
Robotics and Autonomous Systems
Lecture 22: Communication in Jason

Richard Williams

Department of Computer Science
University of Liverpool

1 / 47

Today

• We will look at communication in Jason.

• This is important since you will have to write agents that communicate
as part of the second assignment.

• We will look at general aspects of communication.

• We will then look at a specific example, that of the contract net.

2 / 47

Recall

3 / 47

Messages in Jason

• Each message received by the checkMail method (receiver’s
perspective) should be thought has having the form:

<sender, illoc_force, content>

• Where:
• sender is the AgentSpeak term with which the agent is identified in the

system
• illoc_force is the performative of the message, representing the

goal the sender intends to achieve by sending the message
• content is an AgentSpeak formula (varying depending on the

performative)

4 / 47



Messages in Jason

• Messages are passed through the use of internal actions that are
pre-defined in Jason

• The most typical:
• .send(receiver, illoc_force, content)
• .broadcast(illoc_force, content)

where receiver, illoc_force and content are as above

• The receiver could also be a list of agent terms

• The .broadcast action sends the message to all agents registered in
the system

5 / 47

Messages in Jason

• The .send and .broadcast actions generate messages of the type
<sender, illoc_force, content>

which are obtained by the checkMail method of r (the receiver)

• These messages (recall the previous lecture) are “filtered” during the
deliberation cycle of r by the SocAcc function which can possibly
discard them
(e.g., because of the type of sender)

6 / 47

Socially acceptable messages

7 / 47

Messages in Jason

• If the message goes through, Jason will interpret it according to
precise semantics
• essentially by generating new events pertaining to the goal and belief

bases.

and r might then react to these events according to its plan base

8 / 47



Performatives in Jason

• tell and untell
s intends r (not) to believe the literal in the content to be true and that
s believes it

• achieve and unachieve
s requests r (not) to try and achieve a state-of-affairs where the
content of the message is true

• askOne and askAll
s wants to know whether r knows (anybody knows) whether the
content is true.

9 / 47

Performatives in Jason

• tellHow and untellHow
s requests r (not) to consider a plan

• askHow
s wants to know r’s applicable plan for the triggering event in the
message content

10 / 47

Performatives in Jason

• Can think of these as achieving different aims.

11 / 47

Performatives in Jason

• tell and untell
Information exchange

• achieve and unachieve
Delegation

• askOne and askAll
Information seeking

• tellHow and untellHow
askHow
Deliberation

12 / 47



Semantics

Cycle s actions r belief base r events

1 .send(r, tell,
open(left_door))

2 open(left_door) +open(left_door)
[source(s)] [source[s]

3 .send(r, untell,
open(left_door))

4 -open(left_door)
[source(s)]

• Information exchange

13 / 47

Semantics

Cycle s actions r intentions r events

1 .send(r, achieve,
open(left_door))

2 +!open(left_door)
[source(s)]

3 !open(left_door)
[source[s]

4 .send(r, unachieve, !open(left_door)
open(left_door)) [source(s)]

5

• Delegation

• Note that the intention is adopted after the goal is added.

14 / 47

Semantics

• This semantics is operational

• Tells you how statements will be interpreted, in terms of what agents
will do.

• Contrast with the mental models semantics we looked at before.

15 / 47

Still doesn’t protect you from liars

16 / 47



Semantics

• .send(receiver, tellHow,
“@p ... : ... <- ...”)

adds the plan to the plan library of r with its plan label @p

17 / 47

Semantics

• .send(receiver, untellHow, PlanLabel)
removes the plan with the given plan label from the plan library of r

18 / 47

Semantics

• .send(receiver, askHow,
Goal addition event)

requires r to pass all relevant plans to the triggering event in the
content (unlike for information seeking, this happens automatically)

19 / 47

Contract Net Protocol

• The CNP is a protocol for approaching distributed problem- solving

• A standardized version of the protocol has been developed by FIPA

• Agents are part of a multiagent system. They have to carry out
specific tasks and they may ask other agents to perform subtasks for
them

• An initiator issues a call for proposals (cfp) to all participants in the
system requesting bids for performing a specific task

• After the deadline has passed, the initiator evaluates the bids it
received and selects one participant to perform the task

20 / 47



Contract Net Protocol

• The contract net includes five stages:

1 Recognition;
2 Announcement;
3 Bidding;
4 Awarding;
5 Expediting.

21 / 47

Recognition

• In this stage, an agent recognises it has a problem it wants help with.

• Agent has a goal, and either. . .

• realises it cannot achieve the goal in isolation — does not have
capability;

• realises it would prefer not to achieve the goal in isolation (typically
because of solution quality, deadline, etc)

• As a result, it needs to involve other agents.

22 / 47

Announcement

• In this stage, the agent with the task sends out an announcement of
the task which includes a specification of the task to be achieved.

• Specification must encode:

• description of task itself (maybe executable);
• any constraints (e.g., deadlines, quality constraints).
• meta-task information (e.g., “bids must be submitted by. . . ”)

• The announcement is then broadcast.

23 / 47

Bidding

• Agents that receive the announcement decide for themselves whether
they wish to bid for the task.

• Factors:

• agent must decide whether it is capable of expediting task;
• agent must determine quality constraints & price information (if

relevant).

• If they do choose to bid, then they submit a tender.

24 / 47



Awarding & Expediting

• Agent that sent task announcement must choose between bids &
decide who to “award the contract” to.

• The result of this process is communicated to agents that submitted a
bid.

• The successful contractor then expedites the task.

• May involve generating further manager-contractor relationships:
sub-contracting.

• May involve another contract net.

