Robotics and Autonomous Systems

Lecture 22: Communication in Jason

We will look at communication in Jason.

This is important since you will have to write agents that communicate
as part of the second assignment.

We will look at general aspects of communication.
We will then look at a specific example, that of the contract net.

Richard Williams

Department of Computer Science
University of Liverpool

P&°d UNIVERSITY OF

& LIVERPOO

Recall Messages in Jason

e Each message received by the checkMail method (receiver’s
perspective) should be thought has having the form:

<sender, illoc_force, content>

e Where:
e sender is the AgentSpeak term with which the agent is identified in the
system
e illoc_force is the performative of the message, representing the
goal the sender intends to achieve by sending the message
e content is an AgentSpeak formula (varying depending on the
performative)

3/47 4/47

Messages in Jason Messages in Jason

e Messages are passed through the use of internal actions that are

pre-defined in Jason e The .send and .broadcast actions generate messages of the type
e The most typical: <sender, illoc_force, content>
o .send(receiver, illoc_force, content) which are obtained by the checkMail method of r (the receiver)
¢ .broadcast(illoc_force, content) « These messages (recall the previous lecture) are “filtered” during the
where receiver, illoc_force and content are as above deliberation cycle of r by the SocAcc function which can possibly
 The receiver could also be a list of agent terms discard them

e The .broadcast action sends the message to all agents registered in (e.g., because of the type of sender)

the system

Socially acceptable messages Messages in Jason

¢ If the message goes through, Jason will interpret it according to
precise semantics

o essentially by generating new events pertaining to the goal and belief
bases.

and r might then react to these events according to its plan base

Performatives in Jason Performatives in Jason

e tell and untell
s intends r (not) to believe the literal in the content to be true and that

s believes it e tellHow and untellHow

)) s requests r (not) to consider a plan
e achieve and unachieve

s requests r (not) to try and achieve a state-of-affairs where the
content of the message is true

e askOne and askAll
s wants to know whether r knows (anybody knows) whether the
content is true.

e askHow
s wants to know r’s applicable plan for the triggering event in the
message content

9/47 10/47

Performatives in Jason Performatives in Jason

e tell and untell
Information exchange
e achieve and unachieve
« Can think of these as achieving different aims. Delegation
e askOne and askAll
Information seeking

e tellHow and untellHow
askHow
Deliberation

11/47 12/47

Semantics

Cycle s actions

r belief base r events

1

2

.send(r, tell,
open(left_door))
open(left_door) +open(left_door)
[source(s)] [source[s]

.send(r, untell,
open(left_door))
-open(left_door)
[source(s)]

¢ Information exchange

13/47

Semantics

e This semantics is operational

o Tells you how statements will be interpreted, in terms of what agents
will do.

e Contrast with the mental models semantics we looked at before.

15/47

Semantics

Cycle s actions r intentions r events
1 .send(r, achieve,
open(left_door))
2 +!open(left_door)
[source(s)]
3 lopen(left_door)
[source[s]
4 .send(r, unachieve, lopen(left_door)
open(left_door)) [source(s)]
5
e Delegation

¢ Note that the intention is adopted after the goal is added.

14/47

Still doesn’t protect you from liars

#1 NEW YORK TIMES BESTSELLING AUTHOR

AL FRANKEN

wé%‘}_*,
RS

Lying Liars g1
Who Tell
Them

A Fair and Balanced
Look at the Right

16/47

Semantics Semantics

e .send(receiver, tellHow,
“@p ... = ... <= ...7)
adds the plan to the plan library of r with its plan label @p

e .send(receiver, untellHow, PlanLabel)
removes the plan with the given plan label from the plan library of r

177147 18/47

Gontract et Protoco

e The CNP is a protocol for approaching distributed problem- solving
o A standardized version of the protocol has been developed by FIPA

* .send(receiver, askHow, Agents are part of a multiagent system. They have to carry out
Goal addition event) specific tasks and they may ask other agents to perform subtasks for
requires r to pass all relevant plans to the triggering event in the them

content (unlike for information seeking, this happens automatically) « An initiator issues a call for proposals (cfp) to all participants in the

system requesting bids for performing a specific task

o After the deadline has passed, the initiator evaluates the bids it
received and selects one participant to perform the task

19/47 20/47

¢ In this stage, an agent recognises it has a problem it wants help with.

e The contract net includes five stages: Agent has a goal, and either
[] "

© Recognition;

® Announcement; o realises it cannot achieve the goal in isolation — does not have

©® Bidding; capability;
® Awarding; e realises it would prefer not to achieve the goal in isolation (typically
(5) Expeditin;;_ because of solution quality, deadline, etc)

e As aresult, it needs to involve other agents.

