
Robotics and Autonomous Systems
Lecture 3: Programming robots

Richard Williams

Department of Computer Science
University of Liverpool

1 / 54

Today

• Before the labs start on Monday, we will look a bit at programming
robots.

• There will be three bits
• Programming robots in the abstract.
• The NXT
• LeJOS

• The NXT is the robot we will use for the labs and the projects.

• LeJOS is the language we will use to program the NXT.

2 / 54

The scenario (again)

sensors

effectors

percepts

actions

Environment

• Here’s one view of the basic program loop.

3 / 54

Basic control loop

• Here it is again.

while(true){

read sensors

update internal datastructures

make decisions

set power on motors

}

• Even robots with arms and legs move them by turning motors on and
off.

4 / 54



Basic control loop

5 / 54

Basic control loop

6 / 54

Basic control loop

• We’ll get into more detail about how exactly sensors work later in the
course.

• For now, just think of them as generating a value.

7 / 54

Basic control loop

• We won’t get into more detail about how motors work.

• Just think of a motor command as setting the power on the motors.

• Setting the voltage on a particular port.

8 / 54



Remember timescales

• What will this:

while(true){

switch motors on

:

do stuff

:

switch motors off

}

make the robot do?

9 / 54

Remember timescales

• Even a slow processor runs a lot faster than the robot.

• This:

while(true){

switch motors on

:

do stuff

:

switch motors off

}

• No time for the robot to move.

10 / 54

Remember timescales

• Instead you need:

while(true){

read sensors

:

do stuff

:

if sensors say "this"{

switch motors on

}

if sensors say "that"{

turn motors off

}

}

where this and that are suitably complementary.

11 / 54

Remember control flow

• what will this:

while(true){

read sensors

if sensors say "this"{

switch motors on

}

:

wait

:

if sensors say "that"{

turn motors off

}

}

make the robot do?

12 / 54



Remember control flow

• You have to read the sensors for their state to change.

while(true){

read sensors

if sensors say "this"{

switch motors on

}

:

wait

:

if sensors say "that"{

turn motors off

}

}

will typically make the robot crash.

13 / 54

Remember control flow

• The robot won’t change internal state in a wait.

while(true){

read sensors

if sensors say "this"{

switch motors on

}

:

wait

:

read sensors

if sensors say "that"{

turn motors off

}

}

14 / 54

Remember control flow

• If you need to wait, use a counter.

while(true){

read sensors

if sensors say "this"{

switch motors on

set counter to 0

}

:

if counter > limit{

turn motors off

}

:

increment counter

}

• More elegant variations exist using the various clock functions.

15 / 54

Our robot

16 / 54



The brain/heart

17 / 54

The brain/heart

• The brick is a small computer
powered by a Li-Ion rechargeable battery

intended for robot control.

• 32-bit ARM7 processor, running at 48 MHz
• 256 Kbytes non-volatile flash storage

for storing programs
• 64 Kbytes RAM

for runtime memory

• Speaker

18 / 54

The brain/heart

• If that seems under-powered, bear in mind it is a lot more capable
than its predecessor.

19 / 54

The brain/heart schematic
The brain/heart schematic

20 / 54



The brain/heart schematic
The brain/heart schematic

• 3 ports (A, B and C) for actuators/motors.

• 4 ports (1 to 4) for sensors.

• LCD display panel (monochrome, 100x64)

• 4 input buttons (left, right, center, escape)

• 1 USB port (for downloading programs on the brick)

• Bluetooth connection (for communication with computer)

21 / 54

Motors

22 / 54

Motors

• These are the basic actuators of the NXT kit.
• These are servomotors

• Motor plus feedback
• A sensor measures information about rotation and supplies it back to

the brick.
• The motor can be controlled very precisely.

• We will use these to provide locomotion.

• Other uses involve robotic arms, or active sensor support

23 / 54

Motors

• Lots of gears in there also.
24 / 54



Sensors

25 / 54

Touch

26 / 54

Touch

• Detects when the orange button is pressed.
• Returns a Boolean

• TRUE = sensor is pressed
• FALSE = sensor is not pressed

• Mechanically the sensors work better if there is a bumper that
presses the sensor.

• Our robot has two bumpers — left and right.

27 / 54

Sonar/Ultrasound

28 / 54



Sonar/Ultrasound

• Standard range sensor.
• We will talk more about how sonar work in a later lecture.

• Reports distance to object.
• Works for objects between 5 and 255cm

• Precision of ˘3cm

• Objects beyond 255cm away report 255.

• Sensitive to the kind of objects it is detecting and subject to errors due
to specular reflection.

29 / 54

Light/Colour

30 / 54

Light/Colour

• Emits light and measures the reflection.

• Analyses the colour of the reflection.

• Can distinguish between a number of different colours.

31 / 54

Overall

• Might not seem much, BUT:

• Has pretty much the same capabilities as any mobile robot.
• Can do all the mobile robot things I mentioned last time.

• Just as fun and frustrating.

32 / 54



LeJOS

• Lego Java Operating Systems

• Spanish pronounciation:
• Lay-Hoss

• A small JVM is downloaded onto the brick and allows Java programs
to be executed.

• Some standard Java things are missing.
• Original LeJOS VM was called “Tiny VM”

33 / 54

LeJOS

• However LeJOS has lots of useful robot-specific stuff.

