
Robotics and Autonomous Systems
Lecture 24: Goal-based programming

Richard Williams

Department of Computer Science
University of Liverpool

1 / 48

Today

• We will look at three things.

• We will recap the way that Jason supports BDI programming.

• We will look at some useful internal actions provided by Jason

• We will look at some common patterns of handling goals.

2 / 48

BDI

Belief base

Plan base

Event base

3 / 48

BDI

• The basic components are the belief base, the plan base, and the
event base.

4 / 48

BDI

Belief base

Plan base

Event base

Applicable plans

5 / 48

BDI

• Events and beliefs are matched against plans in the plan base to
establish a set of applicable plans.

6 / 48

BDI

Belief base

Plan base

Intention stacks

Event base

Applicable plans

goals the agent is committed to

7 / 48

BDI

• A plan is selected, its goal is the current intention, and the plan is
pushed onto the intention stack.

8 / 48

BDI

Belief base

Plan base

Intention stacks

Event base

b

...

+b

+!g

Applicable plans

communication

communication
goals the agent is committed to

9 / 48

BDI

• Communication adds to the belief and event bases.

• Here a belief b is added to the belief base, and so +b is added to the
event base.

• We also see a goal added to the event base.

10 / 48

BDI

Belief base

Plan base

Intention stacks

Event base

... : ... <− ...

b

...

+b

+!g

Applicable plans

communication

communication
goals the agent is committed to

communication
+!g : b <− +!g1, a

11 / 48

BDI

• Plans can also be communicated.

12 / 48

BDI

Belief base

Plan base

Intention stacks

Event base

... : ... <− ...

b

...

+b

+!g

Applicable plans

communication

communication
goals the agent is committed to

communication

+!g : b <− +!g1, a

+!g : b <− +!g1, a

13 / 48

BDI

• The event +!g matches with the plan in the plan base, is added to the
set of applicable plans.

• The plan is then adopted, and pushed onto the intention stack.

14 / 48

BDI

Belief base

Plan base

Intention stacks

Event base

... : ... <− ...

b

...

+b

+!g

+!g1

Applicable plans

communication

communication
goals the agent is committed to

new goals

are generated

communication

+!g : b <− +!g1, a

+!g : b <− +!g1, a

15 / 48

BDI

• Executing that plan invokes a new goal g1.

• This is added to the event base.

16 / 48

BDI

Belief base

Plan base

Intention stacks

Event base

... : ... <− ...

b

...

+b

+!g1 : ... <− ...

+!g

+!g1

Applicable plans

communication

communication
goals the agent is committed to

new goals

are generated

communication

+!g : b <− +!g1, a

+!g : b <− +!g1, a

17 / 48

BDI

• A new plan is adopted for the new goal, and this is pushed onto the
intention stack.

• Note that the stack is not drawn like a stack.

18 / 48

BDI

Belief base

Plan base

Intention stacks

Event base

... : ... <− ...

b

...

+b

+!g1 : ... <− ...
... : ... <− ...

+!g

+!g1

Applicable plans

actions

communication

communication
goals the agent is committed to

new goals

are generated

communication

+!g : b <− +!g1, a

+!g : b <− +!g1, a

19 / 48

BDI

• Another plan is required to achieve g1

20 / 48

BDI

Belief base

Plan base

Intention stacks

Event base

... : ... <− ...

b

...

+b

+!g1 : ... <− ...
... : ... <− ...

+!g

+!g1

Applicable plans

actions

communication

communication
goals the agent is committed to

new goals

are generated

communication

+!g : b <− +!g1, a

+!g : b <− +!g1, a

• Desires: goals in the event base or in the head of some intention

21 / 48

Internal Actions

• Jason contains a number of internal actions that are useful for
programming agents.

• Have already seen some:
• .print
• .send

• Here are more.

• More related to manipulating goals.

22 / 48

Internal Actions

• .desire(literal p)
The action succeeds if the literal unifies with some goal (i.e. +g!) in
the event base or in the head of some plan.
.desire(go(1, 3)) is true if go(1, 3) is a desire.

