Stochastic Gradient Descent Optimization

Kaiwen Cai

1. Non Linear Optimization

For a least square minimsation problem:

$$
\min _{\boldsymbol{x}} F(\boldsymbol{x})=\frac{1}{2}\|f(\boldsymbol{x})\|_{2}^{2}
$$

where $\boldsymbol{x} \in \mathbb{R}^{n}$. A direct method is to calculate the first order derivtive:

$$
\begin{equation*}
\frac{d F(\boldsymbol{x})}{d \boldsymbol{x}}=0 \tag{1}
\end{equation*}
$$

Then the optimum \boldsymbol{x} is obtained. However, Solving the equation 1 requires knowledge of the global characterics, which are ususally intracable. Thus, we resort to a stochastic alternative:

1. starting from an initial value \boldsymbol{x}_{0}.
2. in the $k_{t h}$ iteration, find an increment $\Delta \boldsymbol{x}_{k}$, such that $F\left(\boldsymbol{x}_{k}+\Delta \boldsymbol{x}_{k}\right)$ is the minimum in the local region.
3. if $\Delta \boldsymbol{x}_{k}$ is smaller than a predefined creterion, then we stop the iteration.
4. update: $\boldsymbol{x}_{k+1}=\boldsymbol{x}_{k}+\Delta \boldsymbol{x}_{k}$, go to step (2).

1.1. Newton Method

Based on the stochastic method, we will try to linearize $F(\boldsymbol{x})$ in each iteration:

$$
\begin{equation*}
F\left(\boldsymbol{x}_{k}+\Delta \boldsymbol{x}_{k}\right) \approx F\left(\boldsymbol{x}_{k}\right)+\boldsymbol{J}\left(\boldsymbol{x}_{k}\right)^{T} \Delta \boldsymbol{x}_{k}+\frac{1}{2} \Delta \boldsymbol{x}_{k}^{T} \boldsymbol{H}\left(\boldsymbol{x}_{k}\right) \Delta \boldsymbol{x}_{k} \tag{2}
\end{equation*}
$$

where $\boldsymbol{J}\left(\boldsymbol{x}_{k}\right)$ and $\boldsymbol{H}\left(\boldsymbol{x}_{k}\right)$ is the first order and second order derivative functions, i.e., Jacobian and Hessian matrix. If we ignore the second order item, the optimum $\Delta \boldsymbol{x}_{k}^{*}$ would be:

$$
\Delta \boldsymbol{x}_{k}^{*}=-\boldsymbol{J}\left(\boldsymbol{x}_{k}\right)
$$

Otherwise if we consider the second order item, the cost function would be

$$
\Delta \boldsymbol{x}_{k}^{*}=\min _{\boldsymbol{\Delta} \boldsymbol{x}_{k}}\left\|F\left(\boldsymbol{x}_{k}\right)+\boldsymbol{J}\left(\boldsymbol{x}_{k}\right)^{T} \Delta \boldsymbol{x}_{k}+\frac{1}{2} \Delta \boldsymbol{x}_{k}^{T} \boldsymbol{H}\left(\boldsymbol{x}_{k}\right) \Delta \boldsymbol{x}_{k}\right\|_{2}^{2}
$$

We calculate the first order derivative of the RHS with respect to $\Delta \boldsymbol{x}_{k}$, and let it equal zero. This would give us:

$$
\begin{equation*}
\boldsymbol{J}\left(\boldsymbol{x}_{k}\right)+\boldsymbol{H}\left(\boldsymbol{x}_{k}\right) \Delta \boldsymbol{x}_{k}=\mathbf{0} \Rightarrow \boldsymbol{H}\left(\boldsymbol{x}_{k}\right) \Delta \boldsymbol{x}_{k}=-\boldsymbol{J}\left(\boldsymbol{x}_{k}\right) \tag{3}
\end{equation*}
$$

The solution of equation 3 is $\Delta \boldsymbol{x}_{k}^{*}$.

1.2. Gaussian-Newton Method

$$
\begin{gather*}
F\left(\boldsymbol{x}_{k}+\Delta \boldsymbol{x}_{k}\right)=\frac{1}{2}\left\|f\left(\boldsymbol{x}_{k}+\Delta \boldsymbol{x}_{k}\right)\right\|_{2}^{2} \approx \frac{1}{2}\left\|f\left(\boldsymbol{x}_{k}\right)+\boldsymbol{J}\left(\boldsymbol{x}_{k}\right)^{T} \Delta \boldsymbol{x}_{k}\right\|_{2}^{2} \tag{4}\\
\Delta \boldsymbol{x}_{k}^{*}=\min _{\Delta x_{k}} \frac{1}{2}\left\|f\left(\boldsymbol{x}_{k}\right)+\boldsymbol{J}\left(\boldsymbol{x}_{k}\right)^{T} \Delta \boldsymbol{x}_{k}\right\|_{2}^{2}
\end{gather*}
$$