• Java-based, so OO.

• The robot-specific things are implemented as classes + objects.
• Classes to represent, for example:

• Buttons
• Motors
• Sensors

• Access to these devices is then through method calls.

34 / 54

LeJOS

35 / 54

LeJOS

• In many ways LeJOS is just like other robot programming languages.

• Provides function calls that interface with with the robot hardware.
• Means no robot programming language can be completely general

• Aspects of the language are specific to the hardware.

• LeJOS for the NXT is different to LeJOS for the RCX.

• Couldn’t use LeJOS to control the TurtleBot.

36 / 54



HelloWorld

import lejos.nxt.Button;

public class HelloWorld {

public static void main (String[] args) {

System.out.println("Hello World");

Button.waitForAnyPress();

}

}

• Looks pretty standard.

37 / 54

HelloWorld

• In fact, the completely standard program runs:

public class HelloWorld {

public static void main (String[] args) {

System.out.println("Hello World");

}

}

• But you won’t see the message.

• Why?

38 / 54

HelloWorld

• In fact, the completely standard program runs:

public class HelloWorld {

public static void main (String[] args) {

System.out.println("Hello World");

}

}

• The message will flick by too fast to see.

• That Button.waitForAnyPress() is what holds up the previous
program.

39 / 54

Using Motors

• What happens here?
import lejos.nxt.Button;

import lejos.nxt.LCD;

import lejos.nxt.Motor;

public class SimpleDriver{

public static void main(String[] args){

System.out.println("Press any button to start");

Button.waitForAnyPress();

LCD.clear();

Motor.B.forward();

Motor.C.forward();

System.out.println("Press any button to stop");

Button.waitForAnyPress();

Motor.B.stop();

Motor.C.stop();

}

}

40 / 54



Using Motors

• Turns the motors on and off.
import lejos.nxt.Button;

import lejos.nxt.LCD;

import lejos.nxt.Motor;

public class SimpleDriver{

public static void main(String[] args){

System.out.println("Press any button to start");

Button.waitForAnyPress();

LCD.clear();

Motor.B.forward();

Motor.C.forward();

System.out.println("Press any button to stop");

Button.waitForAnyPress();

Motor.B.stop();

Motor.C.stop();

}

}

41 / 54

Using Motors

• What does the robot do?
import lejos.nxt.Button;

import lejos.nxt.LCD;

import lejos.nxt.Motor;

public class SimpleDriver{

public static void main(String[] args){

System.out.println("Press any button to start");

Button.waitForAnyPress();

LCD.clear();

Motor.B.forward();

Motor.C.forward();

System.out.println("Press any button to stop");

Button.waitForAnyPress();

Motor.B.stop();

Motor.C.stop();

}

}

42 / 54

Using Motors

• Note that motors have to be connected to ports B and C for this to
have any effect.
• This is the case for our NXT robot

• Robot control programs are very sensitive not only to the robot
chassis, but also to the way the robot is wired.

43 / 54

Using a touch sensor

• To use a touch sensor we need to introduce a couple more objects.
• The touch sensors themselves; and
• The sensor port they are connected to.

• Here’s a program that uses a touch sensor:

44 / 54



Using a touch sensor

import lejos.nxt.Button;

import lejos.nxt.Motor;

import lejos.nxt.SensorPort;

import lejos.nxt.TouchSensor;

public class SimpleSensor{

public static void main(String[] args){

TouchSensor leftBump =

new TouchSensor(SensorPort.S2);

TouchSensor rightBump =

new TouchSensor(SensorPort.S1);

while (!Button.ENTER.isDown()){

if(leftBump.isPressed()) {

Motor.B.forward();

Motor.C.forward();

}

if(rightBump.isPressed()){

Motor.B.stop();

Motor.C.stop();

}

}

}

}

45 / 54

Using a touch sensor

• This style of program is pretty typical.
• Matches the kind of thing we talked about before.

• A basic loop in which sensors are read and a decision made based
on the sensor state.

46 / 54

Development Cycle

• Another difference between the programs you have written before and
robot programs.

• You do the usual:
• Write
• Compile + Link
• Debug

as before.

• There is another step. What is it?

47 / 54

Development Cycle

• Before running the program you have to download it onto the robot.

• Through USB or Bluetooth.

48 / 54



Development Cycle

• Same for any robot that has a separate processor.

49 / 54

Development Cycle

• Or at least a separate processor that runs control software

50 / 54

Development Cycle

• If you use Eclipse, the download step is mainly hidden.

• BUT

• The robot must be turned on.

• And the USB cable must be plugged in if you are using it.

• You may also notice that compilation produces a .nxj file rather than
a .class file.

51 / 54

Development Cycle

• If you use don’t use Eclipse, you have to run commands to:
• Compile
• Link
• Download

from the command line.

52 / 54



Documentation

• Website: http://www.lejos.org/

• API: http://www.lejos.org/nxt/nxj/api/index.html

53 / 54

Summary

• This lecture took a look at some of the issues in programming robots.

• It presented a mixture of high-level concepts and practical advice.

• The lecture also presented some information on LeJOS, which you
will use to program the NXT robots.

54 / 54

http://www.lejos.org/
http://www.lejos.org/nxt/nxj/api/index.html

	Introduction
	An abstract view
	NXT
	LeJOS