21/47 22/47

¢ In this stage, the agent with the task sends out an announcement of e Agents that receive the announcement decide for themselves whether
the task which includes a specification of the task to be achieved. they wish to bid for the task.
e Specification must encode: e Factors:
o description of task itself (maybe executable); e agent must decide whether it is capable of expediting task;
e any constraints (e.g., deadlines, quality constraints). e agent must determine quality constraints & price information (if
¢ meta-task information (e.g., “bids must be submitted by...”) relevant).
e The announcement is then broadcast. e If they do choose to bid, then they submit a tender.

23/47 24/47

pwarding & Expeding

o

o Agent that sent task announcement must choose between bids & 'i' iﬁl i K lﬁl
s L

decide who to “award the contract” to.

e The result of this process is communicated to agents that submitted a ﬂ ﬂ
bid.
 The successful contractor then expedites the task. Recognition Armauncement

e May involve generating further manager-contractor relationships:

sub-contracting. i ‘\ﬂ i - ﬂ

 May involve another contract net. \
L s
it it

Bidding Awarding
25/47 26/47
CNP Messages in FIPA CNP in Jason
n1u11lug<:r v;'-:mlrulv;'lc-: | C(JI'I[FIIJ.(.'H:IF] _—— E‘D'ﬂl;m';'ll:l]' n MAS Cnp {

| P ,_: : : infrastructure: Centralised

i | E L agents:

: proposs | E .—E C; // the CNP initiator

| propose | | |

o propose | i | p #3; // the participants (3)

~ | | | // that offer a service

: e . . . pr; // a participant that always

: refuse : - : // refuses

E : : : pn; // a participant that does

' inform ! ! ! // not answer

| | | | }

Or i i i
! failure ! ! !

e Here’s the MAS definition

27/47 28/47

An agent that doesn’t respond An agent that doesn’t respond

// Beliefs
plays(initiator,c).

Initial belief that c is the initiator.

// Plans The belief that In is the initiator generates a message introducing
+plays(initiator, In) itself.

.my_name (Me) Nothing else.
<- .send(In,tell,introduction(participant,Me)).

So, no response to any message
// Nothing else

29/47 30/47

An agent that doesn’t respond An agent that always refuses

// Beliefs
plays(initiator,c).

// Plans
+plays(initiator,In)
.my_name (Me)
<- .send(In,tell,introduction(participant,Me)).

+cfp(CNPId,_Service) [source(A)] // How to respond
plays(initiator,A) // to a CfP
<- .send(A,tell,refuse(CNPId)).

31/47 32/47

An agent that always refuses Active participant

// Beliefs

e Initial belief that c is the initiator.
. . _ : : 1 initiator,c).
e The belief that In is the initiator generates a message introducing plays(initiator,c)

itself. price(_Service,X) :- .random(R) & X = (10*R)+100.
o A CfP message from an initiator will generate a refuse message to
that agent. e Usual information about initiator

e price generates a random value for the service.

33/47 34/47
Active participant Active participant
// Plans
// Plans @cl +cfp(CNPId,Task) [source(A)]
S plays(initiator,A) & price(Task,Offer)

+plays(initiator,In) <- +proposal (CNPId,Task,0ffer); // remember

: .my_name (Me) // my proposal

<- .send(In,tell,introduction(participant,Me)). .send(A, tell,propose(CNPId,0ffer)).

e Usual response to finding out about the initiator. « Respond to CfP by making an offer.

e A proposal is added to the belief base to remember what was
offered.

