
Robotics and Autonomous Systems
Lecture 2: Mobile Robotics

Richard Williams

Department of Computer Science
University of Liverpool

1 / 48

Today

• Today we’ll start to look at the main problems faced by mobile robots.
• This sets up the issues we’ll consider for the first half of the course.

• We’ll also consider how these issues relate to the idea of agency.

2 / 48

Autonomy

• Many autonomous vehicles are not really autonomous

• They are teleoperated.

3 / 48

Autonomy

• A really autonomous vehicle makes its own decisions about what to
do.

sensors

effectors

percepts

actions

Environment

• The notion of an agent can help us understand what this requires.

4 / 48

What is an agent?

• As we said before:
An agent is a computer system that is situated in some
environment, and that is capable of autonomous action in
that environment in order to meet its delegated objectives.

• It is all about decisions

• An agent has to choose what action to perform.
• An agent has to decide when to perform an action.

5 / 48

What is an agent?

• Trivial (non-interesting) agents:

• thermostat;
• light switch;
• unix daemon (e.g., biff).

• More interesting agents are intelligent.

6 / 48

Intelligent Agents

• An intelligent agent is a computer system capable of flexible
autonomous action in some environment.
By flexible, we mean:

• reactive;
• pro-active;
• social.

• All these properties make it able to respond to what is around it.

7 / 48

Abstract Architectures for Agents

• Assume the world may be in any of a finite set E of discrete,
instantaneous states:

E “ te, e1, . . .u.

• Agents are assumed to have a repertoire of possible actions available
to them, which transform the state of the world.

Ac “ tα, α1, . . .u

• Actions can be non-deterministic, but only one state ever results from
an action.

• A run, r , of an agent in an environment is a sequence of interleaved
world states and actions:

r : e0
α0
ÝÑ e1

α1
ÝÑ e2

α2
ÝÑ e3

α3
ÝÑ ¨ ¨ ¨

αu´1
ÝÑ eu

8 / 48

Runs of agents

• When actions are deterministic each state has only one possible
successor.

• A run would look something like the following:

9 / 48

Runs of agents

10 / 48

Runs of agents

North!

11 / 48

Runs of agents

12 / 48

Runs of agents

North!

13 / 48

Runs of agents

14 / 48

Runs of agents

East!

15 / 48

Runs of agents

16 / 48

Runs of agents

North!

17 / 48

Runs of agents

18 / 48

Runs of agents

• Which we might picture as so:

North!

North!

19 / 48

Runs of agents

• When actions are non-deterministic, a run (or trajectory) is the same,
but the set of possible runs is more complex.

North!

North!

20 / 48

Runs of agents

• In fact it is more complex still, because all of the runs we pictured
start from the same state.

• Let R be the set of all such possible finite sequences (over E and Ac)
This is the set of all runs from all starting states.

• RE is the subset of R that end with a state.

• All the ones where the agent needs to make a decision.

21 / 48

Agents

• We can think of an agent as being a function which maps runs to
actions:

Ag : RE Ñ Ac

• Thus an agent makes a decision about what action to perform based
on the history of the system that it has witnessed to date.

22 / 48

Agents

North!

North!

North!

West!

• Potentially the agent will reach a different decision when it reaches
the same state by different routes.

23 / 48

Purely Reactive Agents

• Some agents decide what to do without reference to their history —
they base their decision making entirely on the present, with no
reference at all to the past.

• We call such agents purely reactive:

action : E Ñ Ac

• A thermostat is a purely reactive agent.

actionpeq “
"

off if e = temperature OK
on otherwise.

24 / 48

Purely Reactive Agents

North!

North!

North!

West!

• A reactive agent will always do the same thing in the same state.

25 / 48

Purely Reactive Agents

26 / 48

A reactive robot

• A simple reactive program for a robot might be:
Drive forward until you bump into something. Then, turn to
the right. Repeat.

27 / 48

Agents with state

action

state

percepts

actions

see

next

Environment

28 / 48

Agents with state

• The see function is the agent’s ability to observe its environment,
whereas the action function represents the agent’s decision making
process.