• .intend(literal p)
The action succeeds if the literal unifies with some goal in the body of
some intention.
.intend(go(1, 3)) is true if a plan with triggering event +!(go(1,
3) appears as an intention.

23 / 48

Internal Actions

• These are less “actions” in the conventional sense, than ways to test
for the existence of a desire or intention and/or to capture its value in
a variable.

• This value can then be used.

• For example, having detected go(1, 3), above, we might then try to
execute it.

• Or we might use the test to avoid re-creating an existing desire.

24 / 48

Internal Actions

• .drop_desire(literal p)
Removes the argument desire. If the argument is D, then every entry
+!D that occurs in the set of events or the set of intentions is deleted.
No events are triggered.

• .drop_intention(literal p)
Removes all the plans where the triggering condition unifies with the
given literal

• .drop_event(literal p)
Removes only goals in the event base that do not appear in any
intention (plan head)

25 / 48

BDI

Belief base

Plan base

Intention stacks

Event base

... : ... <− ...

b

...

+b

+!g1 : ... <− ...

+!g

+!g1

Applicable plans

communication

communication
goals the agent is committed to

new goals

are generated

communication

+!g : b <− +!g1, a

+!g : b <− +!g1, a

26 / 48

Internal actions

• Note that these last three are complementary.
.drop_desire removes its argument from
• all events and
• all intentions.

.drop_intention removes its argument from
• all intentions.

.drop_event removes its argument from
• all events.

27 / 48

Internal actions

• .succeed_goal(literal p)
States the goal has succeeded.
System behaves as if this has happened and the intentions are
updated accordingly.

28 / 48

Internal actions

+!g2 : cxt2
<-

+!g1 : cxt1
<- !g2
... .

+!g0 : cxt0
<- !g1
!g4
... .

+!g4 : cxt4
<-

+!g0: cxt0
<- !g4
... .

• .succeed_goal(!g1)

29 / 48

Internal actions

• .fail_goal(literal p)
States the goal has failed and is impossible to achieve.
Plan is removed and a goal deletion event is generated for the plans
requiring the goal.

30 / 48

Internal actions

+!g2 : cxt2
<-

+!g1 : cxt1
<- !g2
... .

+!g0 : cxt0
<- !g1
!g4
... .

-!g0 : cxt0
<-

+!g0: cxt0
<- !g1
!g4
... .

• .fail_goal(!g1)

31 / 48

Declarative goals

• Up until now we have treated goals in a procedural fashion. Goals as
triggers for plans

+!g: c <- p

• Goals, however are often meant in a declarative way. For example, a
robot that has to reach location (X,Y)

• Here what is meant is that the robot should reach the given location
and expects the robot to believe it has reached it (i.e., believe the goal
has been achieved)

• Procedural goals can be “made declarative” by the following
transformation

32 / 48

Declarative goals

• +!l(X,Y) : bc(B) & B > 0.2
<- go(X,Y).

becomes

+!l(X,Y) : bc(B) & B > 0.2
<- go(X,Y); ?l(X,Y).

• bc is “battery charge”

• l is “at location”

• The test goal at the end forces the failure of the plan if the robot does
not make it to the relevant location.

• Think of transformations such as these to be design patterns.

33 / 48

Declarative goal pattern

• A set of plans P for some goal:

+!g : c1 <- p1
+!g : c2 <- p2
...
+!g : cn <- pn

• Is transformed into the set DGpPq by:
+!g : g <- true
+!g : c1 <- p1; ?testg
+!g : c2 <- p2; ?testg
...
+!g : cn <- pn; ?testg
+g : true <- .succeed_goal(g)

34 / 48

Declarative goal pattern

• The first line tests if the goal is true
• Success means there is nothing to do.

• In the middle we have the plans with the test goals appended.

• The last plan is triggered if the agent realises that its goal has been
achieved. Deletes any additional attempts to achieve it.

