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Today

• Today we will look at how you get agents to work together
• Teamwork

• Having several agents greatly complicates the business of getting
things done.

• The advantage is that agents get to achieve things that would
otherwise be impossible.
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Multiagent systems

• Thus a multiagent system contains a number of agents that:

• interact through communication;
• are able to act in an environment;
• have different “spheres of influence” (which may coincide); and
• will be linked by other (organisational) relationships.

• Why and how do agents work together?
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Working Together

• Since agents are autonomous, they have to make decisions at
run-time, and be capable of dynamic coordination.

• Overall they will need to be able to share:

• Tasks
• Information

• If agents are designed by different individuals, they may not have
common goals.

• Important to make a distinction between:

• benevolent agents and
• self-interested agents.
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Benevolent Agents

• If we “own” the whole system, we can design agents to help each
other whenever asked.

• In this case, we can assume agents are benevolent: our best interest
is their best interest.

• Problem-solving in benevolent systems is cooperative distributed
problem solving (CDPS).

• Benevolence simplifies the system design task enormously!

• We will talk about CDSP in this lecture.
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Self-Interested Agents

• If agents represent the interests of individuals or organisations, (the
more general case), then we cannot make the benevolence
assumption:

• Agents will be assumed to act to further there own interests, possibly
at expense of others.

• Potential for conflict.

• May complicate the design task enormously.
• Strategic behavior may be required — we will cover some of these

aspects in later lectures.
• Game theory
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Coherence and coordination

• Criteria for assessing an agent-based system.

• Coherence
how well the [multiagent] system behaves as a unit along
some dimension of evaluation (Bond and Gasser).

We can measure coherence in terms of solution quality, how
efficiently resources are used, conceptual clarity and so on.

• Coordination
the degree. . . to which [the agents]. . . can avoid
“extraneous” activity [such as] . . . synchronizing and aligning
their activities (Bond and Gasser).

If the system is perfectly coordinated, agents will not get in each
others’ way, in a physical or a metaphorical sense.
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Task Sharing and Result Sharing

• How does a group of agents work together to solve problems?

• There are three stages:

• Problem decomposition
• Sub-problem solution
• Answer synthesis

• Let’s look at these in more detail.
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Problem decomposition

• The overall problem to be solved is divided into smaller sub-problems.
• This is typically a recursive/hierarchical process.

• Subproblems get divided up also.
• This can be done until we are at the level of individual program

instructions.

• Clearly there is some processing to do the division. How this is done
is one design choice.

• Another choice is who does the division.

• Is it centralized?
• Which agents have knowledge of task structure?
• Who is going to solve the sub-problems?
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Sub-problem solution

• The sub-problems derived in the previous stage are solved.

• Agents typically share some information during this process.

• A given step may involve two agents synchronizing their actions.

eg. box pushing:
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Solution synthesis

• In this stage solutions to sub-problems are integrated.
• Again this may be hierarchical

• Different solutions at different levels of abstraction.
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Overall

decomposition solution synthesis
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Task and result sharing

• Given this model of cooperative problem solving, we have two
activities that are likely to be present:

• task sharing:
components of a task are distributed to component agents;
how do we decide how to allocate tasks to agents?

• result sharing:
information (partial results etc) is distributed.
how do we assemble a complete solution from the parts?

• An agent may well need a solution to both these problems in order to
be able to function in a CDPS environment.
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Task and result sharing

Task 1.1 Task 1.2 Task 1.3

Task 1

task sharing result sharing
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The Contract Net

• Well known task-sharing protocol for task allocation is the contract
net.

• The contract net includes five stages:

1 Recognition;
2 Announcement;
3 Bidding;
4 Awarding;
5 Expediting.

• We will look at each of them in a bit more detail.
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The Contract Net

Recognition

I have a problem

Bidding
Awarding

Announcement
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Recognition

• In this stage, an agent recognises it has a problem it wants help with.

• Agent has a goal, and either. . .

• realises it cannot achieve the goal in isolation — does not have
capability;

• realises it would prefer not to achieve the goal in isolation (typically
because of solution quality, deadline, etc)

• As a result, it needs to involve other agents.
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Announcement

• In this stage, the agent with the task sends out an announcement of
the task which includes a specification of the task to be achieved.

• Specification must encode:

• description of task itself (maybe executable);
• any constraints (e.g., deadlines, quality constraints).
• meta-task information (e.g., “bids must be submitted by. . . ”)

• The announcement is then broadcast.
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Bidding

• Agents that receive the announcement decide for themselves whether
they wish to bid for the task.

• Factors:

• agent must decide whether it is capable of expediting task;
• agent must determine quality constraints & price information (if

relevant).

