
Robotics and Autonomous Systems
Lecture 28: Learning in Robots

Richard Williams

Department of Computer Science
University of Liverpool

1 / 41

Today

• We have seen how difficult it is to program, down to the finest details,
a control policy (a controller) for robots to carry out even simple tasks
like obstacle avoidance

• Ideally, one would like to be able to simply specify what the robot is
supposed to achieve:
• Go from A to B without hitting obstacles

without having to say how precisely that should be done
• Machine learning techniques

• in particular Reinforcement Learning

can be used to that purpose: the robot will then learn the how of the
what the programmer has specified as task

• This is our subject today.

2 / 41

Little Dog

https://www.youtube.com/watch?v=nUQsRPJ1dYw

3 / 41

How learning might fit in

• Recall that in Jason you write rules/plans that invoke actions that are
defined by the environment model.

• Imagine if these could be learnt.

4 / 41

https://www.youtube.com/watch?v=nUQsRPJ1dYw


How to decide what to do

• Consider being offered a bet in which you pay £2 if an odd number is
rolled on a die, and win £3 if an even number appears.

• Is this a good bet?

5 / 41

How to decide what to do

• Consider being offered a bet in which you pay £2 if an odd number is
rolled on a die, and win £3 if an even number appears.

• Is this a good bet?

• To analyse this, we need the expected value of the bet.

6 / 41

How to decide what to do

• We do this in terms of a random variable, which we will call X .
• X can take two values:

3 if the die rolls odd
´2 if the die rolls even

• And we can also calculate the probability of these two values
PrpX “ 3q “ 0.5
PrpX “ ´2q “ 0.5

7 / 41

How to decide what to do

• The expected value is then the weighted sum of the values, where the
weights are the probabilities.

• Formally the expected value of X is defined by:

EpXq “
ÿ

k

k PrpX “ kq

where the summation is over all values of k for which PrpX “ kq , 0.

• Here the expected value is:

EpXq “ 0.5ˆ 3` 0.5ˆ´2

• Thus the expected value of X is £0.5, and we take this to be the value
of the bet.

• As opposed to £0 if you don’t take the bet.

8 / 41



How to decide what to do

• Not the value you will get.

• But a value that allows you to make a decision.

9 / 41

How to decide what to do

• Another bet: you get £1 if a 2 or a 3 is rolled, £5 if a six is rolled, and
pay 3 otherwise.

• The expected value here is:

EpXq “ 0.333ˆ 1` 0.166ˆ 5` 0.5ˆ´3

which is ´0.33.

10 / 41

How an agent might decide what to do

• Consider an agent with a set of possible actions A available to it.

• Each a P A has a set of possible outcomes sa .

• Which action should the agent pick?

11 / 41

How an agent might decide what to do

• The action a˚ which a rational agent should choose is that which
maximises the agent’s utility.

• In other words the agent should pick:

a˚ “ arg max
aPA

upsaq

• The problem is that in any realistic situation, we don’t know which sa

will result from a given a, so we don’t know the utility of a given action.

• Instead we have to calculate the expected utility of each action and
make the choice on the basis of that.

12 / 41



How an agent might decide what to do

• In other words, for the set of outcomes sa of each action each a, the
agent should calculate:

Epupsaqq “
ÿ

s1Psa

ups1q.Prpsa “ s1q

and pick the best.

s
1

s

a

a

1

2

s

s s

s

s

2

3
4

5

6

13 / 41

Sequential decision problems

• These approaches give us a battery of techniques to apply to
individual decisions by agents.

• However, they aren’t really sufficient.
• Agents aren’t usually in the business of taking single decisions

• Life is a series of decisions.

The best overall result is not necessarily obtained by a greedy
approach to a series of decisions.

• The current best option isn’t the best thing in the long-run.

14 / 41

Sequential decision problems

• Otherwise I’d only ever eat chocolate cake.
15 / 41

Sequential decision problems

• Need to think about sequential decision problems where the agent’s
utility depends on a sequence of decisions.

• We saw something like this at the start of the semester.
• Runs of an agent.

��
��
��
��

��
��
��
�� G

S

• To get from the start point (S) to the goal (G), an agent needs to
repeatedly make a decision about what to do.

16 / 41



Rewards

• Here we exchange the notion of a goal for the notion of a reward.

• It is easy to see which is the “goal” in this case:

��
��
��
��

��
��
��
��

S

+1

−1

• The action model is more complex than we saw before.

• Now actions are non-deterministic.

17 / 41

Motion model

• If the agent chooses to move in some direction, there is a probability
of 0.8 it will move that way.

0.8

0.1

0.1

• Probability of 0.2 it will move in the perpendicular direction.

• If the agent hits a wall, it doesn’t move.

18 / 41

Motion model

• As you know by know, this is an approximation to how a robot moves.

• Arguably a more accurate approximation than assuming that it will
always do what it is programmed to do.

19 / 41

Motion model

• If the agent goes tUp,Up,Right ,Right ,Rightu

��
��
��
��

��
��
��
��

S

+1

−1

• It will get to the goal with probability 0.85 “ 0.32768 doing what it
expects/hopes to do.

20 / 41



Motion model

• It can also reach the goal going around the obstacle the other way,
with probability = 0.14 ˆ 0.8.

��
��
��
��

��
��
��
��

S

+1

−1

• Total probability of reaching the goal is 0.32776.

21 / 41

Rewards

• To complete the description, we have to give a reward to every state.
• To give the agent an incentive to reach the goal quickly, we give each

non-terminal state a reward of ´0.04.
• Equivalent to a cost for each action.

• So if the goal is reached after 10 steps, the agent’s overall reward is
0.6.