We calculate the first order derivative of the RHS with respect to $\Delta \boldsymbol{x}_{k}$, and let it equal zero. This would give us:

$$
\boldsymbol{J}\left(\boldsymbol{x}_{k}\right) f\left(\boldsymbol{x}_{k}\right)+\boldsymbol{J}\left(\boldsymbol{x}_{k}\right) \boldsymbol{J}\left(\boldsymbol{x}_{k}\right)^{T} \Delta \boldsymbol{x}_{k}=0
$$

i.e.,

$$
\begin{equation*}
\underbrace{\boldsymbol{J}\left(\boldsymbol{x}_{k}\right) \boldsymbol{J}\left(\boldsymbol{x}_{k}\right)^{T}}_{\boldsymbol{H}\left(\boldsymbol{x}_{k}\right)} \Delta \boldsymbol{x}_{k}=-\boldsymbol{J}\left(\boldsymbol{x}_{k}\right) f\left(\boldsymbol{x}_{k}\right) \tag{5}
\end{equation*}
$$

Thus, an optimisation pipeline is:

Gaussian Newton Method:

1. starting from an initial value \boldsymbol{x}_{0}.
2. in the $k_{t h}$ iteration, calculate $\boldsymbol{J}\left(\boldsymbol{x}_{k}\right)$ and $f\left(\boldsymbol{x}_{k}\right)$.
3. obatain $\Delta \boldsymbol{x}_{k}^{*}$ by solving equation 5
4. if $\Delta \boldsymbol{x}_{k}^{*}$ is smaller than a predefined creterion, then we stop the iteration.
5. update: $\boldsymbol{x}_{k+1}=\boldsymbol{x}_{k}+\Delta \boldsymbol{x}_{k}^{*}$, and go to step (2).

Here we practice the Gaussian-Newton method on a simple curve fitting task. For example, given a batch of samples $\left\{x_{i}, y_{i} \mid i=1,2, \cdots, N\right\}$, each of which can be roughly parametrized by:

$$
y_{i}=\exp \left(\hat{a} x_{i}^{2}+\hat{b} x_{i}+\hat{c}\right)
$$

The ground truth parameters \hat{a}, \hat{b} and \hat{c} are unknown. The task is to find the optimum parameters a^{*}, b^{*} and c^{*} that best fits the samples. We denote the variable to be estimated as $\boldsymbol{p}=[a, b, c]^{T}$. Thus, the cost function is:

$$
\begin{gathered}
f_{i}(\boldsymbol{p})=y_{i}-\exp \left(a x_{i}^{2}+b x_{i}+c\right) \\
F(\boldsymbol{p})=\sum_{i}^{N}\left\|f_{i}(\boldsymbol{p})\right\|_{2}^{2}
\end{gathered}
$$

In each iteration, the cost function we are going to minimise is:

$$
\begin{gathered}
F(\boldsymbol{p}+\Delta \boldsymbol{p})=\sum_{i}^{N}\left\|f_{i}(\boldsymbol{p}+\Delta \boldsymbol{p})\right\|_{2}^{2}=\sum_{i}^{N}\left\|f_{i}(\boldsymbol{p})+\boldsymbol{J}_{i}(\boldsymbol{p})^{T} \Delta \boldsymbol{p}\right\|_{2}^{2} \\
\Delta \boldsymbol{p}_{k}^{*}=\min _{\Delta p_{k}} \sum_{i}^{N} \frac{1}{2}\left\|f_{i}\left(\boldsymbol{p}_{k}\right)+\boldsymbol{J}_{i}\left(\boldsymbol{p}_{k}\right)^{T} \Delta \boldsymbol{p}_{k}\right\|_{2}^{2}
\end{gathered}
$$

We calculate the first order derivative of the RHS with respect to $\Delta \boldsymbol{p}_{k}$, and let it equal zero. This would give us:

$$
\sum_{i}^{N} \boldsymbol{J}\left(\boldsymbol{p}_{k}\right) f_{i}\left(\boldsymbol{p}_{k}\right)+\sum_{i}^{N} \boldsymbol{J}_{i}\left(\boldsymbol{p}_{k}\right) \boldsymbol{J}_{i}\left(\boldsymbol{p}_{k}\right)^{T} \Delta \boldsymbol{p}_{k}=0
$$

i.e.,

$$
\sum_{i}^{N} \boldsymbol{J}_{i}\left(\boldsymbol{p}_{k}\right) \boldsymbol{J}_{i}\left(\boldsymbol{p}_{k}\right)^{T} \Delta \boldsymbol{p}_{k}=-\sum_{i}^{N} \boldsymbol{J}\left(\boldsymbol{p}_{k}\right) f_{i}\left(\boldsymbol{p}_{k}\right)
$$

The Jacobian matrix is calculated as:

$$
\begin{aligned}
& \boldsymbol{J}_{i}\left(\boldsymbol{p}_{k}\right)=\left[\frac{\partial f_{i}\left(\boldsymbol{p}_{k}\right)}{\partial a}, \frac{\partial f_{i}\left(\boldsymbol{p}_{k}\right)}{\partial b}, \frac{\partial f_{i}\left(\boldsymbol{p}_{k}\right)}{\partial c}\right]^{T} \\
& \left\{\begin{array}{l}
\frac{\partial f_{i}\left(\boldsymbol{p}_{k}\right)}{\partial a}=-x_{i}^{2} \exp \left(a x_{i}^{2}+b x_{i}+c\right) \\
\frac{\partial f_{i}\left(\boldsymbol{p}_{k}\right)}{\partial b}=-x_{i} \exp \left(a x_{i}^{2}+b x_{i}+c\right) \\
\frac{\partial f_{i}\left(\boldsymbol{p}_{k}\right)}{\partial c}=-\exp \left(a x_{i}^{2}+b x_{i}+c\right)
\end{array}\right.
\end{aligned}
$$

Then we follow the optimisation steps to iteratively calculate each \boldsymbol{p}_{k}.

