
Stochastic Gradient Descent Optimization

Kaiwen Cai

1. Non Linear Optimization
For a least square minimsation problem:

min
x
F (x) =

1

2
‖f(x)‖22

where x ∈ Rn. A direct method is to calculate the first order derivtive:

dF (x)

dx
= 0 (1)

Then the optimum x is obtained. However, Solving the equation 1 requires knowledge of the global characterics, which are
ususally intracable. Thus, we resort to a stochastic alternative:

1. starting from an initial value x0.

2. in the kth iteration, find an increment ∆xk, such that F (xk + ∆xk) is the minimum in the local region.

3. if ∆xk is smaller than a predefined creterion, then we stop the iteration.

4. update: xk+1 = xk + ∆xk, go to step (2).

1.1. Newton Method

Based on the stochastic method, we will try to linearize F (x) in each iteration:

F (xk + ∆xk) ≈ F (xk) + J(xk)T ∆xk +
1

2
∆xT

kH(xk)∆xk (2)

where J(xk) and H(xk) is the first order and second order derivative functions, i.e., Jacobian and Hessian matrix. If we
ignore the second order item, the optimum ∆x∗k would be:

∆x∗k = −J(xk)

Otherwise if we consider the second order item, the cost function would be

∆x∗k = min
∆xk

‖F (xk) + J(xk)T ∆xk +
1

2
∆xT

kH(xk)∆xk‖22

We calculate the first order derivative of the RHS with respect to ∆xk, and let it equal zero. This would give us:

J(xk) + H(xk)∆xk = 0⇒H(xk)∆xk = −J(xk). (3)

The solution of equation 3 is ∆x∗k.



1.2. Gaussian-Newton Method

F (xk + ∆xk) =
1

2
‖f(xk + ∆xk)‖22 ≈

1

2
‖f(xk) + J(xk)T ∆xk‖22 (4)

∆x∗k = min
∆xk

1

2
‖f(xk) + J(xk)T ∆xk‖22

We calculate the first order derivative of the RHS with respect to ∆xk, and let it equal zero. This would give us:

J(xk)f(xk) + J(xk)J(xk)T ∆xk = 0

i.e.,
J(xk)J(xk)T︸ ︷︷ ︸

H(xk)

∆xk = −J(xk)f(xk) (5)

Thus, an optimisation pipeline is:

Gaussian Newton Method:

1. starting from an initial value x0.

2. in the kth iteration, calculate J(xk) and f(xk).

3. obatain ∆x∗k by solving equation 5.

4. if ∆x∗k is smaller than a predefined creterion, then we stop the iteration.

5. update: xk+1 = xk + ∆x∗k, and go to step (2).

Here we practice the Gaussian-Newton method on a simple curve fitting task. For example, given a batch of samples
{xi, yi|i = 1, 2, · · · , N} , each of which can be roughly parametrized by:

yi = exp(âx2
i + b̂xi + ĉ)

The ground truth parameters â, b̂ and ĉ are unknown. The task is to find the optimum parameters a∗, b∗ and c∗ that best fits
the samples. We denote the variable to be estimated as p = [a, b, c]T . Thus, the cost function is:

fi(p) = yi − exp(ax2
i + bxi + c)

F (p) =

N∑
i

‖fi(p)‖22

In each iteration, the cost function we are going to minimise is:

F (p + ∆p) =

N∑
i

‖fi(p + ∆p)‖22 =

N∑
i

‖fi(p) + Ji(p)T ∆p‖22

∆p∗k = min
∆pk

N∑
i

1

2
‖fi(pk) + Ji(pk)T ∆pk‖22

We calculate the first order derivative of the RHS with respect to ∆pk, and let it equal zero. This would give us:

N∑
i

J(pk)fi(pk) +

N∑
i

Ji(pk)Ji(pk)T ∆pk = 0



i.e.,
N∑
i

Ji(pk)Ji(pk)T ∆pk = −
N∑
i

J(pk)fi(pk)

The Jacobian matrix is calculated as:

Ji(pk) = [
∂fi(pk)

∂a
,
∂fi(pk)

∂b
,
∂fi(pk)

∂c
]T

∂fi(pk)

∂a
= −x2

i exp(ax2
i + bxi + c)

∂fi(pk)

∂b
= −xi exp(ax2

i + bxi + c)

∂fi(pk)

∂c
= − exp(ax2

i + bxi + c)

Then we follow the optimisation steps to iteratively calculate each pk.