35/47 36/47

Active participant

@rl +accept_proposal (CNPId)
proposal (CNPId,Task,Offer)
<- .print("My proposal ’'",O0ffer,"’ won CNP ",CNPId,
" for ",Task,"!").

@r2 +reject_proposal (CNPId)
<- .print("I lost CNP ",CNPId, ".™);
-proposal (CNPId,_,_). // clear memory

e How to handle accept and reject messages.
¢ Note that there is nothing here to actually do the task.
o Refusal deletes the proposal from memory.

37/47

Initiator agent

// Beliefs
all_proposals_received(CNPId)
:- .count(introduction(participant,_),NP) &
.count (propose (CNPId,_), NO) &
.count (refuse(CNPId), NR) &
NP = NO + NR.
// Goals

IstartCNP(1, fix(computer)).

e all_proposals counts up the proposals received.

39/47

38/47

Initiator agent

// Plans

// start the CNP
+!startCNP(Id, Task)
<- .print("Waiting participants...");
.wait(2000); // wait participants introduction
+cnp_state(Id,propose); // remember the state
// of the CNP

.findall(Name, introduction(participant,Name),LP);
.print("Sending CFP to ",LP);
.send(LP,tell,cfp(Id,Task));
// the deadline of the CNP is now + 4 seconds, so
// +!contract(Id) is generated at that time
.at("now +4 seconds", { +!contract(Id) }).

¢ Send out CfP and wait for responses

40/47

Initiator agent

// Plans

// receive proposal
@rl +propose(CNPId,_Offer)
cnp_state(CNPId,propose)
& all_proposals_received(CNPId)
<- lcontract(CNPId).

// receive refusals
@r2 +refuse(CNPId)
cnp_state(CNPId, propose)
& all_proposals_received(CNPId)
<- lcontract(CNPId).

Here we use state information.

If every agent has responded, then go straight to awarding the
contract.

41/47

Initiator agent

@lc2 +!contract().

e We need a failure case — what to do if contract is called when we

aren’t in the proposal state.
o Why would this happen?

43/47

Initiator agent

// Needs to be atomic so as not to accept
// proposals or refusals while contracting
@lcl[atomic]
+!contract (CNPId)
cnp_state(CNPId, propose)
<- -+cnp_state(CNPId,contract);
.findall (offer(0,A),propose(CNPId,0) [source(A)],L);
.print("Offers are ",L);
// must make at least one offer
L \== [1;
// sort offers, the first is the best
.min(L,offer (WO£f,WAQ));
.print("Winner is ",WAg," with ",W0f);
lannounce_result (CNPId,L,WAQ);
-+cnp_state(CNPId, finished).

e Pick an offer and announce a contract

42/47

Initiator agent

// Plans

-lcontract (CNPId)
<- .print("CNP ",CNPId," has failed!").

e If the contract goal fails for some reason.

44/47

Initiator agent

// Plans

+!announce_result(_,[],_).
// announce to the winner
+!announce_result (CNPId, [offer(_,WAg) |T],WAg)
<- .send(WAg,tell,accept_proposal (CNPId));
lannounce_result(CNPId,T,WAg) .
// announce to others
+!announce_result (CNPId, [offer(_,LAg) |T],WAg)
<- .send(LAg,tell,reject_proposal (CNPId));
lannounce_result(CNPId,T,WAg) .

¢ How to send out the results.
e The first clause is the base case for the recursion — do nothing.

e This lecture investigated the issue of communication in Jason,

45/47

highlighting the commands for the creation of messages with different

illocutionary forces.

e Some of the commands were then illustrated by discussing the code
of a multiagent system implementing (a stripped down version of) the

contract net protocol

e As aresult, the lecture also contained a brief discussion of the
contract net.

47/47

[c] Waiting participants...

[c] Sending CFP to [p2.p3.pn,.pl.pr]

[c] Offers are
[offer(108,31156595045812,p1), offer(101,21 3687861 25215,p3), 0ffer(105,2019269410
5139,p2)]

[c] Winner is p3 with 101.21368786125215

[pl] I'lost CHP 1.

[p3] My proposal '101,21368786125215" won CNP 1 for fix(computer)!

/7 Clean || ! Stop || [Pause || S‘SDebug || = Sources

46/47