1.3. Gaussian Newton Method with Information Matrix

If the samples are corrupted by a known noise, e.g., Gaussian noise $w \sim\left(0, \sigma^{2}\right)$, then the sample model can be regarded as:

$$
y_{i}=\exp \left(\hat{a} x_{i}^{2}+\hat{b} x_{i}+\hat{c}\right)+w_{i}
$$

then

$$
f_{i}(\boldsymbol{p}) \sim\left(y_{i}-\exp \left(a x_{i}^{2}+b x_{i}+c\right), w_{i}\right)
$$

the cost function considering Gaussian noise is:

$$
\begin{gathered}
\Delta \boldsymbol{p}_{k}^{*}=\min _{\boldsymbol{\Delta} p_{k}} \sum_{i}^{N} \frac{1}{2} \frac{1}{w_{i}^{2}}\left\|f_{i}\left(\boldsymbol{p}_{k}\right)+\boldsymbol{J}_{i}\left(\boldsymbol{p}_{k}\right)^{T} \Delta \boldsymbol{p}_{k}\right\|_{2}^{2} \\
\sum_{i}^{N} \frac{1}{w_{i}^{2}} \boldsymbol{J}\left(\boldsymbol{p}_{k}\right) f_{i}\left(\boldsymbol{p}_{k}\right)+\sum_{i}^{N} \frac{1}{w_{i}^{2}} \boldsymbol{J}_{i}\left(\boldsymbol{p}_{k}\right) \boldsymbol{J}_{i}\left(\boldsymbol{p}_{k}\right)^{T} \Delta \boldsymbol{p}_{k}=0
\end{gathered}
$$

i.e.,

$$
\sum_{i}^{N} \frac{1}{w_{i}^{2}} \boldsymbol{J}_{i}\left(\boldsymbol{p}_{k}\right) \boldsymbol{J}_{i}\left(\boldsymbol{p}_{k}\right)^{T} \Delta \boldsymbol{p}_{k}=-\sum_{i}^{N} \frac{1}{w_{i}^{2}} \boldsymbol{J}\left(\boldsymbol{p}_{k}\right) f_{i}\left(\boldsymbol{p}_{k}\right)
$$

See python code for detailed comparison experiment on the impact of the variance. Experiment conclusion: Taking sample variance into consideration will significantly improve parameters estimation accuracy.

1.4. Levenberg-Marquardt Method

$$
\begin{equation*}
\rho=\frac{f\left(\boldsymbol{x}_{k}+\Delta \boldsymbol{x}_{k}\right)-f\left(\boldsymbol{x}_{k}\right)}{\boldsymbol{J}\left(\boldsymbol{x}_{k}\right)^{T} \Delta \boldsymbol{x}_{k}} \tag{6}
\end{equation*}
$$

ρ indicates how well the approximation is. A robust optimization pipeline is:

Levenberg-Marquardt Method:

1. starting from an initial value \boldsymbol{x}_{0}.
2. in the $k_{t h}$ iteration, we solve:

$$
\Delta \boldsymbol{x}_{k}^{*}=\min _{\boldsymbol{\Delta} x_{k}} \frac{1}{2}\left\|f\left(\boldsymbol{x}_{k}\right)+\boldsymbol{J}\left(\boldsymbol{x}_{k}\right)^{T} \Delta \boldsymbol{x}_{k}\right\|_{2}^{2}, \quad \text { s.t. }\left\|\boldsymbol{D} \Delta \boldsymbol{x}_{k}\right\| \leqslant \mu
$$

Figure 1. Curve fitting result using Gaussian Newton Method w/ and w/o. information matrix.
3. if Δx_{k}^{*} is smaller than a predefined creterion, then we stop the iteration.
4. calculate ρ by equation 6 If $\rho>\frac{3}{4}$, then $\mu_{k+1}=2 \mu_{k}$; else if $\rho<\frac{1}{4}$, then $\mu_{k+1}=0.5 \mu_{k}$.
5. if ρ is greater than a predefined threhold, then update: $\boldsymbol{x}_{k+1}=\boldsymbol{x}_{k}+\Delta \boldsymbol{x}_{k}^{*}$. Go to step 2 .

