆t|| above. We can see that if we set ct = γκ maxs |minaQt(s, a)−
maxaQt(s, a)|, then for κ → 0 we get ct converging to zero w.p.1, thus proving convergence
of Q(κ). �

Proof. Convergence of Expected SARSA(κ): Similarly as in the proof of Q(κ) we need to
show that the contraction property holds as well, this time using conditions (3) and (3a) of
Theorem 5.3.2. We first define:

Ft = rt + γ
(
(1− κ)

∑
a

πt(a|st+1)Qt(st+1, a) + κ min
a
Qt(st+1, a)

)
−Q?(st, at)

10Recall that we set out in this section to show convergence to the same optimal Q-value as classical
Q-learning Q?(st, a) = rt + γmaxa′ Q?(st+1, a

′), even if we do so by our new operator.

Chapter 5. Robust Learning 93

and then show the following:

||E{Ft}|| = ||E{rt + γ
(
(1− κ)

∑
a

πt(a|st+1)Qt(st+1, a) + κ min
a
Qt(st+1, a)

)
−Q?(st, at)}||

≤ ||E{rt + γmax
a

Qt(st+1, a)−Q?(st, at)}||+

γ||E{(1− κ)
∑
a

πt(a|st+1)Qt(st+1, a) + κ min
a
Qt(st+1, a)−max

a
Qt(st+1, a)}||

≤ γmax
s
|max

a
Qt(s, a)−max

a
Q?(s, a)|+

γmax
s
|(1− κ)

∑
a

πt(a|s)Qt(s, a) + κ min
a
Qt(s, a)−max

a
Qt(s, a)|,

where the inequalities use the same operations as above in the proof of Q(κ). If we set
ct = γmaxs |(1− κ)

∑
a πt(a|s)Qt(s, a) + κ minaQt(s, a)−maxaQt(s, a)| and assume that

the policy is greedy in the limit with infinite exploration (GLIE assumption) and parameter
κ → 0 w.p.1 (conditions (3) and (3a)), it follows that ct converges to zero w.p.1, thereby
proving that Expected SARSA(κ) converges to optimal fixed point Q?. �

5.3.2 Convergence to the Robust Q?
κ

In this section we show convergence to the robust value function Q?κ which is optimal w.r.t.
the operator κ. The main difference with the proof of Theorem 5.3.2 is that here we do not
require κ → 0 but instead assume it remains constant over time. We base our reasoning on
the theory of Generalised MDPs [Szepesvari and Littman, 1997]. A Generalised MDP is
defined using operator-based notation as(⊗⊕

(R+ γV)
)
(s) = max

a

∑
s′

T (s′|s, a)
(
R(s, a) + γV (s′)

)
,

where the operator
⊗

defines how an optimal agent chooses his actions (in the classic
Bellman equation this denotes maximisation) and operator

⊕
defines how the value of the

current state is updated by the value of the next state (in the classic Bellman equation
this denotes a probability weighted average over the transition function). These operators
can be chosen to model various different scenarios. The generalised Bellman equation can
now be written as V ? =

⊗⊕
(R+ γV ?). The main result of Szepesvari and Littman [1997]

is that if
⊗

and
⊕

are non-expansions, then there is a unique optimal solution to which
the generalised Bellman equation converges, given certain assumptions. For 0 ≤ γ < 1

94 5.3. Theoretical Analysis of Convergence of Operator κ

and non-expansion properties of
⊗

and
⊕

we get a contraction mapping of the Bellman
operator T defined as T V =

⊗⊕
(R+ γV). Then, the operator T has a unique fixed point

by the Banach fixed-point theorem [Smart, 1974].
Building on the stochastic approximation theory results (as we also used in the Sec-

tion 5.3.1), Szepesvari and Littman [1997] show the following:

Lemma 5.3.3. Generalised Q-learning with operator
⊗

using Bellman operator

Tt(Q′, Q)(s, a) =


(
1− αt(s, a)

)
Q′(s, a) + αt(s, a)

(
rt + γ(

⊗
Q)(s′t)

)
if s = st, a = at

Q′(s, a) otherwise

converges to the optimal Q function w.p.1, if

1. s′t is randomly selected according to the probability distribution defined by T (st, at, ·),

2. αt(st, at) ∈ (0, 1),
∑
t αt(st, at) =∞ and

∑
t α

2
t (st, at) <∞ w.p.1,

3.
⊗

is a non-expansion,

4. the reward function is bounded.

We base our convergence proofs for Q(κ) and Expected SARSA(κ) on the insights of
Szepesvari and Littman [1997] given in Lemma 5.3.3.

Theorem 5.3.4. Q(κ) and Expected SARSA(κ) as defined in Section 5.2.3 converge to
the robust Q function Q?κ for any fixed κ.

Proof. Convergence of Q(κ) to Q?κ: To prove convergence of Q(κ) we follow the proof of
Generalised Q-learning in Lemma 5.3.3. The only condition we need to guarantee is the
non-expansion property of the operator in the value function update, which for Q(κ) is a
weighted average of the operators min and max. We write the operator

⊗
for Q(κ) as

⊗κ

and define it as

(
⊗κQ)(s, a) = (1− κ) maxaQ(s, a) + κ minaQ(s, a).

In Appendix B of Szepesvari and Littman [1997], Theorem 9 states that any linear combi-
nation of non-expansion operators is also a non-expansion operator. Moreover Theorem 8
states that the summary operators max and min are also non-expansions. Therefore,

⊗κ

Chapter 5. Robust Learning 95

is a non-expansion as well, thus proving the convergence of Q(κ) to the robust fixed point
Q?κ induced by the operator κ. �

Proof. Convergence of Expected SARSA(κ) to Q?κ: We base our convergence proof of
Expected SARSA(κ) again on the work of Szepesvari and Littman [1997], this time on
their insights regarding persistent exploration (Section 4.5 in their paper). They show
that Generalised Q-learning with ε-greedy action selection converges, for a fixed ε, in the
Generalised MDP. Following similar reasoning, we define the operator

⊗
for Expected

SARSA(κ) with fixed ε as

(
κ⊗
Q)(s, a) = (1− κ)

(
ε

1
|A|

∑
a

Q(s, a) + (1− ε) max
a

Q(s, a)
)

+ κ min
a
Q(s, a).

Again, from repeated application of Theorems 8 and 9 in Appendix B of Szepesvari and
Littman [1997] it follows that

⊗κ is a non-expansion as well. Therefore, by Lemma 5.3.3,
Expected SARSA(κ) converges to Q?κ for fixed exploration ε. �

It remains an open question whether Expected SARSA(κ) also converges for decreasing
ε, e.g., under the GLIE assumption, even though we conjecture that it might.

5.3.3 Convergence in the Multi-Agent Case

We now prove convergence of the cooperative multi-agent variant of the κ methods presented
in Section 5.2.3. This proof builds on the theory of Generalised MDPs, similar to the proofs
presented in Section 5.3.2. Therefore this proof also assumes a fixed probability of attack
κ. In addition, we make use of the assumption that agents can communicate freely in the
learning phase, and thus receive identical information and can build a common joint-action
Q-table.
Theorem 5.3.5. Multi-agent Q(κ) and Expected SARSA(κ) as defined in Section 5.2.3
converge to the robust Q function Q?κ for any fixed κ.

Proof. The
⊗κ operator for our multi-agent versions of Q(κ) and Expected SARSA(κ)

consists of a nested combination of different components, in particular maxaQ(s, a),
minaQ(s, a), and

∑
a π

ε(s, a)Q(s, a) where πε is the ε-greedy policy. By Theorem 8 of
Szepesvari and Littman [1997], max and min are non-expansions. By Theorem 9 of
Szepesvari and Littman [1997], linear combinations of non-expansion operators are also
non-expansion operators. Finally, by Theorem 10 of Szepesvari and Littman [1997], products

96 5.4. Experiments with Robust Learning

Figure 5.2: Cliff Walking: The agent needs to get from the start [S] to the goal [G], avoiding
the cliff (grey tiles).

of non-expansion operators are also non-expansion operators. Therefore, also max max,
max min, and min max are non-expansion operators, as are linear combinations of those
compounds. Similarly,

∑
a π

ε(s, a)Q(s, a) for fixed ε can be written as a linear combination
of summary operators, which by Theorems 8 and 9 of Szepesvari and Littman [1997] is a
non-expansion. Therefore, the

⊗κ operator used in both multi-agent Q(κ) and Expected
SARSA(κ) is a non-expansion. Thus, by Lemma 5.3.3, Q(κ) and Expected SARSA(κ)
converge to Q?κ for fixed κ, and in the case of Expected SARSA(κ), for fixed ε. �

5.4 Experiments with Robust Learning

In this section we evaluate temporal difference methods with the proposed operator κ:
off-policy type of learning Q(κ) and on-policy type of learning Expected SARSA(κ). We
experiment with a classic cliff walking scenario for the single-agent case and a multi-agent
puddle world scenario. Both these domains contain some critical states, a cliff and a puddle
respectively, which render very high negative reward for the agent(s) in case of stepping
into them. These critical states represent the significant rare events (SREs). We compare
our methods to classic temporal difference methods like SARSA, Q-learning and Expected
SARSA. In all the experiments we consider an undiscounted (γ=1) episodic scenario.

Cliff Walking: single-agent The Cliff Walking experiment as shown in Figure 5.2 is a
classical scenario proposed in Sutton and Barto [1998] and used in many other papers ever
since (e.g., Van Seijen et al. [2009]). The agent needs to get from the start state [S] to the
goal state [G], while avoiding stepping into the cliff, otherwise rendering a reward of -100
and sending him back to the start. For every move which does not lead into the cliff the
agent receives a reward of -1.

Chapter 5. Robust Learning 97

0 1 2 3 4 5

0
1
2
3
4
5

Q-learning, |path| = 6

0 1 2 3 4 5

0
1
2
3
4
5

Q() for = 0.01, |path| = 6

0 1 2 3 4 5

0
1
2
3
4
5

Q() for = 0.1, |path| = 8

Figure 5.3: The Puddle World: Q(κ) learns a safer path with increasing κ. Puddles are
dark blue, the arrows show the optimal actions on the learned path, and the heatmap shows
the number of visits to each state (, blue is none).

Puddle World: multi-agent The Puddle World environment is a grid world with
puddles which need to be avoided by the joint-action learning agents. The two agents
jointly control the movement of a single robot in the Puddle World, each controlling either
direction 〈up, down〉 or 〈left, right〉. Agent 1 can take the actions {stay, move down, move
up} and agent 2 can choose {stay, move left, move right, move right by 2}, thus their action
spaces are different, further complicating the learning process compared to the single-agent
scenario. The joint action is the combination of the two selected actions. We assume a
reward of -1 for every move and -100 for stepping into a puddle (returning to the start
node). The agents have to move together from the start node at the top left corner to
the goal at the bottom right corner. Figure 5.3 shows the policy learned by our proposed
algorithm Q(κ) for the two joint-learning agents. Note how a safer path (longer, avoiding
the puddles) is learned with increasing parameter κ (i.e., higher probability of SREs). For
κ = 0 our algorithm degenerates to Q-learning (left panel).

5.4.1 Performance

We replicate the experiment of Van Seijen et al. [2009] on the Cliff Walking domain, in
which we compare our κ methods with Q-learning, SARSA and Expected SARSA, and
perform a similar experiment on the Puddle World domain. In line with Van Seijen et al.
[2009] we show (i) early performance, which is the average return over the first 100 training
episodes, and (ii) converged performance, which is the average return over 100, 000 episodes.

Figure 5.4 shows the results for three different settings of both scenarios: (i) a determin-

98 5.4. Experiments with Robust Learning

0.2 0.4 0.6 0.8 1.0
learning rate

250

200

150

100

50

av
er

ag
e

re
tu

rn

Cliff walking: deterministic environment

SARSA
Q-learning
Q()
Exp. SARSA
Exp. SARSA()

0.2 0.4 0.6 0.8 1.0
learning rate

Cliff walking: 10 % stochastic environment

0.2 0.4 0.6 0.8 1.0
learning rate

Cliff walking: 10 % attack while trained

0.2 0.4 0.6 0.8 1.0
learning rate

140

120

100

80

60

40

20

av
er

ag
e

re
tu

rn

Puddle world: deterministic environment

0.2 0.4 0.6 0.8 1.0
learning rate

Puddle world: 10 % stochastic environment

0.2 0.4 0.6 0.8 1.0
learning rate

Puddle world: 10 % attack while trained

Figure 5.4: Cliff Walking (single-agent) in first row and Puddle World (multi-agent) in
second row. Deterministic environment (first column), 10 % stochastic environment (second
column) and 10 % attack while training (third column). ε-greedy policy with fixed ε = 0.1.
Early performance - dashed lines (100 episodes), converged performance - solid lines (100, 000
episodes).

Chapter 5. Robust Learning 99

istic environment, where each action chosen by the policy is executed with certainty; (ii) an
environment with 10% stochasticity, in which a random action is taken 10% of the time;
and (iii) an environment with 10% probability of attack, in which an adversarial action
is taken 10% of the time. As before, we define an attack as an action that minimises the
Q-value in the given state. The stochastic environment can be seen as modelling random
failures.

The early performance experiments are averaged over 300 trials and the converged
performance experiments are averaged over 10 trials. We also show the 95% confidence
intervals on all results. We fix the exploration rate to ε = 0.1; for the κ methods we set
κ = 0.1 (later in this section we also experiment with different settings of κ). Note that
the y-axis, showing the average return, is the same in each row for easy comparison. The
x-axis shows different learning rates α. We can see how the average return decreases with
more complex scenarios, from deterministic, over to stochastic, to one with attacks. The κ
methods are superior to the other baselines in the early performance experiments, especially
in the attack case, which is the scenario the κ methods are designed for. In the converged
performance experiments the κ methods beat Q-learning and SARSA and perform at least
as well as Expected SARSA.

5.4.2 Different Levels of Attack

In this section we investigate how the methods behave under different levels of attack,
defined by the probability of attack per state. We consider an attack on trained (converged)
methods, thus we first train each method for 100, 000 episodes (in deterministic environment)
and then we test it on 50, 000 trials with given probability of attack per state. We average
the results over 10 trials and provide 95% confidence intervals. Note, that this is a
different methodology of testing the methods against an adversarial attack compared to the
experiments in Figure 5.4, where we considered attacks during training. This experiment
shows the strength of the κ methods for different levels of attacks. We assume the probability
of attack to be known here and thus we set the parameter κ to be equal to that probability,
which is the meaning of the parameter κ as described before. In other words, parameter κ
prescribes how much safely we want to act. We consider very rare attacks (0.001 probability
of attack in each state) to more frequent attacks (0.2 probability of attack in each state)
as shown in Figure 5.5. For better visualisation we use logarithmic axes. We train all
the methods with fixed exploration rate ε = 0.1 and learning rate α = 0.1, note that the

100 5.4. Experiments with Robust Learning

0.001 0.005 0.010 0.025 0.050 0.100 0.200
probability of attack

14

20

29

43

62

90

av
er

ag
e

re
tu

rn
Cliff walking, different levels of attack

SARSA
Q-learning
Q()
Exp. SARSA
Exp. SARSA()

0.001 0.005 0.010 0.025 0.050 0.100 0.200
probability of attack

5

7

9

11

15

20

av
er

ag
e

re
tu

rn

Puddle world, different levels of attack

SARSA
Q-learning
Q()
Exp. SARSA
Exp. SARSA()

Figure 5.5: Varying probability of attack: Cliff Walking (left), Puddle World (right), trained
on 100k episodes, tested on 50k episodes, α = 0.1, ε = 0.1.

methods (except SARSA) converge to the same result for different learning rates as shown in
left panel of Figure 5.4. SARSA is very unstable for different learning rates (demonstrated
by wide confidence intervals), learns different paths for different α and does not converge
fast enough or not at all, which can be partly explained by its higher variance [Van Seijen
et al., 2009]. We test the different levels of probability of attack on the Cliff Walking
experiment in the left panel of Figure 5.5, where we can see that the κ methods compare
favourably to the other baselines, however in some parts they give similar performance as
Expected SARSA or SARSA. The Cliff Walking experiment has a limited expressiveness
for testing the methods due to a limited number of possible safe paths with low costs
(see Figure 5.2), which is the reason for the κ methods to show only similar performance
compared to the baselines, not reaching their full potential. However, the Puddle World is
more expressive, because there are several possible paths differing in level of safety and
cost. The bigger solution space of the Puddle World is also induced by the two cooperating
agents, each having their own action space. Therefore, on the right panel of Figure 5.5 we
show the Puddle World experiment for different levels of probability of attack. Here, we
can clearly see the κ methods outperform the baselines, especially Q(κ) is superior over the
whole range of considered probabilities of attack. Note that Q(κ) learns a safer path even
for very rare attacks (0.001), which is also shown in Figure 5.3, where Q(κ) learns a path

Chapter 5. Robust Learning 101

0.025 0.050 0.075 0.100 0.125 0.150 0.175 0.200
probability of attack

90

80

70

60

50

40

30

20

av
er

ag
e

re
tu

rn

Cliff walking, fixed = 0.1
SARSA
Q-learning
Q()
Exp. SARSA
Exp. SARSA()

0.025 0.050 0.075 0.100 0.125 0.150 0.175 0.200
probability of attack

20

18

16

14

12

10

8

6

av
er

ag
e

re
tu

rn

Puddle world, fixed = 0.1
SARSA
Q-learning
Q()
Exp. SARSA
Exp. SARSA()

Figure 5.6: Robustness analysis: Cliff Walking (left), Puddle World (right), trained on 100k
episodes, tested on 50k episodes, α = 0.1, ε = 0.1, κ = 0.1.

with the same cost (distance) compared to Q-learning, but further from the puddles.

5.4.3 Robustness Analysis

We now test the robustness of the proposed algorithms to an incorrect attack model,
meaning that the value of κ in Q(κ) and Expected SARSA(κ) no longer matches the actual
probability of attack (in our previous experiments κ matched the actual probability of
attack precisely). Figure 5.6 shows the performance of our algorithms for a range of actual
attack probabilities (x-axis) while learning using a fixed parameter κ = 0.1.

To better highlight the robustness of our methods we choose a range of relatively high
actual probabilities of attack around the fixed value of κ = 0.1 (note that we no longer use
a logarithmic scale). One can see that even when κ is not equal to the actual probability of
attack the proposed κ algorithms still outperform the baselines in most cases. In the Cliff
Walking experiment (Figure 5.6 left) the κ methods perform similar to SARSA; however
SARSA is quite unstable, as discussed before and as one can see by the width of the
confidence interval. The Puddle World experiment (Figure 5.6 right) demonstrates the
superior performance of the κ methods, which beat all the baselines even for the fixed
parameter κ. These results show that even when we do not know the probability of attack
accurately we can learn a more robust strategy using the κ methods.

102 5.5. Discussion

5.5 Discussion

We presented a new operator κ for temporal difference learning, which improves robustness
of the learning process against potential attacks or perturbations in control. We proved
convergence of Q(κ) and Expected SARSA(κ) to: (i) the optimal value function Q? of the
original MDP in the limit where κ → 0; and (ii) the optimal robust value function Q?κ

of the MDP that is generalised w.r.t. the operator κ for constant parameter κ. In the
latter case we also proved convergence of a cooperative joint-action learning version of our
methods.

Our complementary empirical results demonstrate that the proposed κ-methods indeed
provide robustness against a chosen scenario of potential attacks and failures in both single-
and multi-agent settings. Although our method assumes that a model of such attacks
and failures is known to the agent, we further demonstrate that our methods are robust
against small model errors. Moreover, we show that even in absence of attacks or failures,
our method learns a policy that is robust in general against environment stochasticity, in
particular in the early stages of learning.

Our proposed operator κ can be closely linked or even combined with some recent
state-of-the-art reinforcement learning methods. Considering a multi-step update, the
operator could be combined with Retrace(λ) [Munos et al., 2016], which would potentially
speed up convergence. Another promising extension of our model would be to combine
it with Q(σ) [De Asis et al., 2018] to allow for mixed multi-step updates. Note that
the parameter σ in this algorithm can also be time- or state-dependent similarly to the
potential extensions of the control in our model. This would allow to learn robust policies
against more complex controls such as multi-step attacks, with a potentially non-uniform
probability distribution of the control policies. Whereas our formal model assumes a uniform
probability distribution of the control policies over the states and time steps. Another
application along this line would be to model the control transition similar to the options
framework [Sutton et al., 1999; Bacon et al., 2017], in which case the alternate control
policies could be seen as “malicious” options over which the agent has no control, with
potentially complex initiation sets and termination conditions. Furthermore, the target of
adversarial policies could be learned from experience, where ideas from opponent modelling
could be used (e.g., DPIQN [Hong et al., 2018]). Such extensions would further increase
the flexibility of our proposed operator, making it applicable to a wide range of real-world
scenarios.

Chapter 5. Robust Learning 103

This new family of temporal difference learning methods paves a new path to robust
learning in systems with critical states leading to increased safety. We especially focus on
systems where a compromisation of individual nodes in a network can lead to severe impact
on the whole system. This contribution further narrows the reality gap between theory
and practise and potentially helps to mitigate some of the security threats such as external
attacks or random failures in critical systems such as energy smart grids.

6
Learning When Facing Adversarial Agents

in Spatial Security Domains

This chapter is based on the following publications:

• Klima, R., Tuyls, K., and Oliehoek, F. (2016c). Markov security games: Learning
in spatial security problems. NIPS Workshop on Learning, Inference and Control of
Multi-Agent Systems, pages 1–8

• Klima, R., Tuyls, K., and Oliehoek, F. (2018d). Model-based reinforcement learning
under periodical observability. AAAI Spring Symposium on Learning, Inference, and
Control of Multi-Agent Systems

104

Chapter 6. Spatial Security Domains 105

6.1 Uncertainty in Spatial Security Domains

In this chapter we tackle the challenge of modelling adversarial agents in order to learn
effective strategies. We focus on security and sustainability in spatial security problems,
briefly introduced in Section 3.1, which are problems defined between two (groups of) agents
with opposing goals and who move on a map. We call these two (groups of) agents the
defender and the attacker, where the main goal of the defender is to apprehend the attacker
and the main goal of the attacker is to attack some critical targets in the map. There are
several examples of such spatial security problems like terrorism in big cities [Jain et al.,
2011], illegal rhino poaching or over-fishing [Fang et al., 2015]. The last two examples are
prime instances of sustainability problems, where the lack of effective strategies to prevent
the adversaries from attacking can lead to an extinction of the whole species. In this chapter
we study the example domain of illegal rhino poaching to demonstrate our approach to
spatial security games. In the illegal rhino poaching problem [Montesh, 2013] there are
two groups of agents: rangers (the defender), who aim to secure and sustain the wildlife
reservation and prevent rhinos from being poached; and poachers (the attacker), who try
to poach the animals and make profit from selling those on a black market. Our proposed
method is applicable to other spatial security game scenarios, where the general problem
belongs to a domain of pursuit-evasion games, with the defender pursuing the attacker.