1.3. Gaussian Newton Method with Information Matrix

If the samples are corrupted by a known noise, e.g., Gaussian noise w ∼ (0, σ2), then the sample model can be regarded
as:

yi = exp(âx2
i + b̂xi + ĉ) + wi

then
fi(p) ∼ (yi − exp(ax2

i + bxi + c), wi)

the cost function considering Gaussian noise is:

∆p∗k = min
∆pk

N∑
i

1

2

1

w2
i

‖fi(pk) + Ji(pk)T ∆pk‖22

N∑
i

1

w2
i

J(pk)fi(pk) +

N∑
i

1

w2
i

Ji(pk)Ji(pk)T ∆pk = 0

i.e.,
N∑
i

1

w2
i

Ji(pk)Ji(pk)T ∆pk = −
N∑
i

1

w2
i

J(pk)fi(pk)

See python code for detailed comparison experiment on the impact of the variance. Experiment conclusion: Taking sample
variance into consideration will significantly improve parameters estimation accuracy.

1.4. Levenberg-Marquardt Method

ρ =
f(xk + ∆xk)− f(xk)

J(xk)T ∆xk
(6)

ρ indicates how well the approximation is. A robust optimization pipeline is:

Levenberg-Marquardt Method:

1. starting from an initial value x0.

2. in the kth iteration, we solve:

∆x∗k = min
∆xk

1

2
‖f(xk) + J(xk)T ∆xk‖22, s.t.‖D∆xk‖ 6 µ



Figure 1. Curve fitting result using Gaussian Newton Method w/ and w/o. information matrix.

3. if ∆x∗k is smaller than a predefined creterion, then we stop the iteration.

4. calculate ρ by equation 6. If ρ > 3
4 , then µk+1 = 2µk ; else if ρ < 1

4 , then µk+1 = 0.5µk.

5. if ρ is greater than a predefined threhold, then update: xk+1 = xk + ∆x∗k. Go to step 2.

2. Lucas-Kanade Algorithm
2.1. Additive Forward Algorithm

Given a template image T (x), we apply an affine transformation W (x;pgt) to it and obtain a tranformed image I(x) =
T (W (x;pgt)). Suppose the affine transformation is hidden and we want to align an input image I(x) with a template image
T (x), i.e., estimate the affine transformation W (x;p). Formally,

x = [x, y]T

p =
[
p1 p2 p3 p4 p5 p6

]T
W (x;p) =

[
1 + p1 p3 p5

p2 1 + p4 p6

] [
x
y

]
By saying ‘alignment’ we are actually trying to minimise a cost function:

F (p) =
∑
x

‖f(p)‖22 =
∑
x

‖T (x)− I(W (x;p))‖22

A straight-foward solution is to find the zero point of the first order derivative, i.e., ∂F (p)
p = 0. But this is impossible because

while W (x;p) is a linear function w.r.t p, I(x) is a non-linear function w.r.t x. Thus, We resort to optimise the cost function



in a local region rather than a global region:

∆p∗ = arg min
∆p

∑
x

‖I(W (x;p + ∆p))− T (x)‖22

= arg min
∆p

∑
x

‖I(W (x;p)) +
∂I(W (x;p))

∂p
∆p− T (x)‖22

= arg min
∆p

∑
x

‖I(W (x;p)) +
∂I(W (x;p))

∂W (x;p)︸ ︷︷ ︸
1

∂W (x;p)

∂p
∆p)︸ ︷︷ ︸

2

−T (x)‖22

= arg min
∆p

∑
x

‖I(W (x;p)) +∇I ∂W (x;p)

∂p︸ ︷︷ ︸
J

∆p)− T (x)‖22

where∇I is image gradient, and ∂W (x;p)
∂p =

[
x 0 y 0 1 0
0 x 0 y 0 1

]
. In each iteration, the optimum increment is calculated

by solving the following equation:
J(p)J(p)T ∆p∗ = −J(p)f(p)

then update:
p← p + ∆p

Since J(p) is depent on p, J(p) needs to be re-calculated in each itereation.