2. Lucas-Kanade Algorithm

2.1. Additive Forward Algorithm

Given a template image $T(\boldsymbol{x})$, we apply an affine transformation $\boldsymbol{W}\left(\boldsymbol{x} ; \boldsymbol{p}_{g t}\right)$ to it and obtain a tranformed image $I(\boldsymbol{x})=$ $T\left(\boldsymbol{W}\left(\boldsymbol{x} ; \boldsymbol{p}_{g t}\right)\right)$. Suppose the affine transformation is hidden and we want to align an input image $I(\boldsymbol{x})$ with a template image $T(\boldsymbol{x})$, i.e., estimate the affine transformation $\boldsymbol{W}(\boldsymbol{x} ; \boldsymbol{p})$. Formally,

$$
\begin{aligned}
\boldsymbol{x} & =[x, y]^{T} \\
\boldsymbol{p} & =\left[\begin{array}{lllll}
p_{1} & p_{2} & p_{3} & p_{4} & p_{5}
\end{array} p_{6}\right]^{T} \\
\boldsymbol{W}(\boldsymbol{x} ; \boldsymbol{p}) & =\left[\begin{array}{ccc}
1+p_{1} & p_{3} & p_{5} \\
p_{2} & 1+p_{4} & p_{6}
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]
\end{aligned}
$$

By saying 'alignment' we are actually trying to minimise a cost function:

$$
F(\boldsymbol{p})=\sum_{\boldsymbol{x}}\|f(\boldsymbol{p})\|_{2}^{2}=\sum_{\boldsymbol{x}}\|T(\boldsymbol{x})-I(\boldsymbol{W}(\boldsymbol{x} ; \boldsymbol{p}))\|_{2}^{2}
$$

A straight-foward solution is to find the zero point of the first order derivative, i.e., $\frac{\partial F(\boldsymbol{p})}{\boldsymbol{p}}=0$. But this is impossible because while $\boldsymbol{W}(\boldsymbol{x} ; \boldsymbol{p})$ is a linear function w.r.t $\boldsymbol{p}, I(\boldsymbol{x})$ is a non-linear function w.r.t \boldsymbol{x}. Thus, We resort to optimise the cost function
in a local region rather than a global region:

$$
\begin{aligned}
\Delta \boldsymbol{p}^{*} & =\arg \min _{\Delta \boldsymbol{p}} \sum_{\boldsymbol{x}}\|I(\boldsymbol{W}(\boldsymbol{x} ; \boldsymbol{p}+\Delta \boldsymbol{p}))-T(\boldsymbol{x})\|_{2}^{2} \\
& =\arg \min _{\Delta \boldsymbol{p}} \sum_{\boldsymbol{x}} \| I(\boldsymbol{W}(\boldsymbol{x} ; \boldsymbol{p}))+\underbrace{\frac{\partial I(\boldsymbol{W}(\boldsymbol{x} ; \boldsymbol{p}))}{\partial \boldsymbol{p}} \Delta \boldsymbol{p}-T(\boldsymbol{x}) \|_{2}^{2}}_{\boldsymbol{1}} \\
& =\arg \min _{\Delta \boldsymbol{p}} \sum_{\boldsymbol{x}}\|I(\boldsymbol{W}(\boldsymbol{x} ; \boldsymbol{p}))+\underbrace{\frac{\partial I(\boldsymbol{W}(\boldsymbol{x} ; \boldsymbol{p}))}{\partial \boldsymbol{W}(\boldsymbol{x} ; \boldsymbol{p})}}_{\square} \underbrace{\left.\frac{\partial \boldsymbol{W}(\boldsymbol{x} ; \boldsymbol{p})}{\partial \boldsymbol{p}} \Delta \boldsymbol{p}\right)}_{\square}-T(\boldsymbol{x})\|_{2}^{2} \\
& =\arg \min _{\Delta \boldsymbol{p}} \sum_{\boldsymbol{x}} \| I(\boldsymbol{W}(\boldsymbol{x} ; \boldsymbol{p}))+\underbrace{\nabla I \frac{\partial \boldsymbol{W}(\boldsymbol{x} ; \boldsymbol{p})}{\partial \boldsymbol{p}}}_{\boldsymbol{J}} \Delta \boldsymbol{p})-T(\boldsymbol{x}) \|_{2}^{2}
\end{aligned}
$$

where ∇I is image gradient, and $\frac{\partial \boldsymbol{W}(\boldsymbol{x} ; \boldsymbol{p})}{\partial \boldsymbol{p}}=\left[\begin{array}{cccccc}x & 0 & y & 0 & 1 & 0 \\ 0 & x & 0 & y & 0 & 1\end{array}\right]$. In each iteration, the optimum increment is calculated by solving the following equation:

$$
\boldsymbol{J}(\boldsymbol{p}) \boldsymbol{J}(\boldsymbol{p})^{T} \Delta \boldsymbol{p}^{*}=-\boldsymbol{J}(\boldsymbol{p}) f(\boldsymbol{p})
$$

then update:

$$
\boldsymbol{p} \leftarrow \boldsymbol{p}+\Delta \boldsymbol{p}
$$

Since $\boldsymbol{J}(\boldsymbol{p})$ is depent on $\boldsymbol{p}, \boldsymbol{J}(\boldsymbol{p})$ needs to be re-calculated in each itereation.

Puzzles:

1. $\frac{\partial I(\boldsymbol{W}(\boldsymbol{x} ; \boldsymbol{p}))}{\partial \boldsymbol{W}(\boldsymbol{x} ; \boldsymbol{p})}$ should be evaluated at $\boldsymbol{W}(\boldsymbol{x} ; \boldsymbol{p})$, right? [1] does an operation: warp the gradient ∇I with $\boldsymbol{W}(\boldsymbol{x} ; \boldsymbol{p})$.