The high level goal of any effective behaviour in security domains is to effectively allocate
limited resources of the defender to mitigate the threats. In this chapter we focus on deriving
an effective strategy for the defender to move on the map to apprehend the attacker. What
makes this task especially difficult is partial observability of the attacker, bringing severe
uncertainty into the defender decision making. Effective modelling of such uncertainties
is one of the main challenges in order to deploy AI techniques in real-world applications
of security games. The reasoning agent often has access to extra information about the
environment which if used properly can help significantly in effective strategy-making. In
security games this knowledge can come from several types of surveillance available to the
agent. In this thesis we investigate a model-based approach, where we continually learn and
improve our model of the opponent behaviour. The main uncertainty lies in not being able
to always observe the opponent’s location. To tackle this challenge we develop a statistical
probability model to enable us to reason about the opponent’s location. We base opponent
location modelling on the observed frequencies of transitions between states, defined as
the location of both the defender and the attacker, and a prior information about the

106 6.1. Uncertainty in Spatial Security Domains

environment e.g., target location.
The main research body in security games focuses on computing exact solutions and

describing their theoretical properties, mostly targeting the equilibria concepts, e.g., Nash
equilibria or Stackelberg equilibria [Korzhyk et al., 2011]. This line of research has been
an important theoretical building stone for tackling the problem, however, these methods
are sometimes difficult to apply to real world settings due to often unrealistic assumptions
and simplifications. A different approach from computing an exact solution is to learn the
strategy from interacting with the environment and using techniques from reinforcement
learning. This approach helps to overcome some of the unrealistic assumptions made by the
theoretical approaches. Hence, we model this domain of security games as a reward-based
system, where the agents obtain rewards and thus can learn strategies on a trial-error
basis. We show how the problem can be approached by methods from temporal difference
reinforcement learning, based on a framework of stochastic games defined on top of a
Markov decision process (MDP) as formally described in Section 2.3.1 and Section 2.2.1,
respectively. In security domains we often face a strategic and intelligent attacker who is
able to partially or fully observe the defender strategy, which introduces an information
asymmetry to the players’ knowledge about each other. This asymmetry is called the
Stackelberg assumption or the Stackelberg attacker. This is a different assumption to the
classic normal-form game where the optimal solution is a Nash equilibrium, in Stackelberg
games the optimal solution is a Stackelberg equilibrium [Korzhyk et al., 2011]. We approach
the problem of obtaining effective strategies by learning from interaction instead. One
of the main uncertainties about the attacker is his location in the map, which might not
be observable or only partially observable by the defender. We focus on a special case
of partial (limited) observability, where we sometimes get to fully observe the attacker
location. We consider periodical observability, which is inspired by the board game Scotland
Yard where the player gets to observe the opponent location periodically, e.g., every 3 time
steps. We also consider random full observation of the attacker location given by some
probability in each time step. We claim that this type of observability is quite common in
security domains where the defender gets to observe an opponent location by obtaining
some extra information. For instance in the green security game scenarios like the rhino
poaching problem, the rangers can be informed by the villagers living nearby about the
current location of the poachers, or this information can also come from surveillance by
drones [Montesh, 2013]. Our main goal is to make use of the extra information about the
attacker location in reinforcement learning style methods, obtaining an adaptive strategy,

Chapter 6. Spatial Security Domains 107

maximising the probability of apprehending the attacker. Our proposed algorithm is based
on the Replicated Q-learning [Littman et al., 1995] algorithm, which combines the standard
Q-learning with belief states in partially observable domains. We extend this algorithm with
learning the model of the opponent’s behaviour by using Bayesian inference over observed
state transitions and a prior information about the environment.

RelatedWork Our work can be described in terms of the taxonomy proposed by Hernandez-
Leal et al. [2017], where the authors proposed classification of multi-agent learning algorithms
in terms of environment observability, opponent adaptation capabilities and how the agent
deals with non-stationarity. We assume observability of the defender’s local reward and
partial observability of opponent’s actions. The opponent is assumed to change his strategy
only within some bounds, restricting his behaviour from abrupt and drastic changes. This
is explained by the notion of bounded rationality, which is often assumed in security
games [Pita et al., 2010]. Such an assumption allows us to learn a fairly stable model of
the opponent behaviour based on the (partially) observed past behaviour, which we can
then use to form an effective defender strategy.

In the studied problem we face two difficulties: (i) how to learn a policy in an unknown
environment, which we tackle by a reinforcement learning style method; and (ii) how to deal
with partial observability of the environment, which we tackle by learning a model of the
environment dynamics. In order to build the model of the environment dynamics represented
by the transition function, we make use of Bayesian inference to link a priori information
with the current information from observations. Therefore, related work studies Bayesian
reinforcement learning. The domain of Bayesian reinforcement learning can be divided
into probabilistic modelling of the transition function, value function, reward function or
policy. For example, Dearden et al. [1998] proposed Bayesian Q-learning, which models the
reward as a Normal distribution to update the value function in Q-learning and proposed a
Bayesian approach to implicitly trade-off between exploration and exploitation in action
selection. In this chapter we focus on probabilistic modelling of the transition function,
where we also propose a combination of Bayesian approach and Q-learning, however in a
substantially different way. Our method uses a Bayesian approach to model the transition
function to derive belief states, by modelling and learning the partially observable attacker
behaviour. Secondly to model the limited observability of the underlying MDP, we use some
notions from the framework of partially observable Markov decision processes (POMDP)
(see Section 2.2.4), which is a generalisation of the original MDP. We consider beliefs about

108 6.1. Uncertainty in Spatial Security Domains

the states as probabilities of the system to be in a particular underlying state. In practice, it
is often computationally intractable to solve bigger POMDPs exactly due to infinite number
of states and approximations need to be introduced [Silver and Veness, 2010]. Furthermore,
systems modelled as POMDPs often assume knowledge of the model of the environment,
i.e., the transition, the reward and the observation function. In such a case, given the
model, we can solve the POMDP, also called planning. However, knowing the model of the
environment exactly is often an unrealistic assumption in many practical applications. One
approach to relax this assumption is the model of Bayes-adaptive POMDP (BA-POMDP)
proposed by Ross et al. [2007], which uses the Bayesian rule to derive the transition and
observation functions from count vectors of transitions and observations. Katt et al. [2017]
extend that and propose a more efficient learning approach BA-POMCP, using Monte Carlo
planning. These models (POMDP and BA-POMDP) often assume that the underlying
state of the original MDP cannot be ever fully observed. In our work we consider a special
case where we can occasionally fully observe the underlying state and use this to compute
the beliefs of succeeding states. Thus, we assume an occasional access to the original
MDP. The observations consist of occasional full observation of the underlying state and
the knowledge about the current information set defining admissible states the system is
currently in. Hence, we do not need to explicitly learn or estimate the observation function
O(o|s′, a), which is often necessary in BA-POMDP or POMDP models.

Fang et al. [2015] define the model of green security games to approach security games
concerning sustainability such as the problem of illegal rhino poaching or over-fishing,
which is based on the framework of Stackelberg security games [Kiekintveld et al., 2009].
Additionally related work using the framework of security games and focusing on the
learning approach has studied the border patrol problem [Klima et al., 2014, 2015]. Some
of these security games however, do not consider space or time, i.e., the time it takes
the defender to travel to the target node, as part of the model. Spatial security games
are also often modelled as extensive-form games [Korzhyk et al., 2011], where there has
been lot of work proposing computing optimal strategies online or offline, especially for
zero-sum games [Bosansky et al., 2016; Jain et al., 2011]. In contrast, we make use of a
more expressive framework of stochastic games to model the environment, however use the
notion of information set from extensive-form game theory. An et al. [2012] compute the
optimal defender strategy to a learning attacker who can only partially observe the defender
and updates his beliefs using a Dirichlet distribution, whereas in our work we assume the
Stackelberg attacker who can fully observe the defender past moves and best respond to

Chapter 6. Spatial Security Domains 109

it. Ganzfried and Sandholm [2011] present opponent modelling based on a Dirichlet prior
distribution, where they combine a precomputed equilibrium strategy with observations of
the attacker’s past moves. In contrast we focus on combining learning of the strategy with
observations of the attacker’s past moves.

6.2 Partially Observable Model of Spatial Security Games

We study the problem of effective decision making in spatial security games, which are played
on a graph with two non-cooperative (groups of) players with opposing (not necessarily
strictly, assuming general-sum game) goals. We define these two (groups of) players as the
defender and the attacker following the Stackelberg security game framework as described
in Section 2.1.4. The model is inspired by the green security game framework where we
are motivated by the problem of illegal rhino poaching, where the two groups of players
are rangers (the defender) who try to apprehend illegal rhino poachers (the attacker) and
thus protect rhinos from being poached. The rhinos represent the targets as a commonly
used notion in security games for critical assets which need to be secured. The environment
can be, for example, a wildlife reservation, which can be modelled as a graph (grid); see
Figure 6.1 for an example of such a model.

Figure 6.1: Example of modelling a wildlife reservation (Kruger park in South Africa) as a
grid world. [www.safari.com/kruger-national-park/maps/kruger-park-far-south-section].

We model this problem as a stochastic game, using the notion of belief states as known
in partially observable Markov decision processes. A state s is defined as a combination

110 6.2. Partially Observable Model of Spatial Security Games

of locations of the defender and the attacker in the grid; the action space Ad and Aa for
the defender and the attacker, respectively, are identical for both of the players, allowing
moving from one place in the grid to another neighbouring place. The defender reward
function Rd(s,a) is defined as a positive signal for the defender when apprehending the
attacker (i.e., both players being in the same tile in the grid) and the attacker reward
function Ra(s,a) is a positive signal for successfully attacking the target (i.e., being in the
same tile as the target). If both happen simultaneously then the apprehension has a priority
and the attack is not successful. In our setting the underlying state is not always observable
so we need to maintain a belief over each state b(s) as a probability of the system being in
that state.

6.2.1 Observability in Spatial Security Games

In the studied spatial security game we assume that the defender can always observe his
own location in the map, but is uncertain about the attacker location. Our assumption
is that the defender gets to fully observe the attacker location in some time steps, either
periodically (i.e., every fixed number of steps) or with some probability in each time step.
For example in the illegal poaching scenario this can be information about the attacker
location from people living in the area or from surveillance by drones [Montesh, 2013].
The inability to always observe the attacker location means that the defender can always
observe only his own location but not always fully observe the underlying state. However
in general we assume that any state can be sometimes observed.

Therefore, the defender needs to maintain beliefs b(s) over states which assign probabil-
ities of being in each of the states s. This belief can also be expressed as the probability of
an attacker being in a certain location given the location of the defender. We form these
beliefs in each time step on a restricted state space of currently admissible states. We call
this restricted set the information set (IS) for a given state and action. Generally speaking,
knowing the state and action we can derive the next possible states given the structure
of the grid (map). In case we cannot fully observe the state we can still use the current
information set (states with non-zero beliefs) to form the succeeding information set (IS′) of
admissible states. In Figure 6.2 we show an example of a small grid world and corresponding
extensive-form game tree with information sets. The defender is unsure about the current
state, it is either s1,5 or s1,7, because the defender can always observe his own location (i.e.,
tile 1) but is unsure about the attacker location (either tile 5 or tile 7). The figure captures

Chapter 6. Spatial Security Domains 111

a decision point, where the defender decides to go down (D). The defender reasons about
the possible attacker actions and thus about the resulting attacker location in order to form
the succeeding information set, which he derives to be IS′ = {s2,2; s2,4; s2,6; s2,8}. States
outside the information set have a zero belief, i.e., zero probability of the system being
in that state. Note that in our analysis we use the model of a stochastic game instead of
the model of an extensive-form game, due to higher expressibility and the possibility to
transition between different stage games.

0

1

2

3

4

5

6

7

8

s1,5; s1,7

Def

Att

s2,2

L

s2,4

U,L

s2,6

U

s2,8

R,D

D

Att

U

Att

R

IS

IS′

Figure 6.2: Example of states in information sets for the case where neither the current
state nor the succeeding state is fully observed. We need to reason over two information
sets; the current one IS and the succeeding one IS′. The defender is in location 1 and
chooses the action down (D), the attacker is either in location 5 or 7.

Attacker behaviour model

In security domains we often face an adversarial opponent who is potentially intelligent
and can observe to some extent the defender behaviour and plan his strategy accordingly,
i.e., the Stackelberg assumption (see Section 2.1.4). Our assumption is that the attacker
can observe all the past moves of the defender, which is a rather strong assumption but
demonstrates the worst-case scenario in security games. We thus consider the attacker to
follow a simple learning policy, best responding to the empirical frequencies of defender’s
past moves, which is a version of fictitious play (FP), described in Section 2.3.2. In our
model, the attacker finds the shortest paths from the start node to the targets which are
weighted by the defender visits in each node in the graph, i.e., the attacker prefers the tiles
less visited by the defender. Hence, in every episode the attacker chooses the safest path to

112 6.2. Partially Observable Model of Spatial Security Games

the least risky target, minimising the probability of getting apprehended.

6.2.2 Statistical Approach to Uncertainty

We assume the defender to be uncertain about the location and the strategy of the opponent.
Our main goal is to act efficiently under such uncertainty. In security games the defender
often has access to some extra information about the attacker’s whereabouts, which we
use to deal with this uncertainty. We approach this by using model-based reinforcement
learning, where we approximate the transition function by using Bayesian inference. We
base the posterior probability on observations of state transitions and a prior information
about the environment, which in our case is the location of targets. This approach is
different to the BA-POMDP model [Ross et al., 2007], where the model (of the transition
and observation function) is represented by mixtures of Dirichlet distributions of transitions
and observations count vectors, whereas our model (of only the transition function) is
represented by Bayesian inference over multinomial distribution of transition counts and
Dirichlet priors. We now formally define the posterior probability distribution which makes
up the model of the transition function. In Table 6.1 we provide a list of used notations,
which we then formally define.

θ vector of parameters of multinomial distribution
φ vector of transition counts (s, a, s′)
ρ vector of hyperparameters of Dirichlet prior, i.e., pseudo-observations
IS information set of current states, i.e., states with non-zero beliefs

Table 6.1: List of notations used in BayesRQ.

We define a discrete random variable X as a function of states, then P (X = s) is the
probability of being in state s, noted as belief b(s). This discrete random variable is defined
over a given information set IS. The discrete probability distribution of X is parametrised
by a vector θ, where

∑
i∈IS θi = 1 and P (X = si|θi) = θi. The next step now is to compute

the probability distribution of the random variable X given an information set IS, which in
other words means obtaining beliefs b(s) over the states in the information set IS. Thus, θi
is the probability of being in state si. A key assumption in our model is that the defender
can fully observe some of the state transitions represented by the transition tuple (s, a, s′),
as a transition from a state s after taking an action a to a succeeding state s′. From these
observed transitions the defender forms a vector of transition counts φ. The vector φ

Chapter 6. Spatial Security Domains 113

is defined for each state-action pair as φsa = (φsa1 , . . . , φsak), where φsai is the number of
observed transitions from the state s after taking the action a to the next state s′i ∈ IS′,
and k is the size of the succeeding information set |IS′|.1

Maximum likelihood estimate (MLE) We can now introduce the likelihood prob-
ability P (φ|θ) as the probability of a transition vector φ given the parameter θ. The
probability distribution over a finite number of states in a given information set IS is
discrete and thus we assume a multinomial distribution with number of categories equal
to the number of states i.e., the size of the given information set. We parametrise the
multinomial distribution by parameter θ, we then write the probability mass function as:

P (φ|θ) ∼ f(φ|θ) = n!∏
i∈IS φi!

∏
i∈IS

θφi
i , (6.1)

where n =
∑
i∈IS φi and θ

φi
i is θi raised to the power of φi. Note that n!∏

i∈IS
φi!

is the total
number of possible observations of transition sequences given the transition vector φ. To
find the value of parameter θ which makes the observed transitions the most probable we
use the maximum likelihood estimation (MLE). Given the observed transitions φ we define
MLE as:

θMLE = arg max
θ

P (φ|θ) = arg max
θ

∏
i∈IS

f(φi|θ). (6.2)

For a multinomial distribution this equation has a simple solution, where the most likely
probability distribution is θMLE = (φ1

n , . . . ,
φk
n).

Maximum a posteriori (MAP) In spatial security games the defender might often have
access to a priori information about the environment, which can help him in dealing with
uncertainty. For example in the illegal rhino poaching problem such a priori knowledge can
be the location of the rhinos (targets), which very likely influences the attacker behaviour.
Therefore, it might be very useful to include such a priori information into forming the beliefs
about states, which we do by using Bayesian inference. We encode the prior information as
a priori probability which follows Dirichlet distribution Dir(ρ), defined for hyperparameters
ρ. Dir(ρ) is a probability distribution over parameters θ of a multinomial distribution
and is also its conjugate prior. The vector of hyperparameters ρ can be seen as pseudo-

1For better readability we use φi to denote φsa
s′

i
for a given state s, an action a and a succeeding state s′.

114 6.2. Partially Observable Model of Spatial Security Games

observations to complement the actual observed transitions i.e., the transition counts φ.
Dir(ρ) is defined using the Γ function as:

Dir(θ|ρ) = Γ(
∑k
i ρi)∏k

i Γ(ρi)

k∏
i=1

θρi−1
i . (6.3)

In the previous paragraph we described the likelihood, modelled as a multinomial distribu-
tion, using the observed transitions (data) φ (see Equation 6.1). We can thus define the
posterior using Bayes rule as:

P (θ|φ) = Dir(θ|φ) ∝Multi(φ|θ)Dir(ρ) (6.4)

We can then write P (θ|φ) = Dir(θ|φ+ ρ), because Dirichlet distribution is a conjugate to
multinomial distribution.

Our main goal is to derive beliefs about states, for which we do not use the full posterior
distribution due to intractability and high computation costs, but instead, we focus on a
point estimate of the posterior. The state belief is then defined as the maximal posterior
probability, known as the maximum a posteriori (MAP).2 MAP is computed based on the
data (observations of the state transitions) and the prior information (pseudo-observations);
where with the increasing number of the real observations of the transitions, the effect of a
priori distribution on a posteriori distribution diminishes. MAP is defined for a Dirichlet
posterior as:

θMAP = arg max
θ

P (θ|φ)→ θMAP
i = φi + ρi − 1

n+
∑
j∈IS(ρj − 1) . (6.5)

Depending on whether we have an access to a prior information we use MLE or MAP
to derive the model of the transition function and then to obtain the beliefs about states.
We assume that the transitions are deterministic but unknown, e.g., in the spatial security
domain if the agents decide to move to a particular location, they move there with probability
1. Such a move is fully observed on the defender side but uncertain on the attacker side
since the defender does not know the attacker’s behaviour. Therefore, Bayesian inference is
used to learn the attacker’s behaviour and as a result the transition function. We denote the
belief state boa(s), which is the probability of being in the state s given the observation o and

2Note that when deriving point estimates of posterior distribution we do not need marginal distribution
of the data (the normalising constant) P (φ).

Chapter 6. Spatial Security Domains 115

action a. The observation o consists of the previous information set and the state transition
counts φ. Hence, we do not need to explicitly learn the observation function O(o|s′, a). We
can now obtain the belief boa(s′) of the succeeding state s′ given an observation o and an
action a. The observation defines the belief b(s) about the current state s, transition counts
φsas′ and priors ρ as:

boa(s′) =
∑
i∈IS

b(si)θMAP
s′ =

∑
i∈IS

b(si)
φs′ + ρs′ − 1

nsi,a,· +
∑
j∈IS′(ρj − 1) , (6.6)

where ns,a,· is the sum of the transition counts over all the succeeding states from a state
s after taking an action a. This represents reasoning between two information sets, the
current IS and the succeeding IS′, see for example Figure 6.2.

Designing hyperparameters of prior distribution We now discuss the setting of the
hyperparameters ρ. In general this can be any a priori information we might have about the
environment (domain knowledge), which might influence the attacker behaviour. In spatial
security games we assume that the attacker behaviour is steered by the location of the
targets which is known information to both players at the beginning of the game. Therefore,
we define the prior for each node (location) as ρnode = 1

SP (node,target)+1 ∗ prior_confidence,
where SP (node, target) is the shortest path to the nearest target from the given node,
and prior_confidence is a parameter describing how much weight we assign to the prior
and thus determines the confidence of such prior information in comparison to the actual
observations. The value of prior_confidence can be thought of as the number of pseudo-
observations we make before the game starts. Note that the prior is defined for a location
of the attacker ignoring the location of the defender. This simplification comes from the
assumption that the attacker cannot fully observe the defender location in a given game
episode (but knows the past moves) and is mainly steered by the location of the targets.

Saving transition counts in partial observability In every time step the defender
updates the state-action transition counts φsas′ for the respective transition tuple (s, a, s′).
In the case when he cannot fully observe the current or/and the succeeding state he updates
the transition counts φsas′ proportionally to the beliefs as φsas′ += b(s)b(s′). Therefore, the
stronger the belief about the particular states is the more he updates the corresponding
value in the vector φ. Note that for fully observed states s and s′ the update is equal to 1.

116 6.3. Q-learning with Bayesian Inference: BayesRQ

6.3 Q-learning with Bayesian Inference: BayesRQ

The main goal in spatial security games is to find an effective policy to deal with the
partially observable attacker. We obtain the defender policy by using temporal difference
reinforcement learning method. As we explain in Section 2.3 there are several ways to apply
TD learning in multi-agent environments with partially observable agents. We can either
totally ignore the other agents and model them as part of the environment or explicitly
model them in the state-action value function. To keep the Markov property we define
the environment state as the location of the defender and the attacker. However, in the
experiments we also compare the proposed method with the case where the attacker is
completely ignored and define the state as only the location of the defender, which obviously
breaks the Markov property.

Our approach is based on a version of independent learning, where we cannot observe
the actions of the attacker and thus cannot learn in joint-action manner. We assume
deterministic transitions, i.e., the players always move to the desired location. We model
the attacker as a part of the transition function, which we learn during the interaction. In
the previous section we have proposed a way to learn a model of the attacker behaviour by
using Bayesian inference over (partially) observed state-action transitions and potentially
a priori information. We base our approach on the idea of Replicated Q-learning (RQ)
proposed by Littman et al. [1995], which modifies the standard temporal difference learning
method Q-learning for belief states. In Replicated Q-learning the state-action value function
update has the form

Q(s, a) = (1− b(s)α)Q(s, a) + b(s)α(r + γV (s′)), (6.7)

where each state-action pair is updated proportionally to the belief about that state. In the
case of having a sufficient number of observations or being able to observe the underlying
state, the RQ method reduces to standard Q-learning, which under certain conditions
converges to the optimal Q-function [Tsitsiklis, 1994; Jaakkola et al., 1994]. We combine
the RQ algorithm with Bayesian inference for deriving the beliefs about states, presenting
a novel method, which we call BayesRQ. BayesRQ is an algorithm suitable for the partially
observable spatial security games, where the defender can sometimes fully observe the
attacker. We make use of the assumed occasional observability in spatial security games,
which enables us to sometimes observe the underlying system state, i.e., the location of both

Chapter 6. Spatial Security Domains 117

Algorithm 1 BayesRQ
1: Input: priors ρ, parameters α, γ
2: Init: s0, Q(s, a) = 0, φsas′ = 0 ∀s, s′ ∈ S, ∀a ∈ A, b(s) uniform over IS
3: Def: state s is defined as position of both defender and attacker
4: for t in episode do
5: ε-greedy → ε: random action and (1− ε): a = arg maxa

∑
i∈IS b(si)Q(si, a)

6: ∀s: Q(s, a) = (1− b(s)α)Q(s, a) + b(s)α(r + γV (s′))
7: where V (s′) =

∑
j∈IS′ b(s′j) maxaQ(s′j , a)

8: boa(s′) =
∑
i∈IS b(si)

φsa
s′ +ρs′−1

n+
∑

j∈IS′ (ρj−1)

9: ∀s, s′: φsas′ += b(s)b(s′)

players. Since the location of the defender is always known, observing the underlying state
is possible only when observing the attacker location. We present BayesRQ in Algorithm 1.
The action-selection on line 4 is an ε-greedy strategy; with probability ε we choose a random
action and with probability 1− ε we choose an action which maximises over all possible
actions given the current information set IS of states with non-zero beliefs. Thus, an
action a from a state s, is more likely to be chosen with increasing probability of being
in that state s and increasing corresponding Q-value for that state and action. On line 5
we update Q-values for all the states and chosen action using the beliefs about the states
(non-zero beliefs only over the states in the current information set). The learning rate α
is multiplied by the belief we have about the state; the lower the probability of being in
a particular state the less we update the Q-value for that state and a chosen action and
vice-versa (greater update for greater belief). The value function of the next state on line
6 is a sum over maximal Q-values of the succeeding states weighted by the probability
(belief) of transitioning to those states; all the possible succeeding states are defined by
the succeeding information set IS′. The belief update on line 7 uses the maximum of the
posterior probability distribution (MAP) as explained in Equation 6.6. Finally, on line 8
we update the transition count vector φ for all states in the current information set, i.e.,
∀s ∈ IS and all succeeding states in the succeeding information set, i.e., ∀s′ ∈ IS′ and
for the chosen defender action a. Note that when we can fully observe the attacker, i.e.,
the information sets are singletons, the proposed algorithm BayesRQ becomes standard
Q-learning.

