
Robotics and Autonomous Systems
Lecture 21: The Jason Interpreter

Richard Williams

Department of Computer Science
University of Liverpool

1 / 44

Today

• The previous couple of lectures have introduced the language and
environment that you will use for the second assignment:
• Jason
• AgentSpeak

• This lecture will look at Jason in more detail.

• Understanding how Jason works will help you to know how to write
AgentSpeak programs.

2 / 44

Programming in AgentSpeak

• Agent programs are written in AgentSpeak and consist of sets of
goals, plans and beliefs

• How these components of the program interact to determine the
actual behavior of the agent program is determined by
• Jason: the interpreter

• The interpreter runs the agent implementing a reasoning cycle
(= BDI decision loop)

• Understanding how the interpreter works, is key to programming
agents in Jason

3 / 44

Main loop

4 / 44

Main loop

• Ok, so it is a bit more complex than the BDI cycle.

• Let’s break it down a bit.

5 / 44

Main loop

• Rectangles: basic components. 6 / 44

Main loop

• Circles: fixed methods of the interpreter 7 / 44

Main loop

• Rounded boxes: customizable methods

8 / 44

Main loop

• We will look at two bits of this in some detail:
• Belief update
• Event handling

• Event handling is basically everything you need to know about how
programs are executed.

9 / 44

Belief update

• Captures how the agent changes its view of the world.
• Three components:

• Perception
• Belief revision
• Incoming messages

• Will consider them in sequence.

10 / 44

Perception

11 / 44

Perception

• Perception in Jason consists in the process of acquiring percepts
consisting of logical literals.

• These are symbolic representation of the state-of-affairs being
perceived

• They can be acquired via a simulated environment, or by interfacing
real-world devices like robots

• The Perceive method implements this process by obtaining a list of
literals (the percepts) from the environment

• To interface to the robot, you will have to supply this list of literals

12 / 44

Perception

• This involves translating sensor data into literals.

13 / 44

Belief Update Function

14 / 44

Belief Update Function

• Once the list of percepts has been obtained, the belief base needs to
be updated

• BUF implements a default method for achieving that. Let P be the list
of percepts and B the current belief base.
• each literal in P but not in B is added to B
• each literal in B no longer in P is removed from B

• Each such change generates an event (which may trigger a plan!).

15 / 44

Belief Update Function

• This approach to belief update involves enumerating all the beliefs.

• Not very efficient!

16 / 44

Belief Update Function

• Example update:
x`colourpbox1, redqrsourcepperceptqs,Jy
• `colourpbox1, redq is the new belief
• rsourcepperceptqs says it came from perception
• J says it is an external event.

17 / 44

Belief Update Function

• If that box disappears:

x´colourpbox1, redqrsourcepperceptqs,Jy

is the update.

18 / 44

Messages from other agents

19 / 44

Messages from other agents

• Another source of information for agents are messages from other
agents

• The checkMail method obtains messages for the agent (that are
stored on the underlying multiagent system infrastructure)

• The messages may then be selected through a selection function
(which is user-defined) in order to impose priorities upon them

• The default implementation just selects the first message in the queue

• Messages also generate events (annotate beliefs):

x`colourpbox1, redqrsourcepagent1qs,Jy

20 / 44

Socially acceptable messages

21 / 44

Socially acceptable messages

22 / 44

Socially acceptable messages

• The SocAcc method implements a social acceptance function which
further filters incoming messages after their selection

• filters according to criteria such as the “social structure” within a
multiagent system

• a sort of spam filter
• allows an agent, for example, to ignore messages from a specific

agent.

• This method is also typically customized by the user

23 / 44

Event handling

24 / 44

Event handling

• BDI agents operate by reacting to events (they trigger plans!)

• In each reasoning cycle, only one pending event at the time can be
handled

• This requires an event selection function operating on the set of
pending events.
• Intuitively, this selection function incorporates the “interests” of the

agent, what they consider relevant

• The default implementation function handles events in a queue by a
first-in first-out principle

25 / 44

Retrieving all relevant plans

26 / 44

Retrieving all relevant plans

• Once an event has been selected, relevant plans
i.e., plans that can handle the event

need to be retrieved

• This is done through a procedure called unification consisting of
matching the “type” of the event.

27 / 44

Retrieving all relevant plans

• An example:
x`colourpbox1, blueqrsourcepperceptqs, T

would match some of:
`positionpObject, Coordsq : ... ă ´....
`colourpObject, Colourq : ... ă ´....
`colourpObject, Colourq : ... ă ´....
`colourpObject, redq : ... ă ´....
`colourpObject, Colourqrsourcepselfqs : ... ă ´....
`colourpObject, blueqrsourcepperceptqs : ... ă ´....

• Which would it match?