LK additive forward algorithm:

1. starting from an intial guess $\boldsymbol{p}_{k}=\boldsymbol{p}_{0}$, pixel region \mathcal{X}
2. calculate the error $f\left(\boldsymbol{p}_{k}\right)=I\left(\boldsymbol{W}\left(\boldsymbol{x} ; \boldsymbol{p}_{k}\right)\right)-T(\boldsymbol{x})$ for each $\boldsymbol{x} \in \mathcal{X}$.
3. calculate $\left.\frac{\partial \boldsymbol{W}(\boldsymbol{x} ; \boldsymbol{p})}{\partial \boldsymbol{p}}\right|_{\boldsymbol{x} \in \mathcal{X}, \boldsymbol{p}=\boldsymbol{p}_{k}}$.
4. calculate the gradient of image I and warp it with $\boldsymbol{W}\left(\boldsymbol{x} ; \boldsymbol{p}_{k}\right)$ and we get ∇I.
5. $\boldsymbol{J}\left(\boldsymbol{p}_{k}\right)=\left.\nabla I \frac{\partial \boldsymbol{W}(\boldsymbol{x} ; \boldsymbol{p})}{\partial \boldsymbol{p}}\right|_{\boldsymbol{x} \in \mathcal{X}, \boldsymbol{p}=\boldsymbol{p}_{k}}$
6. $\Delta \boldsymbol{p}_{k}^{*}=-\sum_{x \in \mathcal{X}}\left[\boldsymbol{J}\left(\boldsymbol{p}_{k}\right) \boldsymbol{J}\left(\boldsymbol{p}_{k}\right)^{T}\right]^{-1} \boldsymbol{J}\left(\boldsymbol{p}_{k}\right) f\left(\boldsymbol{p}_{k}\right)$
7. check if stop the iteration, otherwise update $\boldsymbol{p}_{k+1}=\boldsymbol{p}_{k}+\Delta \boldsymbol{p}_{k}^{*}$.
8. go to step 2 .

2.2. Compositional Algorithm

Compositional algorithm decomposes the warpping as:

$$
\begin{aligned}
k+1 & \leftarrow k & & \\
\boldsymbol{W}(\boldsymbol{x} ; \boldsymbol{p}+\Delta \boldsymbol{p}) & \leftarrow \boldsymbol{W}(\boldsymbol{x} ; \boldsymbol{p}) & & : \text { Additive Forward Algorithm update } \\
\boldsymbol{W}(\boldsymbol{W}(\boldsymbol{x} ; \Delta \boldsymbol{p}) ; \boldsymbol{p}) & \leftarrow \boldsymbol{W}(\boldsymbol{x} ; \boldsymbol{p}) & & : \text { Compositional Algorithm update }
\end{aligned}
$$

[^0]\[

$$
\begin{aligned}
\Delta \boldsymbol{p}^{*} & =\arg \min _{\Delta \boldsymbol{p}} \sum_{\boldsymbol{x}}\|I(\boldsymbol{W}(\boldsymbol{W}(\boldsymbol{x} ; \Delta \boldsymbol{p}) ; \boldsymbol{p}))-T(\boldsymbol{x})\|_{2}^{2} \\
& =\arg \min _{\Delta \boldsymbol{p}} \sum_{\boldsymbol{x}}\|I(\boldsymbol{W}(\boldsymbol{W}(\boldsymbol{x} ; \mathbf{0}), \boldsymbol{p}))+\underbrace{\frac{\partial I(\boldsymbol{W}(\boldsymbol{x} ; \boldsymbol{p}))}{\partial \boldsymbol{W}(\boldsymbol{x} ; \boldsymbol{0})}}_{3} \underbrace{\frac{\partial \boldsymbol{W}(\boldsymbol{x} ; \boldsymbol{0})}{\partial \boldsymbol{p}} \Delta \boldsymbol{p}}_{\boxed{4}}-T(\boldsymbol{x})\|_{2}^{2} \\
& =\arg \min _{\Delta \boldsymbol{p}} \sum_{\boldsymbol{x}}\|I(\boldsymbol{W}(\boldsymbol{x} ; \boldsymbol{p}))+\underbrace{\nabla I(\boldsymbol{W}(\boldsymbol{x} ; \boldsymbol{p})) \frac{\partial \boldsymbol{W}(\boldsymbol{x} ; \mathbf{0})}{\partial \boldsymbol{p}}}_{\boldsymbol{J}} \Delta \boldsymbol{p}-T(\boldsymbol{x})\|_{2}^{2}
\end{aligned}
$$
\]

$\nabla I(\boldsymbol{W}(\boldsymbol{x} ; \boldsymbol{p}))$ is easily obatined since we will have to calculate the first term $I(\boldsymbol{W}(\boldsymbol{x} ; \boldsymbol{p}))$ anyway. $\frac{\partial \boldsymbol{W}(\boldsymbol{x} ; \boldsymbol{0})}{\partial \boldsymbol{p}}$ is not depent on p, thus it needs to be calculated only once. Since we are using compositional warpping, update of \boldsymbol{p} cannot be done with simple addition. Instead:

$$
\begin{aligned}
\boldsymbol{W}\left(\boldsymbol{x} ; \boldsymbol{p}_{k+1}\right) & =\boldsymbol{W}\left(\boldsymbol{W}\left(\boldsymbol{x} ; \Delta \boldsymbol{p}_{k}\right) ; \boldsymbol{p}_{k}\right)=\boldsymbol{W}\left(\boldsymbol{x} ; \boldsymbol{p}_{k}\right) \cdot \boldsymbol{W}\left(\boldsymbol{x} ; \boldsymbol{\Delta} p_{k}\right) \\
{\left[\begin{array}{ccc}
1+p_{1}^{k+1} & p_{3}^{k+1} & p_{5}^{k+1} \\
p_{2}^{k+1} & 1+p_{4}^{k+1} & p_{6}^{k+1} \\
0 & 0 & 1
\end{array}\right] } & =\left[\begin{array}{cccc}
1+p_{1}^{k} & p_{3}^{k} & p_{5}^{k} \\
p_{2}^{k} & 1+p_{4}^{k} & p_{6}^{k} \\
0 & 0 & 1
\end{array}\right] \cdot\left[\begin{array}{ccc}
1+\Delta p_{1}^{k} & \Delta p_{3}^{k} & \Delta p_{5}^{k} \\
\Delta p_{2}^{k} & 1+\Delta p_{4}^{k} & \Delta p_{6}^{k} \\
0 & 0 & 1
\end{array}\right] \\
& =\left[\begin{array}{cccc}
\left(1+p_{1}^{k}\right)\left(1+\Delta p_{1}^{k}\right)+p_{3}^{k} \Delta p_{2}^{k} & \left(1+p_{1}^{k}\right) \Delta p_{3}^{k}+p_{k}^{k}\left(1+\Delta p_{4}^{k}\right) & \left(1+p_{1}^{k}\right) \Delta p_{5}^{k}+p_{3}^{k} \Delta p_{6}^{k}+p_{5}^{k} \\
p_{2}^{k}\left(1+\Delta p_{1}^{k}\right)+\left(1+p_{4}^{k}\right) \Delta p_{2}^{k} & p_{2}^{k} \Delta p_{3}^{k}+\left(1+p_{4}^{k}\right)\left(1+\Delta p_{4}^{k}\right) & p_{2}^{k} \Delta p_{5}^{k}+\left(1+p_{4}^{k}\right) \Delta p_{6}^{k}+p_{6}^{k}
\end{array}\right]
\end{aligned}
$$

Solving the above equation will give us the update equation:

$$
\left[\begin{array}{l}
p_{1} \tag{7}\\
p_{2} \\
p_{3} \\
p_{4} \\
p_{5} \\
p_{6}
\end{array}\right]=\left[\begin{array}{l}
p_{1}+\Delta p_{1}+p_{1} \Delta p_{1}+p_{3} \Delta p_{2} \\
p_{2}+\Delta p_{2}+p_{1} \Delta p_{1}+p_{4} \Delta p_{2} \\
p_{3}+\Delta p_{3}+p_{1} \Delta p_{3}+p_{3} \Delta p_{4} \\
p_{4}+\Delta p_{4}+p_{1} \Delta p_{3}+p_{4} \Delta p_{4} \\
p_{5}+\Delta p_{5}+p_{1} \Delta p_{5}+p_{3} \Delta p_{6} \\
p_{6}+\Delta p_{6}+p_{1} \Delta p_{5}+p_{4} \Delta p_{6}
\end{array}\right]
$$

LK Compositional Algorithm:

1. calculate $\left.\frac{\partial \boldsymbol{W}(\boldsymbol{x} ; \mathbf{0})}{\partial \boldsymbol{p}}\right|_{\boldsymbol{x} \in \mathcal{X}, \boldsymbol{p}=\mathbf{0}}$.
2. starting from an intial guess $\boldsymbol{p}_{k}=\boldsymbol{p}_{0}$, pixel region \mathcal{X}
3. calculate the error $f\left(\boldsymbol{p}_{k}\right)=I\left(\boldsymbol{W}\left(\boldsymbol{x} ; \boldsymbol{p}_{k}\right)\right)-T(\boldsymbol{x})$ for each $\boldsymbol{x} \in \mathcal{X}$.
4. calculate the gradient of image $I\left(\boldsymbol{W}\left(\boldsymbol{x} ; \boldsymbol{p}_{k}\right)\right)$ and we get $\nabla I(\boldsymbol{W}(\boldsymbol{x} ; \boldsymbol{p}))$.
5. $\boldsymbol{J}\left(\boldsymbol{p}_{k}\right)=\left.\frac{\partial \boldsymbol{W}(\boldsymbol{x} ; \boldsymbol{0})}{\partial \boldsymbol{p}}\right|_{\boldsymbol{x} \in \mathcal{X}, \boldsymbol{p}=\mathbf{0}} \cdot \nabla I(\boldsymbol{W}(\boldsymbol{x} ; \boldsymbol{p}))$
6. $\Delta \boldsymbol{p}_{k}^{*}=-\sum_{x \in \mathcal{X}}\left[\boldsymbol{J}\left(\boldsymbol{p}_{k}\right) \boldsymbol{J}\left(\boldsymbol{p}_{k}\right)^{T}\right]^{-1} \boldsymbol{J}\left(\boldsymbol{p}_{k}\right) f\left(\boldsymbol{p}_{k}\right)$
7. check if stop the iteration, otherwise update \boldsymbol{p}_{k+1} using Eq. 7 .
8. go to step 3 .
[^1]
2.3. Inverse Compositional Algorithm

