Robotics and Autonomous Systems o In the last lecture we started to look at competition between agents
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e Today we look more into this.

Competition between agents Game theory?

Game theory is a framework for analysing interactions between a set
of agents.

Abstract specification of interactions.

Describes each agent’s preferences in terms of their utility.
e Assume agents want to maximise utility.

e Give us a range of solution strategies with which we can make some
predictions about how agents will/should interact.

e Situation is more like this.



Congestion Game Congestion Game

e Capture this as:

Agents using TCP to communicate.

o If packets collide, should back-off. defect correct

o Works if everyone does this. defect 3 4
e But what if agents could choose a defective implementation that j -3 0
doesn’t back-off? correct 0 _1
¢ In a collision, their message would get sent quicker. 4 -1
e But what if everyone did this?
¢ Outcome depends on what other agents do. e Agent jis the column player.

e Agent j is the row player.

Congestion Game Congestion Game

o Two obvious questions we can ask in this scenario: e What should an individual agent do?
e What should an individual agent do? e Depends on what the other agent does.
¢ How does the game get played — how do both agents together act? « How does the game get played — how do both agents together act?

e Game theory offers some ideas about how to answer these questions. e Equilibrium.



Congestion Game Normal form games

¢ As with all good games, the congestion game captures some
underlying truths about the world at an abstract level:

» An n-person, finite, normal form game is a tuple (N, A, u), where
¢ Nis a finite set of players.
e A=A x...x A,where A is a finite set of actions available to i.
Each a = (a1,...,an) € A is an action profile.
e U= (U,...,Un) Where u; : A — R is a real-valued utility function for i.

o Naturally represented by an n-dimensional matrix

e (Though you might want to alter the payoffs somewhat.)
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Normal form games Strategies

We analyze games in terms of strategies, that is what agents decide
to do.
e Combined with what the other agent(s) do(es) this jointly determines
the payoff.

An agent’s strategy set is its set of available choices.

Can just be the set of actions — pure strategies.
In the congestion game, the set of pure strategies is:
{correct, defect}
We need more than just pure strategies in many cases.
o Will discuss this later
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Payoff matrix Common payoff games

e Here is the payoff matrix from the “choose which side” (of the road) e “Choose which side” game
game: left  right
i left 1 0
left  right 1 0
left 1 0 right 0 1
j 1 0 0 1
right 0 1 Also called the coordination game
0 1 e Any game with uj(a) = uj(a) for all a € A; x A; is a common payoff
e We can classify games by the form of the payoff matrix. game.
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Common payoff games Common payoff games

¢ In between is the El Farol bar problem:

e The misanthropes’ (un)coordination game:

left right

left 0 1
0 1

right 1 0
1 0

Here we try to avoid each other.

o If everyone goes to the bar it is no fun, but if only some people go
then everyone who goes has a good time.
Should you go or not?
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Constant sum games Zero-sum games

e Matching pennies

heads tails

heads 1 1 e A particular category of constant sum games are zero-sum games.
1 -1 e Where utilities sum to zero:

tails 1 -1
-1 1 ui(aj) + uj(w) =0 forall a e A; x A

* Any game with uj(a) + uj(a) = c for all a € A; x A; is a constant sum
game.
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Zero-sum games Zero-sum games

e Where preferences of agents are diametrically opposed we have « Rock, paper, scissors:
strictly competitive scenarios.

e Zero sum implies strictly competitive.

e Zero sum encounters in real life are very rare ... but people tend to
act in many scenarios as if they were zero sum.

o Most games have some room in the set of outcomes for agents to find
(somewhat) mutually beneficial outcomes. e Game in two senses.

is another constant/zero sum game.
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The rules Rock, paper, scissors

o Rules for “rock, paper, scissors”.

e How would you play?

rock  paper scissors
rock 0 1 -1
Rock P Sci
Ocl aper CISsOrs 0 _1 1
i paper -1 0 1

1 0 -1

scissors 1 -1 0
-1 1 0

Rock breaks scissors Paper covers rock Scissors cut paper
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Mixed strategy Mixed strategy

¢ A mixed strategy is just a probability distribution across a set of pure

strategies.
« Chances are you would play a mixed strategy. * More forn?gllly, for a game with two actions ay and ap, i picks a vector
¢ sometimes play rock, X = (x1,X2)
e sometimes play paper; and where
e sometimes play scissors. Z X = 1
o A fixed/pure strategy is easy for an adaptive player to beat. k
and
Xk =0

¢ jthen picks action a; with probability x; and a, with probability a,.