118 6.4. Experiments with the BayesRQ Algorithm

6.4 Experiments with the BayesRQ Algorithm

In this section we experimentally evaluate the proposed algorithm BayesRQ. We compare
several cases of observability of the attacker, from the extreme case where the attacker
is never observed, to observing him every 2, 3 or 4 steps, to observing him in every step.
We also experiment with random observability by defining a probability of observing the
attacker per step. For the case when the attacker can never be observed, the algorithm
BayesRQ cannot be used due to too large information sets and thus slow performance.
Instead, we use the standard Q-learning, where we define the state as only the location
of the defender, i.e., ignoring the attacker. Obviously such approach breaks the Markov
property and thus we cannot relate the BayesRQ algorithm to any of the well-known
convergence proofs [Tsitsiklis, 1994; Jaakkola et al., 1994], however in some settings such
approach, which is a variant of independent learning (see Section 2.3), can still perform
very well.

We consider a grid world which can for example represent a wildlife reservation with
some targets (e.g., rhinos) which the attacker wants to attack. In Figure 6.3 we show a grid
world, where the defender starts at the left top corner and the attacker starts at the right
bottom corner. The black tiles with white stripes represent some obstacles and the tiles with
white crosses represent the targets. The attacker’s goal is to get to the targets (successful
attack) and the defender’s goal is to apprehend the attacker, i.e., to be in the same tile as
the attacker. The actions of the players are up, down, left, right. The heatmap shows the
defender visits in each tile, the warmer the colour the more frequently the defender went
to that tile. The black dots show the attacker visits in each tile, the bigger the dot the
more frequently the attacker went to that tile. Each game ends when either the defender
apprehends the attacker or the attacker successfully attacks the target. In Figure 6.3 we
show the map for four different cases of observability of the attacker. From full observability
(left top), where BayesRQ becomes the standard Q-learning, to BayesRQ with observing
the attacker every 3 time steps (right top), every 4 time steps (left bottom). Finally in right
bottom panel of Figure 6.3 we assume no observability of the attacker, using Q-learning
while ignoring the attacker location, i.e., defining the state as only the defender location.
We can see that the attacker needs to alter between those two targets and cannot only focus
on one target no matter what observability capabilities the defender has in order not to get
exploited. One can notice that for low observability of the attacker, the attacker gets more
often to the more distant target at location [4, 0] before being apprehended at location

Chapter 6. Spatial Security Domains 119

0 1 2 3 4

0

1

2

3

4

Q-L - full observability

0 1 2 3 4

0

1

2

3

4

BayesRQ - observe every 3

0 1 2 3 4

0

1

2

3

4

BayesRQ - observe every 4

0 1 2 3 4

0

1

2

3

4

Q-L - ignore attacker

Figure 6.3: Grid World: The defender starts in left top corner and aims to apprehend the
attacker, the attacker starts at right bottom corner and aims to attack the targets (white
crosses) avoiding the obstacles (black tiles with white diagonal stripes). Attacker attacks
more the right top (more distant) target with the defender’s decreasing observability of the
attacker. The heatmap shows the number of visits to each state (, purple is none), the
black dots show attacker visits in each tile (the bigger the dot the higher number of visits).

[3, 1]; compare the size of the dots in location [3, 1] and [3, 0]. Expectedly, with decreasing
observability of the attacker, the attacker more successfully attacks both of the targets,
i.e., bigger black dots in the tiles with white crosses. Note that in the case of ignoring the
attacker (no observability) the preferred strategy for the defender is to move around the
closer target. We can see the performance of these experiments in terms of the defender
wins in the following subsection in Figure 6.4.

Performance We compare the performance for different levels of observability of the
attacker on the Grid World example from Figure 6.3. We assume a finite horizon game and
set the discount factor γ = 1. For all the methods we use a classic setting for reinforcement
learning algorithms, learning rate α = 0.05 and exploration rate ε = 0.1. We consider a
training time of 1, 000 episodes, where the shown results are averaged over 1, 000 trials

120 6.4. Experiments with the BayesRQ Algorithm

0 100 200 300 400 500 600 700 800 900 1000
episode

20

30

40

50

60

70

80

90

de
fe

nd
er

 w
in

s [
%

]
Defender wins evolution

Q-L - ignore attacker
Q-L - full observability
BayesRQ - every 2
BayesRQ - every 3
BayesRQ - every 4

0 100 200 300 400 500 600 700 800 900 1000
episode

20

30

40

50

60

70

80

90

de
fe

nd
er

 w
in

s [
%

]

Defender wins evolution

Q-L - ignore attacker
Q-L - full observability
BayesRQ - prob of observ 0.75
BayesRQ - prob of observ 0.5
BayesRQ - prob of observ 0.25

Figure 6.4: Observability analysis: Defender wins ratio for BayesRQ with limited observ-
ability of the attacker. Left figure: observing attacker periodically every [0, 1, 2, 3, 4] time
steps, right figure: probability of observing the attacker is [0, 0.25, 0.5, 0.75, 1] in each state.

for which we show 95% confidence intervals. In Figure 6.4 we show the performance in
terms of the defender wins, i.e., the percentage of games where the defender apprehended
the attacker. We show five modes of observability in each figure, in the left figure of
Figure 6.4: (i) no observability of the attacker, where we use the standard Q-learning
with state definition of only the defender’s location, i.e., ignoring the attacker, (ii) full
observability, i.e., observing the attacker location in every time step and thus knowing
the underlying state consisting of the location of the defender and the attacker, for which
BayesRQ becomes Q-learning, (iii) BayesRQ with observing the attacker periodically every
2 time steps, (iv) BayesRQ with observing the attacker periodically every 3 time steps and
(v) BayesRQ with observing the attacker periodically every 4 time steps. We can see that
our algorithm BayesRQ can very well deal with the occasional partial observability of the
attacker location. Especially for the case of observing the attacker every 2 or 3 time steps,
the performance of BayesRQ is very close to the full observability case. In the right panel of
Figure 6.4 we show an experiment with a different type of observability, where we no longer
assume periodical observability but we assign a probability of observing the attacker in each
state. The two extreme cases are the same as in the previous figure, i.e., full observability
and no observability, but now we plot the performance for BayesRQ for cases where we get
to observe the attacker with probability 0.75, 0.5 or 0.25 in each state. One can compare the
left and right figures in Figure 6.4, where for example observing the attacker every 4 time
steps is comparable with the case of observing the attacker with probability 0.25 in each

Chapter 6. Spatial Security Domains 121

0 100 200 300 400 500 600 700 800 900 1000
episode

40

50

60

70

80
de

fe
nd

er
 w

in
s [

%
]

Defender wins evolution, observe every 3

BayesRQ - no prior
BayesRQ - prior confidence 100
BayesRQ - prior confidence 1000
BayesRQ - prior confidence 10000
BayesRQ - prior confidence 100000

0 100 200 300 400 500 600 700 800 900 1000
episode

40

50

60

70

80

de
fe

nd
er

 w
in

s [
%

]

Defender wins evolution, observe every 4
BayesRQ - no prior
BayesRQ - prior confidence 100
BayesRQ - prior confidence 1000
BayesRQ - prior confidence 10000
BayesRQ - prior confidence 100000

Figure 6.5: Priors analysis: Defender ratio of wins for BayesRQ, observing the attacker
every 3 steps.

state (purple curves). The experiment with the random observability further demonstrates
the efficient use of the partial information in the BayesRQ algorithm. We can see that the
performance of BayesRQ in the random observability case has a higher variance but is still
superior to the case where we ignore the attacker, which is expected. By comparing the
full observability case with the partial observability cases we can conclude that BayesRQ
efficiently makes use of the gathered information and can well reason about the unobserved
states. Especially for the rather frequent observations of the attacker (observing every 2 or
3 time steps or probability of observing the attacker 0.75 or 0.5) BayesRQ approaches the
performance of the full observability case.

Arguably, periodical observability of the attacker might cause synchronisation in moves
between the defender and the attacker and the performance of the algorithm might depend
on the chosen map. Therefore, we also experimented with the random observability, which
confirms the strong performance of BayesRQ.

Prior distribution analysis As discussed previously, BayesRQ uses a priori information
about the attacker location, in our case this information is derived from the knowledge
about the location of the targets, where we assume an incentive of the attacker to move
closer to those targets. Therefore, the setting of such prior is potentially important. In
our model we introduce the parameter of prior confidence as described in Section 6.2.2. In
Figure 6.5 we test the influence of different settings of this parameter on overall performance.
We show the case where we do not assume any prior knowledge (prior confidence equal to 0)

122 6.5. Discussion

in which case we use the maximum likelihood estimate (MLE). And then we show different
settings of the prior confidence (100; 1, 000; 10, 000; 100, 000), i.e., using the maximum a
posteriori (MAP). In the left figure of Figure 6.5 we assume observing the attacker every 3
time steps and in the right figure we get to observe the attacker every 4 time steps. We can
see that the setting of the prior confidence has a significant influence on the performance of
BayesRQ. Using no prior information leads to the worst performance, confirming that the
prior is meaningful in this case. An interesting observation is that in the case of using no
prior or low prior confidence (100) the performance stays inferior even in the later episodes,
the reason for that might be a form of exploitation of the defender by the attacker, where
the attacker learns faster about the best paths to the targets. We can also see that the
effect of different settings of prior confidence changes with observing the attacker only
every 4th time step (right figure), where we can observe a better performance with even
higher prior confidence (10, 000 and 100, 000). The reason might be that the defender has a
higher uncertainty about the attacker and thus the effect of the very limited observations is
diminished and he benefits more from a stronger prior knowledge. In our experiments in
Figure 6.4 we set the prior confidence to 1, 000. We conclude that the setting of the prior
distribution is important and should be carefully tuned when designing the algorithm for a
given domain.

6.5 Discussion

In this chapter we have proposed a novel approach to learning effective strategies in partially
observable spatial security domains using a priori knowledge and occasional observations
of the attacker location. This novel method learns a model of the attacker behaviour and
effectively uses it in a temporal difference style learning algorithm. We combine Bayesian
inference with the Replicated Q-learning method and propose BayesRQ, which learns an
effective defender strategy to significantly improve the chance of apprehending an adversarial
attacker and thus mitigating potential attacks on targets.

Our approach is based on the assumption of occasional observation of the attacker
location, where especially in case of frequent observations of the attacker location our method
comes close to performance of a full observability case. This assumption is motivated by
many spatial security domains, where the attacker location can for example be obtained
from surveillance. The proposed solution can for example be applied to the illegal rhino
poaching problem where rangers aim to apprehend poachers and thus minimise the number

Chapter 6. Spatial Security Domains 123

of poached rhinos, preventing potential future extinction of the species. In the illegal rhino
poaching domain the frequent observability assumptions are common, where the attacker
location can be for example obtained from the people living in the area or from drone
surveillance [Montesh, 2013]. Analogously, our approach can be applied to other spatial
security domains with similar observability properties.

Our experimental evaluation shows that BayesRQ can deal effectively with partial
observability. Especially, our solution is able to successfully bridge the occasional inability
of observing the attacker location, where we can closely approach the performance of the
full observability case and learn an effective defender strategy. We experimented with two
different observability modes: (i) occasional full observability of the attacker’s location in
the form of periodical observability, i.e., every fixed number of time steps and (ii) in the form
of random observability, i.e., with some probability we get to observe the attacker’s location
in every time step. Experiments show strong performance of BayesRQ on the proposed
grid world for different levels of observability. Moreover, we experimented with different
settings of prior distribution, which influences the learning process. We showed that our
chosen prior distribution is meaningful for our grid world domain and helps to learn effective
strategies. Note that the prior distribution is domain dependent and can be designed from
different a priori knowledge. The proposed method combines Bayesian inference with the
Q-learning algorithm, but the general idea can be applied to other temporal difference
learning methods such as SARSA, Expected SARSA and other reinforcement learning
methods.

Our approach is effective when the observation of the attacker is rather frequent. For
more rare observations the size of the information sets increases significantly, causing the
algorithm to slow down. Therefore, we point out that the application area should possess
the property of frequent observations of the attacker for effective use of our approach.

7
Conclusion

In this final chapter we conclude the thesis by summarising the main contributions and
answering the research questions posed in Chapter 1. We then propose future directions for
further research, with reflect on the limitations of this work.

7.1 Contributions and Answers to the Research Questions

In this section we answer the 3 research questions we defined in Section 1.2, where we also
posed the problem statement. We now give the answers and refer to the respective chapters
of this thesis.

Question 1.A: How can we model a complex environment such as the space debris re-
moval problem from a game-theoretic and learning perspective in order to understand how
agents can optimise their behaviour?

An important first step when modelling complex environments from a game-theoretic
perspective is the evaluation of the impact of different strategies taken by the agents; what

124

Chapter 7. Conclusion 125

effects different actions have on the environment and on the other agents. One powerful way
to evaluate that, studied by empirical game theoretical analysis [Wellman, 2006; Tuyls et al.,
2018], is in many domains to develop a simulator of such a complex environment, especially
if the environment allows for wide range of future evolutions. This is the case in the space
debris removal problem, investigated in Chapter 4, where we implemented a high-fidelity
space debris simulator, which we fully describe in Appendix A. While the simulator aims
to be realistic, it is also computationally demanding and thus not possible to be effectively
used for evaluation of different strategies emerging from various models of multi-agent
interaction. Therefore, we developed a surrogate model based on the high-fidelity simulator,
which enables us to evaluate complex strategies of potentially multiple agents. We then
presented an effective way to approach the modelling of such a complex environment by
considering multiple models of agent interaction such as single- and multi-agent models
and single-state (stage) and multi-state models. These models represent various realistic
scenarios such as full cooperation among the agents or purely self-interested behaviour.
All these models produce different types of strategies, such as Nash equilibria or optimal
strategies in terms of maximal return. Furthermore for the dynamic multi-state model we
showed how agents can learn effective behaviour from interactions with the environment
using reinforcement learning techniques. Therefore, such an analysis brings deeper insights
to the complex dynamics of the agent interactions with the environment and with each
other.

Question 1.B: How can we compare various solutions that emerge when following differ-
ent modelling choices of the agent interaction mechanism and evaluate their effectiveness in
complex domains?

In Chapter 4 we proposed an evaluation methodology to compare the quality of solutions
from following different modelling choices, which improves the understanding of the dynamics
of strategy formation among multiple players in the space debris removal problem. We
compared single- and multi-agents models, assuming either static one-shot strategies or
dynamic strategies, where agents dynamically decide on actions over many time steps.
Moreover, we analysed various solution types obtained from following different methods
such as exactly computed solution in the form of Nash equilibria or learned solution
obtained by applying the Q-learning method. Especially in domains where sustainability of
the environment is crucial, important evaluation metrics to consider are social welfare or

126 7.1. Contributions and Answers to the Research Questions

fairness. Fairness expresses the proportionality between the costs of invested efforts and
gains from them. Furthermore, we focused on price of anarchy (PoA) analysis, measuring
the ineffectiveness of selfish behaviour compared to cooperative behaviour, which are both
realistic scenarios in many sustainability domains.

In the space debris removal problem we showed how a selfish behaviour can be quite
costly compared to centralised cooperative behaviour in terms of social welfare. Although,
selfish rational behaviour is more likely to appear in the space debris removal problem, the
space actors should try to reach a consensus and act cooperatively, which would decrease the
costs and would be more sustainable due to increased stability of the centralised behaviour.
Static strategy solutions in the space debris removal problem are less effective due to smaller
flexibility compared to the dynamic ones, however static strategies are simpler to obtain
and arguably to abide and thus might be preferable in certain situations.

Question 2.A: How can we design a robust learning process against random or adver-
sarial perturbations in critical systems with risky states?

In Chapter 5 we proposed a novel κ operator which embeds robustness into temporal
difference learning algorithms for both single- and multi-agent environments. The robust
behaviour is then attained by modifying the target of temporal difference learning methods.
We base the robust operator on a priori known, or estimated information about an external
control over the system or its parts which represents the potential severe attacks or critical
failures. In critical domains with risky states there is often the threat of individual parts
of the network being compromised which might cause severe impact on the whole system.
We showed how robust strategies can be learned by interacting with the environment even
before observing an attack or a failure.

Question 2.B: To what extent can we guarantee any convergence to an optimal solution
when learning policies, which are robust against perturbations in domains with risky states?

In Chapter 5 we presented convergence proofs for the proposed robust temporal difference
learning algorithms using our operator κ. We proved convergence of the methods to the
optimal Q-value function of the original Markov decision process and also convergence to
the robust Q-value function induced by the operator κ of the generalised Markov decision
process. We showed under which conditions the single- and multi-agent methods converge

Chapter 7. Conclusion 127

to those two fixed points. Therefore, we can guarantee stability of the proposed robust
learning process, which increases the applicability of our approach.

Question 3.A: How can we model complex adversarial agents in spatial security domains
in order to mitigate the threats they pose?

A powerful approach to finding effective behaviour in partially observable environments
is model-based reinforcement learning. In Chapter 6 we analysed the illegal rhino poaching
problem as an instance of spatial security domains. Threats in such domains can be
mitigated by effective behaviour of the controlled agent or group of agents (the defender),
who aim to apprehend adversarial attackers. We assume that the system state is represented
by the locations of the defender and the attacker; therefore we can model the attacker
behaviour as part of the transition function, which we learn. Learning the transition
function is based on potentially known a priori information about the attacker behaviour
and on occasional observations of the attacker location. We proposed an effective approach
based on temporal difference learning and Bayesian inference, which can learn a model of
the attacker in order to derive effective strategies to apprehend the attacker.

Question 3.B: To what extent can we make use of an occasional full observation of the
adversarial attacker in the spatial security domains?

In many spatial security domains such as illegal rhino poaching the defender gets to
occasionally observe the attacker location, for example from drone surveillance [Montesh,
2013]. Such partial knowledge can be used to form effective defender strategies. In
Chapter 6 we proposed a novel approach which can make use of such knowledge in order to
learn powerful defender strategies, which can mitigate the threat of harmful attacks. We
derived a new model-based reinforcement learning approach BayesRQ, which makes use
of a priori information about the attacker behaviour and of occasional observations of the
attacker. Especially for the case of frequent attacker observations, our method can bridge
the occasional inability to observe the attacker location and can closely approximate the
performance of the model with full observability of the attacker. Our method opens a new
way to learning effective defender behaviour in spatial security domains where the attacker
can be occasionally observed.

128 7.2. Limitations and Perspectives for Future Research

7.2 Limitations and Perspectives for Future Research

In this thesis we have examined applicability of the multi-agent learning paradigm to real-
world domains. The focus of this thesis was on some of the most pressing issues of real-world
applications of multi-agent learning methods such as the challenge of modelling complex
environments and agent interactions, designing robust learning processes or modelling
adversarial agents, especially in domains where security and sustainability is paramount.
Nonetheless, there still exist other obstacles for multi-agent learning methods to be fully
applicable to real-world domains. We now discuss several limitations and propose future
directions of the work presented in this thesis.

Modelling and Learning in the Space Debris Removal Problem

In Chapter 4 we have proposed a methodology to model a complex environment and design
and compare severals models of multi-agent interactions. We focused on the complex domain
of the space debris removal problem, which we modelled from a game-theoretic perspective,
presenting new insights into the complex dynamics of multi-agent decision making. The
input data for our single- and multi-agent and static and dynamic models came from our
high-fidelity debris simulator. However, projecting the future evolution of space debris itself
is a very complex problem with many unknown variables and inputs, and therefore some
necessary simplifications and assumptions have been made. Despite these simplifications the
simulation is computationally demanding, which makes it difficult to obtain the necessary
number of Monte Carlo runs, especially for larger games. Therefore, by using our surrogate
model built on top of the space debris simulator, we were able to compare several complex
models of agent interaction. Even though we assumed the surrogate model to be a close
approximation of the simulator, some level of abstraction was introduced which necessarily
lead to a lost of some information value. In future work one could investigate a broader
range of scenarios (e.g., launch parameters) for the space debris simulator. The surrogate
model is constructed and analysed for the conservative scenario, described in Appendix A.4.
However, as discussed in that section, several scenarios can be envisioned that each will
lead to a different projected evolution of the space debris environment. Using the high-
fidelity simulator, it is conceptually easy (but computationally demanding) to construct
new surrogate models for these different scenarios. When computational power is available
though, the methodology we developed will make it easy to run the required Monte Carlo

Chapter 7. Conclusion 129

simulations to build a new model, which can then be analysed in the same fashion as we
have done in this thesis for the conservative scenario.

Another extension would concern the addition of mega constellations to the simulator,
which we discuss in Appendix A.4.6, in addition to the four classes of satellites we have
considered (see Appendix A.4). Mega constellations are currently being considered as a new
addition to traditional satellite operation. Besides adding significant numbers of satellites
to the space environment, mega constellations would constantly replenish their supply of
satellites over a long period of time. If left unmitigated, this has been shown to have a
profound effect on the space environment [Rossi et al., 2017] and is thus worth including in
the simulation.

Robust Learning in Critical Systems with Risky States

In Chapter 5 we have presented a novel approach to learning robust and effective strategies
in critical domains, both from a single- and multi-agent perspective. This line of work opens
up a new path of incorporating robustness into reinforcement learning methods leading to
safer policies. We have presented a new robust operator κ, which can be combined with
many different methods. However, in this thesis the operator is demonstrated on a classic
on- and off-policy one step temporal difference learning methods, which is a first step in
showing its usability. For the multi-agent setting we only considered full communication
among cooperating agents, furthermore, as we briefly discussed, one could also consider a
more complex setting where agents cannot communicate and instead need to best-respond
to policy estimation of other agents. In future work we suggest to start from a simple policy
estimation like fictitious play, but more complex policy estimators could be assumed to
better model the complicated multi-agent interaction.

We have proposed a simple model of control transition defining the potential significant
rare events, however there are several interesting directions for future work, extending the
control transition function. One possibility would be extending the control space, allowing
for more agents being attacked or malfunctioning with different intensity. We defined the
probability of control depending on the state, but more parameters could be introduced,
e.g., making the control to depend on time. A state-dependent or time-dependent control
is motivated by the fact that in practice some states might be critical and more prone
to malicious attacks or malfunction in different time steps. Moreover, in future work the
operator κ could be applied to other state-of-the-art methods like Retrace(λ) [Munos et al.,

130 7.2. Limitations and Perspectives for Future Research

2016] to consider multi-step updates, Q(σ) [De Asis et al., 2018] to assume mixed updates
or combining the operator κ with the options framework [Sutton et al., 1999; Bacon et al.,
2017]. We also hinted a generalised model of the control transition, which would allow for
modelling of complex dynamics of control transition. We have only briefly touched upon
this advanced model but deeper analysis could bring further insights into more complex
scenarios of control, where one could assume several Q-value functions formed by different
policies of multiple agents.

