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Today

• In the last lecture we started to look at competition between agents

• Today we look more into this.
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Competition between agents

• Situation is more like this.
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Game theory?

• Game theory is a framework for analysing interactions between a set
of agents.

• Abstract specification of interactions.

• Describes each agent’s preferences in terms of their utility.

• Assume agents want to maximise utility.

• Give us a range of solution strategies with which we can make some
predictions about how agents will/should interact.
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Congestion Game

• Agents using TCP to communicate.
• If packets collide, should back-off.

• Works if everyone does this.
• But what if agents could choose a defective implementation that

doesn’t back-off?
• In a collision, their message would get sent quicker.

• But what if everyone did this?
• Outcome depends on what other agents do.
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Congestion Game

• Capture this as:
i

j

defect correct
defect -3 -4

-3 0
correct 0 -1

-4 -1

• Agent i is the column player.

• Agent j is the row player.

6 / 53

Congestion Game

• Two obvious questions we can ask in this scenario:
• What should an individual agent do?
• How does the game get played — how do both agents together act?

• Game theory offers some ideas about how to answer these questions.
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Congestion Game

• What should an individual agent do?
• Depends on what the other agent does.

• How does the game get played — how do both agents together act?
• Equilibrium.
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Congestion Game

• As with all good games, the congestion game captures some
underlying truths about the world at an abstract level:

• (Though you might want to alter the payoffs somewhat.)
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Normal form games

• An n-person, finite, normal form game is a tuple pN,A , uq, where
• N is a finite set of players.
• A “ A1 ˆ . . .ˆ An where Ai is a finite set of actions available to i.

Each a “ pa1, . . . , anq P A is an action profile.
• u “ pu1, . . . , unq where ui : A ÞÑ < is a real-valued utility function for i.

• Naturally represented by an n-dimensional matrix
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Normal form games
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Strategies

• We analyze games in terms of strategies, that is what agents decide
to do.
• Combined with what the other agent(s) do(es) this jointly determines

the payoff.

• An agent’s strategy set is its set of available choices.

• Can just be the set of actions — pure strategies.
• In the congestion game, the set of pure strategies is:

tcorrect , defectu
• We need more than just pure strategies in many cases.

• Will discuss this later
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Payoff matrix

• Here is the payoff matrix from the “choose which side” (of the road)
game:

i

j

left right
left 1 0

1 0
right 0 1

0 1

• We can classify games by the form of the payoff matrix.
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Common payoff games

• “Choose which side” game
left right

left 1 0
1 0

right 0 1
0 1

Also called the coordination game

• Any game with uipaq “ ujpaq for all a P Ai ˆ Aj is a common payoff
game.
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Common payoff games

• The misanthropes’ (un)coordination game:
left right

left 0 1
0 1

right 1 0
1 0

Here we try to avoid each other.
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Common payoff games

• In between is the El Farol bar problem:

• If everyone goes to the bar it is no fun, but if only some people go
then everyone who goes has a good time.
Should you go or not?
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Constant sum games

• Matching pennies
heads tails

heads -1 1
1 -1

tails 1 -1
-1 1

• Any game with uipaq ` ujpaq “ c for all a P Ai ˆ Aj is a constant sum
game.
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Zero-sum games

• A particular category of constant sum games are zero-sum games.

• Where utilities sum to zero:

u1paiq ` ujpωq “ 0 for all a P Ai ˆ Aj
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Zero-sum games

• Where preferences of agents are diametrically opposed we have
strictly competitive scenarios.

• Zero sum implies strictly competitive.

• Zero sum encounters in real life are very rare . . . but people tend to
act in many scenarios as if they were zero sum.

• Most games have some room in the set of outcomes for agents to find
(somewhat) mutually beneficial outcomes.
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Zero-sum games

• Rock, paper, scissors:

is another constant/zero sum game.

• Game in two senses.
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The rules

• Rules for “rock, paper, scissors”.
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Rock, paper, scissors

• How would you play?
i

j

rock paper scissors
rock 0 1 -1

0 -1 1
paper -1 0 1

1 0 -1
scissors 1 -1 0

-1 1 0
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Mixed strategy

• Chances are you would play a mixed strategy.
• You would:

• sometimes play rock,
• sometimes play paper; and
• sometimes play scissors.