23/53 24/53



Mixed strategy Mixed strategy

o To determine the mixed strategy, i needs then to compute the best

e Let’s consider the payoff matrix:
values of x; and xo.

e These will be the values which give i the highest payoff given the

ai ao
options that j can choose and the joint payoffs that result. ay -3 1
¢ In the next lecture we will get into the computation of expected values, J 3 -1
which is one way to analyse this. a 0 -1
e But for now we will look at a simple graphical method 0 1
« Only works for very simple cases. and compute mixed strategies to be used by the players.
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Mixed strategy Mixed strategy

¢ j’s analysis of this game would be something like this:

1 ] picks first row 1
0 Jpicks second row 0 e jcan analyse the problem in terms of a probability vector
-1 -1
y=y1.y2)
-2 -2
3 045 A and come up with a similar picture.
- ¢ = V. . -2
0 C 1
1 C2 0

e | picks the probability of a; so that it is indifferent to what j picks.
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Mixed strategy Mixed strategy

" . _ . e This analysis will help i and j choose a mixed strategy for the specific
¢ j’'s analysis would be something like this: . . .
case in which the payoffs to the two agents are equal and opposite for
3 3 each outcome.
) i picks first column ’ i =
1 1 will | RE
i picks second column e ’
0 : 0
‘1=02 @
1 ! -1 '
0 r 1
r, 0

e Application to zero sum games is due to von Neumann.
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General sum games Nash equilibrium

o Battle of the Outmoded Gender Stereotypes
o aka Battle of the Sexes

this  that e Last time we introduced the notion of Nash equilibrium as a solution
this 1 0 concept for general sum games.

2 0  (We didn’'t describe it in exactly those terms.)
that 0 0 ] 2 o Looked at pure strategy Nash equilibrium.

Issue was that not every game has a pure strategy Nash equilibrium.

e Game contains elements of cooperation and competition.

e The interplay between these is what makes general sum games
interesting.
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Nash equilibrium Nash equilibrium

e For example:

D c e The notion of Nash equilibrium extends to mixed strategies.
D 2 1 e And every game has at least one mixed strategy Nash equilibrium.

¢ Has no pure strategy NE.
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Nash equilibrium Nash equilibrium

e For a game with payoff matrices A (to i) and B (to j), a mixed strategy
(x*, y*) is a Nash equilibrium solution if:

vx, x*Ay*T >

Vy, x* By*T >

¢ In other words, x* gives a higher expected value to i than any other
strategy when j plays y*.

o Similarly, y* gives a higher expected value to j than any other strategy
when i plays x*.
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Nash equilibrium The Prisoner’s Dilemma

o Unfortunately, this doesn’t solve the problem of which Nash
equilibrium you should play.
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The Prisoner’s Dilemma The Prisoner’s Dilemma

Two men are collectively charged with a crime and held in « Payoff matrix for prisoner’s dilemma:
separate cells, with no way of meeting or communicating. )
They are told that: delfect c00p
e if one confesses and the other does not, the confessor will defect ) 1
be freed, and the other will be jailed for three years; j 2 4
e if both confess, then each will be jailed for two years. coop 4 3
Both prisoners know that if neither confesses, then they will each 1 3

be jailed for one year. e What should each agent do?
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What Should You Do?

The individually rational action is defect.
This guarantees a payoff of no worse than 2, whereas cooperating
guarantees a payoff of at most 1.

So defection is the best response to all possible strategies: both
agents defect, and get payoff = 2.

But intuition says this is not the best outcome:
Surely they should both cooperate and each get payoff of 3!

This is why the PD game is interesting — the analysis seems to give
us a paradoxical answer.
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Solution Concepts

Payoff matrix for prisoner’s dilemma:

i

defect coop
defect 2 1

j 2 4
coop 4 3

1 3

There is no dominant strategy (in the game theory sense).
(D, D) is the only Nash equilibrium.