Finally, throughout this thesis we focused on discrete state and action spaces to model
an environment, which is a first important step to underpin the theory, however in many
complex real-world applications such assumption is limiting and would need to be extended
to continuous state and action spaces. For such cases one could extend our approach by
using a non-linear function approximation to represent the value functions of continuous
state and actions spaces. Therefore, in order to increase the applicability of our methods,
one could extend the methods with neural network types of learning, e.g., using DQN [Mnih
et al., 2013]. Such extensions would further narrow the reality gap and would allow for
learning more complex policies, where we believe our approach could prove even more
competitive.

Learning When Facing Adversarial Agents in Spatial Security Domains

In Chapter 6 we have proposed a novel way of learning effective strategies in spatial security
domains by learning a model of the attacker. Our approach is specially tailored to domains
where the attacker location can be frequently observed. Although, our work has clear
limitations in requirement of frequent observations of the attacker, we claim that such
conditions appear in some spatial security domains and thus are interesting to be studied.
The proposed method BayesRQ is based on a classic Q-learning method, however the
presented approach of combining Bayesian inference with a reinforcement learning method
could be extended to other learning methods. We described learning of a model of the
attacker by using Bayesian inference. Such a model is then used to learn the state-action
value function by using a temporal difference learning method. We update the state-action
values proportionally to the beliefs, however in future work we could update the value
function directly for belief states and thus learn a continuous belief state-action value
function.

Our approach is based on Bayesian inference, thus one can define a priori distribution,

Chapter 7. Conclusion 131

which then influences the learning process. We showed how such distribution can be
designed in order to be meaningful. However, a priori distribution needs to be chosen in a
domain specific manner and fine tuned by gathering a priori knowledge about the model.
There is a wide range of opportunities for designing more complex a priori distribution and
analysing its effects on the overall learning process, which would be an interesting further
research direction. We proposed an example of a prior knowledge about the environment
motivated by the domain of illegal rhino poaching but this could be extended to encode
more complex a priori information.

As mentioned throughout this thesis obtaining any theoretical guarantees in multi-
agent learning is a challenging problem. Nevertheless, one could aim to prove for example
convergence properties of the proposed algorithm BayesRQ based on the well-known proofs
of single-agent classic temporal difference learning methods (e.g., Tsitsiklis [1994]; Jaakkola
et al. [1994]). However, such an extension to partially observable domains is non-trivial.

For the studied target domain of illegal rhino poaching it is suitable to use a discrete state
space, however a more complex approach could be considered, where the state space would
be continuous. Such extension would allow modelling of more complex environments, where
the state cannot be accurately defined in discrete manner. Similarly, we only considered
discrete action space for the players, where more granular approach might be beneficial
for certain environments. Value functions of continuous action and state spaces could be
modelled by a non-linear function approximation such as a neural network. This approach
might be also necessary for larger domains, speeding up the methods and thus further
increasing their usability for real-world applications.

List of Figures

1.1 Problem statement structure. 7

2.1 Relation between models of agent(s) interaction with an environment. In
green are multi-agent models with a single state (stage), in yellow are single-
agent models and in red is their generalisation: multi-agent model with
multiple states. 14

2.2 Markov decision process: The agent interaction with an environment. Taken
from Sutton and Barto [1998]. 24

4.1 Projected evolution of the (a) total number of objects and (b) cumulative lost
assets, assuming the complex launch model, in the next 100 years for different
removal strategies, e.g. above 8000 - removing all the objects causing in
expectation a collision producing more than 8000 debris pieces. 53

5.1 The relationship between the learning targets of different algorithms in
the limits of their parameters. On-policy methods are in green, off-policy
methods in orange. 90

5.2 Cliff Walking: The agent needs to get from the start [S] to the goal [G],
avoiding the cliff (grey tiles). 96

5.3 The Puddle World: Q(κ) learns a safer path with increasing κ. Puddles are
dark blue, the arrows show the optimal actions on the learned path, and the
heatmap shows the number of visits to each state (, blue is none). . . . 97

132

List of Figures 133

5.4 Cliff Walking (single-agent) in first row and Puddle World (multi-agent)
in second row. Deterministic environment (first column), 10 % stochastic
environment (second column) and 10 % attack while training (third column).
ε-greedy policy with fixed ε = 0.1. Early performance - dashed lines (100
episodes), converged performance - solid lines (100, 000 episodes). 98

5.5 Varying probability of attack: Cliff Walking (left), Puddle World (right),
trained on 100k episodes, tested on 50k episodes, α = 0.1, ε = 0.1. 100

5.6 Robustness analysis: Cliff Walking (left), Puddle World (right), trained on
100k episodes, tested on 50k episodes, α = 0.1, ε = 0.1, κ = 0.1. 101

6.1 Example of modelling a wildlife reservation (Kruger park in South Africa)
as a grid world. [www.safari.com/kruger-national-park/maps/kruger-park-
far-south-section]. 109

6.2 Example of states in information sets for the case where neither the current
state nor the succeeding state is fully observed. We need to reason over
two information sets; the current one IS and the succeeding one IS′. The
defender is in location 1 and chooses the action down (D), the attacker is
either in location 5 or 7. 111

6.3 Grid World: The defender starts in left top corner and aims to apprehend
the attacker, the attacker starts at right bottom corner and aims to attack
the targets (white crosses) avoiding the obstacles (black tiles with white
diagonal stripes). Attacker attacks more the right top (more distant) target
with the defender’s decreasing observability of the attacker. The heatmap
shows the number of visits to each state (, purple is none), the black
dots show attacker visits in each tile (the bigger the dot the higher number
of visits). 119

6.4 Observability analysis: Defender wins ratio for BayesRQ with limited ob-
servability of the attacker. Left figure: observing attacker periodically every
[0, 1, 2, 3, 4] time steps, right figure: probability of observing the attacker is
[0, 0.25, 0.5, 0.75, 1] in each state. 120

6.5 Priors analysis: Defender ratio of wins for BayesRQ, observing the attacker
every 3 steps. 121

134 List of Figures

A.1 Debris clouds from two sample collisions. Each dot is one piece of debris;
the size represents their mass. Left figures show the clouds directly after the
collision and right figures after 10 years. We can see how the objects in low
altitudes decay. 161

A.2 Orbital decay of a sample debris object in Earth’s atmosphere around 6371
km (Earth radius) caused by atmospheric drag. 162

A.3 Orbital inclination distribution of objects being launched in last 10 years. . 162
A.4 Distribution of osculating elements (normalised to 1) of all important assets

(red) and debris (blue) in LEO which are currently less than 10 years old.
Important assets are active satellites. We can observe the most common
inclination and eccentricity orbital parameters. 163

A.5 Comparing spatial density predictions in LEO with related work of Liou and
Johnson [2009]. Our model is in line with the related work. 164

A.6 Mass to orbit defining the total mass launched per year into low Earth orbit
in relation to baseline mass launched in year 2000 (M2000) for different values
of α. For example the green curve represents a doubling of the annual mass
to orbit over the next 100 years. 166

A.7 Distributions of semi-major axis, inclination, and eccentricity of objects
filtered from current space catalogue from last 20 years, from which we
sample new orbital elements for objects to be launched. The remaining
orbital elements are sampled uniformly at random from a given range. . . . 169

A.8 Market share and mass to orbit function for the conservative, moderate
and aggressive launch scenarios as specified in Table A.1. The conserva-
tive scenario assumes “business as usual” with constant launch mass and
slower technical progress, however the aggressive scenario assumes a fast
technological development with emphasis on miniaturisation of spacecrafts. 174

B.1 Prediction of the development of the number of important assets (active
satellites) for each player based on the assumption of a 0.5% yearly growth
in future launches. 177

B.2 Debris evolution for next 150 years considering different strategies. The
y-axis depicts the number of objects in low-earth orbit. Each curve represents
a different combination of strategies (remove 0, 1 or 2 objects) taken by the
two players (the US and the EU). 179

List of Figures 135

B.3 Evolution of the overall collision risk to important assets of the US (left) and
the EU (right), for different actions taken by both players. We can see an
exponential growth of the risks for cases where the players do not remove
any objects. 180

B.4 Free-riding effect in the overall risk to important assets for non-active players
China and Russia (both removing 0), for different combinations of actions
taken by the US and the EU. Non-active players benefit from other players
removing objects. 181

B.5 Equilibrium strategies for the sub-game {remove 0, remove 1} (left panel)
and {remove 1, remove 2} (right panel) for a range of removal costs CR. The
y-axis shows the probability of each player (the US and the EU) removing 0
(left panel) or 1 (right panel) object. The x-axis shows the ratio between the
cost of removal CR and the cost of losing an important asset CL (assuming
CL = 1). 184

B.6 Evolutionary dynamics of the sub-game {remove 0, remove 1} for different
values of CR. Stable attractors are indicated with and unstable attrac-
tors with . The dotted line indicates the trajectory on which the mixed
equilibrium moves as CR changes. 187

B.7 Evolutionary dynamics of the subgame {Remove 1,Remove 2} for different
values of CR. Stable attractors are indicated with and unstable attrac-
tors with . The dotted line indicates the trajectory on which the mixed
equilibrium moves as CR changes. 188

B.8 Equilibrium strategies for players the US, the EU and China (CN) of the
game {remove 0, remove 1} for a range of removal costs CR. The y-axis
shows the probability of each player (the US, the EU, and CN) removing 0
objects, which is equivalent to one minus the probability of removing 1. The
x-axis shows the ratio between the cost of removal CR and the cost of losing
an important asset CL (assuming CL = 1). 190

C.1 Validation for different sequences of thresholds for removal changed at dif-
ferent time points. Comparing simulation with approximation from the
surrogate model. Especially the pessimistic approximation closely follows
the actual simulation, thus our surrogate model is validated. 194

136 List of Figures

C.2 Validation for sequence of thresholds for removal - no-removal and [1,000,
3,000, 5,000, 8,000] changed after 50 years. Comparing simulation with
approximation. Approximations closely follow the actual simulations of
respective colour, thus validating our surrogate model. 195

List of Tables

2.1 Prisoner’s dilemma. 15

3.1 Thesis main chapters overview: Comparison of modelling choices and as-
sumptions. 40

4.1 List of notations used in the stochastic game model of the space debris removal. 62

4.2 Optimal single-agent static strategies for different parameter λ, where the
strategy is fixed for the entire time horizon. For increasing λ (i.e. object
removal gets more costly) the optimal strategy is to remove fewer objects
(i.e. greater threshold for removal). 64

4.3 Payoff matrix for parameter λ = 0.1 and share parameter ξA = 0.6 (i.e. row
player owns 60% of all assets). In normal font are the row player’s payoffs,
in italic are the column player’s payoffs. In bold are pure Nash equilibria. . 65

4.4 Optimal multi-agent static strategies, where the solution concept is Nash
equilibria. We show player A’s and B’s rewards, welfare and fairness for
parameter λ = 0.1 and share parameter ξA = 0.6 (i.e. player A owns 60% of
all assets). There are three pure Nash equilibria and several mixed ones (we
show only one mixed NE in the last column). 65

4.5 Optimal single-agent dynamic strategies for different parameter λ. For
increasing λ (i.e., object removal gets more costly) the optimal strategy is to
remove fewer objects (i.e., greater thresholds for removal) and the welfare
decreases. 66

137

138 List of Tables

4.6 Learned single-agent dynamic strategies for different λ. Differences to the
optimal strategies from Table 4.5 are shown in bold and differences in rewards
are stated in the last column. We can successfully validate the learning
process due to high similarity (very low differences) to the optimal strategies. 67

4.7 Optimal multi-agent dynamic strategies against fixed opponent for parameter
λ = 0.1 and share parameter ξA = 0.6. We show optimal altruistic (altr) and
selfish (self) strategies. In the first column we show the opponent (player B)
fixed strategy. We state the rewards, welfare, fairness and price of anarchy
between different solutions. We can see that fixed strategies can lead to very
sub-optimal solutions. 69

4.8 Learned multi-agent dynamic strategies using Q-learning against Q-learning
opponent with parameter λ = 0.1 and share parameter ξA = 0.6. We show
four different outcomes of the same setting. We can attain highly effective
solutions using Q-learning for both players. 70

4.9 Learned multi-agent dynamic strategies using Q-learning against Q-learning
opponent with parameter λ = 0.1 and different levels of assets share ξi.
Starting from highly disproportional players in the top row to equally sized
players in the middle row. High disproportion in the players’ size attains
high welfare but trades off for fairness, where the small sized player removes
barely anything. 71

4.10 Comparison of different scenarios in terms of welfare ω and fairness φ for
λ = 0.1 and share parameter ξA = 0.6. We show combinations of single-agent,
multi-agent, static and dynamic approaches which were obtained either by
learning or by exact computation. In case there were multiple solutions for
given scenario we present maximal and minimal values. 72

4.11 Comparison of different scenarios in terms of price of anarchy PoA for λ = 0.1
and share parameter ξA = 0.6. The codes of the scenarios are stated in
Table 4.10. In bold we show PoAd (static vs. dynamic) and in italic we show
PoAm (single-agent vs. multi-agent). Note that for example PoA = 1.107
means 10.7% inefficiency. 73

4.12 Comparing static and dynamic single-agent scenarios in terms of welfare ω
and price of anarchy PoAd for varying parameter λ. Note that for increasing
λ (i.e., cost of removal becomes more expensive) the welfare decreases and
the difference between a static and a dynamic scenario increases. 74

List of Tables 139

4.13 Comparison of static and dynamic multi-agent scenarios in terms of welfare
ω for different levels of λ and share parameter ξ. The static scenario is
obtained by computing Nash equilibria and the dynamic scenario is learned
using Q-learning. In case of multiple solutions we state maximal and minimal
values (multiple NE). Note that with increasing parameter λ (object removal
becomes more expensive) and increasing ξ (the players become more equally
sized) the welfare decreases. One can see the improvement in welfare of
dynamic strategies compared to the static ones. 75

4.14 Comparison of single-agent and multi-agent static scenarios in terms of price
of anarchy PoAm for varying levels of share parameter ξ and parameter λ.
We can observe the increasing inefficiency of solutions for increasing ξ (the
players become more equally sized). 76

4.15 Comparison of single-agent dynamic vs. multi-agent dynamic and multi-
agent static vs. multi-agent dynamic scenarios in terms of price of anarchy
(PoAm and PoAd) for varying levels of share parameter ξ and parameter
λ. Note that in the comparison of the single-agent dynamic vs. multi-agent
dynamic scenarios for increasing parameter ξ (more equally sized players)
the inefficiency increases. 77

6.1 List of notations used in BayesRQ. 112

A.1 Parameters for 4 different spacecraft classes (ultra-small, small, medium
and large) and 3 launch scenarios (conservative, moderate and aggressive).
Parameters µ, σ are defining the Gaussian launch function and parameter α
the yearly mass launched to orbit. 172

A.2 Conservative: Proposed OneWeb-like constellation. 175
A.3 Moderate: Possible SpaceX-like constellation. 175

B.1 Payoff functions for the different strategies: remove 2, remove 1 and remove
0. Cost of losing an asset CL and cost of object removal CR are parameters
of the game, r̂ is the risk of collision obtained from the space debris simulator
and T is time horizon. 178

B.2 Risk matrix for both players for each combination of strategies. The risks
are the average cumulative risk of losing an asset over the course of 150 years.
We show 95 % confidence intervals in the lower table. 182

140 List of Tables

B.3 Payoff matrix for both players for CR = 0.003. Best responses are in bold
text, thus there are two pure Nash equilibria: {US 0, EU 1} and {US 1, EU 0}.183

B.4 Risk matrix (top) and corresponding 95% confidence intervals (bottom) for a
three-player (the US, the EU and China) two-action game, values shown in
the font styles belonging to each player (normal, italic and bold, respectively).189

References

Abbeel, P., Coates, A., Quigley, M., and Ng, A. Y. (2007). An application of reinforcement
learning to aerobatic helicopter flight. In Advances in Neural Information Processing
Systems (NIPS), pages 1–8.

Albrecht, S. V. and Stone, P. (2018). Autonomous agents modelling other agents: A
comprehensive survey and open problems. Artificial Intelligence, 258:66–95.

Aleksandrov, M., Aziz, H., Gaspers, S., and Walsh, T. (2015). Online fair division: Analysing
a food bank problem. In International Joint Conference on Artificial Intelligence (IJCAI),
pages 2540–2546.

An, B., Kiekintveld, C., Shieh, E., Singh, S., Tambe, M., and Vorobeychik, Y. (2012).
Security games with limited surveillance. AAAI Conference on Artificial Intelligence,
pages 1241–1248.

Anselmo, L., Rossi, A., Pardini, C., Cordelli, A., and Jehn, R. (2001). Effect of mitigation
measures on the long-term evolution of the debris population. Advances in Space Research,
28(9):1427–1436.

Arai, S., Sycara, K., and Payne, T. R. (2000). Experience-based reinforcement learning
to acquire effective behavior in a multi-agent domain. In Pacific Rim International
Conference on Artificial Intelligence, pages 125–135.

Arulkumaran, K., Deisenroth, M., Brundage, M., and Anthony Bharath, A. (2017). A brief
survey of deep reinforcement learning. IEEE Signal Processing Magazine, 34(6):26–38.

Auer, P., Cesa-Bianchi, N., Freund, Y., and Schapire, R. E. (1995). Gambling in a
rigged casino: The adversarial multi-armed bandit problem. In Annual Symposium on
Foundations of Computer Science, pages 322–331.

141

142 References

Bacon, P.-L., Harb, J., and Precup, D. (2017). The option-critic architecture. In AAAI
Conference on Artificial Intelligence, pages 1726–1734.

Bamón, R. and Frayssé, J. (1985). Existence of Cournot equilibrium in large markets.
Econometrica, 53(3):587–597.

Bertsekas, D. P. (1995). Dynamic Programming and Optimal Control, volume 1. Athena
Scientific, Belmont, MA.

Bloembergen, D., Tuyls, K., Hennes, D., and Kaisers, M. (2015). Evolutionary dynamics of
multi-agent learning: A survey. Journal of Artificial Intelligence Research, 53:659–697.

Bosansky, B., Lisy, V., Lanctot, M., Cermak, J., and Winands, M. H. M. (2016). Algorithms
for computing strategies in two-player simultaneous move games. Artificial Intelligence,
237:1–40.

Bousquet, F., Barreteau, O., Le Page, C., Mullon, C., and Jacques, W. (1999). An
environmental modelling approach: The use of multi-agent simulations. In Advances in
Environmental and Ecological Modelling, pages 113–122. Elsevier, Paris, France.

Bowling, M. and Veloso, M. (2000). An analysis of stochastic game theory for multiagent
reinforcement learning. Technical Report CMU-CS-00-165, DTIC Document.

Bowling, M. and Veloso, M. (2001). Rational and convergent learning in stochastic games.
In International Joint Conference on Artificial Intelligence (IJCAI), pages 1021–1026.

Bubeck, S. and Cesa-Bianchi, N. (2012). Regret analysis of stochastic and nonstochastic
multi-armed bandit problems. Foundations and Trends in Machine Learning, 5(1):1–122.

Busoniu, L., Babuska, R., and De Schutter, B. (2008). A comprehensive survey of multiagent
reinforcement learning. IEEE Transactions on Systems, Man, And Cybernetics-Part C:
Applications and Reviews, 38(2):156–172.

Carrico, T., Carrico, J., Policastri, L., and Loucks, M. (2008). Investigating orbital debris
events using numerical methods with full force model orbit propagation. Advances in the
Astronautical Sciences, 130:407–426.

Ciosek, K. A. and Whiteson, S. (2017). OFFER: Off-environment reinforcement learning.
In AAAI Conference on Artificial Intelligence, pages 1819–1825.

References 143

Claus, C. and Boutilier, C. (1998). The dynamics of reinforcement learning in coopera-
tive multiagent systems. AAAI/IAAI Conference on Artificial Intelligence/Innovative
Applications of Artificial Intelligence, pages 746–752.

Conitzer, V. and Sandholm, T. (2003). AWESOME: A general multiagent learning algorithm
that converges in self-play and learns a best response against stationary opponents.
International Conference on Machine Learning (ICML), pages 83–90.

Cristian, F., Dancey, B., and Dehn, J. (1996). Fault-tolerance in air traffic control systems.
ACM Transactions on Computer Systems (TOCS), 14(3):265–286.

Darley, J. M. and Latané, B. (1968). Bystander intervention in emergencies: Diffusion of
responsibility. Journal of Personality and Social Psychology, 8(4):377–383.

Daskalakis, C., Goldberg, P. W., and Papadimitriou, C. H. (2009). The complexity of
computing a Nash equilibrium. SIAM Journal on Computing, 39(1):195–259.

Davis, L. A. and Filip, L. (2015). How long does it take to develop and launch government
satellite systems? Technical Report ATR-2015-00535, The Aerospace Corporation.

Dearden, R., Friedman, N., and Russell, S. (1998). Bayesian Q-learning. AAAI Conference
on Artificial Intelligence, pages 761–768.

De Asis, K., Hernandez-Garcia, J., Holland, G., and Sutton, R. S. (2018). Multi-step rein-
forcement learning: A unifying algorithm. In AAAI Conference on Artificial Intelligence,
pages 2902–2909.

Diekmann, A. (1985). Volunteer’s dilemma. Journal of Conflict Resolution, 29(4):605–610.

Dubey, P. (1986). Inefficiency of Nash equilibria. Mathematics of Operations Research,
11(1):1–8.

Dubey, P., Haimanko, O., and Zapechelnyuk, A. (2006). Strategic complements and
substitutes, and potential games. Games and Economic Behavior, 54(1):77 – 94.

Dvoretzky, A. (1956). On stochastic approximation. In Proceedings of the Third Berkeley
Symposium on Mathematical Statistics and Probability, Volume 1: Contributions to the
Theory of Statistics, pages 39–55. University of California Press.

144 References

Fang, F., Stone, P., and Tambe, M. (2015). When security games go green: designing
defender strategies to prevent poaching and illegal fishing. International Joint Conference
on Artificial Intelligence (IJCAI), pages 2589–2595.

Foerster, J., Farquhar, G., Afouras, T., Nardelli, N., and Whiteson, S. (2018). Counterfactual
multi-agent policy gradients. AAAI Conference on Artificial Intelligence, pages 2974–2982.

Forshaw, J. L., Aglietti, G. S., Salmon, T., Retat, I., Roe, M., Burgess, C., Chabot, T.,
Pisseloup, A., Phipps, A., Bernal, C., et al. (2017). Final payload test results for the
RemoveDebris active debris removal mission. Acta Astronautica, 138:326–342.

Fudenberg, D. and Levine, D. K. (1998). The Theory of Learning in Games. The MIT
Press, Cambridge, MA.

Ganzfried, S. and Sandholm, T. (2011). Game theory-based opponent modeling in large
imperfect-information games. In International Conference on Autonomous Agents and
Multiagent Systems (AAMAS), pages 2–6.

Garcıa, J. and Fernández, F. (2015). A comprehensive survey on safe reinforcement learning.
Journal of Machine Learning Research, 16(1):1437–1480.

Gaskett, C. (2003). Reinforcement learning under circumstances beyond its control. In
Proceedings of the International Conference on Computational Intelligence for Modelling
Control and Automation, pages 1–12.

Ghavamzadeh, M., Mannor, S., Pineau, J., Tamar, A., et al. (2015). Bayesian reinforcement
learning: A survey. Foundations and Trends in Machine Learning, 8(5-6):359–483.

Greenwald, A. and Hall, K. (2003). Correlated Q-learning. In International Conference on
Machine Learning (ICML), pages 242–249.

