
Robotics and Autonomous Systems
Lecture 19: AgentSpeak and Jason

Richard Williams

Department of Computer Science
University of Liverpool

1 / 40

Today

• In this lecture we will begin to look at the tools that you will use for the
second assignment:
• AgentSpeak
• Jason

• AgentSpeak is a programming language.

• Jason is an environment for building agents.

• They can be combined with Java/LeJOS for building robot controllers.

2 / 40

AgentSpeak

• AgentSpeak is a programming language for BDI agents

• It is an “abstract” programming language aimed for academic
research to provide an operationalization of BDI theory

• Presented in 1996 by A. Rao
• Rao, along with Mike Georgeff did a lot to popularise BDI within the AI

world.
• It is based on:

• the PRS architecture
• BDI logics
• Logic Programming (Prolog)

• Language of choice for the Multi-Agent Programming Contest

3 / 40

PRS

intentions

interpreter

beliefs

desires

plan library

actions

percepts

• The Procedural Reasoning System.

4 / 40



BDI Logics

• Logics that represent intentional notions:
Belipφq
Desipφq
Intendipφq

• Logics that encode the properties of these notions:
Belipφq ^ Belipφ Ą ψq Ą Belipψq

• Logics that encode the relationships between these notions:
Intendipφq Ą Desipφq
Intendipαq Ą Belipαq

5 / 40

Prolog

• Programming language based on first order logic.
• PROgramming in LOGic

• Programs are statements in logic:
friend(X, Y) :- likes(X, Y).
likes(alice, bob).

• Queries are answered using logical inference:
friend(alice, bob).

6 / 40

Syntax of AgentSpeak

• There are three main language constructs in AgentSpeak:
• Beliefs
• Desires
• Plans

• The architecture of AgentSpeak has four main components:
• Belief Base
• Plan Library
• Set of Events
• Set of Intentions

7 / 40

Beliefs

• Beliefs are simple Prolog programs.
• Two kinds of statement.

• Facts
• Rules

• Facts are statements about what the agent holds to be true.
• Rules are statements about relationships between facts.

• Can think of them as allowing new facts to be created.

8 / 40



Example facts

• Atomic propositions
lecturer(richard)
teaches_comp329(richard)

• Propositions can be negated
„ young(richard)

• The symbol „ should be read “not”.

9 / 40

Example rules

• Rules look a lot like rules in Prolog.

• child(X, Y) :- parent(Y, X).

• Read a rule a :- b as “a, if b” or “if b then a”.

• With facts, rules allow an agent to infer things.

• For example:
parent(bob,jane)
matches
parent(Y, X)
if Y = bob, X = jane

• The agent can infer
child(jane, bob)

10 / 40

Example rules

• Rules are allowed to be more complex than this.

• For example:
grandparent(X, Z) :- parent(X, Y)

& parent (Y, Z).

• The “&” represents conjunction, and is what we usually mean by
“and”.

• So, given:
parent(eric, bob)
parent(bob, jane)
the agent can infer:
grandparent(eric, jane)

11 / 40

Example rules

grandparent(X, Z) :- parent(X, Y)
& parent (Y, Z).

child(X, Y) :- parent(Y, X).

son(X, Y) :- child(X, Y) & male(X).

daughter(X, Y) :- child(X, Y) & female(X).

parent(eric, bob)

parent(bob, jane)

parent(bob, david)

female(jane)

male(david)

• What can the agent infer?

12 / 40



Goals

• Goals represent states that the agent wants to bring about:

Achievement goals
!learn(lejos)

• Goals represent things the agent wants to know:
Test goals
?teaches(richard,Module)
?bank_balance(BB)

• Test goals are goals in Prolog.

• Queries

13 / 40

More syntax

• The teaches in:
?teaches(richard,Module)

is a predicate
• Expresses a relation, or a property.

lecturer(richard)

• The arguments of predicates are constants:
• lower case, bob

or variables:
• uppercase, Module, BB

14 / 40

Events

• An agent reacts to events by executing plans.
• Events are changes in the:

• beliefs; or
• goals

of the agent

15 / 40

Events

• AgentSpeak events are:
• belief addition: +b
• belief deletion: -b
• achievement-goal addition: +!g
• achievement-goal deletion: -!g
• test-goal addition: +?g
• test-goal deletion: -?g

16 / 40



Plans

• Plans are recipes for action.

• The context is a conjunction of special logical formulae defining when
the plan is applicable.

• The body is a sequence of actions and sub-goals to achieve.

17 / 40

Plans

• An AgentSpeak plan has the following general structure:
triggering_event : context <- body

where
• the triggering event denotes the events that the plan is meant to handle.
• the context represents the circumstances in which the plan can be

used.
• the body represents the actual plan to handle the event if the context is

believed true at the time a plan is being chosen

• When the trigger happens, test the context, and if it is true, then
execute the plan.

18 / 40

Example plans

• A plan that responds to a change in belief.

+green_patch(Rock)
: not battery_charge(low)
<- ?location(Rock,Coordinates);
!at(Coordinates);
!examine(Rock).