• A fixed/pure strategy is easy for an adaptive player to beat.
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Mixed strategy

• A mixed strategy is just a probability distribution across a set of pure
strategies.

• More formally, for a game with two actions a1 and a2, i picks a vector
of probabilities:

x “ px1, x2q

where
ÿ

k

xk “ 1

and
xk ě 0

• i then picks action a1 with probability x1 and a2 with probability a2.
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Mixed strategy

• To determine the mixed strategy, i needs then to compute the best
values of x1 and x2.

• These will be the values which give i the highest payoff given the
options that j can choose and the joint payoffs that result.

• In the next lecture we will get into the computation of expected values,
which is one way to analyse this.

• But for now we will look at a simple graphical method
• Only works for very simple cases.
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Mixed strategy

• Let’s consider the payoff matrix:
i

j

a1 a2

a1 -3 1
3 -1

a2 0 -1
0 1

and compute mixed strategies to be used by the players.
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Mixed strategy

• i’s analysis of this game would be something like this:

−3

−2

−1

0

11

0

−1

−2

−3

0 1c

01 c

1

2

c = 0.41

j picks first row

j picks second row

• i picks the probability of a1 so that it is indifferent to what j picks.
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Mixed strategy

• j can analyse the problem in terms of a probability vector

y “ py1, y2q

and come up with a similar picture.
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Mixed strategy

• j’s analysis would be something like this:

3

2

1

0

−1

3

2

1

0

−1

0 1

01

1

2

r

r

1r  = 0.2

i picks first column

i picks second column
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Mixed strategy

• This analysis will help i and j choose a mixed strategy for the specific
case in which the payoffs to the two agents are equal and opposite for
each outcome.

• Application to zero sum games is due to von Neumann.
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General sum games

• Battle of the Outmoded Gender Stereotypes
• aka Battle of the Sexes

this that
this 1 0

2 0
that 0 2

0 1

• Game contains elements of cooperation and competition.

• The interplay between these is what makes general sum games
interesting.
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Nash equilibrium

• Last time we introduced the notion of Nash equilibrium as a solution
concept for general sum games.

• (We didn’t describe it in exactly those terms.)

• Looked at pure strategy Nash equilibrium.

• Issue was that not every game has a pure strategy Nash equilibrium.
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Nash equilibrium

• For example:

i

j

D C
D 2 1

1 2
C 0 1

2 1

• Has no pure strategy NE.
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Nash equilibrium

• The notion of Nash equilibrium extends to mixed strategies.

• And every game has at least one mixed strategy Nash equilibrium.
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Nash equilibrium
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Nash equilibrium

• For a game with payoff matrices A (to i) and B (to j), a mixed strategy
px˚, y˚q is a Nash equilibrium solution if:

@x, x˚Ay˚T ě xAy˚T

@y, x˚By˚T ě xBy˚T

• In other words, x˚ gives a higher expected value to i than any other
strategy when j plays y˚.

• Similarly, y˚ gives a higher expected value to j than any other strategy
when i plays x˚.
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Nash equilibrium

• Unfortunately, this doesn’t solve the problem of which Nash
equilibrium you should play.
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The Prisoner’s Dilemma
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The Prisoner’s Dilemma

Two men are collectively charged with a crime and held in
separate cells, with no way of meeting or communicating.
They are told that:

• if one confesses and the other does not, the confessor will
be freed, and the other will be jailed for three years;

• if both confess, then each will be jailed for two years.

Both prisoners know that if neither confesses, then they will each
be jailed for one year.
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The Prisoner’s Dilemma

• Payoff matrix for prisoner’s dilemma:

i

j

defect coop
defect 2 1

2 4
coop 4 3

1 3

• What should each agent do?
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What Should You Do?

• The individually rational action is defect.
This guarantees a payoff of no worse than 2, whereas cooperating
guarantees a payoff of at most 1.

• So defection is the best response to all possible strategies: both
agents defect, and get payoff = 2.

• But intuition says this is not the best outcome:
Surely they should both cooperate and each get payoff of 3!

• This is why the PD game is interesting — the analysis seems to give
us a paradoxical answer.
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What Did You Do?

• The Prisoner’s Dilemma is the same game as the “grade game”.
Just has a different back story.