Hansen, E. A., Bernstein, D. S., and Zilberstein, S. (2004). Dynamic programming for
partially observable stochastic games. In AAAI Conference on Artificial Intelligence,
volume 4, pages 709–715.

Hardin, G. (1968). The tragedy of the commons. Science, 162(3859):1243–1248.

Harstad, B. (2012). Climate contracts: A game of emissions, investments, negotiations, and
renegotiations. The Review of Economic Studies, 79(4):1527–1557.

References 145

Heinrich, J., Lanctot, M., and Silver, D. (2015). Fictitious self-play in extensive-form games.
In International Conference on Machine Learning (ICML), volume 37, pages 805–813.

Hennes, D., Claes, D., and Tuyls, K. (2013). Evolutionary advantage of reciprocity in
collision avoidance. In International Conference on Autonomous Agents and Multiagent
Systems (AAMAS) - Workshop on Autonomous Robots and Multirobot Systems (ARMS).

Hennes, D., Jong, S. D., Tuyls, K., and Gal, Y. K. (2015). Metastrategies in large-scale
bargaining settings. ACM Transactions on Intelligent Systems and Technology (TIST),
7(1):1–21.

Hernandez-Leal, P., Kaisers, M., Baarslag, T., and Munoz de Cote, E. (2017). A survey
of learning in multiagent environments: Dealing with non-stationarity. arXiv preprint
arXiv:1707.09183.

Hernandez-Leal, P., Kartal, B., and Taylor, M. E. (2018). Is multiagent deep reinforcement
learning the answer or the question? A brief survey. arXiv preprint arXiv:1810.05587.

Hong, Z.-W., Su, S.-Y., Shann, T.-Y., Chang, Y.-H., and Lee, C.-Y. (2018). A deep policy
inference Q-network for multi-agent systems. In International Conference on Autonomous
Agents and Multiagent Systems (AAMAS), pages 1388–1396.

Hu, J. and Wellman, M. (2004). Nash Q-learning for general-sum stochastic games. Journal
of Machine Learning Research, 4(6):1039–1069.

Inter-Agency Space Debris Coordination Committee (2002). IADC Space debris mitigation
guidelines. Technical report, Inter-Agency Space Debris Coordination Committee.

Inter-Agency Space Debris Coordination Committee (2007). IADC Space debris mitiga-
tion guidelines. Technical Report Revision 1, IADC-02-01, Inter-Agency Space Debris
Coordination Committee.

International Organization for Standardization (2011). Space systems – Space debris
mitigation requirements. Technical Report 24113, ISO.

Izzo, D. (2012). PYGMO and PYKEP: Open source tools for massively parallel optimization
in astrodynamics (the case of interplanetary trajectory optimization). Technical report,
Advanced Concept Team - European Space Research and Technology Centre (ESTEC).

146 References

Izzo, D., Getzner, I., Hennes, D., and Simões, L. F. (2015). Evolving solutions to TSP
variants for active space debris removal. In Proceedings of the 2015 Annual Conference
on Genetic and Evolutionary Computation, pages 1207–1214. ACM.

Jaakkola, T., Jordan, M. I., and Singh, S. P. (1994). Convergence of stochastic iterative
dynamic programming algorithms. In Advances in Neural Information Processing Systems
(NIPS), pages 703–710.

Jain, M., Korzhyk, D., Vanek, O., Conitzer, V., Pechoucek, M., and Tambe, M. (2011).
A double oracle algorithm for zero-sum security games on graphs. In International
Conference on Autonomous Agents and Multiagent Systems (AAMAS), pages 327–334.

Johnson, N., L., Krisko, P., H., Liou, J.-C., and Anz-Meador, P., D. (2001). NASA’s new
breakup model of EVOLVE 4.0. Advances in Space Research, 28(9):1377–1384.

Jordan, P. R., Vorobeychik, Y., and Wellman, M. P. (2008). Searching for approximate
equilibria in empirical games. In International Conference on Autonomous Agents and
Multiagent Systems (AAMAS), pages 1063–1070.

Kaelbling, L. P., Littman, M. L., and Cassandra, A. R. (1998). Planning and acting in
partially observable stochastic domains. Artificial Intelligence, 101(1-2):99–134.

Kaiser, L., Babaeizadeh, M., Milos, P., Osinski, B., Campbell, R. H., Czechowski, K.,
Erhan, D., Finn, C., Kozakowski, P., and Levine, S. (2019). Model-based reinforcement
learning for Atari. arXiv preprint arXiv:1903.00374.

Katt, S., Oliehoek, F. A., and Amato, C. (2017). Learning in POMDPs with Monte Carlo
tree search. In International Conference on Machine Learning (ICML), volume 70, pages
1819–1827.

Kessler, D. J. and Cour-Palais, B. G. (1978). Collision frequency of artificial satellites: The
creation of a debris belt. Journal of Geophysical Research, 83(A6):2637–2646.

Kessler, D. J., Johnson, N. L., Liou, J.-C., and Matney, M. (2010). The Kessler syndrome:
Implications to future space operations. American Astronautical Society - Guidance and
Control Conference, pages 1–15.

References 147

Kiekintveld, C., Jain, M., Tsai, J., Pita, J., Ordonez, F., and Tambe, M. (2009). Computing
optimal randomized resource allocations for massive security games. In International
Conference on Autonomous Agents and Multiagent Systems (AAMAS), pages 689–696.

Klima, R., Bloembergen, D., Kaisers, M., and Tuyls, K. (2018a). Learning robust policies
when losing control. Adaptive and Learning Agents workshop at AAMAS.

Klima, R., Bloembergen, D., Kaisers, M., and Tuyls, K. (2018b). Towards learning to best
respond when losing control. European Workshop on Reinforcement Learning (EWRL),
pages 1–11.

Klima, R., Bloembergen, D., Kaisers, M., and Tuyls, K. (2019). Robust temporal difference
learning for critical domains. In International Conference on Autonomous Agents and
Multiagent Systems (AAMAS), pages 350–358.

Klima, R., Bloembergen, D., Savani, R., Tuyls, K., Hennes, D., and Izzo, D. (2016a). Space
debris removal: A game theoretic analysis. Games, 7(3):20.

Klima, R., Bloembergen, D., Savani, R., Tuyls, K., Hennes, D., Izzo, D., Tuyls, K., and
Summerer, L. (2016b). Game theoretic analysis of the space debris dilemma. Technical
report, ESA Ariadna Study 15/8401.

Klima, R., Bloembergen, D., Savani, R., Tuyls, K., Wittig, A., Sapera, A., and Izzo, D.
(2018c). Space debris removal: Learning to cooperate and the price of anarchy. Frontiers
in Robotics and AI, 5(54):22.

Klima, R., Kiekintveld, C., and Lisy, V. (2014). Online learning methods for border patrol
resource allocation. Conference on Decision and Game Theory for Security (GAMESEC),
pages 340–349.

Klima, R., Lisy, V., and Kiekintveld, C. (2015). Combining online learning and equilibrium
computation in security games. Conference on Decision and Game Theory for Security
(GAMESEC), pages 130–149.

Klima, R., Tuyls, K., and Oliehoek, F. (2016c). Markov security games: Learning in spatial
security problems. NIPS Workshop on Learning, Inference and Control of Multi-Agent
Systems, pages 1–8.

148 References

Klima, R., Tuyls, K., and Oliehoek, F. (2018d). Model-based reinforcement learning under
periodical observability. AAAI Spring Symposium on Learning, Inference, and Control
of Multi-Agent Systems.

Klinkrad, H. (2010). Space debris. Encyclopedia of Aerospace Engineering, Wiley Online
Library.

Klinkrad, H., Beltrami, P., Hauptmann, S., Martin, C., Sdunnus, H., Stokes, H., Walker, R.,
and Wilkinson, J. (2004). The ESA space debris mitigation handbook 2002. Advances in
Space Research, 34(5):1251–1259.

Klinkrad, H. and Johnson, N. (2009). Space debris environment remediation concepts. In
NASA DARPA International Conference on Orbital Debris Removal, pages 8–10.

Knight, J. C. (2002). Safety critical systems: challenges and directions. In Proceedings of
the 24th International Conference on Software Engineering, pages 547–550. ACM.

Knight, V., Komenda, I., and Griffiths, J. (2017). Measuring the price of anarchy in critical
care unit interactions. Journal of the Operational Research Society, 68(6):630–642.

Kober, J., Bagnell, A. J., and Peters, J. (2012). Reinforcement learning in robotics: A
survey. International Journal of Robotics Research, 32(11):1238–1274.

Könönen, V. (2004). Asymmetric multiagent reinforcement learning. Web Intelligence and
Agent Systems: An international journal, 2(2):105–121.

Korzhyk, D., Yin, Z., Kiekintveld, C., Conitzer, V., and Tambe, M. (2011). Stackelberg
vs. Nash in security games: An extended investigation of interchangeability, equivalence,
and uniqueness. Journal of Artificial Intelligence Research, 41(2):297–327.

Koutsoupias, E. and Papadimitriou, C. (1999). Worst-case equilibria. In Proceedings of the
16th Annual Conference on Theoretical Aspects of Computer Science, pages 404–413.

Kukushkin, N. S. (1994). A fixed-point theorem for decreasing mappings. Economics
Letters, 46(1):23–26.

Kukushkin, N. S. (2004). Best response dynamics in finite games with additive aggregation.
Games and Economic Behavior, 48(1):94–110.

References 149

Kukushkin, N. S. (2005). Strategic supplements in games with polylinear interactions.
Russian Academy of Sciences.

Lake, B. M., Ullman, T. D., Tenenbaum, J. B., and Gershman, S. J. (2017). Building
machines that learn and think like people. Behavioral and Brain Sciences, 40(E253):1–72.

Leibo, J. Z., Zambaldi, V., Lanctot, M., Marecki, J., and Graepel, T. (2017). Multi-agent
reinforcement learning in sequential social dilemmas. In International Conference on
Autonomous Agents and Multiagent Systems (AAMAS), pages 464–473.

Levhari, D. and Mirman, L. J. (1980). The great fish war: an example using a dynamic
Cournot-Nash solution. The Bell Journal of Economics, 11(1):322–334.

Levine, S., Finn, C., Darrell, T., and Abbeel, P. (2016). End-to-end training of deep
visuomotor policies. The Journal of Machine Learning Research, 17(1):1334–1373.

Lewis, H., Swinerd, G., Newland, R., and Saunders, A. (2009). The fast debris evolution
model. Advances in Space Research, 44(5):568–578.

Lewis, H. G., White, A. E., Crowther, R., and Stokes, H. (2012). Synergy of debris
mitigation and removal. Acta Astronautica, 81(1):62–68.

Leyton-Brown, K. and Shoham, Y. (2008). Essentials of game theory: A concise multidisci-
plinary introduction. Synthesis Lectures on Artificial Intelligence and Machine Learning,
2(1):1–88.

Liou, J. C. (2011). An active debris removal parametric study for LEO environment
remediation. Advances in Space Research, 47(11):1865–1876.

Liou, J.-C., Anilkumar, A., Bastida, B., Hanada, T., Krag, H., Lewis, H., Raj, M., Rao, M.,
Rossi, A., and Sharma, R. (2013). Stability of the future LEO environment – an IADC
comparison study. In 6th European Conference on Space Debris, volume 723.

Liou, J.-C. and Johnson, N. L. (2008). Instability of the present LEO satellite populations.
Advances in Space Research, 41(7):1046–1053.

Liou, J.-C. and Johnson, N. L. (2009). A sensitivity study of the effectiveness of active
debris removal in LEO. Acta Astronautica, 64(2-3):236–243.

150 References

Liou, J.-C., Johnson, N. L., and Hill, N. (2010). Controlling the growth of future LEO
debris populations with active debris removal. Acta Astronautica, 66(5-6):648–653.

Liou, J.-C., Kessler, D., Matney, M., and Stansbery, G. (2003). A new approach to evaluate
collision probabilities among asteroids, comets, and kuiper belt objects. In Lunar and
Planetary Science Conference, volume 34, page 1828.

Littman, M. and Stone, P. (2001). Leading best-response strategies in repeated games. In
IJCAI Workshop on Economic Agents, Models, and Mechanisms.

Littman, M. L. (1994). Markov games as a framework for multi-agent reinforcement learning.
In International Conference on Machine Learning (ICML), pages 157–163.

Littman, M. L. (2001). Friend-or-foe Q-learning in general-sum games. In International
Conference on Machine Learning (ICML), pages 322–328.

Littman, M. L., Cassandra, A. R., and Kaelbling, L. P. (1995). Learning policies for
partially observable environments: Scaling up. In International Conference on Machine
Learning (ICML), pages 362–370.

Liu, J., Xiao, Y., Li, S., Liang, W., and Chen, C. P. (2012). Cyber security and privacy
issues in smart grids. IEEE Communications Surveys & Tutorials, 14(4):981–997.

Lou, J., Smith, A. M., and Vorobeychik, Y. (2017). Multidefender security games. IEEE
Intelligent Systems, 32(1):50–60.

Maskin, E. and Tirole, J. (2001). Markov perfect equilibrium: I. observable actions. Journal
of Economic Theory, 100(2):191–219.

Mnih, V., Kavukcuoglu, K., Silver, D., Graves, A., Antonoglou, I., Wierstra, D., and
Riedmiller, M. (2013). Playing Atari with deep reinforcement learning. NIPS Deep
Learning Workshop.

Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness, J., Bellemare, M. G., Graves,
A., Riedmiller, M., Fidjeland, A. K., Ostrovski, G., et al. (2015). Human-level control
through deep reinforcement learning. Nature, 518:529–533.

Montesh, M. (2013). Rhino poaching: A new form of organised crime. Technical report,
College of Law Research and Innovation Committee of the University of South Africa.

References 151

Morimoto, J. and Doya, K. (2005). Robust reinforcement learning. Neural computation,
17(2):335–359.

Munos, R., Stepleton, T., Harutyunyan, A., and Bellemare, M. (2016). Safe and efficient
off-policy reinforcement learning. In Advances in Neural Information Processing Systems
(NIPS), pages 1054–1062.

NASA Orbital Debris Program Office (2007). Chinese anti-satellite test creates most severe
orbital debris cloud in history. Orbital Debris Quarterly News, 11(2):2–3.

NASA Orbital Debris Program Office (2009). Satellite collision leaves significant debris
clouds. Orbital Debris Quarterly News, 13(2):1–2.

NASA Orbital Debris Program Office (2011). International space station again dodges
debris. Orbital Debris Quarterly News, 15(3):1–2.

Nash, J. (1950). Equilibrium points in n-person games. Proceedings of the National Academy
of Sciences of the United States of America, 36(1):48–49.

Nash, J. (1951). Non-cooperative games. The Annals of Mathematics, 54(2):286–295.

Nax, H. H. and Perc, M. (2015). Directional learning and the provisioning of public goods.
Scientific Reports, 5:8010.

Novshek, W. (1985). On the existence of Cournot equilibrium. The Review of Economic
Studies, 52(1):85–98.

Nowé, A., Vrancx, P., and De Hauwere, Y.-M. (2012). Game theory and multi-agent rein-
forcement learning, pages 441–470. Reinforcement Learning: State-of-the-Art, Springer
Berlin Heidelberg.

Omidshafiei, S., Papadimitriou, C., Piliouras, G., Tuyls, K., Rowland, M., Lespiau, J.-B.,
Czarnecki, W. M., Lanctot, M., Perolat, J., and Munos, R. (2019). α-rank: Multi-agent
evaluation by evolution. Scientific Reports, 9(1):9937.

Panait, L. and Luke, S. (2005). Cooperative multi-agent learning: The state of the art.
Autonomous agents and multi-agent systems, 11(3):387–434.

Perc, M., Jordan, J. J., Rand, D. G., Wang, Z., Boccaletti, S., and Szolnoki, A. (2017).
Statistical physics of human cooperation. Physics Reports, 687:1–51.

152 References

Perolat, J., Leibo, J. Z., Zambaldi, V., Beattie, C., Tuyls, K., and Graepel, T. (2017). A
multi-agent reinforcement learning model of common-pool resource appropriation. In
Advances in Neural Information Processing Systems (NIPS), pages 3646–3655.

Phelps, S., Parsons, S., and McBurney, P. (2004). An evolutionary game-theoretic compari-
son of two double-auction market designs. In International Workshop on Agent-Mediated
Electronic Commerce, volume 3435, pages 101–114.

Pita, J., Jain, M., Tambe, M., Ordóñez, F., and Kraus, S. (2010). Robust solutions to
Stackelberg games: Addressing bounded rationality and limited observations in human
cognition. Artificial Intelligence, 174(15):1142–1171.

Pita, J., Jain, M., Western, C., Portway, C., Tambe, M., Ordonez, F., Kraus, S., and
Parachuri, P. (2008). Deployed ARMOR protection: The application of a game-theoretic
model for security at the Los Angeles International Airport. In International Conference
on Autonomous Agents and Multiagent Systems (AAMAS) (Industry Track), pages
125–132.

Polydoros, A. S. and Nalpantidis, L. (2017). Survey of model-based reinforcement learning:
Applications on robotics. Journal of Intelligent & Robotic Systems, 86(2):153–173.

Ponsen, M., Tuyls, K., Kaisers, M., and Ramon, J. (2009). An evolutionary game-theoretic
analysis of poker strategies. Entertainment Computing, 1(1):39–45.

Puterman, M. L. (1994). Markov decision processes: Discrete stochastic dynamic program-
ming. John Wiley & Sons, Inc., New York, NY.

Robbins, H. and Monro, S. (1951). A stochastic approximation method. The Annals of
Mathematical Statistics, 22(3):400–407.

Ross, S., Chaib-draa, B., and Pineau, J. (2007). Bayes-adaptive POMDPs. Advances in
Neural Information Processing Systems (NIPS), pages 1225–1232.

Rossi, A., Alessi, E., Valsecchi, G., Lewis, H., Radtke, J., Bombardelli, C., and Bastida Vir-
gili, B. (2017). A quantitative evaluation of the environmental impact of the mega
constellations. In European Conference on Space Debris.

Roughgarden, T. (2005). Selfish routing and the price of anarchy, volume 174. MIT press,
Cambridge, MA.

References 153

Roughgarden, T., Syrgkanis, V., and E., T. (2017). The price of anarchy in auctions.
Journal of Artificial Intelligence Research, 1(59):59–101.

Roughgarden, T. and Tardos, E. (2007). Introduction to the inefficiency of equilibria.
Algorithmic Game Theory, 17:443–459.

Ruan, S., Meirina, C., Yu, F., Pattipati, K. R., and Popp, R. L. (2005). Patrolling
in a stochastic environment. Technical report, Electrical and Computer Engineering
Department, University of Connecticut, Storrs.

Rummery, G. A. and Niranjan, M. (1994). Online Q-learning using connectionist systems,
volume 37. University of Cambridge, Department of Engineering, Cambridge, UK.

Russell, S. J. and Norvig, P. (2016). Artificial intelligence: a modern approach. Malaysia;
Pearson Education Limited.

Shapley, L. S. (1953). Stochastic games. Proceedings of the National Academy of Sciences
of the United States of America, 39(10):1095–1100.

Shieh, E., An, B., Yang, R., Tambe, M., Baldwin, C., DiRenzo, J., Maule, B., and Meyer,
G. (2012). PROTECT: A deployed game theoretic system to protect the ports of the
united states. International Conference on Autonomous Agents and Multiagent Systems
(AAMAS), pages 13–20.

Shoham, Y., Powers, R., and Grenager, T. (2003). Multi-agent reinforcement learning: A
critical survey. Technical report, Stanford University.

Shoham, Y., Powers, R., and Grenager, T. (2007). If multi-agent learning is the answer,
what is the question? Artificial Intelligence, 171(7):365–377.

Shooman, M. L. (2003). Reliability of computer systems and networks: fault tolerance,
analysis, and design. John Wiley & Sons, New York, NY.

Silver, D., Huang, A., Maddison, C. J., Guez, A., Sifre, L., Van Den Driessche, G., Schrit-
twieser, J., Antonoglou, I., Panneershelvam, V., Lanctot, M., et al. (2016). Mastering
the game of Go with deep neural networks and tree search. Nature, 529(7587):484–489.

Silver, D., Schrittwieser, J., Simonyan, K., Antonoglou, I., Huang, A., Guez, A., Hubert, T.,
Baker, L., Lai, M., Bolton, A., et al. (2017). Mastering the game of Go without human
knowledge. Nature, 550(7676):354–359.

154 References

Silver, D. and Veness, J. (2010). Monte-Carlo planning in large POMDPs. In Advances in
Neural Information Processing Systems (NIPS), pages 2164–2172.

Singh, S., Jaakkola, T., Littman, M. L., and Szepesvári, C. (2000). Convergence results for
single-step on-policy reinforcement-learning algorithms. Machine learning, 38(3):287–308.

Singh, S. P., Barto, A. G., Grupen, R., and Connolly, C. (1994). Robust reinforcement
learning in motion planning. In Advances in Neural Information Processing Systems
(NIPS), pages 655–662.

Smart, D. R. (1974). Fixed point theorems. Cambridge University Press, Cambridge, UK.

Smith, J. M. and Price, G. R. (1973). The logic of animal conflict. Nature, 246(5427):15–18.

Stackelberg, H. v. (2010). Market structure and equilibrium. Springer Science & Business
Media.

Sunehag, P., Lever, G., Gruslys, A., Czarnecki, W. M., Zambaldi, V., Jaderberg, M., Lanctot,
M., Sonnerat, N., Leibo, J. Z., Tuyls, K., and Grapel, T. (2018). Value-decomposition
networks for cooperative multi-agent learning based on team reward. International
Conference on Autonomous Agents and Multiagent Systems (AAMAS), pages 2085–2087.

Sutton, R. S. and Barto, A. G. (1998). Reinforcement learning: An introduction. MIT
press, Cambridge, MA.

Sutton, R. S., Precup, D., and Singh, S. (1999). Between MDPs and semi-MDPs: A
framework for temporal abstraction in reinforcement learning. Artificial intelligence,
112(1-2):181–211.

Szepesvari, C. and Littman, M. L. (1997). Generalized Markov decision processes: Dynamic-
programming and reinforcement-learning algorithms. Technical report, Brown University.

Tahvonen, O. (1994). Carbon dioxide abatement as a differential game. European Journal
of Political Economy, 10(1):685–705.

Tambe, M. and An, B. (2012). Game theory for security: A real-world challenge problem
for multiagent systems and beyond. In AAAI Technical Report SS-12-03 Game Theory
for Security, Sustainability and Health.

References 155

Thomas, C. D., Cameron, A., Green, R. E., Bakkenes, M., Beaumont, L. J., Collingham,
Y. C., Erasmus, B. F., De Siqueira, M. F., Grainger, A., Hannah, L., et al. (2004).
Extinction risk from climate change. Nature, 427(6970):145–148.

Tsai, J., Rathi, S., Kiekintveld, C., Ordóñez, F., and Tambe, M. (2009). IRIS - A tool for
strategic security allocation in transportation networks. In International Conference on
Autonomous Agents and Multiagent Systems (AAMAS) (Industry Track), pages 37–44.

Tsitsiklis, J. N. (1994). Asynchronous stochastic approximation and Q-learning. Machine
learning, 16(3):185–202.

Tuyls, K. and Nowé, A. (2005). Evolutionary game theory and multi-agent reinforcement
learning. The Knowledge Engineering Review, 20(1):63–90.

Tuyls, K., Perolat, J., Lanctot, M., Leibo, J. Z., and Graepel, T. (2018). A generalised
method for empirical game theoretic analysis. In International Conference on Autonomous
Agents and Multiagent Systems (AAMAS), pages 77–85.

