Diagrammatic Specification of
Mobile Real-Time Systems

Sven Linker*

Carl von Ossietzky University of Oldenburg
sven.linker@informatik.uni-oldenburg.de

Abstract. Behavior of spatio-temporal systems depends on real-time as
well as spatial aspects. More and more safety-critical systems fall into
this domain and thus raise the urge for formal specification and verifi-
cation methods for this type of systems. For this purpose, we develop a
diagrammatic language of Shape Diagrams that concentrates on the crit-
ical concepts and is usable by both engineers and scientists. We present
two syntaxes, an abstract one based on hypergraphs and graph transfor-
mation systems that constitutes the abstract structure, and a concrete
one given in terms of conventions for drawing diagrammatic pictures.

Key words: diagrammatic specification, spatio-temporal systems, for-
mal reasoning, graph transformation

In the last decades, the use of real-time systems, i.e., systems which are re-
quired to react to given inputs within a certain time bound, has dramatically
spread, especially in safety-critical areas. Mobile real-time systems additionally
have to respect spatial constraints and relations to ensure safe behaviour. Ex-
amples of such systems would be cars organizing themselves automatically as
platoons, aircraft controlling devices, or, on a lesser scale of criticality, auto-
mated and autonomous vacuum cleaners. Due to the complexity of these sys-
tems, methods for formally verifying their correct behaviour are highly desired.
However, mathematical formalisms allowing for proofs of the correctness of mo-
bile real-time systems with respect to time bounds as well as both qualitative
and quantitative spatial constraints are sparse. To the best of our knowledge,
the only formalism capturing spatial and temporal aspects in a uniform manner
is Shape Calculus [1], a multi-dimensional logic interpreted on models based on
polyhedra.

Diagrams are an often used engineering method to enhance communication
between engineers during development. Hence a diagrammatic language suited
for the specification of mobile real-time systems is desired. To bridge the gap
between engineering tasks and the formal verification of correct behaviour, such
a language should be equipped with formal semantics.

For this purpose, we propose the language of Shape Diagrams (see Fig. 1).
In the following, we briefly describe a concrete and hint at the definition of

* This work is supported by the German Research Foundation (DFG), grant GRK
1076/1



2 Sven Linker

an abstract syntax for this language. We establish the concrete syntax infor-
mally by conventions. Shape Diagrams consist of a stack of layers, which denote
successive points in time. Layers are depicted by rectangles parallely projected
onto the drawing plane. The interior of a layer describes a spatial situation,
where objects are abstracted to labelled rectangles called shapes. To reduce the
complexity of Shape Diagrams, we do not allow for arbitrarily shaped objects.
For non-rectangular objects, safe bounding boxes have to be used. To represent
restrictions on the durations between layers as well as the distances between ob-
jects and the borders of layers, arrows annotated with real-valued intervals are
employed. Note that arrows constraining distances may connect shapes across
layers. In such a case, auxillary lines have to be drawn to resolve ambiguities. We
support an assumption/commitment-style reasoning, i.e., to express that under
certain assumptions, a system is required to fulfill the commitments, we employ
shading. E.g. the diagram in Fig. 1 asserts, that if two cars drive one after the
other at a distance of 60m, they are required to build a platoon within 10 to 30s,
i.e., the rear car follows the car in front at a distance between 2 and 3m.

The abstract syntax
of Shape Diagrams has
to represent the follow-
ing entities and prop-
erties: the diagrammatic
\mT elements (layers, shapes
and arrows), the attach-
ment relations of arrows,
the positions of shapes in
Car Car relation to each other and

[0, 60] the order of layers. To
reflect these different as-
pects in the abstract syn-

Fig. 1. A Shape Diagram tax, we use the notion

of hypergraphs, i.e. graphs

where an edge may con-

nect an arbitrary number of nodes via its so-called tentacles. We employ typed

hyperedges, i.e. the type of an edge determines the number and names of its
tentacles.

Follow Car

[10,30]

The part of an abstract syntax graph representing the lower layer of Fig. 1 is
depicted in Fig. 2. Following Minas [2], each diagrammatic element is represented
by a hyperedge. The different elements are distinguished by hyperedge types, e.g.
we employ the types shape and tarrow for shapes and constraints on durations,
respectively. The vertices of the graphs denote attachment areas of the elements,
e.g. each tarrow edge visits two vertices with the tentacles s and t. The layer
edges visiting these nodes are representing the source and target of the arrow.
The description of the relative position of a shape is more difficult. We use an
approach developed by Guesgen [3] and Nabil et al. [4] generalizing interval
relationships to more than one dimension. The idea is based on projecting the



Diagrammatic Specification of Mobile Real-Time Systems 3

objects onto the axes, thus obtaining an interval on each axis for each shape.
Then the relations of two intervals in each dimension can be stored indepedently,
by hyperedges representing the interval relations visiting attachment nodes of
shape edges. In Fig. 2, the edges labelled = and < denote the relative positions
of the shapes in Fig. 1.

For a formal definition of the ab-
stract syntax, we employ a graph
transformation system. Such a system
consists of an axiom, i.e. a hyper-
graph, and transformation rules to ob- "
tain new graphs by repeatedly replac-
ing parts of the axiom resp. the result- (tarrow i -
ing graphs, similar to textual gram- .
mars. The rules differ strongly in their
complexity. For example, the rule for
the creation of layers is context-free,
i.e. it only replaces a single hyperedge
without taking other incident edges
into account. For the creation of the
spatial arrows, i.e. hyperedges of type
sarrow, the existence of at least one
shape or layer is necessary. Hence these
rules are only applicable in a certain
embedding context. The most com-
plex rules create the relative spatial
positions. They make use of both em-
bedding contexts and application con-
ditions [5], because on the one hand at - -
least two shapes have to be present for
edges defining relative positions, but Fig.2. Part of the Abstract Syntax
on the other hand exactly one relation Graph of Fig. 1
between two shapes has to be created
for a complete syntax graph.

References

1. Schifer, A.: Specification and Verification of Mobile Real-Time Systems. PhD thesis,
University of Oldenburg (2006)

2. Minas, M.: Hypergraphs as a uniform diagram representation model. In: TAGT 98,
London, UK, Springer (2000) 281-295

3. Guesgen, H.-W.: Spatial reasoning based on Allen’s temporal logic. Technical Report
TR-89-049, Int’l. Comp. Science Inst., Berkeley (1989)

4. Nabil, M., Shepherd, J., Ngu, A.H.H.: 2D projection interval relationships: A sym-
bolic representation of spatial relationships. In: Proc. 4th SSD, Springer (1995)
292-309

5. Habel, A., Pennemann, K.H.: Correctness of high-level transformation systems rel-
ative to nested conditions. MSCS 19 (2009) 245-296