Similarly, ICA is also aimed to solve this optimisatin problem from a local region. The difference is that the cost function can be written from another perspective:

$$
\begin{aligned}
\Delta \boldsymbol{p}^{*} & =\arg \min _{\Delta \boldsymbol{p}} \sum_{\boldsymbol{x}}\|T(\boldsymbol{W}(\boldsymbol{x} ; \Delta \boldsymbol{p}))-I(\boldsymbol{W}(\boldsymbol{x} ; \boldsymbol{p}))\|_{2}^{2} \\
& =\arg \min _{\Delta \boldsymbol{p}} \sum_{\boldsymbol{x}}\left\|T(\boldsymbol{W}(\boldsymbol{x} ; \mathbf{0}))+\frac{\partial T(\boldsymbol{W}(\boldsymbol{x} ; \mathbf{0}))}{\partial \boldsymbol{p}} \Delta \boldsymbol{p}-I(\boldsymbol{W}(\boldsymbol{x} ; \boldsymbol{p}))\right\|_{2}^{2} \\
& =\arg \min _{\Delta \boldsymbol{p}} \sum_{\boldsymbol{x}}\|T(\boldsymbol{x})+\underbrace{\frac{\partial T(\boldsymbol{W}(\boldsymbol{x} ; \mathbf{0}))}{\partial \boldsymbol{W}(\boldsymbol{x} ; \mathbf{0})}}_{\boxed{\sigma}} \underbrace{\frac{\partial \boldsymbol{W}(\boldsymbol{x} ; \mathbf{0})}{\partial \boldsymbol{p}}}_{\boxed{6}} \Delta \boldsymbol{p}-I(\boldsymbol{W}(\boldsymbol{x} ; \boldsymbol{p}))\|_{2}^{2} \\
& =\arg \min _{\Delta \boldsymbol{p}} \sum_{\boldsymbol{x}}\|T(\boldsymbol{x})+\underbrace{\nabla T \frac{\partial T(\boldsymbol{W}(\boldsymbol{x} ; \mathbf{0}))}{\partial \boldsymbol{p}}}_{\boldsymbol{J}} \Delta \boldsymbol{p}-I(\boldsymbol{W}(\boldsymbol{x} ; \boldsymbol{p}))\|_{2}^{2}
\end{aligned}
$$

update equation is:

$$
T(\boldsymbol{W}(\boldsymbol{x} ; \mathbf{0}))-I\left(\boldsymbol{W}\left(\boldsymbol{x} ; \boldsymbol{p}_{k+1}\right)\right)=T\left(\boldsymbol{W}\left(\boldsymbol{x} ; \Delta \boldsymbol{p}_{k}\right)\right)-I\left(\boldsymbol{W}\left(\boldsymbol{x} ; \boldsymbol{p}_{k}\right)\right) \Longrightarrow \boldsymbol{W}\left(\boldsymbol{x} ; \boldsymbol{p}_{k+1}\right)=\boldsymbol{W}\left(\boldsymbol{x} ; \boldsymbol{p}_{k}\right) \cdot \boldsymbol{W}\left(\boldsymbol{x} ; \boldsymbol{\Delta} p_{k}\right)^{-1}
$$

We want to update using

$$
\boldsymbol{W}\left(\boldsymbol{x} ; \boldsymbol{p}_{k+1}\right)=\boldsymbol{W}\left(\boldsymbol{x} ; \boldsymbol{p}_{k}\right) \cdot \boldsymbol{W}\left(\boldsymbol{x} ; \boldsymbol{\Delta} p_{k}^{\prime}\right)
$$

therefore, solving the below equations

$$
\begin{align*}
\boldsymbol{W}\left(\boldsymbol{x} ; \boldsymbol{\Delta} p_{k}\right)^{-1} & =\left[\begin{array}{ccc}
1+\Delta p_{1} & \Delta p_{3} & \Delta p_{5} \\
\Delta p_{2} & 1+\Delta p_{4} & \Delta p_{6} \\
0 & 0 & 1
\end{array}\right]^{-1} \\
& =\frac{1}{\left(1+\Delta p_{1}\right)\left(1+\Delta p_{4}\right)-\Delta p_{2} \Delta p_{3}}\left[\begin{array}{ccc}
1+\Delta p_{4} & -\Delta p_{3} & -\Delta p_{5}-\Delta p_{4} \Delta p_{5}+\Delta p_{3} \Delta p_{6} \\
-\Delta p_{2} & 1+\Delta p_{1} & -\Delta p_{6}-\Delta p_{1} \Delta p_{6}+\Delta p_{2} \Delta p_{5} \\
0 & 0 & 1
\end{array}\right] \tag{8}\\
\boldsymbol{W}\left(\boldsymbol{x} ; \Delta p^{\prime}\right) & =\left[\begin{array}{ccc}
1+\Delta p_{1}^{\prime} & \Delta p_{3}^{\prime} & \Delta p_{5}^{\prime} \\
\Delta p_{2}^{\prime} & 1+\Delta p_{4}^{\prime} & \Delta p_{6}^{\prime} \\
0 & 0 & 1
\end{array}\right] \\
\boldsymbol{W}\left(\boldsymbol{x} ; \boldsymbol{\Delta} p_{k}\right)^{-1} & =\boldsymbol{W}\left(\boldsymbol{x} ; \Delta p^{\prime}\right)
\end{align*}
$$