Tuyls, K. and Stone, P. (2018). Multiagent learning paradigms. In Multi-Agent Systems
and Agreement Technologies, volume 10767, pages 3–21. Springer.

Tuyls, K. and Weiss, G. (2012). Multiagent learning: Basics, challenges, and prospects. AI
Magazine, 33(3):41–52.

Vallado, D., Crawford, P., Hujsak, R., and Kelso, T. (2006). Revisiting spacetrack report#
3. In AIAA/AAS Astrodynamics Specialist Conference and Exhibit, volume 6753, pages
1–88.

van Seijen, H., van Hasselt, H., Whiteson, S., and Wiering, M. (2009). A theoretical
and empirical analysis of Expected Sarsa. In IEEE Symposium on Adaptive Dynamic
Programming and Reinforcement Learning, ADPRL 2009, pages 177–184.

von Neumann, J. and Morgenstern, O. (1944). Theory of games and economic behavior.
Princeton University Press, Princeton, NJ.

Walsh, W., Das, R., Tesauro, G., and Kephart, J. (2002). Analyzing complex strategic
interactions in multi-agent systems. In AAAI Conference on Artificial Intelligence -
Workshop on Game-Theoretic and Decision-Theoretic Agents.

156 References

Watkins, C. J. C. H. (1989). Learning from delayed rewards. PhD thesis, King’s College,
Cambridge, UK.

Weibull, J. W. (1997). Evolutionary game theory. MIT press, Cambridge, MA.

Wellman, M. P. (2006). Methods for empirical game-theoretic analysis. In AAAI Conference
on Artificial Intelligence, volume 2, pages 1552–1555.

Wellman, M. P., Jordan, P. R., Kiekintveld, C., Miller, J., and Reeves, D. M. (2006).
Empirical game-theoretic analysis of the TAC market games. In International Conference
on Autonomous Agents and Multiagent Systems (AAMAS) - Workshop on Game-Theoretic
and Decision-Theoretic Agents.

Wellman, M. P. and Prakash, A. (2014). Empirical game-theoretic analysis of an adaptive
cyber-defense scenario (preliminary report). In Conference on Decision and Game Theory
for Security (GAMESEC), pages 43–58.

Yan, Y., Qian, Y., Sharif, H., and Tipper, D. (2013). A survey on smart grid communication
infrastructures: Motivations, requirements and challenges. IEEE communications surveys
& tutorials, 15(1):5–20.

Zhou, K. and Doyle, J. C. (1998). Essentials of robust control, volume 104. Prentice hall,
Upper Saddle River, NJ.

Publications

Klima, R., Bloembergen, D., Savani, R., Tuyls, K., Hennes, D., and Izzo, D. (2016a). Space
debris removal: A game theoretic analysis. Games, 7(3):20.

Klima, R., Bloembergen, D., Savani, R., Tuyls, K., Hennes, D., Izzo, D., Tuyls, K., and
Summerer, L. (2016b). Game theoretic analysis of the space debris dilemma. Technical
report, ESA Ariadna Study 15/8401.

Klima, R., Tuyls, K., and Oliehoek, F. (2016c). Markov security games: Learning in
spatial security problems. NIPS Workshop on Learning, Inference and Control of
Multi-Agent Systems, pages 1–8.

Klima, R., Bloembergen, D., Savani, R., Tuyls, K., Wittig, A., Sapera, A., and Izzo,
D. (2018c). Space debris removal: Learning to cooperate and the price of anarchy.
Frontiers in Robotics and AI, 5(54):22.

Klima, R., Tuyls, K., and Oliehoek, F. (2018d). Model-based reinforcement learning
under periodical observability. AAAI Spring Symposium on Learning, Inference, and
Control of Multi-Agent Systems.

Klima, R., Bloembergen, D., Kaisers, M., and Tuyls, K. (2018a). Learning robust policies
when losing control. Adaptive and Learning Agents workshop at AAMAS.

Klima, R., Bloembergen, D., Kaisers, M., and Tuyls, K. (2018b). Towards learning to
best respond when losing control. European Workshop on Reinforcement Learning
(EWRL), pages 1–11.

Klima, R., Bloembergen, D., Kaisers, M., and Tuyls, K. (2019). Robust temporal difference
learning for critical domains. In International Conference on Autonomous Agents and
Multiagent Systems (AAMAS), pages 350–358.

157

A
Space Debris Simulator Model

A.1 Simulating Space Debris Environment

The simulator is built on top of the Python scientific library PyKEP [Izzo, 2012]. PyKEP
provides basic tools for astrodynamics research, including utilities to interface with online
databases such as the SATCAT1 and TLE (two-line element set)2 databases, which provide
orbital information on all active (not decayed) objects in the low Earth orbit (LEO) regime
we are studying, including the orbital elements that uniquely identify an object’s orbit,
and which are used for orbit propagation. These databases provide the input to our
simulator. PyKEP also provides an implementation of the SGP4 satellite orbit propagator
(via libsgp43), which we use extensively in this work. To simulate the future development
of space debris in low Earth orbit (LEO) we developed several sub-modules, including a
collision model, a break-up model and two launch models. The simulation is stepped at
a fixed time step (e.g., 5 days). We use the SGP4 propagator in PyKEP to update the

1https://celestrak.com
2https://www.space-track.org/
3https://github.com/dnwrnr/sgp4

158

https://celestrak.com
https://www.space-track.org/
https://github.com/dnwrnr/sgp4

Appendix A. Space Debris Simulator Model 159

position of all orbital elements in our catalogue. At the end of each time step, the following
procedures are executed:

• decay of objects: either natural decay caused by gravity drag or intentional decay
caused by active mitigation,

• collisions between objects, producing new debris,

• launches of new spacecraft.

A.2 Collision and Breakup Model

To evaluate the probability of collision between objects we follow the Cube approach [Liou
et al., 2003]. The Cube approach samples uniformly in time rather than space and is thus
compatible with any orbital evolution simulation as it does not impose assumptions on
the orbital geometry. This is particularly important in LEO, where orbital progression is
significant in the considered time frame. We use the SGP4 [Vallado et al., 2006] orbital
propagator to calculate the evolution of the ephemeris (i.e., position and velocity) of an
orbiting object given its TLE description. Ephemerides of all objects are calculated at
regular time intervals. Space is then partitioned by a regular 3D-lattice (forming cubes)
and for any pair i, j of objects that fall into the same volume, the collision probability pij
is calculated as follows:

Pi,j = sisjVrelσU ,

where si, sj are the spatial densities of object i an j in the cube, σ = π(ri + rj)2 is the
cross-sectional collision area, Vrel is the collision (relative) velocity of the two objects, and
U is the volume of the cube. For each pair, a pseudo-random number x is generated from a
uniform distribution over the interval [0, 1); if Pi,j > x, a collision event is triggered.

We use the NASA standard breakup model [Johnson et al., 2001] to generate the
population of fragments resulting from a collision event. The NASA/JSC breakup model
is a widely accepted stochastic model of the fragmentation process of in-orbit collisions
and explosions based on multiple ground-tests and radar observations of past events. The
model provides distributions for size, mass and ejection velocity of the fragment population
parametrised by the total mass and collision velocity of the parent objects. The number of
fragments larger than a characteristic length-scale follows a power-law, the area-to-mass
ratio follows a multivariate normal distribution, and the ejection velocity is sampled from a

160 A.3. Simple Launch Model

log-normal distribution. For details we refer to the original paper of Johnson et al. [2001]
as well as the description of the model in Klinkrad [2010]. For each sampled fragment,
we create a new TLE entry using the fragment’s osculating elements, and add it to the
population of objects being propagated. Although the breakup model also covers explosions
as well as non-catastrophic collisions, we only consider catastrophic collisions (i.e., events
leading to complete disintegration) in this work.

Decaying of Objects

Figure A.1 shows two examples (top and bottom row) of debris clouds resulting from
collisions in our simulation. The debris cloud is plotted both directly after the collision
(left) and after 10 years (right). Each dot represents one piece of debris; the size represents
their mass. We can observe that a number of debris objects decay during these 10 years,
in particular those with low altitudes. Atmospheric drag slows these object down, further
reducing their altitude until they burn up in Earth’s atmosphere. An example of debris
decay is given in Figure A.2. The object decays once it approaches the Earth’s surface,
which is around 6371 km (Earth radius).

In the complex launch model we also consider an intentional decay of newly launched
spacecrafts with mitigation guidelines implemented, we will discuss this in more detail in
Section A.4.

A.3 Simple Launch Model

Firstly, we consider a simple future launch model, which we validate to be in line with the
related work of Liou and Johnson Liou and Johnson [2009].

A.3.1 Repeating Launch Sequence

To simulate future launches of new satellites we assume a “business as usual” scenario based
on past data. One can assume that future launches will differ from past launches by many
factors, e.g., the mission purpose, the number of launches, their launch success rate and
technology level, and the satellite’s ability to decay in given time frame, etc. However, as
a first step of simplification we base our model on repeating a 10 year window from 2005
to 2015. From the SATCAT catalogue we filter all space objects introduced in this time
window, excluding debris. For all these objects (both decayed and not decayed) we store the

Appendix A. Space Debris Simulator Model 161

1.5 1.6 1.7 1.8 1.9 2.0 2.1 2.2 2.3
Orbital Period [hours]

0

500

1000

1500

2000

Al
tit

ud
e

[k
m

]

Distribution of Debris Clouds: 2016

apogee
perigee

(a) Sample 1, directly after collision

1.5 1.6 1.7 1.8 1.9 2.0 2.1 2.2 2.3
Orbital Period [hours]

0

500

1000

1500

2000

Al
tit

ud
e

[k
m

]

Distribution of Debris Clouds: 2026

apogee
perigee

(b) Sample 1, after 10 years

1.5 1.6 1.7 1.8 1.9 2.0 2.1 2.2 2.3
Orbital Period [hours]

0

500

1000

1500

2000

Al
tit

ud
e

[k
m

]

Distribution of Debris Clouds: 2016

apogee
perigee

(c) Sample 2, directly after collision

1.5 1.6 1.7 1.8 1.9 2.0 2.1 2.2 2.3
Orbital Period [hours]

0

500

1000

1500

2000

Al
tit

ud
e

[k
m

]

Distribution of Debris Clouds: 2026

apogee
perigee

(d) Sample 2, after 10 years

Figure A.1: Debris clouds from two sample collisions. Each dot is one piece of debris; the
size represents their mass. Left figures show the clouds directly after the collision and right
figures after 10 years. We can see how the objects in low altitudes decay.

TLE data (for the decayed objects we store the last TLE recorded). We then repeat this 10
year launch sequence and introduce each month all the objects that were launched exactly
(a multiple of) ten years ago. We keep all the orbital elements the same, except for the
inclination, which we sample randomly from the distribution of inclinations of all objects
in the repeated sequence. This way, newly launched satellites will have slightly different
orbits, as can be expected. Figure A.3 shows the distribution of orbital inclinations. We
can see that the highest number of objects has an inclination of around 95◦. We assume
an increase over time in the number of launches due to technological development and
changing needs. In addition to the 10 year repeating sequence, we increase the number of
launches by 0.5% each year, by randomly sampling from the 10 year sequence. Note that

162 A.3. Simple Launch Model

0 200 400 600 800 10001200140016001800
days

6300

6400

6500

6600

6700

6800

6900

se
m

im
aj

or
 a

xi
s

[k
m

]

Decay of orbit

Figure A.2: Orbital decay of a sample debris object in Earth’s atmosphere around 6371 km
(Earth radius) caused by atmospheric drag.

0 20 40 60 80 100 120 140 160 180
orbital inclination in [deg]

0

100

200

300

400

500

nu
m

be
r o

f o
bj

ec
ts

Orbital inclination distribution

Figure A.3: Orbital inclination distribution of objects being launched in last 10 years.

each launch has a small probability of failing, due to the instability of some orbits resulting
from the randomly sampled orbital inclination. Thus, some objects decay very soon after
being launched, which can be thought of as for example unsuccessful launches, break-up
during first stage, etc.

Figure A.4 shows how the orbital elements of all objects from 2005 to 2015 in LEO
are distributed. We compare the orbital elements of debris (including rocket bodies) and
important assets (active satellites). One can observe that a large number of debris and
active satellites share the same inclination (close to 100) and eccentricity (close to 0). Note
that Figure A.3 differs from Figure A.4a because it also includes already decayed objects.

Appendix A. Space Debris Simulator Model 163

0 20 40 60 80 100 120
degrees [DEG]

0.0

0.1

0.2

0.3

0.4

0.5

0.6

no
rm

al
iz

ed
 n

um
be

r o
f o

bj
ec

ts

Inclination Distributions
Important assets
Debris

(a) Inclination distribution

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Eccentricity ratio

0.0

0.2

0.4

0.6

0.8

1.0

no
rm

al
iz

ed
 n

um
be

r o
f o

bj
ec

ts

Eccentricity Distributions
Important assets
Debris

(b) Eccentricity distribution

0 50 100 150 200 250 300 350 400
degrees [DEG]

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

0.040

0.045

no
rm

al
iz

ed
 n

um
be

r o
f o

bj
ec

ts

Argument Of Periapsis Distributions
Important assets
Debris

(c) Longitude of the ascending node distribu-
tion

0 50 100 150 200 250 300 350 400
degrees [DEG]

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

0.040

0.045

no
rm

al
iz

ed
 n

um
be

r o
f o

bj
ec

ts

Argument Of Periapsis Distributions
Important assets
Debris

(d) Argument of periapsis distribution

Figure A.4: Distribution of osculating elements (normalised to 1) of all important assets
(red) and debris (blue) in LEO which are currently less than 10 years old. Important assets
are active satellites. We can observe the most common inclination and eccentricity orbital
parameters.

A.3.2 Validation

In order to validate our model we simulate the evolution of the total number of debris and
compute the resulting spatial density in different altitude ranges for the next 150 years,
and compare our findings to previously reported predictions. In Figure A.5a we show our
prediction of spatial density in LEO, assuming no mitigation strategies. The three curves
in Figure A.5a represent the situation in year 2015, and predictions for the years 2115 and
2165. One can observe that the highest spatial density is in the region around 800 kilometre
altitude, caused by the Iridium-Kosmos collision (789 km) and the Chinese anti-satellite
missile test causing the Fengyun-1C breakup (865 km). In our prediction, the spatial density

164 A.4. Complex Launch Model

200 400 600 800 1000 1200 1400 1600 1800 2000
altitude [km]

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

sp
at
ia
l d

en
si
t
 [n

o/
km

3]

1e−7 Debris densit - no removals
2015
2115
2165

(a) Our model predictions of spatial densities
in LEO for no debris removal in years 2015,
2115 and 2165.

(b) Predictions according to the model of Liou and
Johnson [2009], showing year 2006 and 2206 with (i) no
removal, (ii) active debris removal (ADR) of 5, 10, 20
objects per year.

Figure A.5: Comparing spatial density predictions in LEO with related work of Liou and
Johnson [2009]. Our model is in line with the related work.

increases significantly over time due to new collisions. We compare our findings with those
reported previously by Liou and Johnson [2009], shown in Figure A.5b for different possible
removal strategies. The non-mitigation scenario in Figure A.5b (for 2006 and 2106) shows
a similar trend as the one observed in our model, with spatial density of debris increasing
over time in particular in the altitude ranges around the Iridium-Kosmos collision and the
Fengyun break-up. Small differences are likely due to different implementations, as the full
details of the model of Liou and Johnson are not available.

A.4 Complex Launch Model

In this section we introduce a more complex type of launching, which moves from some of
the simulator models described in the related work (e.g., Liou and Johnson [2009]), to a
more realistic model. We now consider different future technological development speeds
and implement recent mitigation rules [Klinkrad et al., 2004; Inter-Agency Space Debris
Coordination Committee, 2002].

In order to simulate the future space environment, a crucial ingredient is the modelling
of future launch activities into orbit. In Section A.3 we first considered a simple launching
scheme, which employs a “business as usual” launch model that repeats the launch sequence

Appendix A. Space Debris Simulator Model 165

of a past period (e.g., one decade). The only adjustment made to accommodate technological
advances is a potential speed-up of the launch sequence by scaling it to a shorter period in
the future. The limitation with this modelling is that it does not account for disruptive
innovation in space technology and space economy. The more complex launch model instead
aims to provide finer control of the future scenarios. Clearly it is not possible to predict
the future for the next century, and our launch model does not pretend to do that. Instead,
our simulator is built to allow for a variety of possible future launch scenarios by adjusting
various parameters. While this does not say anything about the probability of each scenario,
it does allow to analyse their potential impact on the space environment if they were to
happen.

As mentioned before the simulator is based on discrete time steps. To model future
launches in this complex scenario, the key metric we use is the mass launched into LEO
per year. This mass is continuously injected into the orbital environment by spreading it
over four different classes of spacecraft, the relative distribution of which changes with time
to model technological progress made.

A.4.1 Mass per Year

We choose to model the total mass launched per year into LEO using a quadratic function

Mtot(t) = M2000 · (1 + α(t− 2000)2) (A.1)

with t in years AD and M2000 = 200, 000 kg the total mass launched in the year 2000 used
as a baseline. This function is purely heuristic and is meant to combine two effects: the
increased launch capabilities becoming available, which increases the total mass launched
per year, and miniaturisation of satellite technology, which reduces the need to launch large
mass into LEO. As neither effect can be modelled with any certainty we opted for a simple
function that has only one parameter α. The value of α allows to adjust the growth rate.
Reasonable values would probably be around α = 10−4, leading to a doubling of the annual
mass to orbit over the next 100 years, while α = 10−3 leads to a twenty-fold increase (see
Figure A.6). Negative values correspond to a decrease in launched mass over time, which
could happen either due to technological advances making large launch mass unnecessary
or a marked downturn in space activity.

166 A.4. Complex Launch Model

2000 2020 2040 2060 2080 2100
year [AD]

1.0

1.5

2.0

2.5

3.0

m
a
ss

/M
2

0
0

0
 [

-]

α=1e-5
α=1e-4
α=2e-4

Figure A.6: Mass to orbit defining the total mass launched per year into low Earth orbit
in relation to baseline mass launched in year 2000 (M2000) for different values of α. For
example the green curve represents a doubling of the annual mass to orbit over the next
100 years.

A.4.2 Spacecraft Classes

The following four classes of spacecraft are considered in our complex launch model:

• Large satellites, representative of the big communication and science satellites being
actively launched and in common use today.

• Medium satellites, representative of newer science and technology demonstrators
being developed and launched today and in the near future, e.g., for upcoming mega
constellations.

• Small satellites, a group representative of cubesat type satellites which are being
developed and tested today and may become increasingly attractive over the next
decades.

• Ultrasmall satellites, a class of highly experimental nano-satellites, such as chipsats,
envisioned to potentially become feasible in the future.

These classes are defined in terms of their attributes, including a typical mass and cost
range for the satellite. More specifically, each class has the following attributes:

1. time dependent market share,

Appendix A. Space Debris Simulator Model 167

2. cost range,

3. mass range,

4. operational life time,

5. decay time.

With the exception of the market share function, all other attributes are represented as a
range of values sampled uniformly each time a new spacecraft is launched. These attributes
then remain assigned to the newly instantiated spacecraft for the remainder of its lifetime.
They represent the total cost of the spacecraft including launch, the total mass of the
spacecraft (ignoring any differences between dry and wet mass), the date of the end of
operational life and the date when this spacecraft is scheduled to decay and burn up in the
atmosphere following a controlled deorbiting manoeuvre.

The market share is the share of the total number of newly launched satellites at a
given time that belongs to this particular class. It is the only attribute that is an explicit
function of time. The idea behind it is that right now there are still many large traditional
satellites being launched, but that number will decrease as cubesat technology will mature
and smaller satellites can perform the same functions as their larger predecessors. To derive
a market share function, we opted for a non-normalized Gaussian for each class:

g(t;µ, σ) = exp−(t− µ)2

2σ2 .

where t is measured in years since the year 2000. The two variables µ, indicating the center,
and σ, indicating the width of the distribution, are chosen for each class and form a crucial
part of the scenario definition. They are heuristically chosen such that the final market
share function exhibits the desired trend for a given scenario. Intuitively the centre µ can
be thought of as the point in time at which the production of that class of satellites peaks,
while the width σ determines the slope and length of the build-up and decline of that class.

At each moment in time t, the probability p of a newly launched satellite belonging to
class x ∈ X, i.e., the market share function for class x, is then given by the expression:

px(t) = gx(t)∑
i∈X gi(t)

(A.2)

where gi(t) = g(t;µi, σi) is the Gaussian with the parameters for class i.

168 A.4. Complex Launch Model

This definition of the market share function keeps the number of parameters defining the
scenario sufficiently low, while providing enough flexibility to model different developments
in the future. Examples for different scenarios and corresponding market share functions
are given below.

A.4.3 Orbits

The remaining attributes that need to be decided when launching new spacecrafts are the
actual orbits to inject the spacecrafts into. SGP4 uses averaged Keplerian orbital elements
[Vallado et al., 2006] for its orbit representation. In that representation, and restricting
ourselves to the LEO regime, we arrive at the following bounds for newly launched satellites:

• Semi-major axis: a ∈ [300, 1200] +RE km (distribution from current data)

• Eccentricity: e ∈ [0.0, 0.5] (distribution from current data)

• Inclination: i ∈ [0, 2π] (distribution from current data)

• RAAN: Ω ∈ [0, 2π] (uniform distribution)

• Periapsis: ω ∈ [0, 2π] (uniform distribution)

• Mean anomaly: M ∈ [0, 2π] (uniform distribution)

The orbital elements semi-major axis (a), eccentricity (e), and inclination (i) are
randomly chosen from the distribution of previously launched spacecraft. The rational for
just replicating the current distribution is that those orbital parameters represent orbits
that are chosen for astrodynamical reasons such as sun-synchronous orbits or polar orbits.
As these features are based on the underlying physics, they will not change in the future and
the same orbits can reasonably be expected to remain relevant depending on the objective
of the satellite. The right ascension of the ascending node (Ω), argument of periapsis (ω)
and mean anomaly (M), instead, just represent orbital orientation and position of the
spacecraft within the orbit, and are less relevant for the astrodynamic properties of the
orbit. They are therefore chosen from a flat distribution. In our simulation, we obtain
the distributions for semi-major axis, eccentricity, and inclination from the current space
catalogue filtered for objects in the past 20 years and within the given bounds, as shown in
Figure A.7.

Appendix A. Space Debris Simulator Model 169

0 20 40 60 80 100 120

degrees [deg]

0.0

0.1

0.2

0.3

0.4

0.5

0.6
Inclination distributions

0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08

eccentricity

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
Eccentricity distributions

300 400 500 600 700 800 900 1000 1100 1200

semi-major axis [km] - R_E

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

n
u
m

b
e
r

o
f

o
b
je

ct
s

(n
o
rm

a
liz

e
d
)

Semi-major axis distributions

Figure A.7: Distributions of semi-major axis, inclination, and eccentricity of objects filtered
from current space catalogue from last 20 years, from which we sample new orbital elements
for objects to be launched. The remaining orbital elements are sampled uniformly at
random from a given range.