All outcomes except (D, D) are Pareto optimal.

(C, C) maximises social welfare.
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What Did You Do?

e The Prisoner’s Dilemma is the same game as the “grade game”.

Just has a different back story.

e When you played that,

18 of you chose “defect”.
6 of you chose “cooperate”.
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The Paradox

This apparent paradox is the fundamental problem of multi-agent
interactions.

It appears to imply that cooperation will not occur in societies of
self-interested agents.

Real world examples:

¢ nuclear arms reduction/proliferation

o free rider systems — public transport, file sharing;

¢ in the UK — television licenses.

¢ climate change — to reduce or not reduce emissions
¢ doping in sport

e resource depletion

The prisoner’s dilemma is ubiquitous.
Can we recover cooperation?
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The Shadow of the Future

¢ Play the game more than once.
If you know you will be meeting your opponent again, then the
incentive to defect appears to evaporate.
e If you defect, you can be punished (compared to the co-operation
reward.)

« If you get suckered, then what you lose can be amortised over the rest
of the iterations, making it a small loss.

e Cooperation is (provably) the rational choice in the infinitely repeated
prisoner’s dilemma.
(Hurrah!)

e But what if there are a finite number of repetitions?
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That seems to suggest that you should never cooperate.

So how does cooperation arise? Why does it make sense?

After all, there does seem to be such a thing as society, and even in a
big city like New York, people don’t behave so badly.

Or, maybe more accurately, they don’t behave badly all the time.
Turns out that:

¢ As long as you have some probability of repeating the interaction,
co-operation can have a better expected payoff.

¢ As long as there are enough co-operative folk out there, you can come
out ahead by co-operating.

But is always co-operating the best approach?
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Backwards Induction

e Suppose you both know that you will play the game exactly n times.

On round n — 1, you have an incentive to defect, to gain that extra bit
of payoff.

But this makes round n — 2 the last “real”, and so you have an
incentive to defect there, too.

This is the backwards induction problem.

Playing the prisoner’s dilemma with a fixed, finite, pre-determined,
commonly known number of rounds, defection is the best strategy.

46/53

Axelrod’s Tournament

Suppose you play iterated prisoner’s dilemma (IPD) against a range
of opponents.

What approach should you choose, so as to maximise your overall
payoff?
Is it better to defect, and hope to find suckers to rip-off?

Or is it better to cooperate, and try to find other friendly folk to
cooperate with?
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Axelrod’s Tournament Example Strategies in Axelrod’s Tournament

_ _ e ALLD:
e Robert Axelrod (1984) investi- “Always defect” — the hawk strategy;
gated this problem. TIL.EOR-TAT ’
o - -TAT:

e He ran a computer tournament for
programs playing the iterated pris-
oner’s dilemma.

e Axelrod hosted the tournament
and various researchers sent in
approaches for playing the game.

© On round u = 0, cooperate.
® On round u > 0, do what your opponent did on round u — 1.
e TESTER:
On 1st round, defect. If the opponent retaliated, then play
TIT-FOR-TAT. Otherwise intersperse cooperation & defection.

o JOSS:
As TIT-FOR-TAT, except periodically defect.
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Axelrod’s Tournament Recipes for Success

o Surprisingly TIT-FOR-TAT for won. Axelrod suggests the following rules for succeeding in his tournament:

e But don’t read too much into this.
« Turns out that TIT-FOR-TWO-TATS would have done better. Don't play as if it were zero sum!
¢ Be nice:
Start by cooperating, and reciprocate cooperation.

e Don’t be envious:

¢ In scenarios like the IPD tournament, the best approach depends
heavily on what the full set of approaches is.

o TIT-FOR-TAT did well because there were other players it could * Retaliate appropriately:
co-operate with. Always punish defection immediately, but use “measured” force —
e In scenarios with different strategy mixes it would not win. don’t overdo it.
e Suggests that there is some value in cooperating, at least some of the e Don't hold grudges:

time. Always reciprocate cooperation immediately.
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Have looked a bit further at game theory and what it can do for us.
Lots more we haven’t covered...

Game theory helps us to get a handle on some of the aspects of
cooperation between self-interested agents.

Rarely any definitive answers.

Given human interactions, that should not surprise us.
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