• If they do choose to bid, then they submit a tender.
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Awarding & Expediting

• Agent that sent task announcement must choose between bids &
decide who to “award the contract” to.

• The result of this process is communicated to agents that submitted a
bid.

• The successful contractor then expedites the task.

• May involve generating further manager-contractor relationships:
sub-contracting.

• May involve another contract net.
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Issues for Implementing Contract Net

• How to. . .
• . . . specify tasks?
• . . . specify quality of service?
• . . . decide how to bid?
• . . . select between competing offers?
• . . . differentiate between offers based on multiple criteria?
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Deciding how to bid

• At some time t a contractor i is scheduled to carry out τi .

• Contractor i also has resources ei .

• Then i receives an announcement of task specification ts, which is for
a set of tasks τptsq.

• These will cost i cipτq to carry out.

• The marginal cost of carrying out τ will be:

µipτptsq | τiq “ cipτptsq Y τiq ´ cipτiq

that is the difference between carrying out what it has already agreed
to do and what it has already agreed plus the new tasks.
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Deciding how to bid

• Due to synergies, this is often not just:

cipτptsqq

in fact, it can be zero — the additional tasks can be done for free.

• Think of the cost of giving another person a ride to work.

• As long as µipτptsq | τiq ă e then the agent can afford to do the new
work, then it is rational for the agent to bid for the work.

• Otherwise not.

• You can extend the analysis to the case where the agent gets paid for
completing a task.
And for considering the duration of tasks.
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Deciding how to bid

• This analysis is due to Tuomas Sandholm

• Also noteworthy as an example of the fact that you can make money
from work in this area :-)
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Results Sharing

• In results sharing, agents provide each other with information as they
work towards a solution.

• It is generally accepted that results sharing improves problem solving
by:

• Independent pieces of a solution can be cross-checked.
• Combining local views can achieve a better overall view.
• Shared results can improve the accuracy of results.
• Sharing results allows the use of parallel resources on a problem.

• The following are three examples of results sharing.
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Results Sharing in Blackboard Systems

• The first scheme for cooperative problem solving: was the blackboard
system.

• Results shared via shared data structure (BB).

• Multiple agents can read and write to BB.

• Agents write partial solutions to BB.

• BB may be structured into hierarchy.

• Mutual exclusion over BB required ñ bottleneck.

• Not concurrent activity.
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Result Sharing in Subscribe/Notify Pattern

• Common design pattern in OO systems: subscribe/notify.

• An object subscribes to another object, saying “tell me when event e
happens”.

• When event e happens, original object is notified.

• Information pro-actively shared between objects.

• Objects required to know about the interests of other objects ñ
inform objects when relevant information arises.
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Result Sharing in Subscribe/Notify Pattern

• This is effectively the pattern between the Jason agent and the NXT
in Lecture 23.

• The robot makes measurements when it wants. Feeds the results to
the Jason agent.
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Example of Result Sharing

• The Centibots robots collaborate to map a space and find objects.
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http://www.youtube.com/watch?v=135IqefQB-k
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Handling inconsistency

• A group of agents may have inconsistencies in their:
• Beliefs
• Goals or intentions

• Inconsistent beliefs arise because agents have different views of the
world.
• May be due to sensor faults or noise or just because they can’t see

everything.

• Inconsistent goals may arise because agents are built by different
people with different objectives.
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Handling inconsistency

• Three ways to handle inconsistency (Durfee at al.)
• Do not allow it

For example, in the contract net the only view that matters is that of the
manager agent.

• Resolve inconsistency
• Agents discuss the inconsistent information/goals until the

inconsistency goes away.
• Argumentation.

• Build systems that degrade gracefully in the face of inconsistency.
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Coordination

• Coordination is managing dependencies between agents.

• Example
We both want to leave the room through the same door. We
are walking such that we will arrive at the door at the same
time. What do we do to ensure we can both get through the
door?

We both arrive at the copy room with a stack of paper to
photocopy. Who gets to use the machine first?

• How do these get resolved?
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Coordination

• Von Martial suggested that positive coordination is:
• Requested (explicit)
• Non-requested (implicit)

• Non-requested coordination relationships can be as follows.

• Action equality: we both plan to do something, and by recognizing this
one of us can be saved the effort.

• Consequence: What I plan to do will have the side-effect of achieving
something you want to do.

• Favor: What I plan to do will make it easier for you to do what you want
to do.

• Now let’s look at some approaches to coordination.
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Social norms

• Societies are often regulated by (often unwritten) rules of behavior.

• Example:
A group of people is waiting at the bus stop. The bus
arrives. Who gets on the bus first?