The last input required for the SGP4 propagator is the so-called drag coefficient B∗

nominally defined as
B∗ = ρ0CDA

2m
where ρ0 = 2.461·10−5 kg/m3 is the reference atmospheric density, CD is the drag coefficient,
and A/m is the area-to-mass ratio. As these values are typically not known exactly, in
practice B∗ is used to represent a range of non-conservative forces acting on the spacecraft.
For real observations this parameter is typically fitted to provide the best agreement between
SGP4 propagation and observation data. It is therefore possible to even find negative
drag values in the satellite catalogue. As B∗ is tightly related to the area to mass ratio
A/m, and hence to spacecraft geometry, it is not possible to simply sample from previous
distributions. As this parameter is used as a heuristic “catch-all” parameter in the SGP4
model, we simply set it to 0 for newly launched spacecraft. The justification for this
is that for its active life a satellite will be maintained by its operator. This includes in
particular orbit raising manoeuvres carried out regularly to maintain the operational orbit
of a satellite. Similarly, as described above, our model assumes active end-of-life disposal of
newly launched satellites by their respective operators. This eliminates the need for a drag
term also during disposal. For debris fragments generated during in-orbit collisions, on the
other hand, B∗ does play a role in gradually decaying collision fragments. As the breakup
model provides values for A/m, we simply assume a constant value of CD = 2.2, typically

170 A.4. Complex Launch Model

used for spacecraft where no other value has been determined experimentally, and compute
B∗ from that.

A.4.4 Launches

Instead of simulating individual launches, we regularly inject mass via averaged launches
directly into the LEO environment. The justification for this is that while launches happen
discretely, our simulation already ignores the rocket launcher itself, as well as initial
commissioning and deployment phases of the satellites after being released by the launcher.
Thus, trying to predict individual launches does not add anything to the accuracy of the
simulation. A random set of new satellites is injected into orbit once per month, in our
case the first time the simulation steps into a new month. The number of newly launched
satellites is determined by the mass to orbit function evaluated at the current epoch. It
provides the necessary information of how much mass to deliver to LEO each year, so
dividing by 12 yields the newly launched mass to inject this month. The spacecraft class of
newly launched spacecraft is sampled from the probability distribution given by the market
share functions following Equation A.2. The properties of each spacecraft are selected
randomly within the parameter ranges defined for each class of spacecraft. The orbits of the
new spacecraft are chosen at random within the bounds specified by the global parameters
of the simulation as detailed above. The spacecraft mass is then subtracted from the
available launch mass. Note that even if the remaining launch mass is not sufficient, the
spacecraft is still launched to avoid penalizing large spacecraft when dividing annual launch
mass into monthly slices. As long as there is mass left, the process is repeated until all
available launch mass has been used.

A.4.5 Future Launch Scenarios

To illustrate the complex launch model described above, we propose three scenarios that
model the future nature of newly launched satellites. We chose these scenarios to illustrate
three conceptually different developments in future launches with a time horizon of about
100 years. As mentioned before, we make no claim about how realistic these scenarios are,
they are merely presented as possible developments in the future.

The three scenarios we propose are:

• Conservative: this scenario assumes little growth in space activity and is mostly
“business as usual”. The total launched mass stays constant, and also technical progress

Appendix A. Space Debris Simulator Model 171

is slow. Relatively few and large spacecraft are being launched during most of the
century.

• Moderate: this scenario assumes moderate growth in space activity. Total mass
launched increases moderately, doubling over the next 100 years. Some technical
progress is being made, but the market share of large and mid-size satellites remains
significant also at the end of the century.

• Aggressive: this scenario assumes aggressive growth both in space activity and
technological development. Note that the mass to orbit in this scenario is actually
decreasing slightly by about 10% as spacecraft miniaturization technology is developing
fast enough to keep up with increased demand. By the end of the century, the vast
majority of newly launched spacecraft are cubesats and clouds of futuristic chipsats.

Table A.1 lists the parameters corresponding to these scenarios. Figure A.8 shows plots
of the market share and total mass function for each scenario for illustration.

Decay of newly launched objects In contrast to the simple launch model (Section A.3),
in this complex launch model the newly launched objects are assumed to follow the mitigation
guidelines rules [Klinkrad et al., 2004]. Each newly launched object has a decay time assigned
to it, this is the time after which the object is assumed to have decayed and it is removed
from the simulation. This is to simulate modern satellites with active end-of-life mitigation
techniques such as de-orbiting devices or graveyard orbit parking. While we do not simulate
those de-orbiting actions explicitly, we do want to ensure that after the given lifetime
objects do disappear from the catalogue.

A.4.6 Mega Constellations

In this complex launch model we have considered three classes of satellites for the future
launch scenarios. An additional pseudo-class, constellations, could be used to represent
medium size satellites in large constellations. These are launched at hand-picked dates
defined in a scenario and into specific orbits. A constellation is built up over a certain time
period Tdeployment, during which some of the available launch mass each year is used for this
task. Even after completion, the constellation continues to be maintained at a certain rate.
This requires replacing new satellites into the constellation as old satellites are de-orbited.

172 A.4. Complex Launch Model

ultra-small small medium large
cost range [2ke, 1Me] [1Me, 15Me] [15Me, 40Me] [40Me, 700Me]
mass range [0.1 kg, 10 kg] [10 kg, 100 kg] [100 kg, 500 kg] [500 kg, 5,000 kg]

operational time [0.5 yr, 1 yr] [0.5 yr, 2 yr] [1 yr, 5 yr] [10 yr, 20 yr]
decay time [0.5 yr, 2 yr] [1 yr, 7 yr] [7 yr, 20 yr] [10 yr, 25 yr]

Conservative
µ 2200 2150 2060 2020
σ 50 50 40 60
α 0

Moderate
µ 2150 2090 2060 1970
σ 35 30 50 60
α 10−4

Aggressive
µ 2150 2100 2040 1975
σ 50 40 30 60
α −10−5

Table A.1: Parameters for 4 different spacecraft classes (ultra-small, small, medium and
large) and 3 launch scenarios (conservative, moderate and aggressive). Parameters µ, σ are
defining the Gaussian launch function and parameter α the yearly mass launched to orbit.

One could assume all constellations to be Walker Delta Pattern Constellations. That
means a total number of satellites t is equally distributed over p circular (e = 0) orbital
planes with fixed inclination i. Each plane’s ascending node is rotated by 360◦/p relative
to the previous plane (i.e., they are evenly spaced). The difference in the anomaly of
a spacecraft in one plane and the next is given by 360◦f/t. The notation used in the
following is i : t/p/f . Constellation deployment can be simulated by each month launching
t/Tdeployment satellites, where Tdeployment is the total deployment time in months. For
simplicity, each satellite is injected in order, i.e., in the orbital plane following the last
satellite with phase shift 360◦f/t in the anomaly. The launch mass is subtracted from the
available launch mass that month before any other launches. Even if not enough launch
mass is available, the constellation satellites are still injected. Constellation maintenance can
then be simulated by “refreshing” constellation satellites that have reached their end-of-life
with new ones. This is simply done by resetting their operational time and subtracting
the corresponding launch mass from the available launch mass. This would ignore the

Appendix A. Space Debris Simulator Model 173

de-orbiting of the old satellite. Each constellation has the following attributes that can be
defined in the scenario:

1. total number of satellites,

2. orbital distribution (some Walker configuration),

3. type of each satellite in constellation (with properties beyond orbit as for individual
satellites),

4. construction time of the constellation,

5. life time of the constellation.

Various constellations are feasible. It is of course impossible to predict which will be
launched when, but we can provide several options for various scenarios. The dates given are
completely arbitrary and can be adjusted. For far future constellations beyond a reasonable
planning horizon of about 20 years also the satellite size and weight should probably be
adjusted. In Tables A.2 and A.3 we give two possible constellations, corresponding to a
conservative4 and a moderate5 estimate for what is possible. In the context of the future
launch scenarios, these should probably be deployed cumulatively, i.e., for a moderate
scenario both the conservative and the moderate constellation should be deployed. Note
that we do not consider this additional class of constellations in our experiments, but only
state it here and leave it for future work.

4http://www.bbc.com/news/science-environment-33268180
5http://forum.nasaspaceflight.com/index.php?topic=41634.0

http://www.bbc.com/news/science-environment-33268180
http://forum.nasaspaceflight.com/index.php?topic=41634.0

174 A.4. Complex Launch Model
Klima et al.

(a) Conservative scenario

(b) Moderate scenario

(c) Aggressive scenario

Figure 3. Market share and mass to orbit function for the conservative, moderate and aggressive scenarios.

Frontiers 11

Figure A.8: Market share and mass to orbit function for the conservative, moderate
and aggressive launch scenarios as specified in Table A.1. The conservative scenario
assumes “business as usual” with constant launch mass and slower technical progress,
however the aggressive scenario assumes a fast technological development with emphasis on
miniaturisation of spacecrafts.

Appendix A. Space Debris Simulator Model 175

Walker Constellation 90◦ : 720/18/1
Altitude 950 km

Inclination 90◦ (polar)
Number of satellites 720

Number of orbital planes 18
Satellite mass 175 kg

Satellite operational time 10 years
Satellite de-orbiting time 5 years

Satellite value 1M e
Construction starting date January 2020

Construction completion date January 2025
End of operation January 2040

Table A.2: Conservative: Proposed OneWeb-like constellation.

Walker Constellation #1 53◦ : 1600/32/XX
Walker Constellation #2 53.8◦ : 1600/32/XX
Walker Constellation #3 74◦ : 400/8/XX

Altitude 1,150 km / 1,110 km / 1,130 km
Inclination 53◦ / 53.8◦ / 74◦

Number of satellites 1600 / 1600 / 400
Number of orbital planes 32 / 32 / 8

Satellite mass 385 kg
Satellite operational time 7 years
Satellite de-orbiting time 1 years

Satellite value 2M e
Construction starting date January 2020

Construction completion date January 2025
End of operation January 2035

Table A.3: Moderate: Possible SpaceX-like constellation.

B
The Space Debris Removal Problem as a

Normal-form Game: Preliminary Work

In this appendix we introduce how the space debris removal dilemma can be modelled as a
normal-form game in which the players are space actors, their actions are debris removal
strategies, and the payoffs are derived from removal costs as well as collision risks, which
are obtained by our space debris simulator. The strategic interaction results from the fact
that debris removal by one agent may affect the collision risks to others as well. In this
section we use the space debris simulator described in Appendix A with the simple launch
model described in Appendix A.3.

B.1 Defining the Space Debris Removal Game

Players As a starting point we mainly focus our analysis on a two-player game, due to the
amount of computation required to estimate the payoff function. Additionally, we discuss a
game with three players. We consider players to be historically important actors; in the two
player game choosing (1) the United States (US) represented by The National Aeronautics

176

Appendix B. The Space Debris Removal Problem: Preliminary Work 177

2020 2040 2060 2080 2100 2120 2140 2160
year

150

200

250

300

350

400

450

Nu
m
be

r o
f i
m
po

rt
an

t a
ss
et
s

Important assets development
Russia
US
China
EU

Figure B.1: Prediction of the development of the number of important assets (active
satellites) for each player based on the assumption of a 0.5% yearly growth in future
launches.

and Space Administration (NASA), and (2) the European Union (EU) represented by
European Space Agency (ESA) together with all EU member states. Furthermore we
assume a three player scenario where we add China (CN) as the third player; the fourth
major space actor, Russia (Roscosmos), is not included in our game but does play a role in
the simulator in terms of repeating past launch sequences.1

Important assets For each player we store a list of important assets. Important assets
are all active objects owned by that player which are not debris, and which have been
launched in the last 10 years (we assume a 10 year life span of satellites). The list of
important assets is continuously updated during the simulation. Figure B.1 shows an
example of the development of important assets for each of the actors. One can observe
that a small difference in the number of important assets at the beginning causes a big
difference at the end of the projection due to the repetition of launches from the same
sequence, combined with the 0.5% yearly increase.

Actions The players’ actions are defined by the number of debris objects that will be
removed each year. In our game, the players can remove 0, 1, or 2 risky objects every 2 years.
We assume self-interested agents, meaning that each player first removes objects which
directly threaten their important assets, and then removes objects which may potentially
collide in general. The reasoning for the latter is that debris resulting from any collision

1This choice is arbitrary, we expect similar results if Russia would be included as active player instead.

178 B.2. Simulation Results and Projections

strategy payoff function

remove 2 −(r̂ · CL + T · CR)
remove 1 −(r̂ · CL + 0.5 · T · CR)
remove 0 −(r̂ · CL)

Table B.1: Payoff functions for the different strategies: remove 2, remove 1 and remove 0.
Cost of losing an asset CL and cost of object removal CR are parameters of the game, r̂ is
the risk of collision obtained from the space debris simulator and T is time horizon.

may pose a potential future risk to player’s important assets. Therefore, removing any
risky debris object (not only those that directly threaten important assets) may benefit
all the players to some extent. Each player decides on his strategy at the beginning of the
game, and does not change it later. Thus, we assume a one-shot normal form game.

Risks and payoffs During simulation we keep track of the risk of collision (defined as
probability of collision by the space debris simulator, see Appendix A.2) to each player’s
important assets. The cumulative sum of these risks is taken as the overall risk to each
player under the simulated scenario. Subsequently, we derive payoffs from the costs of
losing important assets, and the costs of object removal. These payoffs are computed by
multiplying the player’s risk r̂ by the associated cost of losing an asset CL, and adding the
cost of removing one object each year CR multiplied by the number of removed objects and
the time horizon T . Specifically, Table B.1 lists the payoff functions that are used given the
player’s strategy. Since the term r̂ ·CL is common to each strategy, we can assume without
loss of generality that CL = 1 (in arbitrary units) and focus only on CR in the remainder.

B.2 Simulation Results and Projections

We use our simulator with the simple launch model to project the evolution of debris and
collision risks with a time horizon of 150 years, i.e., the period 2016-2165, while repeating
the launch history of 2006-2015 with a 0.5% yearly increase in number of launched satellites.
We first focus on a 2-player 3-action game, with players the US and the EU, and the actions:
remove 0, 1, or 2 objects every two years as described above. For each combination of
actions we average over 160 Monte-Carlo runs to account for randomness in the collision
and break-up modules. Error margins are omitted in the figures for readability, but are

Appendix B. The Space Debris Removal Problem: Preliminary Work 179

reported below in Table B.2.

B.2.1 Debris Evolution

Figure B.2 shows the evolution of objects in LEO for different combinations of strategies
taken by the US and the EU. We observe an exponential growth trend without mitigation,

2020 2040 2060 2080 2100 2120 2140 2160
year

10000

20000

30000

40000

50000

60000

70000

80000

90000
to
ta
l n

um
be

r o
f o

bj
ec
ts

Debris evolution - US & EU remove
US 0 EU 0
US 1 EU 0
US 2 EU 0
US 0 EU 1
US 1 EU 1
US 2 EU 1
US 0 EU 2
US 1 EU 2
US 2 EU 2

Figure B.2: Debris evolution for next 150 years considering different strategies. The y-
axis depicts the number of objects in low-earth orbit. Each curve represents a different
combination of strategies (remove 0, 1 or 2 objects) taken by the two players (the US and
the EU).

in line with findings previously reported by Liou and Johnson [2009]. One can clearly see
that removing risky objects has a positive effect as it leads to a much lower total number of
objects in LEO. Note that when both players remove 2 objects every two years, this means
that in total 300 objects are actively removed over the course of 150 years. In contrast,
this leads to a reduction in total number of objects in LEO of over 60,000, due to a strong
decrease in the number of collisions and resulting debris. Also note that the total number of
active satellites (i.e., important assets, see Section B.1) in each scenario is less than 1,500,
a small fraction of the total number of objects.

B.2.2 Risk Evolution

We now look at the potential risks to the players’ important assets, that result from the
debris evolution in LEO. Figure B.3a shows the evolution of the expected overall risk to

180 B.2. Simulation Results and Projections

2020 2040 2060 2080 2100 2120 2140 2160
year

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

US
 ri

sk
 o

f c
ol

lis
io

n

US risk evolution
US 0 EU 0
US 1 EU 0
US 2 EU 0
US 0 EU 1
US 1 EU 1
US 2 EU 1
US 0 EU 2
US 1 EU 2
US 2 EU 2

(a) Risk to US assets

2020 2040 2060 2080 2100 2120 2140 2160
year

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

EU
 ri

sk
 o

f c
ol

lis
io

n

EU risk evolution
US 0 EU 0
US 1 EU 0
US 2 EU 0
US 0 EU 1
US 1 EU 1
US 2 EU 1
US 0 EU 2
US 1 EU 2
US 2 EU 2

(b) Risk to EU assets

Figure B.3: Evolution of the overall collision risk to important assets of the US (left) and
the EU (right), for different actions taken by both players. We can see an exponential
growth of the risks for cases where the players do not remove any objects.

the US. One can observe that if the EU removes objects it helps the US as well. However,
objects removed by the US have greater impact on their overall risk, which is explained by
the fact that each player removes firstly the objects that threaten their important assets
directly, and only then they remove objects that pose a risk in general. Therefore, we can
see that the joint action {US 1, EU 0} helps the US substantially more than {US 0, EU 2},
even though in the latter case more objects are removed in total. In Figure B.3b we can see
the expected overall risk of losing important assets for the EU. We observe similar trends as
in the previous figure: the EU is better off when they remove objects that directly threaten
their assets. However, EU risks decrease, even when the EU does not remove any objects,
but the US does remove. This means that, as expected, there is in fact a dilemma as each
player benefits from mitigation efforts of others, without having to pay a cost (free-riding).

The free-riding effect can be observed as well when looking at the risk evolution for both
China and Russia in Figures B.4a and B.4b. Even though these actors did not take part
in mitigation in our scenario (essentially playing the fixed action of remove 0), they still
benefit from a reduced risk to their important assets. One can notice an abrupt increase in
the Chinese risks around the year 2080, which is eliminated when more objects are removed
in total. The joint efforts of the US and the EU in fact remove the one object which causes

Appendix B. The Space Debris Removal Problem: Preliminary Work 181

2020 2040 2060 2080 2100 2120 2140 2160
year

0.0

0.1

0.2

0.3

0.4

0.5
Ch

in
es

e
ris

k
of

 c
ol

lis
io

n
Chinese risk evolution

US 0 EU 0
US 1 EU 0
US 2 EU 0
US 0 EU 1
US 1 EU 1
US 2 EU 1
US 0 EU 2
US 1 EU 2
US 2 EU 2

(a) Risk to Chinese assets

2020 2040 2060 2080 2100 2120 2140 2160
year

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Ru
ss

ia
n

ris
k

of
 c

ol
lis

io
n

Russian risk evolution
US 0 EU 0
US 1 EU 0
US 2 EU 0
US 0 EU 1
US 1 EU 1
US 2 EU 1
US 0 EU 2
US 1 EU 2
US 2 EU 2

(b) Risk to Russian assets

Figure B.4: Free-riding effect in the overall risk to important assets for non-active players
China and Russia (both removing 0), for different combinations of actions taken by the US
and the EU. Non-active players benefit from other players removing objects.

this high risk to the Chinese important assets. Note that this abrupt increase is persistent
across simulation runs, caused by the deterministic nature of the orbital propagator.

B.3 Game Theoretic Analysis of Equilibria

We now introduce a game theoretic analysis of the space debris removal dilemma. First, we
use the results reported in Section B.2 to derive a normal-form game representation of the
two-player scenario. We then thoroughly analyse this game. Finally, we give an example
of a three-player game. For an introduction on to game theoretic concepts see Section 2.1
where we also describe the Nash equilibrium which we use in this section.

B.3.1 Two Player Game

Using the simulation results of Section B.2, we can now construct a normal-form game
representation of the two-player space debris removal dilemma. First, we construct a risk
matrix, showing the overall risks to two players (the US and the EU) for each combination
of actions. Then, we use this risk table together with the cost function defined in Table B.1
to derive payoff matrices for different removal costs CR, and analyse all possible Nash

182 B.3. Game Theoretic Analysis of Equilibria

EU 2 EU 1 EU 0

risks

US 2 0.03413, 0.03733 0.05247, 0.07108 0.07704, 0.27474

US 1 0.06073, 0.06352 0.09499, 0.10405 0.10885, 0.31401

US 0 0.25022, 0.07368 0.28848, 0.12447 0.34261, 0.36385

confidence intervals

US 2 ±0.00528,±0.00563 ±0.00712,±0.00785 ±0.00838,±0.01874

US 1 ±0.00689,±0.00767 ±0.00820,±0.00938 ±0.00994,±0.01954

US 0 ±0.01896,±0.00786 ±0.01685,±0.01061 ±0.01831,±0.01859

Table B.2: Risk matrix for both players for each combination of strategies. The risks are
the average cumulative risk of losing an asset over the course of 150 years. We show 95 %
confidence intervals in the lower table.

equilibria outcomes. This game has some interesting properties due to the payoff structure
and asymmetry of the studied problem, which comes from different levels of space programs
of the agents resulting in different number of assets in the orbits. There are other factors
contributing to the asymmetric property of the game model such as position of some assets
on orbits with higher density of space debris and therefore higher potential risks to these
assets. Table B.2 shows the average cumulative risks accrued by both players, taken from
the results in Figures B.3a and B.3b (time horizon 150 years, averaged over 160 MC runs
for each scenario). A cumulative risk of 0.36385 for the EU in the no removal case can be
interpreted as an expected loss of 0.36385 assets in total for the EU. The lower part of
Table B.2 shows the 95% confidence intervals for these averages. Clearly, when no removal
costs are taken into account, it is in the best interest of each player to remove as many
debris as possible. However, one should assume non-zero removal costs. Using the cost
functions of Table B.1 we can transform the risk matrix into a payoff matrix for any given
cost CR. Table B.3 shows an example payoff matrix for cost CR = 0.003 (in arbitrary units,
see Section B.1). The player’s best responses are indicated in bold. One can see that there
are two pure Nash equilibria in this scenario, {US 0, EU 1} and {US 1, EU 0}. Moreover
there is one mixed equilibrium in which the US and the EU mix between removing 1 and 0
with probability (0.488, 0.512) and (0.218, 0.782) respectively.

We can identify two interesting regions in the range of costs CR. For very low costs,

Appendix B. The Space Debris Removal Problem: Preliminary Work 183

EU 2 EU 1 EU 0

US 2 −0.48413,−0.48733 −0.50247,−0.29608 −0.52704,−0.27474
US 1 −0.28573,−0.51352 −0.31999,−0.32905 −0.33385,−0.31401
US 0 −0.25022,−0.52368 −0.28848,−0.34947 −0.34261,−0.36385

Table B.3: Payoff matrix for both players for CR = 0.003. Best responses are in bold text,
thus there are two pure Nash equilibria: {US 0, EU 1} and {US 1, EU 0}.

removing 0 will never be a best response for either player. Similarly, for high costs, removing
2 will never be a best response. Therefore we can focus on two sub-games defined by the
removal action-pairs {0, 1} and {1, 2}. We compute Nash equilibria for a range of CR, and
visualise the results in Figure B.5 for the sub-games {0, 1} (left panel) and {1, 2} (right
panel). On the y-axis we have the probability of playing the first action in each sub-game
(which equals 1 minus the probability of the second action) for the US (top) and the EU
(bottom). The colours/line styles indicate the action pairs that make up the equilibria,
e.g., the solid lines in Figure B.5 correspond to the pure Nash equilibria (0, 0) (black) and
(1, 1) (red). The x-axis shows the ratio between the cost of removal CR and the cost of
losing an important asset CL (assuming without loss of generality CL = 1, as described in
Section B.1). In both figures we see interesting transitions from the single Nash equilibrium
at (0, 0), to a situation where three equilibria exist at (0, 1), (1, 0) and one mixed, and
finally back to a single pure equilibrium at (1, 1). These transition phases also include a
stage in which only one of the asymmetric pure equilibria at (1, 0) or (0, 1) exists. The
existence of these asymmetric equilibria is interesting, and results from the asymmetry
that is inherent in the risk matrix due to actors having different numbers of assets and in
different orbits.

B.3.2 Strategic Substitutes and Existence of Pure Equilibrium

The games we construct here are finite strategic-form games. The celebrated result of Nash
[1951] shows that every finite game possesses at least one Nash equilibrium in mixed
strategies. While mixing makes a lot of sense in some settings, e.g., zero-sum games like
poker and sports matches, in other settings pure strategy equilibria are more compelling.
In this section we discuss properties, relevant for the games we construct, that guarantees
the existence of pure equilibria.