25 / 47

Stages

Recognition

I have a problem

Bidding
Awarding

Announcement

26 / 47

CNP Messages in FIPA

27 / 47

CNP in Jason

MAS cnp {

infrastructure: Centralised

agents:
c; // the CNP initiator

p #3; // the participants (3)
// that offer a service

pr; // a participant that always
// refuses

pn; // a participant that does
// not answer

}

• Here’s the MAS definition

28 / 47



An agent that doesn’t respond

// Beliefs
plays(initiator,c).

// Plans
+plays(initiator,In)

: .my_name(Me)
<- .send(In,tell,introduction(participant,Me)).

// Nothing else

29 / 47

An agent that doesn’t respond

• Initial belief that c is the initiator.

• The belief that In is the initiator generates a message introducing
itself.

• Nothing else.

• So, no response to any message

30 / 47

An agent that doesn’t respond

31 / 47

An agent that always refuses

// Beliefs
plays(initiator,c).

// Plans
+plays(initiator,In)

: .my_name(Me)
<- .send(In,tell,introduction(participant,Me)).

+cfp(CNPId,_Service)[source(A)] // How to respond
: plays(initiator,A) // to a CfP
<- .send(A,tell,refuse(CNPId)).

32 / 47



An agent that always refuses

• Initial belief that c is the initiator.

• The belief that In is the initiator generates a message introducing
itself.

• A CfP message from an initiator will generate a refuse message to
that agent.

33 / 47

Active participant

// Beliefs

plays(initiator,c).

price(_Service,X) :- .random(R) & X = (10*R)+100.

• Usual information about initiator

• price generates a random value for the service.

34 / 47

Active participant

// Plans

+plays(initiator,In)
: .my_name(Me)
<- .send(In,tell,introduction(participant,Me)).

• Usual response to finding out about the initiator.

35 / 47

Active participant

// Plans

@c1 +cfp(CNPId,Task)[source(A)]
: plays(initiator,A) & price(Task,Offer)
<- +proposal(CNPId,Task,Offer); // remember

// my proposal
.send(A,tell,propose(CNPId,Offer)).

• Respond to CfP by making an offer.

• A proposal is added to the belief base to remember what was
offered.

36 / 47



Active participant

@r1 +accept_proposal(CNPId)
: proposal(CNPId,Task,Offer)
<- .print("My proposal ’",Offer,"’ won CNP ",CNPId,

" for ",Task,"!").

@r2 +reject_proposal(CNPId)
<- .print("I lost CNP ",CNPId, ".");

-proposal(CNPId,_,_). // clear memory

• How to handle accept and reject messages.

• Note that there is nothing here to actually do the task.

• Refusal deletes the proposal from memory.

37 / 47 38 / 47

Initiator agent

// Beliefs

all_proposals_received(CNPId)
:- .count(introduction(participant,_),NP) &

.count(propose(CNPId,_), NO) &

.count(refuse(CNPId), NR) &
NP = NO + NR.

// Goals

!startCNP(1,fix(computer)).

• all_proposals counts up the proposals received.

39 / 47

Initiator agent

// Plans

// start the CNP
+!startCNP(Id,Task)

<- .print("Waiting participants...");
.wait(2000); // wait participants introduction
+cnp_state(Id,propose); // remember the state

// of the CNP
.findall(Name,introduction(participant,Name),LP);
.print("Sending CFP to ",LP);
.send(LP,tell,cfp(Id,Task));
// the deadline of the CNP is now + 4 seconds, so
// +!contract(Id) is generated at that time
.at("now +4 seconds", { +!contract(Id) }).

• Send out CfP and wait for responses

40 / 47



Initiator agent

// Plans

// receive proposal
@r1 +propose(CNPId,_Offer)

: cnp_state(CNPId,propose)
& all_proposals_received(CNPId)

<- !contract(CNPId).

// receive refusals
@r2 +refuse(CNPId)

: cnp_state(CNPId,propose)
& all_proposals_received(CNPId)

<- !contract(CNPId).

• Here we use state information.

• If every agent has responded, then go straight to awarding the
contract.

41 / 47

Initiator agent

// Needs to be atomic so as not to accept
// proposals or refusals while contracting
@lc1[atomic]
+!contract(CNPId)

: cnp_state(CNPId,propose)
<- -+cnp_state(CNPId,contract);

.findall(offer(O,A),propose(CNPId,O)[source(A)],L);

.print("Offers are ",L);
// must make at least one offer
L \== [];
// sort offers, the first is the best
.min(L,offer(WOf,WAg));
.print("Winner is ",WAg," with ",WOf);
!announce_result(CNPId,L,WAg);
-+cnp_state(CNPId,finished).

• Pick an offer and announce a contract

42 / 47

Initiator agent

@lc2 +!contract(_).

• We need a failure case — what to do if contract is called when we
aren’t in the proposal state.

• Why would this happen?

43 / 47

Initiator agent

// Plans

-!contract(CNPId)
<- .print("CNP ",CNPId," has failed!").

• If the contract goal fails for some reason.

44 / 47



Initiator agent

// Plans

+!announce_result(_,[],_).
// announce to the winner
+!announce_result(CNPId,[offer(_,WAg)|T],WAg)

<- .send(WAg,tell,accept_proposal(CNPId));
!announce_result(CNPId,T,WAg).

// announce to others
+!announce_result(CNPId,[offer(_,LAg)|T],WAg)

<- .send(LAg,tell,reject_proposal(CNPId));
!announce_result(CNPId,T,WAg).

• How to send out the results.

• The first clause is the base case for the recursion — do nothing.

45 / 47 46 / 47

Summary

• This lecture investigated the issue of communication in Jason,
highlighting the commands for the creation of messages with different
illocutionary forces.

• Some of the commands were then illustrated by discussing the code
of a multiagent system implementing (a stripped down version of) the
contract net protocol

• As a result, the lecture also contained a brief discussion of the
contract net.

47 / 47