• When the belief green_patch(Rock) is added.
(When you realise that the rock has a green patch).

• If battery charge is not low.

Find the location of the rock.

Go to that location

Examine the rock.

19 / 40

Example plans

• A plan that responds to the addition of a goal.

+!at(Coordinates)
: not at(Coordinates)
& ~ unsafe_path(Coordinates)

<- move_towards(Coordinates);
!at(Coordinates).

• To get to a set of coordinates.

• If not at the coordinates, and there is not an unsafe path to the
coordinates

Move towards the coordinates

Reset the goal of being at the coordinates

• The recursive setting of the goal allows for plans that partially achieve
the goal.

20 / 40



Plans

• So plans are a bit like STRIPS
actions:

• Preconditions

• What you do

but they also contain more than
one action

• Plans are also a bit like
STRIPS plans

• Sequence of things to do

but they also have precondi-
tions and subgoals.

21 / 40

not and „

• In logical languages, especially ones related to Prolog, it is common
to have two kinds of negation.
• Strong, „
• Weak, not

• One way to think of this is

Syntax Meaning
φ φ is true
„ φ φ is false
not φ The agent does not believe that φ is true
not „ φ The agent does not believe that φ is false

where:
• “is true/false” means “can be proved from its set of beliefs”
• “does not believe” means “cannot prove from its set of beliefs”.

22 / 40

not and „

• This is negation as failure (to prove).

• Related to the “closed world assumption” that we met before.

• “What I don’t tell you is false.”

23 / 40

not and „

• Reconsider our previous program:

grandparent(X, Z) :- parent(X, Y)
& parent (Y, Z).

child(X, Y) :- parent(Y, X).

son(X, Y) :- child(X, Y) & male(X).

daughter(X, Y) :- child(X, Y) & female(X).

parent(eric, bob)

parent(bob, jane)

parent(bob, david)

female(jane)

male(david)

24 / 40



not and „

• These statements are true:

• son(david, bob)
not son(bob, brian)
not „ son(bob, brian)

• These statements are not true:
„ male(david)
not female(jane)

25 / 40

Actions

• Actions in AgentSpeak are symbolic representations of the actual
actions the agent is supposed to do
• For our NXT robots:

setSpeed(10),
rotateRight(), or
goto(100, 200)

might be actions.
• The agent program will use these representations, while the

interpreter
• Jason in our case

will hook these symbolic representations to the actual actions.

• For us, these will be methods in Java/LeJOS.

26 / 40

Actions

• Note that actions in an AgentSpeak program are logical statements.

• Their position in a plan means the interpreter can recognise them.

• In:

+!at(Coordinates)
: not at(Coordinates)
& ~ unsafe_path(Coordinates)

<- move_towards(Coordinates);
!at(Coordinates).

the statement move_towards(Coordinates) means make the call
goTo(float x, float y)

27 / 40

Actions

• Some actions are internal and are prefixed by a “.”

28 / 40



Environments

• When an agent program is executed, the agent needs to be
connected to an environment.

• Environment provides the percepts and allows for actions.

sensors

effectors

percepts

actions

Environment

• Often, the environment can be simulated before deployment.

29 / 40

Jason

• Jason is an interpreter for a (richer) version of AgentSpeak
implemented in Java.

• Developed by Jomi Hübner and Rafael Bordini over the last ten years
or so.

• It enables a platform for the development of agents and multi-agent
systems enabling hooks to call Java code

intentions

interpreter

beliefs

desires

plan library

actions

percepts

• http://jason.sourceforge.net/

30 / 40

Jason

intentions

interpreter

beliefs

desires

plan library

actions

percepts

• Beliefs, desires and plans are all in AgentSpeak.

• Actions are calls to Java (and, in our case, LeJOS).

31 / 40

Jason

• Logo is Jason (of “Jason and the Argonauts”) from a painting by
Gustave Moreau.

32 / 40



Jason

• Jason comes with the editor jEdit

• There is also an Eclipse plugin

33 / 40

Jason

34 / 40

HelloWorld in Jason

• Create a Jason project “helloworld”, and you get:

MAS helloworld{

infrastructure: Centralised

agents:
agent1 sample_agent;

aslSourcePath:
"src/asl";

}

35 / 40

Jason

• infrastructure: how the agent system is organised.

• agents: the list of agents that make up the system.
Here there is just one.

• aslSourcePath: path from the MAS file to the agent descriptions.

36 / 40



Jason

37 / 40

Jason

• The agent looks like this:

/* Initial beliefs and rules */

/* Initial goals */

!start.

/* Plans */

+!start : true <- .print("hello world.").

38 / 40

Jason

• No initial beliefs or rules

• Only goal is the achievement goal start.

• The context/precondition for start is true.

• The plan for start is to print “Hello World”.

39 / 40

Summary

• This lecture introduced the syntax of AgentSpeak and discussed its
main constructs:
• beliefs
• goals
• plans

• It also introduced the Jason interpreter and produced a simple
HelloWorld program

• We will look at more complex Jason programs next time.

40 / 40