Puzzles:

1. ∂I(W (x;p))
∂W (x;p) should be evaluated at W (x;p), right? [1] does an operation: warp the gradient∇I with W (x;p).

LK additive forward algorithm:

1. starting from an intial guess pk = p0, pixel region X

2. calculate the error f(pk) = I(W (x;pk))− T (x) for each x ∈ X .

3. calculate ∂W (x;p)
∂p |x∈X ,p=pk

.

4. calculate the gradient of image I and warp it with W (x;pk) and we get∇I .

5. J(pk) = ∇I ∂W (x;p)
∂p |x∈X ,p=pk

6. ∆p∗k = −
∑

x∈X [J(pk)J(pk)T ]−1J(pk)f(pk)

7. check if stop the iteration, otherwise update pk+1 = pk + ∆p∗k.

8. go to step 2.

2.2. Compositional Algorithm

Compositional algorithm decomposes the warpping as:

k + 1← k

W (x;p + ∆p)←W (x;p) : Additive Forward Algorithm update

W (W (x; ∆p);p)←W (x;p) : Compositional Algorithm update

1This term means gradient image evaluated at the warpped pixels.
2Note this term is evaluated at the x and p.



∆p∗ = arg min
∆p

∑
x

‖I(W (W (x; ∆p);p))− T (x)‖22

= arg min
∆p

∑
x

‖I(W (W (x; 0),p)) +
∂I(W (x;p))

∂W (x; 0)︸ ︷︷ ︸
3

∂W (x; 0)

∂p
∆p︸ ︷︷ ︸

4

−T (x)‖22

= arg min
∆p

∑
x

‖I(W (x;p)) +∇I(W (x;p))
∂W (x; 0)

∂p︸ ︷︷ ︸
J

∆p− T (x)‖22

∇I(W (x;p)) is easily obatined since we will have to calculate the first term I(W (x;p)) anyway. ∂W (x;0)
∂p is not depent

on p, thus it needs to be calculated only once. Since we are using compositional warpping, update of p cannot be done with
simple addition. Instead:

W (x;pk+1) = W (W (x; ∆pk);pk) = W (x;pk) ·W (x; ∆pk)1 + pk+1
1 pk+1

3 pk+1
5

pk+1
2 1 + pk+1

4 pk+1
6

0 0 1

 =

1 + pk1 pk3 pk5
pk2 1 + pk4 pk6
0 0 1

 ·
1 + ∆pk1 ∆pk3 ∆pk5

∆pk2 1 + ∆pk4 ∆pk6
0 0 1


=

(1 + pk1)(1 + ∆pk1) + pk3∆pk2 (1 + pk1)∆pk3 + pk3(1 + ∆pk4) (1 + pk1)∆pk5 + pk3∆pk6 + pk5
pk2(1 + ∆pk1) + (1 + pk4)∆pk2 pk2∆pk3 + (1 + pk4)(1 + ∆pk4) pk2∆pk5 + (1 + pk4)∆pk6 + pk6

0 0 1


Solving the above equation will give us the update equation:

p1

p2

p3

p4

p5

p6

 =


p1 + ∆p1 + p1∆p1 + p3∆p2

p2 + ∆p2 + p1∆p1 + p4∆p2

p3 + ∆p3 + p1∆p3 + p3∆p4

p4 + ∆p4 + p1∆p3 + p4∆p4

p5 + ∆p5 + p1∆p5 + p3∆p6

p6 + ∆p6 + p1∆p5 + p4∆p6

 (7)

LK Compositional Algorithm:

1. calculate ∂W (x;0)
∂p |x∈X ,p=0.

2. starting from an intial guess pk = p0, pixel region X

3. calculate the error f(pk) = I(W (x;pk))− T (x) for each x ∈ X .

4. calculate the gradient of image I(W (x;pk)) and we get ∇I(W (x;p)).

5. J(pk) = ∂W (x;0)
∂p |x∈X ,p=0 · ∇I(W (x;p))

6. ∆p∗k = −
∑

x∈X [J(pk)J(pk)T ]−1J(pk)f(pk)

7. check if stop the iteration, otherwise update pk+1 using Eq. 7.