35 / 48

Goal programming patterns

• Programming with goals and plans offers a wide array of possibilities
for structuring your code

• Different structures can serve different purposes and model different
types of intelligent decision-making

• We will look now at a number of patterns that can be used to program
different ways in which goals and plans interact generating different
goal-driven behaviors

36 / 48

Backtracking declarative goals

• We transform the set of plans P into DGpPq followed by:
-!g : true <- !!g

• If a plan from P fails, then try to achieve the goal again.

• This can loop if you aren’t careful with the contexts.

• We call this transformation BDG.

37 / 48

Patterns for commitment

• We can use this kind of transformation to capture different kinds of
commitment.
• When to drop a goal

38 / 48

Remember?

39 / 48

Some time in the not-so-distant future, you are having trouble
with your new household robot. You say “Willie, bring me a beer.”
The robot replies “OK boss.” Twenty minutes later, you screech
“Willie, why didn’t you bring me that beer?” It answers “Well, I
intended to get you the beer, but I decided to do something else.”
Miffed, you send the wise guy back to the manufacturer,
complaining about a lack of commitment. After retrofitting, Willie
is returned, marked “Model C: The Committed Assistant.” Again,
you ask Willie to bring you a beer. Again, it accedes, replying
“Sure thing.” Then you ask: “What kind of beer did you buy?” It
answers: “Genessee.” You say “Never mind.”

40 / 48

One minute later, Willie trundles over with a Genessee in its
gripper. [. . .] After still more tinkering, the manufacturer sends
Willie back, promising no more problems with its commitments.
So, being a somewhat trusting customer, you accept the rascal
back into your household, but as a test, you ask it to bring you
your last beer. [. . .] The robot gets the beer and starts towards
you. As it approaches, it lifts its arm, wheels around, deliberately
smashes the bottle, and trundles off. Back at the plant, when
interrogated by customer service as to why it had abandoned its
commitments, the robot replies that according to its
specifications, it kept its commitments as long as required —
commitments must be dropped when fulfilled or impossible to
achieve. By smashing the bottle, the commitment became
unachievable.

41 / 48

Blind committment

• We transform the set of plans P into declarative form followed by:
+!g : true <- !!g

• (For this the book suggests using the declarative transformation
FpPq, similar to BDGpPq.)

• “If g is added to the goal base, then create a new intention stack to
handle g”.

• Only give up on a goal when it is achieved.

• We call this transformation BC.

42 / 48

Single-minded commitment

• Blind commitment is usually too strong, so a weaker form is often
useful.

• We transform the set of plans P into BCpPq followed by:
+f : true <- .fail_goal(g)

• Thus, in some situations, captured by f, we can drop the goal.

• If the agent comes to believe f, then it stops trying to achieve the
goal.

43 / 48

Relativised commitment

• In single-minded commitment, goals are only dropped when
unachievable.

• What if the reason for them goes away.
• As in the Genesse example

• Relativised commitment
• We transform the set of plans P into BCpPq followed by:

-m : true <- .succeed_goal(g)

• If the motivation m disappears, then we have automatically succeeded
in achieving the goal.

44 / 48

Open-minded commitment

• We combine the two previous patterns to get open-minded
commitment:

• We transform the set of plans P into BCpPq followed by:
+f : true <- .fail_goal(g)
-m : true <- .succeed_goal(g)

• A goal is pursued until achieved or until believed to be unachievable
or until its motivation is no longer believed

45 / 48

Maintenance goals

• What we have looked at so far are achievement goals.

• Unlike achievement goals , maintenance goals are goals to maintain
a given state-of-affairs, or to keep some aspect of the environment to
have a certain value
For example, bank balance above 0.

• Can make this goal into an achievement goal by a suitable
transformation

46 / 48

Maintenance goals

• We transform the set of plans P into
g[source(percept)]
-g : true <- !g

followed by FpPq.

• Where FpPq is one of the transformations we saw before.

• Initally set g based on the value returned by some sensor.

• If g becomes false, make it true.

47 / 48

Summary

• We have looked at some more advanced features of goals as
programming constructs

• In particular:
• achievement vs. maintenance goals
• procedural vs. declarative goals
• types of commitments (blind, single-minded, relativized, open-minded)

• These might be of use for the second assignment

48 / 48