• In an agent system, we can design the norms and program agents to
follow them, or let norms evolve.
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Offline design

• Recall how we described agents before:

Ag : RE Ñ Ac

a function which, given a run ending in a state, gives us an action.

• A constraint is then a pair:
xE 1, αy

where E 1 Ď E is a set of states, and α P Ac is an action.

• This constraint says that α cannot be done in any state in E 1.

• A social law is then a set of these constraints.
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Offline design

• We can refine our view of an environment.

• Focal states, F Ď E are the states we want our agent to be able to get
to.

• From any focal state e P F it should be possible to get to any other
focal state e1 P F (though not necessarily right away).

• A useful social law is then one that does not prevent agents from
getting from one focal state to another.
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Offline design

• How might we have robots avoid collisions in this world?
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Offline design

• A useful social law that prevents collisions
(Shoham and Tennenholtz):

1 On even rows the robots move left while in odd rows the robots move
right.

2 Robots move up when in the rightmost column.
3 Robots move down when in the leftmost column of even rows or the

second rightmost column of odd rows.

• How does this work in that grid?
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Offline design

• Gives us a trajectory for all robots of:

• Not necessarily efficient (Opn2q steps to get to a specific square).
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Emergence
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Emergence

• We talked before about emergent behavior.
• Single agent behavior

• We can also design systems in which social laws emerge.

• T-shirt game:
Agents have both a red t-shirt and a blue t-shirt and wear
one. Goal is for everyone to end up with the same color on.
In each round, each agent meets one other agent, and
decides whether or not to change their shirt. During the
round they only see the shirt their pair is wearing — they
don’t get any other information.

(Shoham and Tennenholtz)

• What strategy update function should they use?
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Emergence

• Here are some update functions that could be applied to the T-shirt
game.

• Simple majority
Agents pick the shirt they have seen the most.

• Simple majority with types
Agents come in two types. When they meet an agent of the same
type, agents pass their memories. Otherwise they act as simple
majority.

• Highest cumulative reward.
Agents can “see” how often other agents (some subset of all the
agents) have matched their pair. They pick the shirt with the largest
number of matches.
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Emergent team behavior

• Here is an example of emergent team behavior.

• http://www.youtube.com/watch?v=b_kZmatqAaQ
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Joint intentions

• Just as we have individual intentions, we can have joint intentions for
a team of agents.

• Levesque defined the idea of a joint persistent goal (JPG).

• A group of agents have a collective commitment to bring about some
goal φ, “move the couch”.

• Also have motivation ϕ, “Richard wants the couch moved”.

• The mental states of agents mirror those in BDI agents.

• Agents don’t believe that φ is satisfied, but believe it is possible.

• Agents maintain the goal φ until a termination condition is reached.
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Joint intentions

• The termination condition is that it is mutually believed that:
• goal φ is satisfied; or
• goal φ is impossible; or
• the motivation ϕ is no longer present.

• You and I have a mutual belief that p if I believe p and you believe p
and I believe that you believe p and I believe that you believe that I
believe p and . . . .
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Joint intentions

• The termination condition is achieved when an agent realises that,
the goal is satisfied, impossible and so on.

• But it doesn’t drop the goal right away.

• Instead it adopts a new goal — to make this new knowledge mutually
believed.

• This ensures that the agents are coordinated.

• They don’t stop working towards the goal until they are all appraised
of the situation.

• Mutual belief is achieved by communication.

48 / 52



• In practice, this can be difficult to achieve.

• How can two generals coordinate an attack in the presence of the
enemy?
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Multiagent planning

• Another approach to coordinate is to explicitly plan what all the
agents do.

• For example, come up with a large STRIPS plan for all the agents in a
system.

• Could have:
• Centralized planning for distributed plans

One agent comes up with a plan for everybody
• Distributed planning

A group of agents come up with a centralized plan for another group of
agents.

• Distributed planning for distributed plans
Agents build up plans for themselves, but take into account the actions
of others.
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Multiagent planning

• In general, the more decentralized it is, the harder it is.

• Georgeff propsed a distributed version of STRIPS.

• New list: during

• Specifies what must be true while the action is carried out.

• This places constraints on when other agents can do things.

• Different agents plan to achieve their goals using these operators and
then do:

• Interaction analysis: do different plans affect one another?
• Safety analysis: which interactions are problematic?
• Interaction resolution: treat the problematic interactions as critical

sections and enforce mutual exclusion.
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Summary

• This lecture has discussed how to get agents working together to do
things.

• Key assumption: benevolence
• Agents are working together not in competition.

• We discussed a number of ways of having agents decide what to do,
and make sure that their work is coordinated.

• A typical system will need to use a combination of these ideas.

• Next lecture we will go on to look at agents being in competition with
one another.
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