8. go to step 3.

3This term means gradient of the warpped image evaluated at the original pixels.
4Note this term is evaluated at the x and 0.



2.3. Inverse Compositional Algorithm

Similarly, ICA is also aimed to solve this optimisatin problem from a local region. The difference is that the cost function
can be written from another perspective:

∆p∗ = arg min
∆p

∑
x

‖T (W (x; ∆p))− I(W (x;p))‖22

= arg min
∆p

∑
x

‖T (W (x; 0)) +
∂T (W (x; 0))

∂p
∆p− I(W (x;p))‖22

= arg min
∆p

∑
x

‖T (x) +
∂T (W (x; 0))

∂W (x; 0)︸ ︷︷ ︸
5

∂W (x; 0)

∂p︸ ︷︷ ︸
6

∆p− I(W (x;p))‖22

= arg min
∆p

∑
x

‖T (x) +∇T ∂T (W (x; 0))

∂p︸ ︷︷ ︸
J

∆p− I(W (x;p))‖22

update equation is:

T (W (x; 0))− I(W (x;pk+1)) = T (W (x; ∆pk))− I(W (x;pk)) =⇒ W (x;pk+1) = W (x;pk) ·W (x; ∆pk)−1

We want to update using
W (x;pk+1) = W (x;pk) ·W (x; ∆p′k)

therefore, solving the below equations

W (x; ∆pk)−1 =

1 + ∆p1 ∆p3 ∆p5

∆p2 1 + ∆p4 ∆p6

0 0 1

−1

=
1

(1 + ∆p1)(1 + ∆p4)−∆p2∆p3

1 + ∆p4 −∆p3 −∆p5 −∆p4∆p5 + ∆p3∆p6

−∆p2 1 + ∆p1 −∆p6 −∆p1∆p6 + ∆p2∆p5

0 0 1


W (x; ∆p′) =

1 + ∆p′1 ∆p′3 ∆p′5
∆p′2 1 + ∆p′4 ∆p′6

0 0 1


W (x; ∆pk)−1 = W (x; ∆p′)

(8)

will result in: 
∆p′1
∆p′2
∆p′3
∆p′4
∆p′5
∆p′6

 =
1

(1 + ∆p1)(1 + ∆p4)−∆p2∆p3
·


−∆p1 −∆p1∆p4 + ∆p2∆p3

−∆p2

−∆p3

−∆p4 −∆p1∆p4 + ∆p2∆p3

−∆p5 −∆p4∆p5 + ∆p3∆p6

−∆p6 −∆p1∆p6 + ∆p2∆p5

 (9)

Now we can update using 
p1

p2

p3

p4

p5

p6

←

p1 + ∆p′1 + p1∆p′1 + p3∆p′2
p2 + ∆p′2 + p1∆p′1 + p4∆p′2
p3 + ∆p′3 + p1∆p′3 + p3∆p′4
p4 + ∆p′4 + p1∆p′3 + p4∆p′4
p5 + ∆p′5 + p1∆p′5 + p3∆p′6
p6 + ∆p′6 + p1∆p′5 + p4∆p′6

 (10)

Note that J is indepent on p, this wonderful property makes it possible that we calculate the Jacobian once, and then use
it over and over again.

5This term means gradient of the image evaluated at the original pixels.
6Note this term is evaluated at the x and 0.



Figure 2. Left to right: template image T , transformed template image I , recovered template image T̃ using ICA.

LK Inverse Compositional Algorithm:

1. calculate ∂W (x;0)
∂p |x∈X ,p=0,∇T and J = ∂W (x;0)

∂p |x∈X ,p=0 · ∇T .

2. starting from an intial guess pk = p0, pixel region x ∈ X

3. calculate the error f(pk) = T (x)− I(W (x;pk)) for each x ∈ X .

4. ∆p∗k = −
∑

x∈X [J(pk)J(pk)T ]−1J(pk)f(pk)

5. check if stop the iteration, otherwise update pk+1 using the equation 9 and Eq. 10.

6. go to step 3.

References
[1] Simon Baker and Iain Matthews. Lucas-kanade 20 years on: A unifying framework. International journal of computer vision,

56(3):221–255, 2004.