will result in:

$$
\left[\begin{array}{c}
\Delta p_{1}^{\prime} \tag{9}\\
\Delta p_{2}^{\prime} \\
\Delta p_{3}^{\prime} \\
\Delta p_{4}^{\prime} \\
\Delta p_{5}^{\prime} \\
\Delta p_{6}^{\prime}
\end{array}\right]=\frac{1}{\left(1+\Delta p_{1}\right)\left(1+\Delta p_{4}\right)-\Delta p_{2} \Delta p_{3}} \cdot\left[\begin{array}{c}
-\Delta p_{1}-\Delta p_{1} \Delta p_{4}+\Delta p_{2} \Delta p_{3} \\
-\Delta p_{2} \\
-\Delta p_{3} \\
-\Delta p_{4}-\Delta p_{1} \Delta p_{4}+\Delta p_{2} \Delta p_{3} \\
-\Delta p_{5}-\Delta p_{4} \Delta p_{5}+\Delta p_{3} \Delta p_{6} \\
-\Delta p_{6}-\Delta p_{1} \Delta p_{6}+\Delta p_{2} \Delta p_{5}
\end{array}\right]
$$

Now we can update using

$$
\left[\begin{array}{l}
p_{1} \tag{10}\\
p_{2} \\
p_{3} \\
p_{4} \\
p_{5} \\
p_{6}
\end{array}\right] \leftarrow\left[\begin{array}{l}
p_{1}+\Delta p_{1}^{\prime}+p_{1} \Delta p_{1}^{\prime}+p_{3} \Delta p_{2}^{\prime} \\
p_{2}+\Delta p_{2}^{\prime}+p_{1} \Delta p_{1}^{\prime}+p_{4} \Delta p_{2}^{\prime} \\
p_{3}+\Delta p_{3}^{\prime}+p_{1} \Delta p_{3}^{\prime}+p_{3} \Delta p_{4}^{\prime} \\
p_{4}+\Delta p_{4}^{\prime}+p_{1} \Delta p_{3}^{\prime}+p_{4} \Delta p_{4}^{\prime} \\
p_{5}+\Delta p_{5}^{\prime}+p_{1} \Delta p_{5}^{\prime}+p_{3} \Delta p_{6}^{\prime} \\
p_{6}+\Delta p_{6}^{\prime}+p_{1} \Delta p_{5}^{\prime}+p_{4} \Delta p_{6}^{\prime}
\end{array}\right]
$$

Note that \boldsymbol{J} is indepent on \boldsymbol{p}, this wonderful property makes it possible that we calculate the Jacobian once, and then use it over and over again.

[^2]

Figure 2. Left to right: template image T, transformed template image I, recovered template image \tilde{T} using ICA.

LK Inverse Compositional Algorithm:

1. calculate $\left.\frac{\partial \boldsymbol{W}(\boldsymbol{x} ; \mathbf{0})}{\partial \boldsymbol{p}}\right|_{\boldsymbol{x} \in \mathcal{X}, \boldsymbol{p}=\mathbf{0}}, \nabla T$ and $\boldsymbol{J}=\left.\frac{\partial \boldsymbol{W}(\boldsymbol{x} ; \mathbf{0})}{\partial \boldsymbol{p}}\right|_{\boldsymbol{x} \in \mathcal{X}, \boldsymbol{p}=\mathbf{0}} \cdot \nabla T$.
2. starting from an intial guess $\boldsymbol{p}_{k}=\boldsymbol{p}_{0}$, pixel region $\boldsymbol{x} \in \mathcal{X}$
3. calculate the error $f\left(\boldsymbol{p}_{k}\right)=T(\boldsymbol{x})-I\left(\boldsymbol{W}\left(\boldsymbol{x} ; \boldsymbol{p}_{k}\right)\right)$ for each $\boldsymbol{x} \in \mathcal{X}$.
4. $\Delta \boldsymbol{p}_{k}^{*}=-\sum_{x \in \mathcal{X}}\left[\boldsymbol{J}\left(\boldsymbol{p}_{k}\right) \boldsymbol{J}\left(\boldsymbol{p}_{k}\right)^{T}\right]^{-1} \boldsymbol{J}\left(\boldsymbol{p}_{k}\right) f\left(\boldsymbol{p}_{k}\right)$
5. check if stop the iteration, otherwise update \boldsymbol{p}_{k+1} using the equation 9 and Eq .10
6. go to step 3.

References

[1] Simon Baker and Iain Matthews. Lucas-kanade 20 years on: A unifying framework. International journal of computer vision, 56(3):221-255, 2004.

[^0]: ${ }^{1}$ This term means gradient image evaluated at the warpped pixels.
 ${ }^{2}$ Note this term is evaluated at the \boldsymbol{x} and \boldsymbol{p}.

[^1]: ${ }^{3}$ This term means gradient of the warpped image evaluated at the original pixels.
 ${ }^{4}$ Note this term is evaluated at the \boldsymbol{x} and $\mathbf{0}$.

[^2]: ${ }^{5}$ This term means gradient of the image evaluated at the original pixels.
 ${ }^{6}$ Note this term is evaluated at the \boldsymbol{x} and $\mathbf{0}$.