28 / 44

Substitution and Unification

• A substitution is a function from a finite set of variables to a finite set
of variables or constants. It can be viewed as a set of replacements:

σ “ tX1 Ñ χ1, . . . ,Xn Ñ χnu

where Xi are variables, and χi are variables or constants.
• Constraints:

• Xi , Xj , i , j
• Xi , χj , i , j

• Example:
σ “ tX Ñ comp329u
σplecturerpX, Yqq “ lecturerpcomp329, Yq

29 / 44

Substitution and Unification

• A substitution for two formulae/predicates is a unifier iff the
substitution applied to the two formulae/predicates yield the same
result

σplecturerpX, Yqq “ σplecturerpCOMP329, Yqq

30 / 44

Identifying applicable plans

31 / 44

Identifying applicable plans

• After having selected the relevant plans, we have to identify, among
them, the applicable ones

• Applicable plans are those whose contexts is a logical consequence
of the belief base

• P is a logical consequence of Q iff there exist a (most general unifier)
σ such that σpPq “ Q

• Let’s look at an example.

32 / 44

Identifying applicable plans

• Belief base
shape(box1,box)[source(percept)].
position(box1,coord(9,9))[source(percept)].
colour(box1,blue)[source(percept)].
shape(sphere2,sphere)[source(percept)].
position(sphere2,coord(7,7))[source(bob)].
colour(sphere2,red)[source(john)].

• Plans
+colour_(Object,Colour):
shape(Object,box)
& not position(Object,coord(0,0)) <- ...

+colour_(Object,Colour) :
colour(OtherObj,red)[source(S)]
& S/==percept &
shape(OtherObj,Shape) &
shape(Object,Shape) <- ...

33 / 44

Identifying applicable plans

• In this example, “a plan is a logical consequence of the belief base”
just means that it is possible to coherently match (unify) elements of
the belief base with a plan.

• However “logical consequence” allows the match to not only be with a
fact in the belief base, but also with the result of applying a rule.

34 / 44

Selecting one plan and one intention

35 / 44

Selecting one plan and one intention

• Once the set of applicable plans has been determined, one among
them has to be selected

• This is done by an option selection function .
Its default setting works on a first-in first-out basis

• The selected plan is instantiated by the unification that determined it
as applicable, and added to an intention stack , representing a single
intention

• Several intentions (= stacks of partially instantiated plans) might be
awaiting processing

• Again, a selection function (intention selection function) determines
which intentions to process first
Default: first-in first-out

36 / 44

Execute one step of an intention

37 / 44

Execute one step of an intention

• Suppose the selected event is:
<+b , T>

• Then the selected plan:
[+b : true <- !g ; a1 | ...]

is pushed onto the intention stack

• The interpreter then does intention selection. Let’s assume that this
pulls this same intention from the stack.

• The interpreter selects the first formula in the plan body:
!g

and pushes the rest of the intention back onto the stack.

38 / 44

Execute one step of an intention

• !g is a goal.
• Handling a goal involves creating the following event:

<+!g , [+b : true <- !g ; a1]>

• Which then needs a plan.

39 / 44

Execute one step of an intention

• The system then repeats the previous couple of steps, selecting a
plan for +!g and stacking the plan on the intention stack.

• Let’s say that this plan:
[+!g : true <- a2 | +b : true <- !g ; a1 | ...]

is the one selected.

• Again it is pushed onto the intention stack, and a new intention
selected.

40 / 44

Execute one step of an intention

• Assume this intention is:
[+!g : true <- a2 | +b : true <- !g ; a1 | ...]

• This time the first step is an action a2.

• The agent just does this.

• The rest of the intention is pushed back onto the stack.

41 / 44

Execute one step of an intention

• Note that there are two different things happening.

• Executing goals removes one step from an existing intention,but
pushes a new intention onto the stack.
Stack grows.

• Executing an action removes one step from an existing intention
Stack shrinks.

• With a LIFO intention stack we handle intentions in a recursive
manner.
• (The book says “FIFO”, but I am pretty convinced it is a LIFO structure)

• A custom intention stack might prioritize intentions, for example by
expected utility.

42 / 44

Plan failure

• Plans may fail for the following reasons:
• The set of applicable plans turns out to be empty
• An action fails

i.e., no feedback reaches the agent about the successful execution of
the action

• A test goal fails

• If a plan for handling a goal achievement fails, Jason generates a
goal-deletion event (and possibly drop the intention):
-!g

• This event can be used by the programmer to specify further plans to
handle the failure

• These can be as simple as:
-!g : true <- !g

43 / 44

Summary

• This lecture focused on the structure of the Jason interpreter.

• It looked at the interpreter as a (sophisticated) model of a deliberation
cycle.

• And it explained, in quite a lot of detail, all the main steps of the
interpreter.

44 / 44