• Output of the see function is a percept:

see : E Ñ Per

• The agent has some internal data structure, which is typically used to
record information about the environment state and history.

• Let I be the set of all internal states of the agent.

29 / 48

Agents with state

• The action-selection function action is now defined as a mapping

action : I Ñ Ac

from internal states to actions.

• An additional function next is introduced, which maps an internal
state and percept to an internal state:

next : I ˆ Per Ñ I

• This says how the agent updates its view of the world when it gets a
new percept.

30 / 48

Agents with state

1 Agent starts in some initial internal state i0.

2 Observes its environment state e, and generates a percept seepeq.

3 Internal state of the agent is then updated via next function,
becoming nextpi0, seepeqq.

4 The action selected by the agent is actionpnextpi0, seepeqqq.
This action is then performed.

5 Goto (2).

31 / 48

A robot with state

action

state

percepts

actions

see

next

Environment

• per is a bool that indicates “against an object”.

• i is an integer, “against object for n steps”.

• see updates per each step, indicating if the robot is against an object.

• next is as follows:

nextpiq “
"

i+1 if per = true
0 otherwise.

32 / 48

A robot with state

• Now the robot can take more sophisticated action.

• For example, backing up if it cannot turn away from the wall
immediately.

• This is an example of a common situation in robotics.

• Trading memory and computation for sensing.

33 / 48

What is mobile robotics?

• Last time we boiled the challenges of mobile robotics down to:

?

• Where am I ?
• Where am I going ?
• How do I get there ?

• Now we’ll start talking about how to answer these questions.

34 / 48

The pieces we need

• Locomotion and Kinematics
How to make the robot move, tradeoff between manoeverability and
ease of control.

• Perception
How to make the robot “see”. Dealing with uncertainty in sensor input
and changing environment. Tradeoff between cost, data and
computation.

• Localization and Mapping
Establish the robot’s position, and an idea of what it’s environment
looks like.

• Planning and navigation
How the robot can find a route to its goal, how it can follow the route.

35 / 48

General control architecture

36 / 48

General control architecture

37 / 48

What makes it (particularly) hard

• Changing environment.
• Things change.
• Things get in the way.

• No compact model available.
• How do you represent this all?

• Many sources of uncertainty.
• All information comes from sensors which have errors.
• The process of extracting useful information from sensors has errors

38 / 48

The basic operations

• We start with what the robot can “see”.
There are several forms
this might take, but it will
depend on:

What sensors the robot
has

What features can be ex-
tracted.

• (These are not a particularly likely set of features.)

39 / 48

Map

• A map then says, for example, how these features sit relative to one
another.

40 / 48

Localization

• A robot localizes by identifying features and the position in the map
from which it could see them.

• Lanser et al (1996)

41 / 48

Navigation

• Navigation is then a combination of finding a path through the map. . . .

42 / 48

Navigation

• . . . and avoiding things that get in the way.

43 / 48

How do we put these pieces together?

• A system architecture specifies how these pieces fit together.

• Consider these to be refinements of the “agent with state” from above.

action

state

percepts

actions

see

next

Environment

• Breaking down next and action into additional pieces.

• Adding in new aspects of state I.

44 / 48

Approach: Classical/Deliberative

• Complete modeling

• Function based

• Horizontal decomposition

45 / 48

Approach: Behaviour-based

• Sparse or no modeling

• Behavior based

• Vertical decomposition

• Bottom up

46 / 48

Approach: Hybrid

• A combination of the above.

• Exactly the best way to combine them nobody knows.
• Typical approach is:

• Let “lower level” pieces be behavior based
Localization
Obstacle avoidance
Data collection

• Let more “cognitive” pieces be deliberative
Planning
Map building

47 / 48

Summary

• Last time we talked about what the main challenges of mobile
robotics are.

• This lecture started to describe how we can meet these challenges.

• We covered the main things we need to be able to autonomously
control a robot.

• Along the way we looked at how notions of agency — and what this
means for autonomy — can help.

48 / 48

	Mobile robots