22 / 41

Markov Decision Process

• This kind of problem is a Markov Decision Process (MDP).

• We have:

• a set of states S.
• an initial state s0.
• a set A of actions.
• A transition model Prps1|s, aq for s, s1 P S and a P A ; and
• A reward function Rpsq for s P S.

• What does a solution look like?

23 / 41

Policies

• A plan — a sequence of actions — is not much help.

• Isn’t guaranteed to find the goal.

• Better is a policy π, which tells us which action πpsq to do in every
state.

• Then the non-determinism doesn’t matter.
• However badly we do as a result of an action, we will know what to do.

24 / 41



Policies

• Because of the non-determinism, a policy will give us different
sequences of actions different times it is run.

• To tell how good a policy is, we can compute the expected value.
• Compute value you get when you run the policy.
• Can compute it by running the policy

• The optimal policy π˚ is the one that gives the highest expected utility.

• On average it will give the best reward.

25 / 41

Policies

• Given π˚ an agent doesn’t have to think — it just does the right action
for the state it is in.

26 / 41

Policies

• The optimum policy is then:

��
��
��
��

��
��
��
��

+1

−1

• Note that this is specific to the value of the reward Rpsq for
non-terminal states — different rewards will give different policies.

27 / 41

Bellman Equation

• How do we find the best policy (for a given set of rewards)?

• Turns out that there is a neat way to do this, by first computing the
utility of each state.

• We compute this using the Bellman equation

Upsq “ Rpsq ` γ max
aPApsq

ÿ

s1

Prps1|s, aqUps1q

• γ is a discount factor.

28 / 41



Value iteration

• In an MDP wth n states, we will have n Bellman equations.
• Hard to solve these simultaneously because of the max operation

• Makes them non-linear
• Instead use an iterative approach

• value iteration.

• Start with arbitrary values for utilities (say 0) and then update with:

Ui`1 Ð Rpsq ` γ max
aPApsq

ÿ

s1

Prps1|s, aqUips1q

• Repeat until the value stabilises.

29 / 41

Applications

• The Bellman equation(s)/update are widely used.

• D. Romer, It’s Fourth Down and What Does the Bellman Equation
Say? A Dynamic Programming Analysis of Football Strategy, NBER
Working Paper No. 9024, June 2002

30 / 41

Applications

This paper uses play-by-play accounts of virtually all regular
season National Football League games for 1998-2000 to
analyze teams’ choices on fourth down between trying for a first
down and kicking. Dynamic programming is used to estimate the
values of possessing the ball at different points on the field.
These estimates are combined with data on the results of kicks
and conventional plays to estimate the average payoffs to kicking
and going for it under different circumstances. Examination of
teams’ actual decisions shows systematic, overwhelmingly
statistically significant, and quantitatively large departures from
the decisions the dynamic-programming analysis implies are
preferable.

31 / 41

Partial observability

• For all their complexity, MDPs are not an accurate model of the world.
• Assume accessibility/observability

• To deal with partial observability we have the Partially observable
Markov decision process (POMDP).

• We don’t know which state we are in, but we know what probability
we have to being in every state.

• That is all we will say on the subject.

32 / 41



Reinforcement learning

• Ok, now we have the notion of an MDP, imagine we don’t know what
the model is.

• We don’t know Rpsq

• We don’t know Prps1|s, aq

• But it is simple to learn them — the agent just moves around the
environment.

http://vimeo.com/13387420

33 / 41

Reinforcement learning

• Since it knows what state s1 it gets to when it executes a in s, it can
count how often particular transitions occur to estimate:

Prps1|s, aq

as the proportion of times executing a in s takes the agent to s1.

34 / 41

Reinforcement learning

• Similarly the agent can see what reward it gets in s to give it Rpsq.

35 / 41

Reinforcement learning

• If the agent wanders randomly for long enough, it will learn the
probability and reward values.

• (How would it know what “long enough” was?)

• With these values it can apply the Bellman equation(s) and start
doing the right thing.

36 / 41

http://vimeo.com/13387420


Reinforcement learning

• The agent can also be smarter, and use the values as it learns them.

• At each step it can solve the Bellman equation(s) to compute the best
action given what it knows.

• This means it can learn quicker, but also it may lead to sub-optimal
performance.

37 / 41

Q-learning

• Q-learning is a model-free approach to reinforcement learning.
• It doesn’t need to learn Pps1|s, aq.

• Revolves around the notion of Qps, aq, which denotes the value of
doing a in s.

Upsq “ max
a

Qps, aq

• We can write:

Qps, aq “ Rpsq ` γ
ÿ

s1

Pps1|s, aqmaxa1Qps1, a1q

and we could do value-iteration style updates on this.

• (Wouldn’t be model-free.)

38 / 41

Q-learning

• However, we can write the update rule as:

Qps, aq Ð Qps, aq ` αpRpsq ` γmax
a1

Qps1, a1q ´ Qps, aqq

and recalculate everytime that a is executed in s and takes the agent
to s1.

• α is a learning rate
• Controls how quickly we update the Q-value when we have new

information.

39 / 41

Introducing some supervision

• RL allows the agent to learn control policies from scratch

• However, when the state-space and the action-space are large,
supervision can help bootstrap the learning process

• With supervision an agent is exposed to instances of positive and
negative behavior, which get it starting in building its value function
(the table of state-action pairs)

• Those instances do not need to show the robot the best solutions!
The robot uses that input only as a starting point for its own learning

http://vimeo.com/13387420

40 / 41

http://vimeo.com/13387420


Summary

• This lecture has introduced machine learning.
• One aspect, reinforcement learning

• The idea is to have the robot figure out for itself how to do things.

• Just give it feedback.

• And, perhaps, some examples to help it get started.

41 / 41