• When you played that,
18 of you chose “defect”.
6 of you chose “cooperate”.
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Solution Concepts

• Payoff matrix for prisoner’s dilemma:

i

j

defect coop
defect 2 1

2 4
coop 4 3

1 3

• There is no dominant strategy (in the game theory sense).

• pD,Dq is the only Nash equilibrium.

• All outcomes except pD,Dq are Pareto optimal.

• pC ,Cq maximises social welfare.
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The Paradox

• This apparent paradox is the fundamental problem of multi-agent
interactions.
It appears to imply that cooperation will not occur in societies of
self-interested agents.

• Real world examples:

• nuclear arms reduction/proliferation
• free rider systems — public transport, file sharing;
• in the UK — television licenses.
• climate change — to reduce or not reduce emissions
• doping in sport
• resource depletion

• The prisoner’s dilemma is ubiquitous.

• Can we recover cooperation?
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The Shadow of the Future

• Play the game more than once.
If you know you will be meeting your opponent again, then the
incentive to defect appears to evaporate.

• If you defect, you can be punished (compared to the co-operation
reward.)

• If you get suckered, then what you lose can be amortised over the rest
of the iterations, making it a small loss.

• Cooperation is (provably) the rational choice in the infinitely repeated
prisoner’s dilemma.
(Hurrah!)

• But what if there are a finite number of repetitions?
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Backwards Induction

• Suppose you both know that you will play the game exactly n times.
On round n ´ 1, you have an incentive to defect, to gain that extra bit
of payoff.
But this makes round n ´ 2 the last “real”, and so you have an
incentive to defect there, too.
This is the backwards induction problem.

• Playing the prisoner’s dilemma with a fixed, finite, pre-determined,
commonly known number of rounds, defection is the best strategy.
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Agh!

• That seems to suggest that you should never cooperate.

• So how does cooperation arise? Why does it make sense?

• After all, there does seem to be such a thing as society, and even in a
big city like New York, people don’t behave so badly.
Or, maybe more accurately, they don’t behave badly all the time.

• Turns out that:
• As long as you have some probability of repeating the interaction,

co-operation can have a better expected payoff.
• As long as there are enough co-operative folk out there, you can come

out ahead by co-operating.

• But is always co-operating the best approach?
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Axelrod’s Tournament

• Suppose you play iterated prisoner’s dilemma (IPD) against a range
of opponents.

• What approach should you choose, so as to maximise your overall
payoff?

• Is it better to defect, and hope to find suckers to rip-off?

• Or is it better to cooperate, and try to find other friendly folk to
cooperate with?
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Axelrod’s Tournament

• Robert Axelrod (1984) investi-
gated this problem.

• He ran a computer tournament for
programs playing the iterated pris-
oner’s dilemma.

• Axelrod hosted the tournament
and various researchers sent in
approaches for playing the game.
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Example Strategies in Axelrod’s Tournament

• ALLD:
“Always defect” — the hawk strategy;

• TIT-FOR-TAT:

1 On round u “ 0, cooperate.
2 On round u ą 0, do what your opponent did on round u ´ 1.

• TESTER:
On 1st round, defect. If the opponent retaliated, then play
TIT-FOR-TAT. Otherwise intersperse cooperation & defection.

• JOSS:
As TIT-FOR-TAT, except periodically defect.
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Axelrod’s Tournament

• Surprisingly TIT-FOR-TAT for won.
• But don’t read too much into this.

• Turns out that TIT-FOR-TWO-TATS would have done better.

• In scenarios like the IPD tournament, the best approach depends
heavily on what the full set of approaches is.

• TIT-FOR-TAT did well because there were other players it could
co-operate with.
• In scenarios with different strategy mixes it would not win.

• Suggests that there is some value in cooperating, at least some of the
time.

51 / 53

Recipes for Success

Axelrod suggests the following rules for succeeding in his tournament:

• Don’t be envious:
Don’t play as if it were zero sum!

• Be nice:
Start by cooperating, and reciprocate cooperation.

• Retaliate appropriately:
Always punish defection immediately, but use “measured” force —
don’t overdo it.

• Don’t hold grudges:
Always reciprocate cooperation immediately.
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Summary

• Have looked a bit further at game theory and what it can do for us.

• Lots more we haven’t covered...

• Game theory helps us to get a handle on some of the aspects of
cooperation between self-interested agents.

• Rarely any definitive answers.

• Given human interactions, that should not surprise us.
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