184 B.3. Game Theoretic Analysis of Equilibria

0.0
0.2
0.4
0.6
0.8
1.0

US
 0
 =
 (1

 -
US

 1
)

Equilibria evolution - US removes 0 or 1

0.0022 0.0024 0.0026 0.0028 0.0030 0.0032 0.0034
cost of removal

0.0
0.2
0.4
0.6
0.8
1.0

EU
 0
 =
 (1

 -
EU

 1
)

Equilibria evolution - EU removes 0 or 1
US 1 EU 1
US 1 EU 0
US 0 EU 1
US 0 EU 0
mixed

0.0
0.2
0.4
0.6
0.8
1.0

US
 1
 =
 (1

 -
US

 2
)

Equilibria evolution - US removes 1 or 2

0.00030 0.00035 0.00040 0.00045 0.00050 0.00055 0.00060
cost of removal

0.0
0.2
0.4
0.6
0.8
1.0

EU
 1
 =
 (1

 -
EU

 2
)

Equilibria evolution - EU removes 1 or 2
US 2 EU 2
US 1 EU 2
US 2 EU 1
US 1 EU 1
mixed

Figure B.5: Equilibrium strategies for the sub-game {remove 0, remove 1} (left panel) and
{remove 1, remove 2} (right panel) for a range of removal costs CR. The y-axis shows the
probability of each player (the US and the EU) removing 0 (left panel) or 1 (right panel)
object. The x-axis shows the ratio between the cost of removal CR and the cost of losing
an important asset CL (assuming CL = 1).

In general, active debris removal has a positive effect not only for the instigator of
the removal but also for other players, and this is the cause of the dilemma that we are
studying. In game-theoretic terminology, this suggests that we have games with a weak
strategic substitutes property. The most well-known economic game with this property is
Cournot oligopoly [Novshek, 1985; Bamón and Frayssé, 1985]. First we formally define the
property. Our exposition is based on Dubey et al. [2006], but, for simplicity, is specialised
to the setting of finite pure strategy sets. Denote the set of players by N = {1, 2, . . . , n}.
Each player i ∈ N has a finite pure strategy set Πi that is a subset of non-negative real
numbers, i.e., Πi ⊂ R≥0. In our space debris removal games, Πi can be thought of as the
set of choices of how much debris player i removes, so in Table B.1, the three strategies
remove 0, remove 1, remove 2 would correspond to Πi = {0, 1, 2}. Let Π denote the set of
all pure strategy profiles, i.e., Π := Π1 ×Π2 × · · · ×Πn. The payoff (reward) function of
player i is defined as Ri : Π→ R.

For the purpose of stating known results on the existence of pure equilibria, we are
going to assume that the payoff of player i depends only on his choice and the aggregate
(i.e., sum) of the strategy choices of the other players. Formally, for any pure strategy

Appendix B. The Space Debris Removal Problem: Preliminary Work 185

profile π = (π1, π2, . . . , πn) ∈ Π, we denote by π̄−i the additive aggregate of other players
strategies, i.e.,

π̄−i =
∑

j∈N\{i}
πj .

Then we write our restricted payoff function as Ri(πi, π̄−i). For any choice π−i ∈
∏
j∈N\{i}Πj

as a product of finite pure strategy sets, the set βi(π̄−i) of best responses of player i is given
by

βi(π̄−i) = arg max
t∈Πi

Ri(πi, π̄−i) .

Recall that π = (π1, π2, . . . , πn) ∈ Π is a (pure) Nash equilibrium if

πi ∈ βi(π̄−i)

for all i ∈ N . For a given player i ∈ N , we denote by Π̄−i the set of all possible values of
π̄−i, the additive aggregate of other players’ strategies, i.e., Π̄−i = {π̄−i | π ∈ Π}. We say
that a game like this has the weak strategic substitutes property if there exists a function
bi : Π̄−i for these games with restricted payoffs functions such that:

• bi(x) ∈ βi(x) for all x ∈ Π̄−i, [bi selects a best response for i]

• bi(x) ≤ bi(y) whenever x > y. [bi does not increase in π̄−i]

Such a game with the weak strategic substitutes property, and where payoffs depend only
on one’s own strategy and the sum of others’ strategy, are known to always possess at
least one pure strategy Nash equilibrium, which is shown via a potential-function type
argument [Dubey et al., 2006; Kukushkin, 2004, 1994].

Notice that the weak strategic substitutes property can be defined as above even without
the restriction that the payoffs are of the form ri(πi, π̄−i) for player i. However, in that case
a pure equilibrium may not always exist. The games that we construct comprise payoffs that
arise from (noisy) simulations and thus do not satisfy the restricted payoff form. However,
the games we construct do either have the weak strategic substitutes property, or their
violation of it is not statistically significant. Thus it is an interesting future direction to see
if we can fit restricted payoff functions to closely approximate the empirical payoffs that
arise from our simulations. We discuss this further below, where we also discuss slightly
more general aggregation functions for defining restricted payoff functions that, along with
the weak substitutes property, guarantee the existence of pure equilibria. First though

186 B.3. Game Theoretic Analysis of Equilibria

we note that when considering only two players, the restriction of the payoff functions is
without loss of generality, and so we have the following.

Observation 1. Any two-player game that has the weak strategic substitutes property
admits a pure equilibrium.

For example, in Table B.3, we can see that this game has the weak strategic substitutes
property since, as the EU removes more (going from 0 to 1 to 2), the best responses of the
US (as indicated by the boxes in Table B.3) is to weakly remove less (going from 1 to 0
to 0, respectively), and similarly for the best responses of the EU as the US changes pure
strategy. This game has two pure equilibria (US 0, EU 1) and (US 1, EU 0) and one mixed
equilibrium as one can also see in Figure B.5.

As mentioned above, for games with the weak strategic substitutes property, the
existence of pure equilibria is known for a wider class of games than just those where the
payoff of i depends on his strategy and the sum of the others’. This aggregation of players’
strategies done by π̄−i can in fact be an arbitrary linear combination rather than just a sum,
and further can include linear combinations of products of strategies too; for full details
see Kukushkin [2005]. Thus there is actually a lot of scope to fit payoff functions that meet
these criteria for existence of a pure equilibrium due to strategic substitution and also are
consistent with the payoff estimates that arise from our simulations. We leave this as an
interesting direction for further work.

B.3.3 Evolutionary Dynamics

We now analyse the equilibria from evolutionary game theory perspective, where we look
on the stability of different solutions. For introduction on evolutionary game theory and
evolutionary stable strategies see Section 2.1.3.

Figure B.6 shows the directional field of the replicator dynamics for the sub-game
{remove 0, remove 1} for different values of CR corresponding to the different sets of
equilibria observed in Figure B.5. The axes show the probability with which both players
play the action “remove 0” (US 0 and EU 0). The arrows indicate the direction and
magnitude of change. The replicator dynamics give insight into the stability of the different
equilibria and their corresponding basins of attraction. We can conclude that the mixed
Nash equilibria in panels (c) and (d) are unstable, as a small perturbation will cause the
population to move towards one of the stable pure equilibria. Moreover we can see that the

Appendix B. The Space Debris Removal Problem: Preliminary Work 187

0 0.25 0.5 0.75 1

US 0

0

0.25

0.5

0.75

1

E
U

 0

(a) CR = 0.0024

0 0.25 0.5 0.75 1

US 0

0

0.25

0.5

0.75

1

E
U

 0

(b) CR = 0.0027

0 0.25 0.5 0.75 1

US 0

0

0.25

0.5

0.75

1

E
U

 0

(c) CR = 0.00285

0 0.25 0.5 0.75 1

US 0

0

0.25

0.5

0.75

1

E
U

 0

(d) CR = 0.003

0 0.25 0.5 0.75 1

US 0

0

0.25

0.5

0.75

1

E
U

 0

(e) CR = 0.00315

0 0.25 0.5 0.75 1

US 0

0

0.25

0.5

0.75

1

E
U

 0

(f) CR = 0.0033

Figure B.6: Evolutionary dynamics of the sub-game {remove 0, remove 1} for different
values of CR. Stable attractors are indicated with and unstable attractors with . The
dotted line indicates the trajectory on which the mixed equilibrium moves as CR changes.

basin of attraction for the pure equilibrium {US 0, EU 1} (bottom right corner) is larger
than for {US 1, EU 0} indicating that this equilibrium is more likely to arise when both
players iteratively optimise their strategy. This is of particular interest when full knowledge
of the game is not available and the players need to learn by interacting, e.g., when space
actors mutually adapt their policy based on an estimate of other actors’ policies. In fact,
the replicator dynamics are descriptive of various multi-agent learning processes, and as
such studying these dynamics provides valuable insights in the context of adaptive agents as
well [Bloembergen et al., 2015]. In Figure B.7 we show the directional field of the replicator
dynamics for the sub-game {remove 1, remove 2} for different values of CR corresponding
to the different sets of equilibria observed in right panel of Figure B.5.

188 B.3. Game Theoretic Analysis of Equilibria

0 0.25 0.5 0.75 1

US 1

0

0.25

0.5

0.75

1

E
U

 1

(a) CR = 0.0003

0 0.25 0.5 0.75 1

US 1

0

0.25

0.5

0.75

1

E
U

 1

(b) CR = 0.0004

0 0.25 0.5 0.75 1

US 1

0

0.25

0.5

0.75

1

E
U

 1

(c) CR = 0.00047

0 0.25 0.5 0.75 1

US 1

0

0.25

0.5

0.75

1

E
U

 1

(d) CR = 0.00051

0 0.25 0.5 0.75 1

US 1

0

0.25

0.5

0.75

1

E
U

 1

(e) CR = 0.00055

0 0.25 0.5 0.75 1

US 1

0

0.25

0.5

0.75

1

E
U

 1

(f) CR = 0.0006

Figure B.7: Evolutionary dynamics of the subgame {Remove 1,Remove 2} for different
values of CR. Stable attractors are indicated with and unstable attractors with . The
dotted line indicates the trajectory on which the mixed equilibrium moves as CR changes.

B.3.4 Three Player Game

So far we have only considered two active players. Here, we take a first step in analysing a
larger game between three players (space actors): the US, the EU, and China (CN). We
focus on the two-action sub-game {remove 0, remove 1} only to facilitate analysis. Table B.4
shows the cumulative risks for all three players, averaged over 180 Monte Carlo runs, as well
as the corresponding confidence intervals. The risks for each player are distinguished by
different font styles. We can see that the risks for China are considerably higher than for the
US or the EU, even though their total number of important assets is lower (see Figure B.1).
This interesting result may be due to the specific orbits used by each of the players, some
being more dense in terms of debris than others, which requires further investigation.

We can again convert the risk matrix into a payoff matrix using the payoff functions

Appendix B. The Space Debris Removal Problem: Preliminary Work 189

EU 1 EU 0

CN 1
US 1 0.07013, 0.08621,0.10162 0.09185, 0.31547,0.13320
US 0 0.27373, 0.10294,0.12226 0.30759, 0.33980,0.15468

CN 0
US 1 0.09229, 0.10067,0.38774 0.11226, 0.32031,0.43121
US 0 0.28510, 0.12539,0.43225 0.34400, 0.36335,0.49774

EU 1 EU 0

CN 1
US 1 ±0.0061,±0.0074,±0.0086 ±0.0071,±0.0174,±0.0103
US 0 ±0.0163,±0.0080,±0.0098 ±0.0184,±0.0189,±0.0110

CN 0
US 1 ±0.0077,±0.0087,±0.0255 ±0.0093,±0.0183,±0.0260
US 0 ±0.0157,±0.0099,±0.0275 ±0.0181,±0.0180,±0.0279

Table B.4: Risk matrix (top) and corresponding 95% confidence intervals (bottom) for a
three-player (the US, the EU and China) two-action game, values shown in the font styles
belonging to each player (normal, italic and bold, respectively).

defined in Table B.1. In Figure B.8 we visualise the Nash equilibria for varying costs of
removal CR. At the left part of the figure the cost of removal is low, and therefore it is in
the best interest of all three players to remove debris. However, for increasing costs the
best response for the US becomes to stop removing, with a pure equilibrium (US 0, EU 1,
CN 1). The reason that the US opts out first is due to their lower overall risk compared to
the two other players. In contrast, the higher risks to China mean it is in their interest to
keep removing, even when both the US and the EU have opted out. When the cost rises
even further (the right side of the Figure B.8), we see that for none of the players removing
is viable.

Although for most removal costs CR the strategic substitute property discussed previ-
ously holds, there is a range of costs for which the property is violated. However, the payoff
differences leading to this violation are not statistically significant and may be resolved by
increasing the number of Monte Carlo samples of our simulation, which is left for future
work.

190 B.4. Discussion

0.0
0.2
0.4
0.6
0.8
1.0

US
 0
 =

 (1
 -
US

 1
) Equilibria evolution - US removes 0 or 1

0.0
0.2
0.4
0.6
0.8
1.0

EU
 0
 =

 (1
 -
EU

 1
) Equilibria evolution - EU removes 0 or 1

0.0025 0.0030 0.0035 0.0040 0.0045
cost of removal

0.0
0.2
0.4
0.6
0.8
1.0

CN
 0
 =

 (1
 -
CN

 1
) Equilibria evolution - China removes 0 or 1

US 1 CN 1 EU 1
US 0 CN 1 EU 1
US 0 CN 1 EU 0
US 0 CN 0 EU 0

Figure B.8: Equilibrium strategies for players the US, the EU and China (CN) of the game
{remove 0, remove 1} for a range of removal costs CR. The y-axis shows the probability of
each player (the US, the EU, and CN) removing 0 objects, which is equivalent to one minus
the probability of removing 1. The x-axis shows the ratio between the cost of removal CR
and the cost of losing an important asset CL (assuming CL = 1).

B.4 Discussion

Using data from the space debris simulator with simple launch model we proposed a normal-
form game, which we analysed by identifying Nash equilibria for different levels of cost
of removals; although the costs of active debris removal are still prohibitively high at the
moment they are expected to decrease with future technological development. Additionally,
we investigated the strategic substitute property that appears in this type of game scenario,
and which guarantees existence of a pure equilibrium under certain conditions. Although
a mixed equilibrium exists for some costs as well, it is often more desirable to focus on
pure equilibria. Specifically, in our scenario, it cannot be expected that space agencies will
randomise over pure strategies to decide on their space debris removal policy. Another
disadvantage of a mixed equilibrium in this game is its instability (as shown in Figure B.6),
which is undesirable in the space debris scenario, where the choice of performed action has
a huge impact on the earth orbit environment. For instance, we show how removing just
one high risk debris object every two years can already substantially decrease the risk of

Appendix B. The Space Debris Removal Problem: Preliminary Work 191

collision for active satellites. Additionally, removal of indirect collision risks is beneficial as
well as it reduces the number of potential future on-orbit collisions.

C
Surrogate Model of Space Debris Evolution

C.1 Validation of Surrogate Model

In order to validate our approximate surrogate model we compare outcomes of different set-
tings of thresholds obtained from our surrogate model with the same settings obtained from
the simulations of the full scale space debris model. In the following figures (Figures C.1a -
C.1d) the blue solid curves represent the simulations and the red dashed and green dash-dot
curves represent the surrogate model (pessimistic and optimistic shifting respectively).
Similarly, in Figure C.2 the solid curves represent the simulations and the dashed curves
represent the surrogate model. All the simulation curves have 95% confidence interval
plotted with respective colour shading. We investigate several combinations of threshold
for removals with the focus on switching between the thresholds over the time horizon.
Comparing switching between different thresholds, which represent dynamic strategies,
demonstrates the robustness of our surrogate model. The black horizontal lines show the
points of changing the strategy (threshold). We only show several settings to validate our
surrogate model because of the high computational demands, where every Monte Carlo run

192

Appendix C. Surrogate Model of Space Debris Evolution 193

takes on average 6 hours1, i.e., each simulation curve taking approximately 600 hours if run
on a single thread.

We start with the setting of thresholds [2k, 3k, 1k, 2k] and switching points in years
[20y, 40y, 60y] in Figure C.1a. This setting represents a model where we use threshold 2,000
for the first 20 years, then we change to threshold 3,000 for 20 years, then to threshold
1,000 for 20 years and then threshold 2,000 for the rest of the time horizon, i.e., for another
40 years. Note the total time horizon is 100 years. We can see that the pessimistic
approximation is most of the time within the simulation curve confidence bounds. In
Figure C.1b one can see the simulation and approximation for setting [8k, 4k, 6k, 3k] with
the same intervals between switching. Again, the pessimistic approximation is within the
confidence bounds of the simulation. In Figures C.1c and C.1d we set the switching times to
40 years and then 70 years. We can see that in the first figure the pessimistic approximation
is most of the time within the confidence bounds. In the second figure we can see that at
the end even the pessimistic approximation gets out of the bounds of the confidence interval,
this is caused by an abrupt switch from no-removal strategy to threshold 1,000 strategy
(two extreme strategies in our model). We will later restrict our model to non-abrupt
switching between the threshold strategies due to this behaviour. Finally, in Figure C.2 we
compare several settings of thresholds with only one switch after 50 years. All the curves
start with no-removal strategy and after 50 years they switch to one of the thresholds
1,000, 3,000, 5,000, 8,000 and no-removal, i.e., continuing the no-removal strategy. One can
observe that the abrupter the switch is the more the approximation curve deviates from
the simulation curve. For example switching from no-removal to threshold 1,000 yields a
significant deviation. On the other hand the approximation of switching from no-removal
to threshold 8,000 stays within the confidence bounds of the respective simulation curve.

These experiments show that our approximate surrogate model – in the pessimistic
setting – produces environment dynamics that fall within the 95% confidence interval of
the real Monte Carlo simulations most of the times (except for abrupt switching). This
successfully validates our methodology, approximating the actual simulations well. We can
thus use the surrogate model to efficiently compute environment evolution and resulting
costs for various debris removal strategies.

1run on i7-2600 CPU @ 3.40GHz, 16GB of RAM.

194 C.1. Validation of Surrogate Model

2020 2040 2060 2080 2100 2120

year

0

20000

40000

60000

80000

100000

120000

to
ta

l
n
u
m

b
e
r

o
f

o
b
je

ct
s

Objects number evolution

sim [2k, 3k, 1k, 2k]
change [20y, 40y, 60y]
approx - optimistic
approx - pessimistic

(a) thresholds 2,000, 3,000, 1,000 and 2,000 changed
after 20, 40 and 60 years

2020 2040 2060 2080 2100 2120

year

0

50000

100000

150000

200000

to
ta

l
n
u
m

b
e
r

o
f

o
b
je

ct
s

Objects number evolution

sim [8k, 4k, 6k, 3k]
change [20y, 40y, 60y]
approx - optimistic
approx - pessimistic

(b) thresholds 8,000, 4,000, 6,000 and 3,000 changed
after 20, 40 and 60 years

2020 2040 2060 2080 2100 2120

year

0

50000

100000

150000

200000

to
ta

l
n
u
m

b
e
r

o
f

o
b
je

ct
s

Objects number evolution

sim [NR, 1k, 5k]
approx - optimistic
approx - pessimistic
change [40y, 70y]

(c) thresholds no-removal, 1,000 and 5,000 changed
after 40 and 70 years

2020 2040 2060 2080 2100 2120

year

0

50000

100000

150000

200000

250000

to
ta

l
n
u
m

b
e
r

o
f

o
b
je

ct
s

Objects number evolution

sim [5k, NR, 1k]
approx - optimistic
approx - pessimistic
change [40y, 70y]

(d) thresholds 5,000, no-removal and 1,000 changed
after 40 and 70 years

Figure C.1: Validation for different sequences of thresholds for removal changed at different
time points. Comparing simulation with approximation from the surrogate model. Especially
the pessimistic approximation closely follows the actual simulation, thus our surrogate
model is validated.

Appendix C. Surrogate Model of Space Debris Evolution 195

2020 2040 2060 2080 2100 2120

year

0

50000

100000

150000

200000

250000

300000

350000

to
ta

l
n
u
m

b
e
r

o
f

o
b
je

ct
s

Objects number evolution
sim [NR, NR]
sim [NR, 1k]
sim [NR, 3k]
sim [NR, 5k]
sim [NR, 8k]
approx [NR, NR]
approx [NR, 1k]
approx [NR, 3k]
approx [NR, 5k]
approx [NR, 8k]
change [50y]

Figure C.2: Validation for sequence of thresholds for removal - no-removal and [1,000,
3,000, 5,000, 8,000] changed after 50 years. Comparing simulation with approximation.
Approximations closely follow the actual simulations of respective colour, thus validating
our surrogate model.

	Abstract
	Acknowledgements
	Contents
	Introduction
	Multi-Agent Learning for Security and Sustainability
	Problem Statement and Research Questions
	Contributions and Thesis Outline

	Preliminaries
	Game Theory
	Normal-Form Games
	Solution Concepts
	Evolutionary Game Theory
	Multi-Stage Games

	Reinforcement Learning
	Markov Decision Process
	Policy & Value Function
	Temporal Difference Learning
	Partially Observable Markov Decision Process

	Multi-Agent Learning
	Stochastic Games
	Approaches to Multi-Agent Learning

	Methodology & Application Areas
	Security and Sustainability in Studied Domains
	Sustainability of Earth's Orbit
	Safety in Critical Systems with Risky States
	Mitigating Threats in Spatial Security Domains

	Methodology and Problems Classification
	Threat Types
	Modelling Choices
	Input Data

	Modelling and Learning in the Space Debris Removal Problem
	Space Debris Removal Problem
	Simulating Space Debris Environment
	Models of Agent Interaction
	Surrogate Model of the Space Debris Simulator
	Deterministic Game Model of Space Debris Removal
	Dynamic Decision Making in the Space Debris Problem

	Evaluation of Different Models of Agent Interaction
	Discussion

	Robust Learning in Critical Systems with Risky States
	Need for Robustness in Systems with Risky States
	The Robust Temporal Difference Operator
	Formal Model
	Advanced Model
	Examples of TD() Methods

	Theoretical Analysis of Convergence of Operator
	Convergence to the Optimal Q
	Convergence to the Robust Q
	Convergence in the Multi-Agent Case

	Experiments with Robust Learning
	Performance
	Different Levels of Attack
	Robustness Analysis

	Discussion

	Learning Against Adversarial Agents in Spatial Security Domains
	Uncertainty in Spatial Security Domains
	Partially Observable Model of Spatial Security Games
	Observability in Spatial Security Games
	Statistical Approach to Uncertainty

	Q-learning with Bayesian Inference: BayesRQ
	Experiments with the BayesRQ Algorithm
	Discussion

	Conclusion
	Contributions and Answers to the Research Questions
	Limitations and Perspectives for Future Research

	List of Figures
	List of Tables
	References
	Publications
	Appendix Space Debris Simulator Model
	Simulating Space Debris Environment
	Collision and Breakup Model
	Simple Launch Model
	Repeating Launch Sequence
	Validation

	Complex Launch Model
	Mass per Year
	Spacecraft Classes
	Orbits
	Launches
	Future Launch Scenarios
	Mega Constellations

	Appendix The Space Debris Removal Problem: Preliminary Work
	Defining the Space Debris Removal Game
	Simulation Results and Projections
	Debris Evolution
	Risk Evolution

	Game Theoretic Analysis of Equilibria
	Two Player Game
	Strategic Substitutes and Existence of Pure Equilibrium
	Evolutionary Dynamics
	Three Player Game

	Discussion

	Appendix Surrogate Model of Space Debris Evolution
	Validation of Surrogate Model

